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Abstract 

The integration of robotics in dairy housing systems has led to increased automation and autonomy in 

tasks such as milking, feeding, and manure removal. These machines enable a high level of autonomy. The 

intelligence of one machine enables the execution of tasks and work processes automatically, driven by data 

collected from sensors, mostly embedded within that particular machine. They are uninformed about tasks 

being carried out by other machines in the same dairy housing. Due to this the autonomy level of these 

machines must either be limited or manually switched off to avoid that the machines collide with other 

machines or work processes. Presently, farmers manually regulate various machines in the dairy housing 

when multiple machines are performing their tasks simultaneously because the data exchange between the 

devices is limited. However, to maximize the autonomy of all machines, they should not interfere with each 

other and should communicate the current task being executed and their own operational mode. To enable 

devices to coordinate operations based on exchanged data between them, effective Machine-to-Machine 

(M2M) networking is crucial. Especially, smaller automated machines (for example manure removal robot), 

which are often overlooked in the consideration of M2M communication, may clash with operations of larger 

devices if not synchronized. The detailed expectations and experiences of farmers regarding the connectivity 

of devices in the housing system are underexplored in the literature. The aim of this study was to capture 

farmers' expectations and experiences regarding machine networking in the dairy housing systems through 

online surveys. Insights from Bavarian dairy farmers (n=231) show varying expectations based on different 

housing systems and devices experience. Farmers with less experience with automated machines or robots 

anticipate lower benefits such as time savings and greater work flexibility through machine networking 

compared to those familiar with automated machines. Notably, the highest expectations for machine 

networking are seen among users of multiple machines in one dairy housing simultaneously. The integration 

of robotics in dairy housing offers significant potential, but effective M2M communication is essential for 

maximizing efficiency and realizing anticipated benefits.  

 

Keywords: M2M, networking, robots, dairy housing technology, precision livestock farming. 

1. Introduction 

In dairy farming systems, robots are increasingly taking over everyday tasks such as milking, feeding, 

and manure removal with a high degree of automation and autonomy (Noack et al., 2023). Dairy farmers' 

interest in digital technology is evident and reflected in the increasing number of installed automatic milking 

systems (AMS) and the investment interest in expanding existing technology with digital systems such as 

feeding systems and herd management programs (HMP) (Egger-Danner et al., 2020; LKV Bayern, 2019).  

This intelligent dairy housing technology allows for the adjustment of automated processes to current 

conditions within the dairy housing. Moreover, the devices in the dairy housing produce a variety of data in 

the course of their work. The increased availability of data forms the informational basis for making the right 

decisions at the right time (Schick, 2017). Although many decisions could be based on logical combinations 

of this information, the farmer cannot delegate the decision-making and its implementation to the system due 

to the lack of M2M networking (Tomic et al., 2014). This often eliminates the possibility of adjusting the 

dairy housing technology promptly and without the farmer's immediate intervention to better meet the needs 

of animals, the environment, and people (Poteko et al., 2022). The intelligence of these devices is primarily 

based on the data collected by their own sensors, enabling them to flexibly adapt their operations to the 

current needs in the dairy housing. However, the autonomy of the entire dairy housing system depends on 

the data flow between the devices or machines. Machine-to-machine (M2M) communication between the 
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devices would allow them to consider not only their own data but also the data from other devices when 

planning and executing rule-based operations. 

Currently, the farmer regulates the devices in the dairy housing and makes manual settings, such as when 

and what to feed and where cleaning should take place. To fully exploit the autonomy of all devices in the 

dairy housing, M2M networking is fundamentally necessary. Smaller robots (e.g., manure removal robots) 

are often overlooked in M2M communication. However, if the autonomous devices independently change 

their operations, they can collide with the preset operations of these smaller devices. Currently, data exchange 

between the devices is also not possible (Poteko et al., 2022). 

Personal conversations with farmers experienced with digital technologies have shown that they are 

linked to the number of automated or autonomous devices installed in their dairy housings (Poteko et al., 

2023). Detailed expectations and experiences have not yet been thoroughly investigated in the scientific 

literature. 

The online surveys are being used to capture the expectations and experiences of farmers regarding the 

networking and communication between devices in dairy housings. The goal is to investigate the expectations 

end users of the technology have from a labor management perspective and how they perceive the current 

situation regarding the connectivity of the devices in the dairy housing.  

2. Materials and Methods  

The data basis consists of an online survey conducted by the Bavarian State Research Center for 

Agriculture, Institute for Agricultural Engineering and Animal Husbandry, aiming to investigate the 

networking of digital technologies in dairy housings. This survey was carried out between November 2020 

and February 2021 among individuals working on dairy farms. It gathers information on the dairy housing 

technology used on the farms as well as experiences and expectations with digital technologies. 

The present results pertain to survey participants with dairy farms in Bavaria (n = 231), divided into six 

categories based on the degree of automation in the husbandry system. The survey included response options 

for various statements, allowing participants to indicate their level of agreement: "Applies," "Neutral," "Does 

not apply," and "I cannot judge." Two categories use mechanical technology (tied housing [M1], loose 

housing system with cubicles with a milking parlor [M2]). Automated farms use a loose housing with an 

automatic milking system [A1] and, in addition to A1, either a feed pushing robot [A2], a cleaning robot 

[A3], or both robots [A4]. The expectations and experiences with the networking of devices are presented 

using Likert scales.  

3. Results and Discussion 

The proportions of farmers who expect time savings (Figure 1) or increased work flexibility (Figure 2) 

through the networking of various dairy housing technologies depend on the degree of automation in their 

husbandry systems. It is clearly evident that farmers with less experience using automated devices (M1 and 

M2) have lower expectations of time savings and increased work flexibility compared to experienced users 

of automation (A1-4). The highest expectations were expressed by farmers who use the most automated 

technologies (A4). 
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Figure 1: Percentage of survey participants anticipating time savings through machine networking in 

the dairy housing [n=231]. 

 

 
Figure 2: Percentage of survey participants anticipating greater work flexibility through machine 

networking in the dairy housing [n=231]. 

 

Prior experience is significant in relation to the need for device networking (Figure 3). While only about 

10% of respondents from the [M1] group consider device networking inadequate, approximately 30% of 

experienced users of automated technology [A1-4] have already encountered a need for networking. 

Respondents [A4] assess that networking becomes a relevant issue as soon as multiple automated devices are 

installed in a dairy housing. 
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Figure 3: Percentage of survey participants who encountered insufficient machine networking in the 

dairy housing [n=231]. 

4. Conclusions 

The integration of robotics in dairy housing offers significant potential, but effective M2M 

communication is essential for maximizing efficiency and realizing anticipated benefits. As long as 

autonomous devices are not informed about the activities of other devices, their decision-making capabilities 

often remain unused, and they cannot effectively support the end user. The need for M2M networking is 

particularly present when multiple autonomous devices are used in a dairy housing. The increasing number 

of intelligent devices in the future will amplify the importance and need for M2M networking. Further 

research and practical implementation are necessary to address current limitations and fully exploit the 

capabilities of intelligent dairy housing machines. 
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Abstract 

Esca is one of the most destructive vine diseases in the world. It causes significant economic losses, 

mainly due to reduced grape yield and quality. Currently, the approved methods of controlling esca include 

preventive methods such as the use of fungicides on plant wounds or the use of planting systems that do not 

require intensive pruning, among others. It is therefore advisable to monitor the crop to identify those vines 

that are susceptible to the disease. For this reason, in this study a proximal hyperspectral camera was used 

for early detection of esca presence in asymptomatic grapevine leaves. Images of 11 vines of the Tempranillo 

variety grown in Etxauri (Navarre, Spain) were analysed. Hyperspectral images were acquired using a 

Specim IQ snapshot camera, mounted on a tripod, working in the range of 400–1000 nm with a spectral 

resolution of 7 nm (204 bands), and an image resolution of 512 × 512 pixel including an RGB camera (5 

Mpix). The images were taken under natural ambient light conditions on August 21, 2023. From the 11 vines 

selected, 9 showed visual symptoms of esca and the remaining 2 were asymptomatic to the naked eye. A total 

of 200 pixels were randomly selected from the dataset, 100 from asymptomatic leaves of asymptomatic vines 

(class 1) and 100 from asymptomatic leaves of symptomatic vines (class 2). Partial Least Square Discriminant 

Analysis (PLS-DA) was performed to classify the leaves into the two classes. Classification rates of 97% 

were achieved in the cross-validation dataset. Models were externally validated at pixel-level using one image 

of an asymptomatic vine and another of a symptomatic vine. The visualisation of the images confirmed the 

correct classification of the pixels into the two classes, indicating that by using proximal hyperspectral 

sensing an early identification of the disease is possible. 

Keywords: trunk disease, PLS-DA, chemometrics, hyperspectral imaging, Vis-NIR 

1. Introduction 

Esca is a grapevine trunk disease that is considered one of the most destructive vine diseases in the world 

(Ouadi et al., 2019). Grapevine trunk diseases cause significant economic losses, mainly due to the reduction 

in grape yield and quality and the fact that they eventually lead to the death of the vine over a variable period 

of time (Fontaine et al., 2016). The global economic impact of replacing dead vines is estimated at $1.5 

billion per year (Hofstetter et al., 2012). Furthermore, when analysing the economic impact at the national 

level, it can be seen that in a wine-producing country such as France, the annual loss in wine production 

reaches one billion euros (Ouadi et al., 2019). 

Esca is not a single disease but a group of syndromes caused by a number of ascomycete and 

basidiomycete fungi. The main species involved are Phaeomoniella chlamydospora (Gams and Crous, 2000), 

and Phaeoacremonium aleophilum (Crous et al., 1996) in the ascomycetes, while Fomitiporia mediterranea is 

the main basidiomycetes pathogen (Fischer, 2002). These species infect the plant by means of spores, which 

can be transported by air or rain and enter the plant through wounds in the wood (caused by impact, 

mechanical work such as pruning, etc.) (Bertsch et al., 2013; Mugnai et al., 1999).  

Prior to the appearance of visual symptoms on the leaves, there may be other earlier symptoms that can 

help in the early detection of the disease. These include a reduction in carotenoid content or a change in 

photosynthesis as a result of the defense mechanisms activated by the plant when it is under stress conditions 

(Altangerel et al., 2017; Baratto et al., 2022; Letousey et al., 2010; Magnin-Robert et al., 2011). 

It should be noted that the chemical control of the disease is not possible as the use of sodium arsenite 

(the only known product capable of controlling the disease) was banned in 2003 (Fontaine et al., 2016). 

Currently, the approved methods of controlling this disease include preventive methods such as the use of 

fungicides on plant wounds, the use of planting systems that do not require intensive pruning, or the purchase 

of healthy plant material from nurseries (Fontaine et al., 2016; Mondello et al., 2018; Mugnai et al., 1999). 
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It is therefore advisable to monitor the crop to identify those vines that are susceptible to the disease. In this 

regard, optical sensors such as hyperspectral imaging (HSI) are presented as promising tools for the non-

invasive evaluation of the physiological state of plants and for the diagnosis and detection of diseases 

(Mahlein, 2016; Zhang et al., 2019). Thus, HSI combined with a fine-scale chemometric approach can be 

very useful for disease detection and quantification (Bock et al., 2010), as it is able to provide a pixel-wise 

distribution of infection symptoms on the leaf surface. 

For this reason, in this study a proximal hyperspectral camera was used for in-field early detection of esca 

disease in asymptomatic grapevine leaves of cultivar Tempranillo. 

2. Materials and Methods  

2.1. Plant material  

Images of 11 vines of the Tempranillo variety grown on plots in Bodegas Otazu, in the town of Etxauri 

(Navarre, Spain) were used in this study (Figure 1). The vines are approximately 32 years old (planted in 

1992) and all of them were selected from plots with a history of esca incidence and were; therefore, 

susceptible to the development of the disease. From the 11 vines selected, nine showed visual symptoms of 

esca (to a greater or lesser extent) and the remaining two were asymptomatic to the naked eye. 

 

Figure 1. Picture of a vine taken in the field with the Spectralon plate (white reference). 

2.2. Image acquisition and processing 

Hyperspectral images were acquired by setting up an acquisition station, equipped with a Specim IQ 

snapshot camera (Specim Ltd., Oulu, Finland), mounted on a tripod, working in the range of 400–1000 nm 

with a spectral resolution of 7 nm (204 bands), and carrying a CMOS technology sensor with an image 

resolution of 512 × 512 pixel and an RGB camera (5 Mpix) (figure 2). 

The images were captured in natural environmental light conditions in the field on August 21, 2023. The 

first step was the calibration of the equipment. The integration time was selected in automatic mode as the 

equipment optimizes the appropriate time for each acquisition. Both the focus and viewfinder camera views 

were manually aligned just before recording the image; while the white reference panel (a Spectralon plate) 

was placed to carry out a calibration scan. Reflectance was automatically calculated for each pixel, by the 

Specim IQ Studio camera software (Specim Ltd., Oulu, Finland). Once calibrated, camera acquired one 

image per vine, taking care to ensure that the entire front of the vine was captured in relation to the camera. 

Therefore, 11 individual images were obtained. 
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Figure 2. The imaging system used in this study capturing an image of a vine in the field. 

Once the images were obtained, their processing consisted of several steps. First, the 3D image, or 

hypercube, had to be created. Second, the images were randomly divided into a calibration set, consisting of 

one image of an asymptomatic vine (class 1) and eight symptomatic vines (class 2), and a validation set, 

consisting one image from each class. The calibration and validation groups were processed differently. The 

images from the calibration group were used to randomly select pixels to form the calibration matrix, 100 

pixels were selected from the Class 1 images and 100 from the Class 2 images. This was carried out with the 

HYPER-Tools 3.0 software, which works in the MATLAB R2023a environment (Figure 3). The result was 

a two-dimensional matrix with 200 rows and 204 columns corresponding to the wavelengths.  

 

Figure 3. One of the selections with the selected pixels circled in green (a), and the spectra corresponding to the 

reflectance measured for each pixel at each of the 204 wavelengths recorded by the instrument (b). 

On the other hand, the 2 images that formed the validation group were individually segmented to separate 

the region of interest (ROI) from the background. For this purpose, the k-means algorithm implemented in 

MATLAB was used. Next, unfolding was performed, which consists of transforming the information stored 

in the hypercube (3D) into a two-dimensional matrix (2D) containing the reflectance of each pixel at each 

wavelength. This resulted in two matrixes of 120,209 rows and 204 columns and of 122,348 rows and 204 

columns.  
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2.3. Chemometric modelling 

Partial Least Squares Discriminant Analysis (PLS-DA) was used to separate the two classes of leaves. 

PLS-DA is a pattern recognition technique that uses PLS regression to predict assignment classes or groups 

from the sample spectrum. To use this method, a binary matrix (Y) is created with the same number of rows 

as samples and the same number of columns as classes. In this way, PLS-DA performs a qualitative 

calibration. That is, instead of calibrating for a continuous variable, it calibrates for class membership (Shenk 

and Westerhaus, 1995). 

In addition, different mathematical pre-treatments were applied to the spectra such as smoothing (SM), 

first (1st der) and second derivative (2nd der) of Savitzky Golay (SG) (2nd order polynomial and 15-window 

points), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) either alone or in 

combination. The effect of no pre-treatment (None) was also analysed. A 10-fold Venetian blind cross-

validation (CV) was used for internal validation. 

To evaluate the effectiveness of the models, we mainly considered the percentage of correctly classified 

(%CC) samples (accuracy) in each class, as well as the sensitivity, specificity, and class error in Calibration 

and CV datasets. The best performing model was used for external prediction of the samples. Classification 

images were then displayed to visualise the spatial distribution pixels predicted as either Class 1 or 2 using 

in-house written codes.  

The PLS_Toolbox software v. 9.3 (Eigenvector Research Inc., Wenatchee, WA, USA) under MATLAB 

R2023a (TheMathWorks, Inc., Natick, MA, USA) was used to apply the different pre-treatments and to build 

PLS-DA models. 

3. Results and Discussion 

Table 1 shows the results of the 8 PLS-DA models carried out using different pre-treatment combinations 

for the calibration and CV datasets. It shows the number of LV used; the percentage of variance explained; 

the percentage of correctly classified (%CC) samples of each class (asymptomatic and symptomatic) and the 

overall accuracy for each model. High accuracy rates (>90%) were obtained for all the models in CV. The 

highest accuracy among the models developed was obtained for the combination of SM+SNV with 97% of 

samples correctly classified in both calibration and CV. This model was built using 8 LV explaining 99.77% 

of variance.  

Table 1.PLS-DA results of classification using different pre-treatment combinations. 
   %CCCal %CCCV 

Pre-processing LV Variance (%) Class 1 Class 2 Overall Class 1 Class 2 Overall 

None 5 99.97 99 88 93.5 98 88 93 

SM 5 99.99 97 85 91 97 84 90.5 

SNV 6 99.96 99 96 97.5 99 94 96.5 

MSC 6 99.98 99 96 97.5 99 94 96.5 

1st der 6 99.91 97 91 94 97 91 94 

2nd der 4 99.64 97 88 92.5 96 87 91.5 

SM+SNV 8 99.77 99 95 97 99 95 97 

SM+MSC 6 100 98 92 95 98 92 95 

LV, Latent variable; SM, smoothing; SNV, Standard Normal Variate; MSC, Mean Scatter Correction; 1st der, First derivative; 2nd der, 

Second derivative. Values in bold correspond to the best results obtained in terms of highest %CC in both Calibration and CV. 

Table 2 shows the sensitivity, specificity and class error values for the best performing model. Regarding 

sensitivity and specificity values, asymptomatic pixels were slightly better classified into their class as they 

achieved a higher sensitivity value than symptomatic pixels. 

Table 2. Sensitivity, specificity and error values of the best PLS-DA performing model. 
  Cal CV 

Pre-processing Classes Sensitivity Specificity Error Sensitivity Specificity Error 

SM+SNV 
Class 1 0.99 0.95 

0.03 
0.98 0.95 

0.035 
Class 2 0.95 0.99 0.95 0.98 

Figure 4 (b, d) shows the classification images obtained using the SM + SNV PLS-DA model with their 

corresponding RGB images (Figure 4 (a, c)). Slight foliar symptoms of esca can be observed in Figure 4c. In 
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class 1 (asymptomatic) a 94.46% of pixels were correctly classified as asymptomatic (Figure 4b pixels in 

blue), while a blind prediction was performed for the symptomatic pixels (Figure 4d). Figure 4b displays a 

few instances of false positives, indicated by orange pixels. These are observed at the upper end of the image, 

corresponding to the petioles of the leaves, and on the leaves themselves, corresponding to other symptoms 

that are not esca. Figure 4d illustrates that the majority of pixels classified as symptomatic (pixels in orange) 

were, in fact, symptomatic, as can be observed in Figure 4c. Nevertheless, it is also evident that some false 

positives can be observed mainly corresponding to the petioles of the leaves. The findings indicate that it is 

feasible to identify vines exhibiting symptoms of esca infection at an early stage, when the symptoms are 

barely perceptible. This information would allow a differentiated management of the vines identified as 

affected by esca, as well as facilitating the annual monitoring of the incidence of the disease in the vineyard. 

 

Figure 4. RGB images of the asymptomatic (a) and symptomatic (c) vines and classification images in the external 

validation. The blue pixels represent the true positives, that is, the asymptomatic pixels correctly classified (b) while the 

orange pixels represent the true negatives or the symptomatic pixels correctly classified in their class (d). 

4. Conclusions 

This study proposes that the combined use of an in-field hyperspectral imaging sensor with partial least 

squares-discriminant analysis enables the classification of vines according to the presence of esca at early 

stages of the disease. The PLS-DA model developed by applying the combination of smoothing followed by 

SNV pre-treatments obtained the best results, with a CV accuracy rate of 97%. Furthermore, the classification 
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images facilitated the visualization of the spatial distribution of asymptomatic and symptomatic pixels. 

Despite the limitations of this study, including the relatively small number of samples used, among others, 

it can be concluded that HSI technology has significant potential for the detection of esca and possibly other 

grapevine trunk diseases in-field. 
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Abstract 

Esca represents one of the greatest threats to modern viticulture as it causes large annual economic losses. 

At present, there is a lack of effective strategies for disease control, so a technique capable of detecting 

affected vines would allow annual monitoring of disease incidence in the vineyard leading to a better crop 

management and decision making. This study evaluates close-range hyperspectral imaging for the detection 

of esca naturally infected vines. Images of 11 vines of the Tempranillo variety grown on plots in Bodegas 

Otazu, in Etxauri (Navarre, Spain) were acquired. A Specim IQ snapshot hyperspectral camera was used to 

record the images on August, 21 2023 on the field under natural light conditions. The camera has a spectral 

resolution of 7 nm (204 wavelengths) and a spatial resolution of 512 x 512 in the 400 – 1000 nm spectral 

range (Vis-NIR). An individual image was acquired for each vine, of which 9 were symptomatic and 2 

asymptomatic. Three classes were analysed: asymptomatic leaves of asymptomatic vines (Class 1), 

asymptomatic leaves of symptomatic vines (Class 2) and asymptomatic areas of symptomatic leaves of 

symptomatic vines (Class 3). A total of 300 pixels were randomly selected, 100 per class, for further analysis. 

Partial Least Square Discriminant Analysis (PLSDA) was used to classify the pixels into the three categories. 

An accuracy of 86% was achieved in the cross-validation dataset. Models were externally validated using an 

image of an asymptomatic vine and an image of a symptomatic vine. The visualisation of the images showed 

that the majority of the pixels of the asymptomatic vine image were classified as class 1, while most of the 

pixels of the symptomatic vine image were classified as either class 2 or class 3. Hence, this study 

demonstrated the potential of close-range HSI for the on-site detection of esca. 

Keywords: trunk disease, accuracy, chemometrics, image, Vis-NIR 

1. Introduction 

Esca represents one of the greatest threats to modern viticulture as it causes large annual economic losses 

(Hofstetter et al., 2012; Ouadi et al., 2019). Esca is a disease complex caused by a few ascomycetes and 

basidiomycete fungi. The species mainly involved are Phaeomoniella chlamydospora (Gams and Crous, 

2000) and Phaeoacremonium aleophilum (Crous et al., 1996) in the case of ascomycetes, while Fomitiporia 

mediterranea (Fischer, 2002) is the main agent in the case of basidiomycetes.  

At present, there is a lack of effective strategies and means of disease control, so a technique capable of 

detecting affected vines would allow annual monitoring of disease incidence in the vineyard and therefore 

better crop management and decision making.  

Therefore, the objective of this study is to evaluate the capability of a close-range hyperspectral imaging 

(HSI) system for the detection of naturally esca-infected vines. 

2. Materials and Methods  

2.1. Vegetal material  

The plant material used corresponds to 11 vines of the Tempranillo variety grown on commercial plots 

in Bodegas Otazu, in the town of Etxauri located in Navarre, Spain. All the vines were selected from plots 

with a history of esca incidence. Of the 11 vines selected, nine exhibited visual symptoms of esca, while the 

remaining two were asymptomatic. 
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2.2. Hyperspectral image acquisition  

Specim IQ snapshot portable camera (Specim Ltd., Oulu, Finland) was used to acquired hyperspectral 

images in field (Figure 1). This equipment is sensitive in the 400 – 1000 nm spectral range with a 7 nm 

bandwidth (resulting in 204 bands) and a spatial resolution of 512 × 512 pixels. The system also incorporates 

a 5 Mpix RGB camera. Images were taken under natural light conditions by placing the camera on a tripod 

on August 21, 2023. 

The initial stage of the process involved the calibration of the equipment. The integration time was 

selected in an automated mode, whereby the equipment selects the optimal time for each acquisition. Prior 

to the acquisition of the image, the focus camera and viewfinder camera views were manually aligned with 

the camera. Additionally, a white reference panel (a Spectralon plate) was placed to facilitate a calibration 

scan. Then, the Specim IQ Studio camera software (Specim Ltd., Oulu, Finland) automatically calculated the 

reflectance for each pixel. 

Afterwards, an image of each of the 11 vines was recorded (9 with visual symptoms of esca and 2 without 

visual symptoms).  

 

Figure 1. Specim IQ device front (a) and back (b) details.  

2.2.1. Image processing 

For image analysis, the software used for matrix formation and chemometric analysis was MATLAB 

version 2023b (TheMathWorks, Inc., Natick, MA, USA) with the Image Processing and Statistics Machine 

Learning products. This software was used in conjunction with HYPER-Tools version 3.0 (Amigo et al., 

2015). 

The individual images were assembled into 11 hypercubes, each with a size of 512 x 512 x 204. 

Subsequently, the images were randomly divided into two sets: a calibration set, comprising one image of an 

asymptomatic vine (Class 1) and eight symptomatic vines (Classes 2 and 3), and a validation set, comprising 

one image from each group. The calibration and validation datasets were processed in disparate ways. The 

images from the calibration group were employed to randomly select pixels to form the calibration matrix. 

A total of 100 pixels were selected from each of the three classes. This process was conducted using the 

HYPER-Tools 3.0 software, which operates within the MATLAB R2023a environment. The outcome was a 

two-dimensional matrix comprising 300 rows and 204 columns, corresponding to the wavelengths. 

Conversely, the two images that constituted the validation group were individually segmented in order to 

separate the region of interest (ROI) from the background. In order to achieve this, the k-means algorithm, 

implemented in MATLAB R2023a, was employed. No further processing of the validation images was 

required.  

2.3. Chemometric analysis 

In order to differentiate between the three classes of pixels, a Partial Least Squares Discriminant Analysis 

(PLSDA) was conducted. PLSDA is a supervised classification technique based on PLS regression using to 

predict class membership of samples (Ballabio and Consonni, 2013). Classification models were constructed 

using the 300 x 204 matrix and subsequently validated externally using the two images comprising the 

validation dataset.  

Furthermore, a variety of pre-processing algorithms alone or in combination were employed with the 

objective of reducing instrumental noise, scattering, and enhancing spectral peaks. Thus, denoising 

algorithms such as smoothing by the Savitzky-Golay method using a 15-point filter and light scattering 
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correction techniques as Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) were 

applied to the spectral data. Moreover, first (1st der) and second derivatives (2nd der) by the Savitzky Golay 

(SG) method using a second order polynomial and 15 window points were used in this study. 

In order to assess the efficacy of the models, we primarily focused on the percentage of correctly classified 

samples (%CC) within each class, in addition to the sensitivity, specificity, and class error in the calibration 

and CV datasets. The most effective model was employed for the external prediction of the samples. 

3. Results and Discussion 

Table 1 presents the outcomes of the 8 PLSDA models, each utilising distinct pre-processing 

combinations for the calibration and cross-validation datasets. The number of LVs utilised, the overall 

accuracy for each model, and the percentage of unassigned samples is indicated in the table.  

In terms of calibration, the accuracy rate ranges from 84% obtained for the model using smoothing pre-

processing to 92% for the model using smoothing plus MSC. The proportion of unassigned samples varies 

from 20% for the model that utilises smoothing in conjunction with the first derivative of SG to 27% for the 

model that applies smoothing pre-processing in conjunction with SNV. With regard to cross-validation, the 

accuracy rate varies from 78% (for the model applying 2nd der) to 86% (the highest percentage model 

corresponds to that of the calibration.), while the percentage of unassigned samples ranges from 23% (in the 

model applying smoothing together with MSC) to 30% (in the model using the raw spectrum). 

Table 1.PLSDA results of classification using different pre-processing combinations. 

  Calibration Cross-validation 

Pre-processing LV Accuracy (%) Unassigned (%) Accuracy (%) Unassigned (%) 

None 10 87 26 83 30 

Smoothing 9 84 21 83 25 

1st der 7 85 22 83 26 

2nd der 9 85 22 78 27 

Smoothing + 1st der 9 86 20 84 24 

Smoothing + 2nd der 10 86 21 79 26 

Smoothing + SNV 6 89 27 85 23 

Smoothing + MSC 9 92 25 86 28 

LV, Latent Variables; 1st der, First derivative; 2nd der, Second derivative; SNV, Standard Normal Variate; MSC, Mean Scatter 

Correction. Values in bold correspond to the best results obtained in terms of highest %accuracy and lowest % of unassigned 

samples in both Calibration and CV. 

Regarding the overall accuracy, it is worth noting that the range of values obtained in the present analysis 

(between 80% and 90% approximately) is comparable to the value presented by Al-Saddik et al. (2018) for 

the classification of esca based on the spectrum (accuracy of 80.62%), as well as to the ranges reflected by 

Loggenberg et al. (2018) and Zovko et al. (2019) for modelling water stress in grapevines. Pérez-Roncal et al. 

(2022) achieved comparable results in terms of accuracy for esca-affected leaves using HSI at a laboratory 

scale. 

On the other hand, when the results of the models are compared, it becomes evident that the pre-

processing techniques do not significantly enhance the accuracy of the models. Indeed, only a marginal 

improvement is observed in the final two models (those that employ smoothing pre-processing in conjunction 

with SNV or MSC). Nevertheless, the majority of the models in which pre-processing algorithms are applied 

demonstrate an improvement in the non-assignment percentages, with these being reduced (Table 1). It is 

evident that the implementation of pre-processing methods enhances the efficacy of the models. This is 

logical, given that they are designed to eliminate superfluous information, such as noise, and to accentuate 

pertinent data. 

It is important to note that of all the models generated, the one that uses the smoothing followed by SNV 

was considered to be the one with the best performance. Therefore, this model should be used for subsequent 

stages of the analysis, such as external validation. The rationale for this selection is that the model in question 

exhibits the second-highest accuracy in both calibration and cross-validation, while simultaneously using the 

lowest number of latent variables and a lower percentage of unassigned samples than the model with the 

highest accuracy (Table 1). 

In order to gain further insight into the chosen model, it was deemed necessary to conduct an assessment 

of the model's sensitivity and specificity in each classification group. The aforementioned parameters are 
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presented in Table 2. 

Table 2. Sensitivity and specificity values of the chosen model 
  Calibration Cross-validation 

Pre-processing Classes Sensitivity Specificity Sensitivity Specificity 

SM + SNV 

Class 1 100 95 100 95 

Class 2 79 94 77 90 

Class 3 80 94 72 93 

It can be observed that in Class 1, the sensitivity and specificity values for both calibration and cross-

validation are 100% and 95%, respectively. For Class 2, the results of the cross-validation (CV) dataset 

indicate a sensitivity of 77% and a specificity of 90%. Finally, the sensitivity and specificity values for Class 

3 in the cross-validation dataset are 72% and 93%, respectively (Table 2). It is evident that the values for 

Class 1 are considerably higher than those for Classes 2 and 3, particularly in terms of sensitivity. This 

indicates that the model is capable of effectively distinguishing between samples belonging to the first group 

(asymptomatic leaves from asymptomatic vines) and the other two groups, while the differentiation between 

samples corresponding to Class 2 and Class 3 (asymptomatic samples in symptomatic vines) is less 

straightforward. 

Figure 2 illustrates the outcome of the validation process, conducted with the 3-group model and the 

smoothing pre-processing in conjunction with SNV, for the image containing the asymptomatic vine. 

 

Figure 2. RGB image of the asymptomatic vine (a) and classification image of the same vine in the external 

validation  (b).  

It can be seen that almost all pixels have been classified as Class 1, which is positive as this is the correct 

class as it is one of the asymptomatic vines. However, there are isolated areas with a predominance of pixels 

unassigned and/or assigned to classes other than Class 1 (Figure 2). The latter may be due to various causes, 

such as the error presented by the model itself or the existence of small areas that do not correspond to leaves. 

In any case, as the latter are very limited areas and, consequently, as there is a clear predominance of the 

correct classification, it could be said that the model works correctly in this case. 

It can be observed how the majority of pixels have been classified as Class 1, which is a positive indication 

as this is the correct classification (asymptomatic vines). However, there are isolated areas where the majority 

of pixels are unassigned and/or assigned to classes other than Class 1 (Figure 2). The latter may be attributed 

to a number of potential causes, including the inherent limitations of the model, the presence of small areas 

that do not correspond to leaves, or the existence of areas damaged by factors other than esca, on the observed 

areas. In any case, as the latter are very limited zones and, consequently, there is a clear predominance of the 

correct classification, it could be said that the model functions correctly in this instance. 

Figure 3 presents the results of the external validation, carried out with the 3-group model using the 
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smoothing pre-processing together with SNV, for the image containing the symptomatic vine. 

 

Figure 3. RGB image of the symptomatic vine (a) and classification image of the same vine in the external 

validation  (b).  

It can be observed that the majority of the pixels have been classified as Class 3 and few as Class 2. This 

is a positive finding, as both Class 2 and 3 are the correct classes for a symptomatic vine, and moreover, as 

the image is located in an area with clear visual symptoms. Nevertheless, it is evident that a considerable 

number of pixels remain unassigned (Figure 3). This further substantiates the assertion that the model is 

capable of discerning Class 1 with relative ease, while distinguishing between samples of Classes 2 and 3 is 

more challenging. The primary reason for this difficulty is believed to be that, despite the classification of 

three groups, there is a lack of understanding of the relationship between these groups and the stages of 

symptomatologic development. It is likely that such development is gradual, and therefore there are 

intermediate situations that are not taken into account during sampling. Given that the majority of classified 

pixels have been assigned to Class 3, it is reasonable to conclude that the majority of unassigned pixels are 

in an intermediate symptomatologic state between Class 2 and 3. 

4. Conclusions 

The results of the present study indicate that hyperspectral imaging technology can be employed to 

develop effective methods for the early detection of symptomatic vines with regard to esca. The models 

developed allow for a high degree of differentiation both in the calibration (calibration and cross-validation) 

and validation stages. However, for future studies, it would be advisable to improve the efficiency of the 

model in terms of differentiating between samples with early (Class 2) and more advanced (Class 3) 

symptoms.  
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Abstract 

Sensor-based yield recording on self-propelled forage harvesters (SFH) were tested in the DigiMilch 

experimental field under practical conditions as a way of recording yield in grassland and silage maize 

throughout the year. The aim of the study was to test the accuracy, functionality and suitability of the sensor 

technology for use on commercial farms. The sensor technology on SFH from four different manufacturers 

was tested on ten Bavarian farms. The comparisons of the SFH data with the reference values for fresh mass 

yield recording via the sensors on the pre-compression rollers and the determination of the dry matter (DM) 

content via the near-infrared spectroscopy (NIRS) sensor showed very good compliance with high 

coefficients of determination of over 0.70 in both grassland and silage maize harvests. The very good 

concordance correlation coefficients (0.78 in grassland and 0.93 in silage maize), which resulted from the 

comparison of the site-specific DM yield (t ha-1) from SFH data with that from reference data, confirmed the 

high accuracy of the sensors on the SFH. The nutrient components estimation via the NIRS sensor performed 

well, but a further optimisation of the calibration curves could improve the accuracy. The results of the study 

showed that if the crop is very wet or very dry or if the crop flow is low, yield recording will be less accurate. 

Site-specific yield recording can reveal the yield potential from the often very different sites on a (sub-) site-

specific basis leading to possible management options for more efficiency. Improved roughage management 

can increase roughage quality and reduce operating costs. Due to the still unexploited potential for 

optimisation in data management, the sensor-based yield recording is not yet fully suitable for practical use. 

Keywords: fresh mass, dry matter content, nutrient components, near infrared spectroscopy, data 

management 

1. Introduction 

Farmers are under increasing pressure from political and legal requirements as well as economic 

challenges and optimisation constraints. The optimisation of roughage management is one of the biggest 

factors in increasing the efficiency of a farm. The yield potential of individual grassland and fodder crop sites 

can be revealed by recording the farm's own site-specific yields throughout the year. With this knowledge, 

farmers can make targeted adjustments to management measures. Grassland sites are particularly 

heterogeneous in terms of yield potential, therefore they offer the greatest potential for optimisation (Worek 

and Thurner, 2021). With sensor-based yield recording on the self-propelled forage harvesters (SFH), dry 

matter (DM) yields can be determined on a (sub-) site-specific basis. In the DigiMilch experimental field this 

method was tested as a possibility for year-round yield recording under practical conditions during grassland 

and maize harvesting. The aim of the study was to test the accuracy and functionality of the sensor 

technology. The practical suitability of the method regarding the recording of site-specific yields was then 

tested. Particular attention was also paid to data processing and data management. 

2. Materials and Methods  

To test the accuracy of the sensors on the SFH, the technology of four different forage harvester 

manufacturers (Claas KGaA mbH, John Deere GmbH & Co. KG, Krone GmbH & Co. KG and CNH 

Industrial) were tested under practical conditions spread on ten farms located all over Bavaria. Sensors on 

the pre-compression rollers of the SFH determine the volume flow of the crop via their degree of deflection 

and speed, which correlates with the harvested fresh mass quantity. The DM content of the harvested crop 

can be determined using a near infrared spectroscopy (NIRS) sensor on the discharge spout of the SFH. The 

types of the NIRS sensors tested in the project and their measuring ranges are listed in Table 1. The DM yield 

in t ha-1 is obtained by multiplying the value for the fresh mass by the DM content and dividing the product 
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by the area size in ha. The yearly DM yield per ha is a key parameter for farmers. Therefore, the focus was 

also placed on checking the site-specific yield recording. 

Table 1. Manufacturers of SFH models participating in the project, associated NIRS sensor models and their 

measurement ranges for dry matter (DM) (DLG, 2014a, 2014b, 2019a, 2019b, 2021) 

SFH model NIRS sensor model and 

manufacturer 

Measurement 

range DM 

NIRS sensor software version 

John Deere 

8300, 9700i 

HarvestLab 3000 

Carl Zeiss AG, Germany 

26 – 37 % V139, V142, V145 

CNH 

Forage Cruiser 

FR550 

NIRXact 

Dinamica Generale SpA, Italy 

10 – 54 % EST9.3.0.0-Update 3 

Claas 

Jaguar 950, 

Jaguar 970 

Claas NIR 

m-u-t GmbH, Germany 

20.1 – 74.9 % Silage grass V4.2 

Silage maize V6.1 

Krone 

BiG X 700-1, 

BiG X 780 

Krone NIR 

Krone GmbH & Co. KG, Germany 

AgriNIR 

Dinamica Generale SpA, Italy 

KRONE NIR Control dual 

m-u-t GmbH Germany 

21 – 40 % 

 

10 – 54 % 

 

26 – 43 % 

1520200561-05 

 

unknown, sensor was only tested once 

and replaced with a new model 

1.75.29_APP 

1.75.29_DAT 

 

2.1. Verification of fresh mass recording and determination of DM content 

The volumetric flow measurement was always calibrated with the net weight of one wagon load weighted 

on the farm on dynamic axle load scales or static cart scales at the start of harvesting and, optionally, when 

changing the field or the crop type. As a reference for checking the accuracy of the volume flow measurement, 

at least 20 loads per harvest date were weighed in grassland and silage maize using dynamic axle load scales 

(Intercomp, type LS630, accuracy 2 - 3 % at 6 km h-1) or static cart scales (on the Bavarian state farms 

(BaySG), accuracy +/- 10 kg) (Worek and Thurner, 2023). As a reference for comparison with the SFH values 

for DM content, the weighed loads were sampled after unloading in the silo (number of samples n = 50) 

(Thurner et al., 2011). The samples were well mixed and 2 subsamples were packed in bags (Crispac SM 305 

x 600 mm, perforated (average hole size approx. 0.5 mm)) for the drying cabinet (Worek and Thurner, 2021). 

These were weighed on site to finally determine the DM content with the weight after complete drying. A 

total of 691 loads were weighed and sampled during grassland harvests at different cutting times and 450 

loads during silage maize harvests between 2020 and 2023. 

2.2. Checking the site-specific yield recording 

Two different project farms (Farm A in the Upper Palatinate and Farm B in Upper Bavaria) were selected 

to test the site-specific yield recording in grassland and forage production. Between 2022 and 2023, the 

grassland and silage maize harvests from several sites and on different harvest dates were completely weighed 

and sampled. Each load was weighed using the types of scales mentioned in section 2.1. The net weights of 

the single loads were summed up to find the total area yield. Random samples (n = 50) were taken from each 

load in the silo, which were then mixed into one single sample per field. The reference for the DM content 

was determined in the laboratory. The reference weights per field and the reference DM content were 

combined as described above and divided by the field size (ha) to obtain a comparative value for the DM 

yield in t ha-1 determined by the SFH. The site-specific yield recording with the SFH was checked on a total 

of 29 sites and on ten different cutting dates in grassland and on a total of nine sites and on four different 

harvest dates for silage maize. 

2.3. Determination of the nutrient components of the crop via the NIRS sensor 

The NIRS sensor on the discharge spout of the SFH determines the nutrient components like crude protein 

(CP), crude fibre (CF), crude ash (CA), crude fat (CL), acid detergent fibre (ADF), neutral detergent fibre 

(NDF) and sugar (SU) in the harvested crop as well as starch (ST) in maize. To check the accuracy of the 
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nutrient content estimation, a sample (n = 50 random samples) per wagon load was packed airtight and a wet-

chemical analysis was carried out in the laboratory using the Weender method. The samples were taken at 

different crop conditions (from very wet to very dry), from different crop types (grass from permanent 

grassland and the crops clover grass, alfalfa, silage maize), from different locations (eight test farms) and on 

different harvest dates to create a comparison that was as meaningful as possible. Between 2021 and 2023, a 

total of 157 samples of wilted grass and 125 samples of silage maize were tested in the laboratory. 

3. Results and Discussion 

In the following two sections, the results of four years (2020 to 2023) of tests in grassland and silage 

maize harvests are presented and discussed. 

3.1. Accuracy of sensor technology at SFH 

The comparison of the SFH data with the reference values per wagon load for the volume flow 

measurement showed very good compliance with a high coefficient of determination of R² = 0.79 in grassland 

and R² = 0.90 in silage maize (Figure 1). This indicates a high accuracy of the sensors on the pre-compression 

rollers of the SFH. The sensors are more accurate for silage maize harvesting than for grassland harvesting, 

as the maize crop was very homogeneous (Worek and Thurner, 2021). This is different in grassland, where 

the sensors reach their limits e.g. with small swath sizes due to low yields (Worek and Thurner, 2023). This 

is becoming increasingly common particularly in areas of Bavaria with low rainfall (e.g., Franconia or the 

Upper Palatinate) during midsummer harvests (usually the second or third cut, depending on the region). 

 

Figure 1. Comparison of the weighed quantity of fresh mass of wilted grass (A; n = 691) and silage maize (B; n = 450) 

with the fresh mass determined by the forage harvester per wagon load (different fields and harvest times, test years 

2020 to 2023, ten Bavarian farms, four SFH manufacturers). 

 

The comparison of the reference DM contents with the DM contents estimated by the NIRS sensor on the 

SFH also showed good compliance with a coefficient of determination of R² = 0.71 for wilted grass and R² 

= 0.53 for silage maize (Figure 2). When comparing the values for wilted grass (Figure 2, A), the strong 

deviations of the regression line from the zero line at very low DM contents (<27 %) and very high DM 

contents (>40 %) were obvious. On the one hand, the NIRS technology is an estimation method whose 

accuracy depends, for example, on the crop condition and the quantity of the crop flow. On the other hand, 

its measurement value range is limited due to the number of reference samples stored in the calibration, which 

no longer enables an accurate estimate outside the calibration which happens at very high and very low DM 

values (DLG, 2014a, 2014b, 2019a, 2019b). The comparison in silage maize showed a lower coefficient of 

determination than in wilted grass (Figure 2, B). Looking at the coefficients of determination for each sensor 

in Table 2, it can be concluded that the determination of DM content in silage maize performed very well. 

Only one sensor stood out with lower compliance, which therefore affects the overall result. A comparison 

of the calculated DM quantity per wagonload in t/DM from SFH data with that from reference data showed 

a good concordance correlation coefficient of 0.82 (confidence interval 0.79 to 0.84) in wilted grass and 0.90 

(confidence interval 0.88 to 0.92) in silage maize. This proves the high accuracy of the sensor-based method 

in grassland and silage maize harvesting. 
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Figure 2. Comparison of the DM contents per wagon load determined by the drying oven method and those recorded 

by the NIRS sensor in wilted grass (A; n = 691) and silage maize (B; n = 450) (different fields and harvest times, test 

years 2020 to 2023, ten Bavarian farms, four NIRS sensor manufacturers with six NIRS sensor models). 

 

Table 2. Coefficients of determination of the regression lines for the comparison between the reference DM contents 

with the DM contents recorded by the SFH, assigned to the sensor model (A-F, randomly assigned), test years 2020 - 

2023 

Sensor model Coefficient of determination Number of samples (n) 

 Grass Silage maize Grass Silage maize 

A 0.61 0.82 303 156 

B 0.81 0.71 155 153 

C 0.68 0.71 137 77 

D 0.70 0.29 65 44 

E 0.75 not tested 20 - 

F 0.82 0.95 11 20 

 

The comparison of the nutrient components in the harvested crop estimated by the NIRS sensor and the 

laboratory showed very different results between the individual parameters and between the crop types 

(Figure 3). It could be shown that CF (median: 2.68 % in wilted grass and 1.52 % in silage maize), NDF 

(median: 3.72 % in wilted grass and -15.75 % in silage maize) and ADF (median: 1.85 % in wilted grass and 

-7.40 % in silage maize) were the most accurately estimated parameters. Important parameters such as CP in 

grass (median: -8.36 %) and ST in maize (median: 6.29 %) could also be estimated relatively accurately, but 

there were often larger deviations (Figure 3). Because the crop has a high water content and the parameters 

are in very low concentrations in the DM, it is a challenge for the NIRS sensor to accurately estimate the 

nutrient content of the harvest material. In addition, the number of samples stored in the calibration curves is 

not yet optimal to ensure an accurate estimate. 
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Figure 3. Relative deviation of the nutrient components in the harvested crop, recorded by the NIRS sensor, from the 

analysed nutrient components by the laboratory (crude protein (CP), crude ash (CA), crude fat (CL), crude fibre (CF), 

acid detergent fibre (ADF), neutral detergent fibre (NDF), sugar (SU), starch (ST)) ( test years 2021 to 2023, eight test 

farms, three NIRS-sensor manufacturers and five sensor models). 

3.2. Accuracy of site-specific yield recording 

The comparison of the site-specific DM yield in t ha-1 from the SFH data with the reference values also 

showed a good correlation (Figure 4). A very good concordance correlation coefficient of 0.78 (confidence 

interval 0.66 to 0.86) in grassland and 0.93 (confidence interval 0.73 to 0.98) in silage maize confirms the 

high accuracy of the method. The difference between grass and silage maize was again clearly evident. As 

described above, the silage maize crop is very homogeneous. This means that there is always a constant crop 

flow during harvesting, which makes it easier for the sensors to record the yield (Worek and Thurner, 2021). 
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Figure 4. Relative deviation of the site-specific DM yield in t ha-1 calculated from SFH data from that based on 

reference data in grassland and silage maize (different sites and several harvests, different cuts in grassland, two SFH 

manufacturers, two Bavarian farms (farm A = Upper Palatinate, farm B = Upper Bavaria), years 2022 and 2023) 

4. Conclusions 

The test results between 2020 and 2023 showed that yields in grassland and silage maize can be very 

accurately recorded using sensor-based yield recording at the SFH. By recording yields throughout the year 

and over several years, the site-specific yield potential can be identified. The aim is always the annual DM 

yield in t ha-1, which provides farmers with a decision-making basis for optimising site management. 

Measures such as fertilization and reseeding or overseeding can be adapted to the yield potential of (sub) 

sites and can therefore be made more efficient. Furthermore, the forage harvester terminal provides the farmer 

with information on harvest quality in real time. This can be used, for example, to precisely dose the silage 

additive or adjust the cutting length of the crop according to DM content (Worek and Thurner, 2023). 

Knowledge of the nutrient contents in the harvested crop can also provide farmers with information on the 

roughage quality during the harvest (via CP in the grass or ST in the maize) or the degree of contamination 

in the harvested crop (via CA). Farmers can then, for example, optimise silage management according to the 

quality or reconsider the adjustment of the harvesting machines. These advantages not only increase the 

quality of the roughage, but also save costs. For example the consumption of operating resources can be 

reduced by optimising the use of silage additive or roughage losses after the silage process can be avoided 

by optimising the silage management according to the crop quality. But there is still potential for optimisation 

in the expansion of the stored calibration curves of the NIRS sensors. Extreme harvesting conditions with 

very dry or very wet crops are no longer a rarity and should be considered by the manufacturers (Worek and 

Thurner, 2023). The same applies to the estimation of the nutrient components. Further potential for 

optimisation is given in data transfer and data management. There is a lack of interfaces for automatic data 

flow from the machine to a Farm Management Information System (FMIS) and recommendations for further 

utilisation of yield data. Most farmers are not yet fully exploiting the potential of sensor-based yield 

recording, which is more due to a lack of knowledge and possibilities than to a lack of willingness. If that 

optimisation potential is not implemented, the suitability of sensor-based yield recording for practical use 

cannot be fully established. 
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Abstract 

Variable-rate spraying technology is designed to reduce the use of crop protection products and their negative impacts 

on the environment while ensuring spraying effectiveness compared to uniform-rate spraying applications. With the 

emergence of AI edge computing technology, combining RGB-depth (RGB-D) imaging with object detection can be 

considered a promising approach for variable-rate spraying applications. In this work, a variable-rate spraying system for 

vineyards has been developed. The system uses an RGB-D camera to capture both RGB images and depth information of 

grapevines. A low-cost and low-power AI edge computing platform, Jetson Nano, is utilized to process the RGB-D data. 

For the depth information, the system fully leverages the features of point clouds generated by the RGB-D camera and 

the parallel computing capability of Jetson Nano to construct mesh models of the grapevine canopies in real time. For the 

RGB images, an instance segmentation model based on YOLOv8 is applied for isolating the grapevine canopies within 

the mesh models. Subsequently, the system estimates the leaf area of the canopies and regulates the spraying volume with 

a pulse-width modulation (PWM) module. An experiment was conducted to evaluate the system, specifically to assess 

the accuracy of the leaf area calculated from the mesh models. The results demonstrate that the proposed variable-rate 

system offers considerable measurement accuracy and speed with the Jetson Nano. This technology shows great potential 

for improving the efficiency and sustainability of agricultural spraying practices. 

Keywords: precision viticulture, edge computing, YOLOv8, mesh, pulse-width modulation 

1. Introduction 

Grapes, as a vital ingredient in winemaking, offer high economic benefits but also require stringent quality standards. 

To ensure both the yield and quality of vineyards, it is essential to apply plant protection products (PPPs) for pest and 

disease control. Typically, conventional vineyard spraying is applied at a uniform rate, often resulting in the over-

application of PPPs on grapevines that either do not need treatment or require less. Such excessive application is 

recognised to have adverse environmental impacts, leading to widespread erosion of ecosystems and biodiversity. 

Variable-rate spraying was proposed in the United States in the 1970s to mitigate these environmental concerns. This 

technology adjusts spraying volumes to match real-time grapevine canopy data obtained from sensors and thus provides 

adequate spraying coverage with decreased applications of PPP (Z. Zhang et al., 2018). Several studies have shown that 

variable-rate spraying can save over 50% of PPPs (Li et al., 2017; Petrović et al., 2019). Due to its significant benefits, 

this technology has become a research focus in recent years.  

A variable-rate spray system typically comprises a detection unit, a data processing system, and a variable control unit 

(Wei et al., 2022). The detection unit employs advanced sensors to detect the parameters of target plants. The data 

processing system, which includes both algorithms and hardware, translates these detected parameters into the desired 

flow rate or other operational parameters for variable-rate spraying. Control signals are then sent to the variable control 

unit, which adjusts the spray output accordingly. 

Currently, variable-rate spraying based on infrared sensors, ultrasonic sensors, LiDAR (Light Detection and Ranging), 

and machine vision technology has been widely reported (Asaei et al., 2019; Cai et al., 2019; De Bortoli et al., 2022; Li 

et al., 2012; Palleja & Landers, 2017; Qiao et al., 2020; Xiao et al., 2017). Infrared and ultrasonic sensors are the oldest 

and simplest approaches, suitable for determining the average characteristics of the canopy and identifying large openings 

(Z. Zhang et al., 2018). Infrared sensors are scarcely influenced by temperature and humidity and provide measurements 

independent of atmospheric conditions; however, their detection distance is limited and influenced by plant characteristics 

or ambient light intensity (Z. Zhang et al., 2018). Ultrasonic sensors are robust, low-cost, and easy to implement, but their 

wide emission angle significantly limits measurement resolution and accuracy (Rosell & Sanz, 2012), and they suffer 

from interference when multiple sensors are used in close proximity (Narvaez et al., 2017). LiDAR is the most widely 

used non-destructive remote sensing technology for orchard spraying (Cheraïet et al., 2020). It could quickly and 

accurately measure target characteristics in varying ambient light, but it is sensitive to dust, fog and water (Narvaez et al., 

2017). In addition, the LiDAR sensors are expensive compared to infrared or ultrasonic sensors and machine vision. 

Machine vision tries to mimic human perception to provide information based on processed image data. It can digitise 

the complex visual appearance of crops continuously at high resolution (Thorp & Tian, 2004) and offers better economic 

performance compared to LiDAR. Although unsatisfactory ambient illuminations could lead to uncertain quality of its 

outputs, and its applications require intensive computing capabilities, the potential of machine vision applied in various 

agricultural applications and extracting crop parameters has also been identified (Tian et al., 2020).  

A machine vision application to digitise the visual appearance of the canopy requires stereo vision sensors, such as 

depth cameras and binocular cameras, which generally consist of two cameras at predetermined positions. After capturing 
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the images of the detected canopy, the processing algorithm identifies correspondences between two images to calculate 

the depth (distance) using a triangulation method (Jeon & Zhu, 2022). Subsequently, the depth data can be used to generate 

point cloud data, which contains the spatial coordinates of the canopy. Compared to LiDAR point clouds, the point clouds 

generated by stereo vision are more structured due to their alignment with the image's pixel grid. This grid-based structure 

makes the point cloud data more orderly and easier to integrate with other image processing techniques, as each point is 

associated with a specific location in the image and maintains a consistent spatial relationship with neighbouring points. 

Nevertheless, real-time processing of such structured point clouds remains a computationally intensive task. 

To provide sufficient computational capacity for processing stereo vision data, some research employs x86-based 

computation platforms to build prototypes, such as laptops (Yan et al., 2021) or x86-based single-board computers (Jeon 

& Zhu, 2022). However, x86 systems are designed for personal computers rather than edge computing tasks. Some ARM-

based single-board computers, such as the Raspberry Pi, can be used for edge computing tasks, but their computational 

capacity is insufficient to process the large amount of data generated by stereo vision sensors in real-time. In 2017, 

NVIDIA Corp. (Santa Clara, CA, USA) officially released the NVIDIA Jetson embedded computing platform. Compared 

to the Raspberry Pi, this ARM-based low-power embedded computer integrates NVIDIA CUDA (Compute Unified 

Device Architecture) cores, enabling it to provide powerful parallel computing capabilities and accelerate the processing 

of machine vision data, as well as support artificial intelligence (AI) edge computing tasks.  

This work proposes a variable-rate spraying system, which fully utilises the structured point clouds generated by an 

RGB-Depth (RGB-D) camera and a Jetson platform's powerful parallel computing capability, and incorporates instance 

segmentation based on a YOLO (You Only Look Once) object detection algorithm. Thereby, it specifically captures the 

grapevine canopy and establishes its mesh model in real-time, based on which the system calculates the Leaf Area Index 

(LAI) and outputs Pulse-width Modulation (PWM) signals to achieve variable-rate spraying in vineyards. 

2. Materials and Methods  

2.1. Hardware Framework and Data Processing Workflow 

The hardware framework of the proposed variable-rate spraying system is shown in Figure 1. First, the system uses 

an RGB-D camera to capture colour images and depth information of the grapevine canopies. Second, a Jetson computing 

device processes the data and outputs PWM signals with the assistance of a PWM driver module. Then, a PWM-controlled 

solenoid valve regulates the flow rate in the pipe, which is supported by a liquid tank and a water pump that provides a 

constant liquid pressure. Finally, the liquid flow is applied to the grapevine canopies via a spraying nozzle. 

The data processing workflow of the system is illustrated in Figure 2. The RGB-D camera generates both colour 

frames and depth frames. Using the SDK (Software Development Kit) of the camera, point clouds are extracted from the 

depth frames. By leveraging the features of the structured point clouds, a global mesh model is constructed. A customised 

YOLOv8 instance segmentation model is applied to the colour frames to create masks of the grapevine canopies. The 

masks are then utilised to isolate the grapevine canopy mesh model from the global mesh model, from which LAI is 

calculated. Finally, the duty cycle of the PWM signals is determined based on the LAI. 

 

Figure 1. General overview of the variable-rate spraying system. 
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Figure 2. Data processing workflow. 

2.2. Hardware Used 

An RGB-D camera, RealSense D415 (Intel Corp., Santa Clara, CA, USA), is used to detect grapevine canopies. This 

camera is designed based on Active Infrared (IR) Stereo Vision Technology (Intel, 2024). It consists of one IR projector, 

two IR cameras and one RGB camera (Figure 3). The IR projector projects a non-visible static IR pattern to improve 

depth accuracy. The IR cameras capture depth information using the triangulation method while the RGB camera grabs 

colour images.  

  
Figure 3. Key components of RealSense D415. 

The detailed specifications of RealSense D415 are shown in Table 1. 

Table 1. Technical specifications of Intel RealSense D415. 

Parameter Properties 

Ideal Measuring Range 0.5 ~ 3 m 

Baseline (Distance between two IR cameras) 55 mm 

Focal Length 1.88 mm 

IR Camera FOV (Field of View, 16:9) Horizontal:65° / Vertical:40° 

RGB Camera FOV Horizontal:69° / Vertical:42° 

Maximum Resolution 1280 × 720 pixels 

Depth Accuracy <2% at 2 m 

Mechanical Dimensions & Weight 99 × 23 × 20 mm, 64g 

An embedded computer, NVIDIA Jetson Nano, is used for data processing and computing. The NVIDIA Jetson family 

features a heterogeneous CPU–GPU architecture, small form factor, lightweight, and low power consumption, making it 

one of the most widely used edge device families (Assunção et al., 2022). Its built-in NVIDIA CUDA cores offer high 

parallel computing capabilities, which can accelerate graphics data processing and run machine learning inference tasks 

such as image classification, object detection, and segmentation. Table 2 shows the technical specifications of the Jetson 

Nano Developer Kit. 

Table 2. Technical specifications of Jetson Nano Developer Kit. 

Parameter Properties 

AI Performance 472 GFLOPS 

GPU 128-core NVIDIA Maxwell architecture GPU 

CPU Quad-core ARM Cortex-A57 MPCore processor 

Memory 4GB 64-bit LPDDR4 

Storage micro-SD card (64 GB) 

Power 5W - 10W 

Mechanical Dimensions 100 × 80 × 29 mm 

The solenoid valve used in the variable-rate spraying system is a high-frequency solenoid valve (manufacturer 

unknown), capable of accepting PWM signals with frequencies from 1 to 10 Hz and duty cycles from 0% to 100%, with 

a maximum allowable pressure of 10 bar. The PWM-controlled solenoid valve can maintain a relatively constant pressure 

while adjusting the flow rate, resulting in consistent spray characteristics (Silva et al., 2018; Grella et al., 2022). 
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Additionally, it offers a quick response time and high accuracy.  Due to the relatively low frequency, the Jetson Nano 

generates PWM singles by using custom Python code to directly control its GPIO (General-Purpose Input/Output) pins, 

toggling between high and low levels within a given cycle period. The high levels output by GPIO pins is 5V, while the 

solenoid valve requires a signal voltage of 12V. To address it, a PWM driver click (MikroElektronika, d.o.o., Belgrade, 

Serbia) is utilised, featuring a Si8711CC isolator (Silicon Laboratories, Inc., Austin, TX, USA). When connected to an 

external 12V power supply, this driver can convert the PWM single from 5V to 12V. 

2.3. Instance Segmentation Model 

YOLO, originally designed as a convolutional neural network solely for object detection, was expanded in January 

2023 with the release of YOLOv8 (Ultralytics, Inc., Frederick, MD, USA). This version enables the algorithm to perform 

a variety of tasks, including object detection and tracking, instance segmentation, image classification, and pose 

estimation. Moreover, the lightweight version, YOLOv8n, offers substantial detection accuracy while significantly 

reducing computational resource demands, making it highly suitable for resource-constrained edge computing scenarios. 

With a manually labelled grapevine dataset, an instance segmentation model for grapevine canopies was trained based on 

the pre-trained weight (YOLOv8n-seg) given by Ultralytics.  

The grapevine dataset was downloaded from an open-access dataset provided by the Washington State University 

Libraries (X. Zhang et al., 2020). The images were acquired in 2019 full stage (early-mid-harvest) at Washington State 

University Roza Experimental Site near Prosser, WA (USA) using a regular smartphone. A total of 218 images were 

selected for training the model, with 90 taken in the morning, 68 at noon, and 60 in the afternoon. The regions of interest 

(ROI) of grapevine canopies were manually labelled with the assistance of the Segment Anything Model (Kirillov et al., 

2023). Proportionally from each time period, 70% of the images (153) were selected for the training set, 15% (33) for the 

validation set, and 15% (32) for the test set. Data augmentation was performed by scaling, flipping, and cropping, 

ultimately resulting in a training set of 3,060 images, a validation set of 660 images, and a test set of 640 images.  

A desktop computer with an AMD Ryzen 7 5700X (Advanced Micro Devices, Inc., Santa Clara, CA, USA) CPU, an 

NVIDIA GeForce RTX 3060 12 GB GPU, 32 GB RAM, running Ubuntu 22.04 LTS, equipped with NVIDIA CUDA 

Toolkit 11.8 and PyTorch 2.3.0, was used for training the model. Following the tutorial provided by Ultralytics, the trained 

model was evaluated on the test set, achieving a segmentation accuracy of 99.5% for mAP50 and 91.9% for mAP50:95.  

2.4. Grapevine Canopy Mesh Generation 

Using the Intel RealSense SDK, point clouds can be easily generated from the depth frames. These point clouds are 

not randomly distributed but align with the pixel grid of the colour frames. By connecting any three adjacent points (within 

the pixel grid) in the point cloud, a global mesh can be constructed. The grapevine canopy mask, generated by the 

customised YOLOv8-seg instance segmentation model, is then applied to this global mesh to isolate the grapevine canopy 

mesh model. To illustrate this mesh model, assuming the 5×5 grid of points in Figure 4(a) represents a point cloud 

generated by the RGB-D camera, with green points indicating the grapevine canopy and black points indicating the 

background. The grapevine canopy mesh model mentioned above is depicted as the green area in Figure 4(b).  

   

 (a) (b) 

Figure 4. An example of a grapevine canopy mesh model. 

AgEng 2024 Proceedings

44

https://www.zotero.org/google-docs/?TBcLwc
https://www.zotero.org/google-docs/?FyLkrS
https://www.zotero.org/google-docs/?FyLkrS


2.5. Usage of Mesh Model for Spraying Regulation 

With the grapevine canopy mesh model, the surface area of grapevine canopy can be quickly measured. However, it 

remains to be experimentally determined whether this area accurately represents the actual leaf area. Additionally, 

although previous studies have established a formulaic relationship between LAI and the spraying flow rate (Planas et al., 

2022), the relationship between the measured leaf area and the spraying flow rate is still uncertain. Therefore, this study 

conducted two experiments to address these issues. 

Since the vineyard had not reached maturity at the time of this study, an artificial grapevine (Figure 5 (a), manufacturer 

unknown) was used for the LAI measurement experiment. The artificial grapevine consists of a main trunk, three large 

branches, and one small branch. The three large branches are exactly the same, and the leaves on each branch have similar 

shapes but differ in size. For this experiment, one large branch was selected for LAI measurement. First, a photo of a 

single leaf was taken (Figure 5 (b)), and the Segment Anything Model was used to calculate the ratio of the leaf area to 

its minimum bounding rectangle. Then, the dimensions of the minimum bounding rectangles for all other leaves were 

measured, and the total one-sided area of all leaves was calculated. Finally, the system was used to measure the surface 

area of the large branch, and the results were compared with manual measurements. To avoid the randomness of capturing 

from a single direction, images were taken from different directions. 

   

  (a)  (b) 

Figure 5. The artificial grapevine and its one leaf. 

To determine the relationship between the flow rate and measured leaf area, an experimental platform was established 

to examine the relationship between the PWM duty cycle and flow rate. The platform was equipped with one standard 

valve, two solenoid valves as previously described, a liquid tank, and a water pump (Figure 6). During the test, only one 

solenoid valve was used. A manually adjustable 12V PWM signal generator was connected to the solenoid valve. The 

PWM signal frequency was fixed at 10 Hz, and the liquid flow pressure was maintained at 5 bar. 

 

Figure 6. Experiment platform for valve and nozzle test. 

3. Results and Discussion 

First, the system was test with the entire artificial grapevine and it showed a test speed of 3.4 frames per second (FPS). 
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The visualized mask and mesh model are shown in Figure 7(a) and 7(b). 

   

  (a)  (b) 

Figure 7. The mask and the mesh model of the grapevine. 

The results for the large branch indicate that the total area of the leaf shown in Figure 5(b) is 61.57% of its minimum 

bounding rectangle area. The large branch contains 30 artificial grape leaves, and the total one-sided area of all leaves 

was measured to be 0.207676 m² (Figure 8 (a)). The proposed system was used to measure the branch with directions 

from 0˚ to 315 ˚. The surface area measured by the system is presented in Figure 8 (b). 

  

 (a) (b) 

Figure 8. Surface area measurements. 

Although the measurements from the proposed system are generally higher than the manual measurements, this 

discrepancy is reasonable considering that the YOLOv8n-seg model includes grapevine branches in the mesh model, 

whereas the manual measurements only account for the leaf area. The significantly smaller measurement at direction 135˚ 

is attributed to a large leaf obscuring several smaller leaves behind it, as confirmed upon inspection. Since the experiment 

did not reveal any significant accuracy-compromising defects in the proposed system, and the existing accuracy can be 

improved by refining the instance segmentation model, we consider the experimental results to be satisfactory. 

The results between the flow rate and the PWM duty cycle are presented in Figure 9. A simple interpolation suggests 

that the functional relationship between the duty cycle (d) and flow rate (F) is approximately as follows: 

 𝐹 = {
1106.1𝑑 + 231.1, 0 < 𝑑 ≤ 0.82

1138.1, 0.82 < 𝑑 ≤ 1
 (1) 
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Figure 9. The effect of the duty cycle on the nozzle's flow rate at constant pressure and frequency. 

According to the results, the solenoid valve used can accept a duty cycle only between 0% and 82%. This is likely 

because it is a high-frequency solenoid valve rather than a proportional solenoid valve. Flow variation in this type of 

valve is generated by the high-frequency opening and closing of the valve core. When the low-level signal duration within 

the cycle period is too short, the valve core does not have sufficient time to close. On the other hand, a proportional 

solenoid valve continuously adjusts the flow by precisely controlling the position of the valve core within the valve body. 

However, the downside is that it is significantly more expensive than a high-frequency solenoid valve. Nevertheless, the 

currently used solenoid valve is suitable for variable-rate spraying, as the flow output varies almost linearly between 0% 

and 82%. 

4. Conclusions 

The implementation of a variable-rate spraying system that utilizes deep learning to regulate a solenoid valve based 

on continuous recalculation of the Leaf Area Index (LAI) has demonstrated significant advancements in precision 

agriculture. By leveraging RGB-D data and the YOLOv8 algorithm, the system effectively captures real-time canopy 

characteristics, ensuring optimal spray application rates tailored to the specific needs of the vineyard. This innovative 

approach not only enhances resource efficiency by reducing chemical usage and environmental impact but also improves 

crop health and yield through precise targeting of the canopy. The integration of advanced machine learning techniques 

with agricultural practices paves the way for more sustainable and intelligent farming solutions, marking a substantial 

step forward in the automation and optimization of agricultural operations. Future work will focus on refining the system's 

accuracy and robustness, as well as exploring its applicability to other types of crops and environmental conditions. 
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Abstract 

The objective of this research is to develop an individual information collection system for weaner pigs, 

and integrate the Internet of Things technology for system construction. The weight change of weaner pigs 

during growth has a certain relationship with health. Therefore, it is very important to accurately measure the 

weight of pigs. However, it is difficult to measure the weight of weaner pigs by hand, which is easy to cause 

the pigs to be scared and urgent. Weaners are pigs that are between weaning and 56 days of age and weigh 

6–20 kg. The system can give different feeds according to weight changes and nutritional needs during the 

growth of weaner pigs. Through the system, you can monitor the daily weight changes of each pig, track the 

growth status of individual pigs and mark them. When the abnormality is detected during the feeding process, 

it can be immediately improved to prevent more property loss and achieve maximum economic benefits. The 

system was divided into control unit, import and export unit, weighing unit and feeding unit. The system 

control was through the programming logical controller (PLC), including import and export gates, weight 

measurement and feed supply control. Use RFID to detect the number of each pig, and record the weight 

change, feed intake, etc., calculate the feed conversion rate and evaluate the growth rate of pigs by cloud 

system. In this study, the dynamic weighing test was carried out through three standard weights of 45, 50 and 

55 kg. The optimal sampling time was 0.1 second, and the weighing system error rate was 1.2%. The test 

results showed that the individual information collection system of the weaner pigs was stability. Through 

the establishment of the individual information collection system for pigs, it can be reduced the burden on 

the on-site breeding staff, and obtained the pig weight growth curve instantly. Individual observations can be 

made during the breeding period, and pigs with poor growth status can be found early, in addition to improve 

pig breeding quality. 

Keywords: Internet of Thing (IoT), weaner pigs, monitoring and control, wireless communication 

1. Introduction 

Pork is one of the meats favored by Han Chinese people. According to the annual report of Taiwan’s 

Council of Agriculture (2018), the annual pork production in Taiwan in 2018 was valued at US$2.32 billion. 

In 2018, Taiwan had approximately 7,241 pig farms, which raised approximately 5.44 million pigs. In 2021, 

the number of pig farms was 6,308, the number of raised pigs was approximately 5.47 million, and the value 

of pork production was US$2.54 billion (COA 2023). Pork production accounts for 13.39%–14.31% of the 

total agricultural output in Taiwan, and the per capita consumption of pork in Taiwan is estimated to be 

approximately 40 kg. Therefore, the management of pig growth is crucial in Taiwan. Pigs are weighed and 

sold when they have grown to a weight of approximately 200 kg. In the pig market, pigs are numbered, 

weighed, stamped, and marked after a transaction; during this process, pigs are easily frightened by the loud 

noise of heavy gates and might become reluctant to move (Chen, 2016). Therefore, workers often use electric 

shock prods with a weak current of 30 V to make pigs move. Livestock experts have suggested that pigs can 

be easily made to move without the use of such devices; however, pigs can still be easily injured during 

auctions when markets are unable to respond suitably to the habits and behaviors of pigs. Substantial labor 

and resource investments are required to enable on-site managers to gain knowledge regarding the growth 

patterns of pigs, including their daily weight gains; feeding efficiencies; and survival rates during the nursing, 

growing, and finishing stages. Failure to grasp the production efficiency can increase operating costs. The 

accurate measurement of pig weight is crucial because this weight affects the price of the pig. 

In 2011, Big Dutchman developed an electronic sow feeding system that earned a seal of approval for 

being humane. This system allows sows to roam freely and rest in large farms and has been praised for its 

animal-friendly nature. Under the aforementioned system, individual feeding is maintained during 

pregnancy, and the system can facilitate the management of groups of approximately 60 sows. Entrance and 

exit doors are pneumatically operated, and the side partitions are made of sturdy sound-absorbing materials 

to ensure that the sows can eat without external disturbance. Fancom also developed an intelligent pig feeding 
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and monitoring system. In addition, Big Dutchman developed an automatic weighing device for pigs ready 

for slaughter that can be used to group pigs according to weight. This device aids in preparing an accurate 

count and weight of the pigs to be slaughtered and assists in the planning of slaughter dates. Big Dutchman's 

system uses a single-channel, dual-door method; the entrance door opens when no pig is inside the weighing 

device and automatically closes when a change in weight is detected after a pig enters the device. At this 

point, only one pig is on the scale at a time, and only 2–3 s is required to obtain the weight. The system then 

calculates the weight category of the pig and finally opens the exit door to guide the pig out. The entrance 

and exit doors are pneumatically operated. Banhazi et al. (2012) argued that the livestock industry is moving 

toward the use of precision livestock farming technology. On pig farms, this technology is used for analysing 

live weight gain, feed intake, and environmental data. Banhazi et al. pre-processed images of pigs and 

conducted linear regression analysis on weight measurements to obtain daily weight gain data for the pigs. 

Their experiment involved capturing images of specific pigs by using a camera installed directly above and 

aimed at the center of the pigsty to acquire the visual appearance of the pigs for analysing their mean weight. 

A camera system was used with sensors for automatically quantifying the feed consumed by weaned piglets. 

Currently, information on feed intake and growth weight is generally collected manually, which is not 

only time-consuming and labour-intensive but also might not provide the most accurate information. 

Therefore, Liu et al. (2017) used an ARM Cortex M3 STM32 microcontroller as a hardware platform and 

combined it with 4G communication technology, sensors, and RFID technology to develop a system that can 

track the feed intake and weight changes of breeding pigs. The data collected by this system are wirelessly 

transmitted to a remote server. Maselyne et al. (2014a, 2014b) developed a high-frequency RFID system that 

can be applied in an industrial environment to record pig feeding status and simulate the feeding patterns of 

growing and finishing pigs. This system has a sensing sensitivity of 88.58%, and its accuracy in 

distinguishing individual pigs is 98.34%. The system can be used with feeding status data to monitor pig 

health, welfare, and production status. 

The present study aimed to develop a system for automatically determining the identification numbers 

and weights of pigs during feeding. The proposed system uses an Internet of Things architecture and a 

microcontroller connected to sensors for capturing weight and RFID data. This system calculates pig feed 

intake and pig feed efficiency, records data on individual pigs, and evaluates pig growth rate. Users can view 

these data on a webpage to monitor the growth of weaner pigs at any time. Through automated weighing, 

individual data collection, and automatic feeding, the labor cost of pig farms can be reduced. Automated 

weighing with the proposed system causes limited stress to the weighed pigs. 

2. Materials and Methods  

The developed individual data collection system for weaner pigs contains a programmable logic controller 

(PLC) as the control center. Data collected by sensors are transmitted according to the RS485 standard to a 

Linkit Smart 7688 Duo microcontroller, and the data are then uploaded to a cloud server through Wi-Fi. This 

section details each operation of the proposed system. Figure 1 shows a schematic of the proposed system, 

which includes an RFID reader, a feed motor, a solenoid valve for rear gate control, a motor-driven front 

gate, and a weighing platform. The overall dimensions of this system are 1,500 × 750 ×1,615 mm3 (l × w × 

h). The system is designed for weaner pigs with a weight of approximately 6–20 kg and a body length, width, 

and height of approximately 60–70, 25, and 35–40 cm, respectively. 

2.1. Control design  

The control unit of the designed system contains an FX3U PLC (Mitsubishi Electric Corporation) that is 

connected to a microcontroller. This PLC has matured industrial applications and can connect RS485 

communication modules and use the Modbus communication protocol. It can also be connected with analog 

signal input modules to connect various sensors. The microcontroller unit (MCU) of the proposed system 

integrates a central processing unit, random-access memory, and various input/output serial ports in a single 

integrated circuit chip to achieve diversified applications. The use of this MCU in smart applications can not 

only decrease the development cost but also replace certain manual-labor tasks. In the proposed system, a 

serial peripheral interface pin is coupled with an RS485 to TTL module on a Linkit Smart 7688 Duo 

(MediaTek, Taiwan) controller board to receive RS485 differential signals and convert them according to the 

Modbus-RTU protocol. 
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Figure 1. Schematic of the designed individual pig data collection system 

2.2. Design of the data collection and analysis system 

This system primarily collects data on individual pigs, such as the information obtained from the RFID 

reader, feed input quantity, and pig weight data, and uploads these data to a cloud server. In this system, an 

on-site PLC is paired with a Linkit Smart 7688 Duo microcontroller to conduct data collection and remote 

communication. The collected data are transmitted wirelessly through Wi-Fi to a cloud server and stored in 

a database. Pig weight data can be queried through a Web interface. The physiological status of a pig can be 

analysed by collecting data on its daily weight gain and daily feed quantity. Thus, statistics on the daily feed 

conversion rate can serve as a reference for farm administrators to evaluate the condition of a pig. 

2.3. Test methods 

2.3.1. Tests on the optimal weight measurement time 

Weight measurements change when an animal moves on the weighing platform, and such motion results 

in inaccurate weight readings. Therefore, the stability of the designed weighing system was tested, and the 

optimal sampling time was calculated to minimize the error when weighing pigs. The testing of the optimal 

weight measurement time involved the weighing device detecting a weight exceeding 3 kg, a pause of 3 s, 

and the capturing of the weight detected on the scale. In this testing, set weights of 45, 50, and 55 kg were 

used, and weight measurements were performed at 0.1, 0.2, 0.3, 0.4, and 0.5 s to obtain 100 pieces of data 

for each group. Measurements were performed thrice for each sampling time in the dynamic weighing 

accuracy test. The MX SHEET communication software of the PLC was used to store the captured weight 

data directly in Excel. Weights measured using an electronic scale (SAMPO BF-L1501ML; precision of 0.1 

kg) served as standard weights for comparison with the weights measured by the proposed system. Analysis 

of variance (ANOVA) was conducted to analyze the relationships between the three continuous weights, and 

Tukey’s honest significance difference (HSD) test was performed for comparison. The optimal sampling 

time was determined by analysing the samples of each group. 

2.3.2. Tests on dynamic weighing accuracy test 

In addition to the optimal sampling time, the dynamic weighing accuracy was tested. When the proposed 

system detected a weight exceeding 3 kg, sampling was delayed for 3 s, following which continuous weight 

values were captured for 10 s to obtain 100 pieces of data. The measured weights were compared with the 

standard weights to determine the error between them. The weights of the test objects were set as 45, 50, and 

55 kg, and the sampling times were the same as those in the testing of the optimal sampling time. Weight 

measurements were conducted thrice for each weight, and the mean measurement at a certain time was 

calculated. Moreover, the error rate was calculated using Equation (1), and the mean standard deviation per 

second was recorded to determine the optimal weight measurement time.  
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 Error rate = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑤𝑒𝑖𝑔ℎ𝑡−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑤𝑒𝑖𝑔ℎ𝑡
× 100%                                      (1) 

3. Results and Discussion 

3.1. Results obtained on the individual data collection system 

Figure 2 presents an image of the individual data collection system. This system has a rear gate as its 

entrance, a front gate as its exit, a weighing scale at its bottom, a restrainer in its middle part to limit the range 

of activity of the pig on the scale, and a motor below the feeder that dispenses feed. 

weight display

feeder

restrainer
weighing platform

exit

entry

rear gate

front gate

 

Figure 2. Image of the individual data collection system for pigs 

3.2. Results of the tests on the optimal sampling time 

In the tests on the optimal sampling time, weights of 45, 50, and 55 kg were measured at sampling times 

of 0.1, 0.2, 0.3, 0.4, and 0.5 s; thus, 15 groups of data were obtained. A total of 100 pieces of data were 

collected for each group and tested three times. The standard deviation for each weight sampling changed 

with the sampling time. As displayed in Figure 3, the smallest standard deviation occurred when the sampling 

time was 0.1 s for all three weights, and the standard deviation increased with the sampling time. When the 

sampling time was 0.4 or 0.5 s, the largest standard deviation in dynamic weighing was observed for the 

weight of 55 kg (deviation of nearly 1 kg). 

 

Figure 3. Weights measured at different sampling times 

3.3. Results of the tests on dynamic weighing accuracy 

The test on dynamic weighing accuracy was conducted thrice each for the standard weights of 45, 50, and 

55 kg.  

Figure 4 depicts the mean error graph for each weight, which indicates that the error rate for each weight 
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between 5 and 8 s was less than 1.2%. Therefore, the optimal weighing time was determined to be between 

5 and 8 s, and the weight change during this period was considered the mean weight change. 

 
Figure 4. Mean errors for the three weights 

4. Conclusions 

This study designed and developed a system for collecting data on individual pigs. This system includes 

an RFID reader, a feed motor, a solenoid valve for rear gate control, a motor-driven front gate, and a weighing 

platform. The control unit of this system, which contains a PLC and microcontroller, can successfully 

transmit different types of data to a remote server through Wi-Fi and identify individual pigs on the basis of 

RFID data. The individual pig data collected by the proposed system include pig ID, pig weight, and feed 

quantity. Through cloud computing, the feed conversion rate of each pig can be calculated to enable farm 

administrators to understand the growth and health status of each pig. The proposed system, which contains 

hardware and software components, was used to perform tests on the optimal sampling time and dynamic 

weighing accuracy with standard weights of 45, 50, and 55 kg. The sampling times in the test on the optimal 

sampling time were set as 0.1, 0.2, 0.3, 0.4, and 0.5 s, and 100 pieces of data were collected for each data 

group. Moreover, three dynamic weighing tests were performed for each data group. The test results indicated 

that the optimal sampling time was 0.1 s. The mean measurements obtained with the proposed system for the 

standard weights of 45, 50, and 55 kg were 44.79 ± 0.70, 49.23 ± 0.75, and 54.79 ± 0.49 kg, respectively. 

The mean weight of each group closely approximated the standard weight, and a small standard deviation 

was observed. In the tests on the dynamic weighing accuracy, 0.1 s was used as the sampling time, and the 

testing duration was 10 s.  

The developed data collection system for individual pigs has high site adaptability, mobility, and 

convenience; thus, this system makes it easy for farmers to collect individual pig data rapidly in the pigsty, 

to handle the collected data, and to use these data for monitoring the statuses of pigs. Data on the weight 

changes of pigs can be used for effectively analyzing their health statuses, and these data can be analysed to 

provide feedback to farm administrators as a reference for decision-making. Future studies can integrate the 

environmental parameters of a pig farm into the developed system and determine the optimal pigsty 

environment. Moreover, studies can conduct big data analysis on the growth information of pigs and other 

livestock to enable their efficient management on farms. 
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Abstract 

Agrivoltaic systems integrate agricultural production with PV (photovoltaic) energy generation. They 

present unique challenges and opportunities for remote sensing technology that differ from those of 

individual systems. This study examines how current remote sensing methods, such as satellite imagery, 

UAV (unmanned aerial vehicle) surveys, and ground-based sensors, can be adapted to effectively monitor 

and manage these systems. Agrivoltaics makes remote sensing difficult due to structural elements that 

obstruct the sensors and the variable light conditions caused by the solar panels. Satellite imagery offers 

large-scale monitoring capabilities, but has problems with spatial resolution, image coverage and shadowing 

effects. UAVs offer high-resolution, flexible data collection and can fly closer to crops, making them suitable 

for detailed monitoring under solar panels. However, limitations include restricted flight times and potential 

difficulties in manoeuvring within agrivoltaics due to solar panel structures and regulatory constraints. UGVs 

(unmanned ground vehicles) can collect valuable soil, plant, and microclimate data, but have problems 

navigating within these systems. Ground-based sensors can help generate time series data and complement 

remote sensing observations, albeit limited to a fixed location. Integrating these technologies can provide a 

complete understanding of agrivoltaic systems, enabling better irrigation, fertilisation, and pest control 

decision-making. Furthermore, this study emphasises the importance of choosing the appropriate remote 

sensing technology based on the specific configuration of agrivoltaics. Considering the strengths of each 

technology and addressing its limitations, remote sensing can enhance the dual benefits of crop production 

and renewable energy generation. This approach can not only improve the management of solar panels and 

agriculture, but also support better farming practices, contributing to environmental sustainability and food 

security. Future advances in machine learning and artificial intelligence (AI), along with improved sensor 

technologies, will further expand the capabilities of remote sensing in agrivoltaic systems. This progress 

promises to drive innovation in sustainable agriculture and renewable energy production. 

Keywords: Satellite;  UAV; Remote sensing; Precision agriculture; Agrivoltaics 

1. Introduction 

Agrivoltaics combines agricultural production with photovoltaic (PV) energy production and involves 

complex interactions between plants and solar panels. Although integrating PV systems in agriculture can 

power new machinery, digital technologies, and automation systems, transforming agricultural activities 

(Gorjian et al., 2020), the presence of the structural elements of PV systems can interfere with agricultural 

operations, and the solar panels can create shadows and varying light conditions that create new problems 

and challenges for agriculture, although they also offer a range of opportunities depending on regional and 

climatic conditions (Weselek et al., 2019). Research on agrivoltaic systems is still in its infancy. However, 

some studies have already investigated methods to mitigate these challenges, such as using advanced 

algorithms for data correction and developing sensor systems that can work effectively under these conditions 

(Amaducci et al., 2018). These studies aim to develop models that can accurately predict crop yield and 

optimise the placement and orientation of solar panels to maximise both energy production and agricultural 

output (Malu et al., 2017). Other research efforts focus on integrating data from different types of sensors to 

gain a comprehensive understanding of the microclimate created by agrivoltaic systems (Dupraz et al., 2011) 
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Remote sensing technology has revolutionised the way we observe and interact with our environment. 

Using various platforms such as UAVs (unmanned aerial vehicles, also known as drones), satellites, UGVs 

(unmanned ground vehicles) and portable and fixed sensors, remote sensing enables the collection of detailed 

and timely data over large areas without direct contact and with minimal human intervention. This technology 

is critical in many areas, including environmental monitoring, urban planning and agriculture. The ability to 

collect high-resolution data on crop health, soil conditions and weather patterns facilitates informed decision-

making and leads to increased productivity and sustainability (Anderson & Gaston, 2013) 

On the one hand, remote sensing technologies in agriculture have significantly changed the agricultural 

landscape with advances in precision agriculture and sustainable farming practices. Technologies such as 

multispectral and hyperspectral imaging, LiDAR (Light Detection and Ranging) and thermal sensors provide 

insights that are difficult to obtain using traditional methods. The data collected can be processed and 

analysed to create detailed maps and 3D models (Buunk et al., 2023), that help optimise irrigation, 

fertilisation and pest control practices and reduce environmental impact by minimising the use of water, 

fertilisers and pesticides (Mulla, 2013). Remote sensing provides valuable insights into plant health by 

utilising a range of spectral bands, including visible, infrared and thermal. It facilitates the early detection of 

problems such as disease, stress or nutrient deficiencies, often before they are visible to the naked eye. This 

leads to higher crop yields and a reduced environmental impact from agricultural practices with 

unprecedented accuracy (Zhang & Kovacs, 2012).  

On the other hand, remote sensing, combined with machine learning, is crucial for the efficient 

management of PV solar energy. It can detect and catalogue PV installations worldwide, addressing database 

gaps and identifying inequities in solar energy use to ensure equitable access to the benefits of solar energy. 

It can provide detailed, up-to-date information on the size and location of solar installations, helping 

researchers, policy makers and grid operators to plan and integrate solar energy (Kaack, 2021). In addition, 

remote sensing instruments are used to capture and process images to detect problems such as dirt 

accumulation, shading effects and physical damage, all of which affect the efficiency of solar modules. These 

events can lead to significant energy losses as they reduce the efficiency and power output of solar PV panels 

(Maghami et al., 2016), making it crucial to monitor and address these issues, emphasising the importance 

of regular cleaning and maintenance to ensure optimal performance and consistent energy production. 

While remote sensing has practical and useful applications in both agricultural and PV monitoring, its 

techniques and tools may not be sufficient when applied to agrivoltaics. The combination of agriculture and 

photovoltaics brings new challenges that do not exist when each system is managed independently. 

Depending on the configuration, solar panels may interfere with monitoring crops from a nadir angle 

traditionally used in remote sensing. Moreover, when using UAVs or UGVs close to the plants, the structures 

supporting the solar panels and the panels themselves present complex obstacles that can be difficult to 

navigate. In addition, the panels cause varying degrees of shadowing and reflection, which can affect the 

accuracy of the data and the performance of the sensors. These unique conditions necessitate the development 

of advanced algorithms and sensor systems specifically designed to address these challenges. 

This research investigates how current remote sensing techniques can be adapted to the unique 

configurations of agrivoltaic systems to address the challenges of integrating crop production and solar 

energy generation. A better understanding in this area will unlock the benefits of remote sensing for crop 

monitoring, improving efficiency and promoting more sustainable land use. 

2. Opportunities of remote sensing in agrivoltaics 

Current remote sensing methods such as satellite imagery, UAV surveys and ground-based sensors can 

significantly improve the management and monitoring of agrivoltaics. These techniques allow for better 

monitoring of both the solar panels and the plants, which are important components of the agrivoltaic system. 

Although the combination of these elements brings new challenges, remote sensing is already helping to 

identify problems with the solar panels while providing valuable data on the condition of the plants. 

Therefore, exploring current remote sensing techniques is a perfect first step. 

Some studies have shown that remote sensing, especially thermal imaging, enables efficient inspection 

of solar panels and is a non-invasive and efficient method for maintenance and optimisation. Sriram and 

Sudhakar (Sriram & D. Sudhakar, 2023) highlighted the effectiveness of thermal image processing in 

identifying defects such as shading, dust and soiling, which can significantly affect the performance of solar 

panels. In studies conducted by Lee and Park in 2019, and Pruthviraj et al. in 2023, (Lee & Park, 2019; 
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Pruthviraj et al., 2023) a step was further taken by using UAVs equipped with thermal infrared sensors to 

conduct large-scale inspections, identifying defective cells and abnormal heat generation.  

In agriculture, the use of remote sensing technologies to monitor crops varies in complexity depending 

on the type of crop and the platform chosen. Satellites, drones and UGVs are among the most important 

platforms. Their use differs mainly between vertical crops such as vineyards and espalier orchards and 

extensive crops such as cereals and legumes (Gautam & Pagay, 2020; Sishodia et al., 2020; Wu et al., 2023).  

Satellites can face significant challenges when monitoring crops, especially woody crops, due to their 

limited spatial resolution and nadir viewing angle, which obstructs the view between rows and fails to capture 

the three-dimensional structure of the crop. Nevertheless, satellites have proven to be extremely effective for 

mapping large-scale crops (Tian et al., 2019). They enable efficient surveillance of huge areas by detecting 

large-scale variations in crop health. Satellite imagery combined with deep learning algorithms can even map 

tree crops with high accuracy, providing practical insights (Lin et al., 2021), and machine learning and deep 

learning models integrated with time-series satellite data have been shown to be effective in classifying 

multiple crop species in large regions, demonstrating high accuracy in crop area identification (Wang et al., 

2022).  

UAVs offer high-resolution, flexible, and targeted data collection capabilities. Although UAVs can provide 

similar information to satellites, such as tracking the crop cycle, the use of drones in agriculture shows that 

UAV high-resolution monitoring brings significant benefits compared to satellite platforms (De Lima et al., 

2021). Flights can be precisely planned and are typically conducted at heights ranging from 20 m to 50 m or 

even up to 120 m, which is the legal limit in most European countries (Commission Implementing Regulation 

(EU) 2019/947 of 24 May 2019 on the Rules and Procedures for the Operation of Unmanned Aircraft, 2019). 

This flexibility enables thorough data collection from above (Vélez et al., 2022).  

In addition, UAVs can also monitor vertically grown crops. They benefit from their ability to fly at low 

altitude and their flexible sensor angles, which provide even more useful high-resolution images. Their ability 

to capture images and video from oblique angles can improve detailed monitoring of plant health and identify 

disease or water stress, potentially alleviating the limitations of the nadir perspective (Buunk et al., 2023). 

Similarly, flight paths can be adapted to fly very close to plants and even within plant rows. In this way, even 

more detailed and specific data can be collected, providing a better insight into the condition of the plants 

and fruit (Ariza-Sentís et al., 2024). This feature could prove particularly useful when it comes to monitoring 

the condition of plants under solar panels, where satellite images may be obstructed. 

Remote sensing data can also be collected from the ground with the help of UGVs. These are robotic 

systems that can perform precision agriculture and farm management tasks without human presence 

(Vasudevan et al., 2016). UGVs are invaluable for precision monitoring and soil sampling (Olmedo et al., 

2020). They can include robotic arms to take soil or leaf samples for crop monitoring and work with other 

platforms, such as UAVs, to improve agricultural operations (Quaglia et al., 2019). Nevertheless, their 

operational range is somewhat limited compared to other platforms and although they are able to collect 

detailed ground-level data such as moisture and temperature, their efficiency is hampered by the difficulty of 

navigating uneven or densely planted terrain and the inability to collect data from the upper parts of plants 

or the structure of solar panels. 

Finally, ground-based instruments such as soil moisture sensors and weather stations can provide 

continuous, real-time data that can complement remote sensing observations and help create time series data, 

albeit limited to a fixed location. Integrated with IoT networks, ground-based sensors can automate data 

collection and analysis, precisely monitor microclimatic conditions, soil health and crop growth, facilitate 

precision agricultural practices, and improve resource efficiency and crop yields, leading to improved 

modeling. 

3. Challenges of remote sensing in agrivoltaics 

Although remote sensing monitoring has proven useful in evaluating solar panels and crop health and 

offers potential for inclusion in precision agriculture, remote sensing in agrivoltaic systems presents 

numerous difficulties not encountered in the systems mentioned above. This is mainly due to the complicated 

interactions between the vegetation and the solar panels, as well as the effects of the solar panels and their 

structure, which completely change the agricultural environment (Weselek et al., 2019). The potential 

problems therefore depend on the configuration and location of the PV modules.  

Agricultural use in the context of agrivoltaic systems can be roughly divided into two main groups (Figure 
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1): Category I, i.e. installations with sufficient clearance beneath the agrivoltaics setup for agriculture, and 

Category II, i.e. ground-level installations between the rows of the agrivoltaic system.  

 

Figure 1. Interaction of remote sensing platforms with the different categories of land use as set out in 

DIN SPEC 91434, adapted from (Trommsdorff et al., 2022). A: Category I; B: Category II, variant 1; C: 

Category II, variants 1 and 2. Each diagram shows icons of UAVs and satellites, showing their 

unobstructed views towards the crop with green dashed lines and obstructed views with red dashed lines. 

 

Category I lists four agricultural uses: 1A for permanent crops and perennial crops such as fruit, vines 

and hops; 1B for annual and biennial crops including field crops and fodder; 1C for permanent mobile 

grassland and 1D for permanent grazing grassland. Category II reflects these subdivisions, with 2A and 2B 

for permanent and annual crops respectively, and 2C and 2D for permanent mobile and grazing grassland 

respectively. These categories emphasise the adaptability and potential of agrivoltaic systems for a wide 

range of agricultural activities (DIN Deutsches Institut für Normung e. V., 2021).  

Each configuration poses different challenges for remote sensing technologies. Figure 1 shows the views 

AgEng 2024 Proceedings

58



of each platform indicated by cones, with unobstructed views indicated by cones in dashed green lines and 

obstructed views indicated by cones in dashed red lines, to assess the potential benefits and challenges of the 

different remote sensing platforms in monitoring vegetation according to the agrivoltaic configurations. For 

example, Figure 1A illustrates how high-mounted solar panels can obstruct the view of satellites. This is 

represented by a red cone indicating the challenges in monitoring, although UAVs could manoeuvre under 

the solar panels to collect data. Figure 1B shows that satellites and UAVs have a clear view between the 

lower mounted panels, which is ideal for crop monitoring. In Figure 1C, the vertical arrangement of the 

panels allows satellites and UAVs to observe both the plants and the undersides of the panels, although angled 

panels can make visibility difficult for satellites or UAVs flying with the sensor at nadir angle.  

While some challenges are similar to those that already exist in agricultural facilities such as greenhouses, 

others are unique or more related to specific farm management techniques, such as crops growing under 

plastic film. (Farbo et al., 2024). For example, greenhouse roofs in greenhouses and overhead agrivoltaics 

can similarly interfere with remote sensing by satellites or high-altitude UAV remote sensing, but the 

problems with wind are different. The shape of agricultural installations changes wind and flow dynamics, 

altering airflow patterns, ventilation rates and temperature distributions. Greenhouse designs with walls, 

different roof shapes or ventilation configurations affect natural ventilation and internal microclimates, and 

obstructions such as plants or internal structures can create air resistance leading to pressure drop and 

heterogeneous climate conditions (Bournet & Rojano, 2022). While greenhouses are typically closed, vertical 

PV modules in agrivoltaics leave the top open, and overhead agrivoltaics have open sidewalls (Figure 2). 

Therefore, it is important to consider the unique challenges of different agrivoltaic configurations. 
 

 

Figure 2. Left: Overhead agrivoltaic system with open sides, generating partial shade and solar electricity. 

Right: Greenhouse with semi-cylindrical roof and closed sides, with vents for climate control, adapted from 

(Akpenpuun et al., 2021). 

In view of the above, these potential challenges include: 

− Distinction between vegetation and solar panels: Remote sensing imagery must accurately distinguish 

between vegetation and solar panels. Accurate scene classification is essential to analyse the objects in 

the image, and the mixed signals in the images can make this difficult. This distinction is necessary to 

assess the health (Chang et al., 2020), and monitor the efficiency of solar panels, with effective image 

segmentation playing a crucial role in defect detection (Hong et al., 2022). 

− Precise monitoring of crop condition in shaded areas: Agrivoltaic systems create shaded areas under the 

solar panels. These shaded areas can be more or less persistent depending on the configuration of the 

agrivoltaic system. Shade influences the growth, health and yield (Miller et al., 2015) but also the image 

and spectral information by obscuring the scene (Kushwaha et al., 2023). Remote sensing instruments 

must adapt to these variations in illumination to accurately capture crop conditions. 

− Microclimate dynamics and wind patterns: Solar panels in agrivoltaic systems change the distribution 

of solar radiation, altering the microclimate (Weselek et al., 2021) and can generate wind currents that 

resemble wind tunnels and can change the flight stability of UAVs (Scicluna et al., 2019; Setlak & 

Kowalik, 2019) and even of robotic arms or handheld sensors used for monitoring. 

− Complex environment to navigate: The structure and mount of the solar panels can create a complex 

and difficult environment to navigate. UAVs and robots must manoeuvre around the panels and their 

mounts, which can hinder efficient data collection and increase the risk of accidents. 
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− Obstruction of overhead PV modules: Overhead solar panels can obstruct images captured by satellites 

and UAVs with a nadir angle. This obstruction makes it difficult to monitor and manage agricultural 

activities through remote sensing technologies, as the panels can block the view of crops below. 

− Develop specific models for agrivoltaics: New models must consider the unique interactions between 

solar panels, crops, and environmental factors to balance solar radiation for electricity generation and 

crop production because it is crucial to improving energy and agricultural outputs (Gorjian et al., 2022). 

4. Future directions 

The full potential of remote sensing in agrivoltaic systems can be exploited by combining different 

methods, provided they are compatible with the installed agrivoltaic configuration. Combining data from 

satellites, UAVs and ground-based sensors can provide a complete, multi-level understanding of the system. 

For example, satellite data can direct UAV surveys to areas showing signs of stress, while ground sensors 

can continuously monitor both the crops and the solar panels. Higher resolution data collected using UAVs 

and ground sensors allows for accurate monitoring of the condition of crops under the varying light conditions 

created by agrivoltaic systems. In addition, the incorporation of advanced UAV tools from other fields and 

the further development of UGVs with improved navigation capabilities can provide new opportunities for 

detailed micro-level monitoring that complement UAV and satellite observations. 

At the same time, machine learning and AI advances can improve the analysis of remote sensing data and 

enable more accurate predictions and automated decision-making processes. Nevertheless, new, or existing 

algorithms should be trained with specific data sets. In addition, path planning should be developed that is 

tailored to the specifics of each individual agrivoltiac configuration, taking into account shadows and 

obstacles caused by solar panels. The continuous improvement of sensor technologies will increase the 

resolution, accuracy and diversity of the collected data and thus provide a better insight into the performance 

of agrivoltaic systems. Therefore, remote sensing will play an important role in optimising the management 

of agrivoltaic systems by enabling precise monitoring. This tool will increase the acceptance of agrivoltaics, 

promote sustainable agricultural practices and improve food security alongside renewable energy production. 

5. Conclusions 

The integration of current remote sensing methods offers enormous opportunities to improve the 

efficiency and sustainability of agrivoltaic systems. Satellite imagery, UAV and UGV surveys, and ground-

based sensors can provide a complete and holistic view of these systems, allowing for better management 

and maximisation of crop production and renewable energy generation. These technologies can improve 

precision and accuracy by overcoming limitations such as distinguishing vegetation and solar panels, 

monitoring crops in shaded areas and navigating complex environments. Advanced path planning algorithms 

and artificial intelligence can help mitigate issues such as obstacles and lighting variations, while UAV 

flexibility and high-resolution sensors ensure detailed data collection even in challenging conditions. Remote 

sensing can address current challenges and support more sustainable and productive agrivoltaic practices. 
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Abstract 

Due to climate change, plants are impacted by drought and diseases, resulting in biochemical and 

physiological consequences for commercial crops. These effects influence parameters including germination, 

vitality, and yield, in addition to seed composition and nutrition. The use of plant biostimulants to improve 

the composition and structure of the soil is increasingly common, as it favors the development of the crop 

and improves its health and productivity. Nitrogen-fixing bacteria (NFB) and phosphorus-solubilising 

bacteria (PSB) are pivotal components of sustainable agricultural systems due to their capacity to enhance N 

and P availability to host plants; therefore, increasing the chances of adaptation of the crops. Furthermore, 

the use of new technologies such as UAV and multispectral images makes it easier to monitor the crop, 

treatments and assess whether they are being effective.  

Within the framework of the SOCIAL-AGRI subproject, IMIDRA aims to evaluate the microbiological 

content of a nude soil, as an approach to remote sensing of the microbial biomass present in it. We will take 

soil samples to estimate the number of colonies forming units (CFU) for NFB and PSB bacteria in each plot, 

and correlate it with known indices (NDVI, eNDVI, MPRI, GNDVI and OSAVI) calculated from the 

multispectral images of nude soil gathered by drone. Expected results will show which plot has the highest 

number of CFU and if it can be correlated with some of the indices. 

Future works aim to assess more soils along with known and new developed indices to estimate the 

microbial biomass of NFB and PSB. 

 

Keywords: NFB, PSB, vegetation indexes. 

1. Introduction 

The utilisation of multispectral imagery to estimate soil microbial biomass represents an intriguing 

application of remote sensing in the fields of agriculture and soil science. Remote sensing is the process of 

acquiring information about an object, area or phenomenon through the analysis of data obtained by devices 

that are not in direct contact with the object under study (Hunt et al., 2010). Spectroscopy is a technique that 

allows the interaction between electromagnetic radiation and matter to be measured, thereby enabling the 

properties and composition of that matter to be determined. Multispectral images are those that capture 

information in different bands of the electromagnetic spectrum, beyond what is visible to the human eye. 

These images can be obtained from platforms such as satellites or drones and provide data on the reflectance 

of the Earth's surface at different wavelengths (red, blue, green, NIR, REDGE, etc.) (Pereira et al., 2022). 

Finally, soil microbial biomass refers to the quantity of living microorganisms present in the soil, including 

bacteria, fungi and other single-celled organisms. These microorganisms play a pivotal role in 

biogeochemical cycles and soil health (Basu et al., 2021; Dubey et al., 2019; Kumar and Verma, 2019; Malik 

et al., 2017; Shah et al., 2021; Smith et al., 2015). 

The relationship between multispectral imaging and microbial biomass is based on the capacity of 

microorganisms to modify soil reflectance at specific wavelengths. For instance, certain microbial pigments 

may absorb or reflect light in disparate ways from other soil components, which can be discerned through 

multispectral image analysis (Lan et al., 2017; Polerecky et al., 2009; Schwieterman et al., 2015). To ascertain 

soil microbial biomass from multispectral images, analytical techniques that correlate reflectance in different 

bands with direct measurements of microbial biomass obtained in the laboratory are employed. These 

techniques may include the utilisation of statistical models or machine learning algorithms (Aji et al., 2021; 
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Biney et al., 2021; Solano-Alvarez et al., 2022). 

The applications and benefits of this approach are as follows: The estimation of soil microbial biomass 

from multispectral imagery has the potential to be applied in several diverse contexts, including the 

monitoring of soil health, the assessment of soil quality in agricultural systems, and the planning of more 

sustainable soil management practices. Furthermore, it offers a non-invasive and efficient method for 

mapping the spatial distribution of microbial biomass at different scales (de Souza et al., 2022). 

Within the framework of SOCIAL-AGRI subproject (participated by IMIDRA) we want to test the 

feasibility of estimating the content of N-fixing (NFB) and P-solubilizing (PSB) bacteria in the soil, so that 

we can have an approximation of the effects in the crop and the soil. SOCIAL-AGRI subproject belongs to 

AGRICULTURA 6.0 project, that aims to 1) integrate sensing technologies for monitoring the environmental 

and soil parameters to improve the competitiveness and efficiency of crops, 2) develop a computing 

continuum fog/edge/cloud-based architecture to compute/process, store data and make AI models for 

behaviour patterns and diseases early detection in plants, and 3) define a framework for the involved actors 

in a Woody Crop Observatory and evaluate the impact of Woody Crop Observatory for different sectors of 

society involved in the Living Lab; along with the other partners of the AGRICULTURA 6.0 project: 

Universitat Politècnica de València (UPV) subproject SOLUTION, and Universitat de València (UV) 

subproject 2CANDIS. 

Therefore, the AGRICULTURA 6.0 project (http://agricultura6.es) can be considered as an 

interdisciplinary and multidisciplinary project because each group has its own research area that complements 

the other two. Additionally, each group is already composed by experts in different areas and some of those 

experts work on different complementary areas. AGRICULTURA 6.0 can be considered as a set of 

interrelated multidisciplinary activities of individual partners that makes essential the joining of experts from 

different fields (agronomy, environmental sciences, education, ICT, sensors, next generation of networks and 

artificial intelligence) that will work in a coordinated way.  

2. Materials and Methods  

The “El Encín” farm belongs to IMIDRA (public research organization of the Community of Madrid) 

and is located in the town of Alcalá de Henares, Spain. The farm has several experimental plots, one of them 

dedicated to the SOCIAL-AGRI subproject (https://agricultura6.es/socialagri-2/) with olive trees, vines and 

fruit trees (40.524148, -3.287676)  (Figure 1). The SOCIAL-AGRI crops are long-term plantations that have 

been implemented for more than 10 years, as shown in Table 1. 

Furthermore, the SOCIAL-AGRI subproject requires a series of data on soil temperature, humidity and 

conductivity that are captured by a series of sensors developed within the project and installed in the woody 

crop plots (A to C) (Figure 1 and Figure 2). These data, in combination with those obtained through 

multispectral imaging by drone, and the soil samples taken to establish the colony forming unit (CFU) counts 

in diluvial sand (DS) per gram soil (dry weight) (CFU/g DS) of N-fixing and P-solubilizing bacteria, will 

feed the AI for decision making and scenario modelling. 

On one hand, we will employ the Ashby culture media for the analysis of viable bacteria in the soil and 

to detect atmospheric NFB (Aquilanti et al., 2004). The components of the medium are briefly detailed as 

follows: glucose 2.0%, CaCO3 0.5%, K2HPO4 0.02%, MgSO4 0.02%, NaCl 0.02%, K2SO4 0.01%, and 

bacteriological agar 1.5%. The pH of the medium needs to be adjusted to 7.4. For the enumeration of PSB 

we will employ the National Botanical Research Institute’s Phosphate solid media (NBRIP). The phosphate 

solubilisation ability will be determined through plate assay: glucose 1.0%, Ca3(PO4)2 0.5%, MgCl2·6H2O 

0.5%, (NH4)2SO4 0.01%, MgSO4·7H2O 0.025%, KCl 0.02%, and bacteriological agar 1.5% (Nautiyal, 1999). 

The pH of the medium should be adjusted to 7.0. 

On the other hand, the Most Probable Number (MPN) technique will be employed to quantify soil bacteria 

(Woomer, 2018). To accomplish this, decimal dilutions will be prepared in a sterile saline solution of 0.9% 

(w/v). The initial dilution involves mixing 10.00 g of soil with 90 mL of sterile saline solution. Afterward, 

the mixture will be homogenised using an orbital shaker operating at 120 rpm while maintaining a 

temperature of (28.0 ± 0.5) ◦C for 60 min. A series of dilutions spanning from 103 to 105 will be established. 

For each decimal dilution, 5 sets of 5 µL each will be inoculated. Subsequently, these culture media will be 

subjected to incubation at (32.0 ± 1.0) ◦C for a period of 2 weeks. 

The choice of these protocols is based on previous works of the IMIDRA research group, as they throw 

good results on the determination of CFU in this type of soils (Gómez et al., 2024). But, since the project is 
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still in the development phase (to be completed by the end of 2024), we are still working on the quantification 

of the microbiota in the soil and its correlation with the vegetation and soil indices obtained through drone 

flights and AI data analysis. 

Regarding the process of capturing multispectral data, we are using a DJI Phantom 4 Pro RTK UAV (SZ 

DJI Technology Co., Ltd., Shenzhen, China) with one RGB camera and a 5-camera multispectral array 

covering the Blue (B), Green (G), Red (R), Red Edge (REDGE) and Near Infrared (NIR) bands, all with a 

2 MP global shutter and a three-axis stabilizer. The flight altitude is 20 m and DJI GS Pro software is used 

for flight planning and execution. The processing of the images to create the orthomosaic is performed with 

OpenDroneMap's WedODM, and the analysis of the multispectral images is performed with ArcMap. 

 

Figure 1. Location of SOCIAL-AGRI (A to C) fields. 

 

 

 

 

 

 

 

Table 1. Crops cultivated in 

SOCIAL-AGRI project. 

Project Field Crop 

SOCIAL-AGRI A Olive trees 

SOCIAL-AGRI B Vines 

SOCIAL-AGRI C Fruit trees 
 

   
a b c 

Figure 2. a) sensor; b) gateway; c) digital twin (SOCIAL-AGRI’s living lab). 
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3. Results and Discussion 

The results of the trial are not yet conclusive since there is insufficient information available. The 

SOCIAL-AGRI sensors and flights started to be executed in mid-2023. The drone flights have made it 

possible to obtain digital models of the olive groves, vineyards and fruit orchards, so that they can serve as 

the basis for the digital twin (Figure 3). Once these models have been processed, the data obtained from the 

field sensors will be incorporated. Additionally, multispectral imaging data will be processed along with soil 

microbiological data for AI to determine if any correlation exists (Figure 4). This will provide information 

to predict possible problems in the crop or to determine the effect of the treatments and work done in the 

plots for their management. 

 

 

Figure 3. SOCIAL-AGRI 3D model of the olives orchard. Image captured February 2024. 

 

 
Figure 4. SOCIAL-AGRI olives orchard. Image captured February 2024. 

eNDVI index used (range from 0 to 0.5). 

4. Conclusions 

AGRICULTURA 6.0 projects expects an important scientific and technical impact thanks to the 

introduction of new technologies and methods for smart agriculture to permit the digitalization of farming 
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systems and the creation of a Woody Crop Observatory to enhance the productivity and competitiveness. 

Additionally, the use of Next Generation-based architecture and intelligent tools for Smart Agriculture will 

allow the development of a demo tool for data visualization. Finally, the establishment of the Living Lab will 

permit the integration of citizens in the framework of AGRICULTURA 6.0 and the Woddy Crop 

Observatory.   
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Abstract 

The Finnish Future Farm (FFF) project, running from 2023 to 2026, aims to develop a unique co-creation 

platform for RDI, education, and startup acceleration in Smart Farming technologies. Upon completion, FFF 

will offer a versatile testbed and Living Lab for User-Centered Design, integrating both a physical Smart 

Farm and a Digital Twin. The primary goal of FFF is to accelerate the adoption of Smart Farming 

technologies, contributing to the realization of the UN Sustainable Development Goals (SDGs). The Smart 

Farm, along with a network of partner farms, will analyze these technologies through a heavily instrumented 

setup. The Digital Twin will involve integrated use of GIS data and a metaverse environment. 

A Multi-Actor Approach will be employed, engaging experts and users in collaborative use-cases to 

improve the acceptability of the solutions. The project focuses on technologies near market readiness 

(Technology Readiness Level 7+), developed in collaboration with leading companies like Valtra Inc., 

AgcoPower Inc., and Neste Inc., as well as innovative startups. These near-market solutions will be analyzed 

to identify adoption challenges, followed by the application of RDI and supporting actions. Tailored 

education for users, designers, and marketers will be provided as needed. Business development and 

acceleration services will be offered through the BioBoosters acceleration program, which includes investors 

and venture capital. 

The FFF project’s development route is reported, including the Smart Farm and the Smart Bioeconomy 

Testbed, a member of the Nordic Testbed Network since 2022. The Smart DIH (Digital Innovation Hub) 

service platform, developed under the Smart AgriHubs HEU project, is also detailed. Conclusions regarding 

the potential establishment of a future center of excellence are outlined. Located in Central Finland at the 

Bioeconomy Campus in Saarijärvi, FFF provides an excellent testing environment for technologies, including 

challenging soil variations, plant production, animal husbandry, fields, forests, and waters. 

 

Key words: Smart Farming, Testbed, Digital Twin, Education, Business Accelerator 

1. Introduction 

Technologies related to sustainable development in agriculture have existed for a long time, but their 

practical application has been slow (Haapala 2013). For example, technologies necessary for precision 

farming have been available since the 1990s (Haapala 1995), but only a few have been widely adopted 

(Anand et al. 2023). Precision farming technologies such as field navigation and yield mapping are the most 

utilized, but site-specific control of production inputs is relatively underutilized (Talero Sarmiento, Parra-

Sánchez & Lamos-Diaz, 2022). Smart farming, which utilizes precision farming technologies and intensive 

data processing, has gained attention in recent years. However, the adoption of smart farming also faces new 

obstacles, such as poor data availability and practical challenges of fair data economy. 

Failure to use technologies that promote sustainability leads to unrealized potential and unmet Sustainable 

Development Goals (SDGs). Additionally, if there is a failure in the adoption phase, all the effort put into 

developing these technologies is virtually wasted. Thus, promoting adoption is desirable and economically 

viable. 

Overcoming this challenge requires actions to eliminate obstacles to the adoption of smart technologies. 

These barriers exist in various areas related to the acceptability of solutions (Nielsen 1993), not solely 

economic, which is often cited as an explanation for poor adoption (Haapala, Pesonen & Nurkka, 2006; 

Haapala & Pasila, 2009). In agriculture, the end users of innovations are primarily farmers, who are often 

conservative and cautious adopters of new technologies. Fundamental reasons are related to lacking trust and 

low level of willingness to take risks (Wielinga et al., 2017). New technology itself induces fear and 

uncertainty, leading to reluctance in investment. Decision-making suffers from a lack of reliable and unbiased 

information regarding the effectiveness of alternative solutions. 
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Two projects were initiated. The goal of the development project for the Smart Farm at the Bioeconomy 

Campus (2021–2023) was to establish a unique hub for smart agriculture technology expertise in Tarvaala, 

Saarijärvi, in Central Finland. The resulting Smart Farm would provide an opportunity to test, develop, and 

demonstrate near-market (TRL 7-) technologies and services. The aim was to remove barriers to their 

adoption and accelerate innovation in the sector, significantly increasing the benefits for farmers and the 

related agricultural industry. 

The Smart Farm project laid the groundwork for the Finnish Future Farm (FFF) project that commenced 

immediately after it. The FFF (2023-2026) involves a physical Smart Farm linked to a digital twin of the 

farm and extensive education and business acceleration sections. (Fig. 1) 

 

Figure 1. FFF project structure. The Smart Farm forms the foundation for experimentation upon which a virtual digital 

twin is created, along with an educational and networking component that utilizes them (Haapala et al. 2024). 

The primary goal of FFF is to accelerate the adoption of Smart Farming technologies, contributing to the 

realization of the UN Sustainable Development Goals (SDGs). The Smart Farm, along with a network of 

partner farms, will analyze these technologies through a heavily instrumented setup. The Digital Twin will 

involve integrated use of GIS data and a metaverse environment. 

The FFF project’s development route is reported, including the Smart Farm and the Smart Bioeconomy 

Testbed, a member of the Nordic Testbed Network since 2022. Conclusions regarding the potential 

establishment of a future center of excellence are outlined. 

2. Materials and Methods  

The construction of the Smart Farm began in 2021 with a thorough needs definition. The starting point was 

the recognition of the necessity for abundant high-quality data, as Smart Farming fundamentally relies on the 

generation and utilization of big data (Wolfert et al., 2017). The objective was to fine-tune the functionalities 

required at the Smart Farm using various essential data types, laying the groundwork for future operations 

aimed at promoting broader adoption, in line with our vision. 

Given that precision farming is crucial for achieving the Sustainable Development Goals (SDGs), we 

prioritized the collection of sensor data essential for its implementation, alongside data generated by tractors 

and machinery. Additionally, the performance of data transmission was measured, which will become 

increasingly critical with the future rise in automation. 

During the growing seasons of 2022 and 2023, data was intensively collected from approximately 16 

hectares of test plots where barley was cultivated. Barley was chosen as the test crop due to its prevalence as 

a typical cereal crop in the area. Regular measurements were taken from the soil, crops, and machinery 

equipped with ISOBUS technology. 

Precision farming implementation was compared to traditional farming methods at the highly variable, 
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thus challenging, Huipuri test plot. Half of the plot was subjected to precision fertilization, while the other 

half was cultivated using a standard amount of fertilizer. The Maatalo plot was designated as an experimental 

area. (Figure 2) 

 

Figure 2. Test Plots. On the left, a drainage map; on the right, the division of the Huipuri field for precision farming 

and traditional cultivation.  

 

Various measurement instruments were employed in the test plots, including 20 wireless soil sensors (Figure 

3), drone imaging equipped with RGB, multispectral, and thermal cameras, soil scanning equipment, satellite 

imagery, and tractor telematics data. Soil compaction was measured using positioned penetrometer 

measurements. 

 

Figure 3. Placement of wireless soil sensors in the experimental plots (left). The sensor and its labeling (right). 

3. Results and discussion  

Automated field navigation with headland automation was compared to traditional manual driving 

methods (Figure 4). Using Geographic Information Systems (GIS) and data analysis, various maps, including 

profitability and energy consumption maps, were generated from the collected data. 
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Figure 4. Route map during the sowing process. Automatic steering on the left, manual steering on the right. 

Precision fertilization was applied. Based on soil measurements (including soil sensors, soil scanning, 

soil sampling, and drone imaging), the selected fertilizer levels were selected (Figure 5). 

 
Figure 5. Precision farming in the experimental plots in 2022 and 2023. On the left, the yield map for 2022; in the 

middle, the fertilization map for 2023; on the right, the yield map for 2023.  

In a data-driven smart agriculture system, data management is a key element. The farm's information 

system should be able to serve internal processes of the farm, e.g. FMIS, as well as external data users. To 

ensure that data is clearly in the farmer's possession and accessible to different users, it was decided to 

develop a specific Farmer's Data Warehouse, through which the farmer can license their data to the desired 

destination via a data intermediation service. The Farmer's Data Warehouse was implemented using example 

data from drone imaging and soil-sensor-produced soil data (Figure 6). 
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Figure 6. Farmer's Data Warehouse, featuring drone images and soil data produced by soil sensors. 

To test the fluency of data transfer between the Farmer's Data Warehouse and auxiliary systems, the 

operation of a novel data intermediating system compliant with the new EU data regulations was 

demonstrated in collaboration with partner companies (Dataspace Europe, Soil Scout and Yield Systems). 

Usability if 5G in machinery control was measured. In the 5G measurements, the signal coverage and 

usability were verified through field measurements and simulations. These measurements demonstrated that 

the tested measurement method, terminal devices, and measurement software were effective. Test setups 

validated the effects of buildings, forest canopy, and varying terrain elevations on the coverage of the 5G 

network signal (Figure 7). 

 

 

Figure 7. Field strength values (dBm) in terrain measurements at antenna heights of 2 and 3.5 meters. The yellow color 

indicates best values. 

Various economics maps were generated from the data using GIS software. All costs and income were 

calculated for defined grids, e.g. 10x10 metres. The data also included the work time spent in each grid 

point since it was available from the telemetry data of the tractor. (Figures 8-9) 
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Figure 8.  Economic maps. On the left: return map: on the right hourly wage map. Both on a 10x10 meter grid. 

To fulfil the requirements set by the use cases, in FFF, a Multi-Actor Approach will be employed, 

engaging experts and users in collaborative use-cases to improve the acceptability of the solutions. The 

project focuses on technologies near market readiness (Technology Readiness Level 7+), developed in 

collaboration with leading companies like Valtra Inc., AgcoPower Inc., and Neste Inc., as well as innovative 

startups. These near-market solutions will be analyzed to identify adoption challenges, followed by the 

application of RDI and supporting actions. Tailored education for users, designers, and marketers will be 

provided as needed. Business development and acceleration services will be offered through the BioBoosters 

acceleration program, which includes investors and venture capital. 

In the Finnish Future Farm (FFF) project, the development of the digital twin began with selecting the 

development environment. A metaverse was chosen, alongside related GIS software. These components are 

being integrated into a visually feasible solution with the help of gaming and data analytics experts. The 

resulting digital twin will encompass the smart farm outlined in the previous descriptions. 

Example use cases are utilized to build the system incrementally, mirroring the step-by-step approach 

used for the physical farm. The solution incorporates open-source features from public sources such as the 

National Land Survey, the Finnish Meteorological Institute, and includes simulation models of plant growth 

and other biological systems. The heavily instrumented smart farm serves as a primary source of the 

necessary data, while a network of partner farms is also used to gather independent data. (Fig. 10) 

 

 

Figure 10. Developing the Digital Twin of the Tarvaala Smart Farm. GIS features are presented in a multiverse 

environment. 
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In the Finnish Future Farm (FFF) project, there are two work packages that build on the physical smart 

farm and the digital twin: the Education and Networking work packages (see Fig. 1). 

The Education package develops simulation pedagogies that utilize the measured and simulated data to 

create use cases for profiled learners. The goal is to produce effective tools for different kinds of educational 

customers. To achieve this, four pilot groups will be run during the project. 

The Networking package includes the further development and application of the existing BioBoosters 

business accelerator by Jamk. In addition to business acceleration cases with innovative startups and leading 

companies, bootcamps, hackathons, and other innovation events will be organized (Fig. 11). 

 

Figure 11.  Smart Bioeconomy Bootcamp in May 2024, with 22 participants from 14 nationalities. 

The main goal of the projects was to establish a foundation for a Smart Farming competence hub that 

would accelerate the adoption of smart technologies on farms in alignment with the United Nations 

Sustainable Development Goals (SDGs). Achieving this required understanding the types of data collected 

on a farm and determining how the Smart Farm could handle it. This goal was successfully addressed using 

the example data available. Various data types, including sensor data, telemetry data, and drone imagery, 

were made accessible to the Smart Farm through the developed Farmer's Data Warehouse. Data transfer to 

external systems was achieved in various ways, incorporating principles of fair data economy according to 

forthcoming EU data regulations. This was demonstrated for the first time in Europe with an official data 

intermediation service (Tritom by Dataspace Europe Ltd). While 5G data transmission presented challenges, 

it was functional in some cases, aligning with current research (Heikkilä et al., 2022). 

Through intelligent data analysis, various metrics were derived from the Smart Farm's data and could be 

presented in map format. These metrics can be used in the future to demonstrate and evaluate the benefits of 

SDG technologies. The economic maps of precision farming were the first reported in literature, emphasizing 

economic benefits as a powerful motivator for farmers to invest in smart farming technologies (Garcia et al., 

2023). 

The developed Smart Farm concept is international. The Nordic Testbed Network provides a valuable 

channel to connect with experts in smart agriculture and other related smart technology application fields. 

The concept is closely associated with R&D and education services, which will be offered in the form of a 

Digital Innovation Hub (DIH) in the future. DIH services were developed simultaneously with the EU-funded 

SAH project (SAH 2024), where Jamk laid the groundwork for defining the necessary services for various 

target groups. 
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4. Conclusions  

The core of the established Smart Farm concept lies in the physical Smart Farm with continuous 

comprehensive measurements and monitoring, allowing it to be used extensively for testing and further 

development of Smart Farming technologies and practices. The partner farm network that is under 

construction enables real-life experimentation in a Living Lab style, providing insights into end-users' use-

scenarios and requirements for new technologies. The collaborative network is an integral part of the Smart 

Farm concept. Through collaboration, the Smart Farm has already been involved in other networks promoting 

agricultural data economy, leading to collaborative projects where the connection between the Smart Farm 

and the agricultural data space is tested and developed concretely together.  

The Finnish Future Farm (2023–2026) commenced based on the foundation of the physical smart farm, 

incorporating a digital twin of the farm. Both will be utilized for research, development, and innovation 

activities as well as education. Thus, the developed smart farm concept contributed to the formation of an 

expertise hub that significantly improves the profitability and environmental friendliness of farms in the 

future. The commitment of companies to continue the project indicates that the project has succeeded in its 

main objectives. The expanding startup network, together with leading companies, ensures the viability of 

the concept in the future. 
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Abstract 

Micro-near-infrared (Micro-NIR) spectroscopy has emerged as a promising technique for cost-effective 

estimation of key soil attributes when compared to the traditional wet chemistry methods and conventional 

NIR spectroscopy. Despite its potential, the full extent of its capabilities and applications remains unexplored. 

This study has evaluated the performance of a low-cost micro-NIR sensor for predicting soil organic carbon 

(SOC) and clay content. 92 samples (Randwijk, Netherlands) was scanned using a micro-NIR of 2000 ~ 2450 

nm with 18 ~ 28 nm sampling resolution (NIRONE D2.5, Spectral Engine, Germany) in fresh and air-dried 

conditions. Partial least squares regression (PLSR) models were developed with and without feature selection 

by competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), and slime 

mould algorithm (SMA). The best accuracy achieved for SOC prediction for the fresh samples (coefficient 

of determination in prediction (RP
2) = 0.76; root mean square errors in prediction (RMSEP) = 0.27 %) was 

improved for the dry samples (RP
2 = 0.81; RMSEP = 0.27 %). The predictive performance for clay content 

was found relatively poor (RP
2 = 0.48; RMSEP = 5.00 %). With the implementation of feature selection, SMA 

improved SOC prediction for fresh soil (RP
2 = 0.79; RMSEP = 0.25 %) and CARS improved that of dry soil 

(RP
2 = 0.84; RMSEP = 0.25 %). Using CARS also improved the results of clay prediction for dry soil (RP

2 = 

0.56; RMSEP = 4.62 %). Therefore, this study indicates that a micro-NIR sensor is a potential innovation that 

can accurately predict SOC, and clay content (to a smaller degree of accuracy) for a normally distributed 

dataset. 

Keywords: micro-NIR spectroscopy, soil analyses, feature selection, organic carbon, clay. 

1. Introduction 

Soil plays a crucial role in agriculture, environment and climate change mitigation. The measurement of 

soil properties, including soil organic carbon (SOC) and clay content, is essential for comprehensively 

evaluating soil quality and capacity (Viscarra Rossel et al., 2006). SOC is a key indicator of soil health and 

fertility (Hong et al., 2022; Xie et al., 2022), while clay regulates soil physical, chemical, and biological 

processes (Tümsavaş et al., 2019). The accurate and timely measurement of SOC and clay content helps 

agricultural and environmental management decisions.  

Near-infrared (NIR) spectroscopy has emerged as a widely accepted approach for measuring soil 

properties both at laboratory and field scales (Nawar and Mouazen, 2019). The interaction of near-infrared 

radiation with soil particles generates a unique spectral signature, which carries the characteristics 

information of soil properties to identify and quantify, making it a rapid and non-destructive soil 

measurement method (Stenberg et al., 2010). Despite proving its potential in a large number of studies 

(Soriano-Disla et al., 2014), NIR spectroscopy remains an expensive tool for soil analysis, particularly for 

the end users and practitioners. Therefore, affordably cheap but accurate NIR sensor development still 

remains a question to answer through research and development initiatives. 

Advances in miniaturized technologies (e.g., Micro-Electro-Mechanical Systems) have led to the 

development of micro-NIR spectrometers (Malegori et al., 2017; Shen et al., 2022), which are cheaper than 

traditional NIR spectrophotometer (Sharififar et al., 2019). The term “micro-spectroscopy” refers to two 

distinct aspects i.e., its physical and optical size. Firstly, its compact size, the light source, photosensitive 

device, and processing unit are all integrated into a hand-sized shell. Secondly, the wavelength range of the 

sensor is typically narrower than the full NIR spectrum (i.e., 750 - 2500 nm).  Micro-NIR sensor has gained 

most popularity in food industries for the analysis of fruits and tea (Li et al., 2021; Malegori et al., 2017; 

Ryckewaert et al., 2022; Teixeira Dos Santos et al., 2013). But its application in soil measurements remains 

limited to a few reports. The portable nature of the micro-NIR sensor renders it a suitable tool for in-situ soil 

measurements in field or forest settings, as it offers greater convenience than traditional laboratory-based 
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approaches. However, the feasibility of micro-NIR sensor in soil measurements remains a question yet to 

confirm. 

The aim of this study was to evaluate the potential of a micro-NIR sensor with a narrow spectral range of 

2000 ~ 2450 nm for predicting SOC and clay contents in agricultural soils under dry and fresh soil conditions. 

Performances of partial least squares regression (PLSR) models were compared for different feature selection 

methods. 

2. Materials and Methods  

2.1. Sample description  

A total of 92 samples were gathered from the topsoil layer (0-20 cm) of an agricultural field (2.5 ha) in 

Randwijk, Netherlands (51.93758, 5.71425). The soil texture is sandy loam. Each soil sample was subsequently 

partitioned into three portions. One part was used for laboratory determination of SOC and clay content. The 

second portion was used for scanning at fresh soil condition, and the remaining portion was air-dried for a 

duration of two weeks, followed by grinding, sieving before spectral scanning. Dataset for fresh soil scanning 

was marked as F and for dry soil scanning was marked as D.  

2.2. Sensor and scanning 

This study used a micro-NIR sensor (NIRONE D2.5, Spectral Engine, Germany) to scan both fresh and 

dry soil samples. It is approximately 80 × 80 × 25 mm in size and weighs about 138 g. The sensor featured a 

sapphire window located at the centre of the bottom side, allowing for the transmission of both incident and 

reflected lights. Notably, this micro-NIR sensor has a very narrow wavelength range of 2000 ~ 2450 nm with 

a sampling resolution of 18 - 28 nm, which is narrower not only than the laboratory desktop spectrometers 

but also other miniaturized NIR sensors (Barthès et al., 2019; Sharififar et al., 2019). The distance between 

the sensor and sample was set at 2 mm to prevent direct harmful impact of the soil on the sapphire window, 

while ensuring a good signal-to-noise ratio. The 2 nm wavelength step ensured optimal measuring speed and 

minimized noise. Consequently, a total of 226 spectral bands were available between 2000 ~ 2450 nm. 

Soil samples were scanned using a specialized hardware set-up, holding the micro-NIR sensor at a 2 mm 

distance from the soil sample (Figure 1). Soil samples were filled into Petri dishes whose surface was levelled 

to ensure homogenous diffuse reflectance. The micro-NIR sensor was placed on top of the holder facing 

downward, while the soil sample was placed underneath. The sensor was calibrated using a white reference 

in every 30 minutes. The spectral absorbance data of 5 scans per sample was logged onto a laptop through 

universal a serial bus communication and used for subsequent analysis. 

 

Figure 1. Micro-NIR sensor and laboratory set up for soil scanning. 

2.3. Data analysis 

2.3.1. Spectra pre-processing 

The Monte-Carlo method was employed to identify and eliminate the spectral outliers (Li et al., 2018).  

Four data points that were far from the cluster were considered outliers. To reduce noises, the Savitzky-Golay 

(SG) filter was utilized with a window size of 21 points and a 3rd polynomial. To enhance the signal-to-noise 
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ratio and thus the predictive performance, the pre-processing method standard normal variate (SNV) was 

used. SNV is a common method of spectral pre-processing, reduces the effect of particle size (Reda et al., 

2019).  

2.3.2. Partial least squares regression (PLSR) 

Each of the two datasets was divided into calibration and validation subsets using the Kennard Stone 

duplex algorithm (Li et al., 2018), where 75 % of the data was allocated to the calibration set and the 

remaining 25 % was assigned to the validation set. After the data split, PLSR was implemented on the 

calibration samples, and the resulting models were validated using samples of the validation sets. PLSR 

predicts a dependent variable (soil property) by extracting latent variables (LVs), which are orthogonal 

factors that provide maximum covariances between dependent and independent variables and thus ensure 

most accurate predictions (Li et al., 2018; Sharififar et al., 2019). PLSR models were trained using 10-fold 

cross-validation and the optimal number of LVs was selected based on the minimum root mean square error 

of cross-validation results. PLSR was conducted on each data set separately, using the full spectra as input 

or selected spectral features, using the feature selection algorithms described below. 

2.3.3. Feature selection analyses 

Feature selection analysis has been reported to select key wavelengths in the spectra that contribute most 

to the prediction (Yun et al., 2019). By this, feature selection reduces redundant spectral information and 

improves predictive accuracy or speeds up prediction time (Reda et al., 2019; Wu et al., 2022; Xie et al., 

2022). Therefore, it may help in understanding the mechanism of how micro-NIR predicts SOC and clay 

content successfully. In this study, three feature selection methods i.e., competitive adaptive reweighted 

sampling (CARS), successive projections algorithm (SPA), and slime mould algorithm (SMA) were 

evaluated.  

CARS is a variable selection technique that operates by repeatedly updating the weight of each variable 

based on the predefined criterion in each iteration and the feature variable with great competence can be 

eventually selected (Li et al., 2009; Wu et al., 2022; Yun et al., 2019). In this study, the root mean square 

error of PLSR in cross-validation was used as the evaluation standard (Li et al., 2009).  

SPA utilizes simple projection operations in a vector space and a forward selection method to identify 

subsets of variables that exhibit minimal collinearity, and thus it is well-suited to NIR spectra modelling in 

particular (Cesar Ugulino Araujo et al., 2001; Yun et al., 2019). The minimum and maximum allowable 

variable numbers in SPA implementation were set to 5 and 20 (2 % ~ 8 % of wavelengths in the micro-NIR 

spectrum), respectively.  

SMA is a swarm intelligence-based algorithm that is inspired by the intelligent foraging behaviour of 

slime moulds (Li et al., 2020). These organisms are known for their ability to locate the optimal food zone, 

and SMA replicates this behaviour. To achieve this, SMA requires a fitness function to be defined, which 

was set as the RMSE of PLSR in cross-validation. 

2.3.4. Model evaluation 

Performances of prediction models were evaluated based on the coefficient of determination in prediction 

(RP
2) (Eq.1), the root mean square error in prediction (RMSEP) (Eq.2), and the ratio of performance to 

interquartile range (RPIQ) (Eq.3 ). The higher  RP
2 and RPIQ and the lower the RMSEP, the better is the 

prediction accuracies. RP
2 measures the correlations and RMSEP indicates the residues between the observed 

and prediction quantities. RPIQ evaluates models’ performance by taking into account both the prediction 

errors and the variability of measured values. The RPIQ criterion is considered more objective than the 

RMSEP. Concerning RPIQ, spectral models can be ranked as excellent (RPIQ > 2.5), good (RPIQ = 1.7 – 

2.5), fair (RPIQ = 1.4 – 1.7) and non-reliable (RPIQ < 1.4) (Nawar and Mouazen, 2017). The mathematical 

expressions of RP
2, RMSEP and RPIQ are written below, respectively: 
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Where ymea is the measured value, ypre is the predicted value, �̅�  is the mean of the measured value, and n 

is the number of observation. 

 
3 1

P

Q Q
RPIQ

RMSE

−
=  (3) 

Where Q1 and Q3 are the first and third quartiles of the dataset, respectively.  

3. Results and Discussion 

3.1. Soil data 

For the collected soil samples, SOC and clay contents varied between 0.3 and 2.7 % and 11 and 40 %, 

respectively (Table 1). Equal mean and median values were observed for both SOC and  clay contents. The 

low skewness of 0.41 for SOC and 0.26 for clay indicated a normal distribution of the dataset. After the 

removal of 4 outliers, 66 samples of the 88 observations were assigned to the calibration dataset, while the 

remaining 22 samples were allocated to the validation dataset. The sample statistics of calibration and 

validation datasets were almost similar to each other (Table 2). 

Table 1. Summary statistics of top (0-20 cm) soil organic carbon (SOC) and clay contents  

Properties Min Max Mean Median SD Skewness 

SOC, % 0.30 2.70 1.16 1.20 0.59 0.41 

Clay content, % 11.00 40.00 23.69 23.00 6.18 0.26 

Table 2. Summary statistics of top (0-20 cm) soil organic carbon (SOC) and clay contents of the 

calibration and validation datasets.  

Soil properties Datasets 
Calibration (N=66) Validation (N=22) 

min max mean SD min max mean SD 

SOC, % 
F 0.30 2.70 1.15 0.60 0.40 2.20 1.18 0.56 

D 0.30 2.70 1.11 0.55 0.50 2.30 1.25 0.64 

Clay content, % 
F 11.00 36.00 22.95 6.47 19.00 34.00 25.00 4.15 

D 11.00 36.00 23.20 5.66 11.00 35.00 24.00 7.12 

3.2. Spectral analysis 

The absorbance of both datasets F and D declined around 2000 ~ 2150 nm, which was more evident in 

the SNV based pre-processed spectra (  

Figure 2). This decline corresponds to the absorbance peak at approximately 1950 nm, a well-known -

OH absorption feature of soil spectra. NIR spectra usually exhibit three distinct and pronounced OH 

absorbance peaks at around 950 nm, 1450 nm, 1950 nm (Nawar et al., 2016; Stenberg et al., 2010; Viscarra 

Rossel and Behrens, 2010; Viscarra Rossel et al., 2006). A distinguished peak near 2200 nm was observed 

in the pre-processed spectra in both fresh and dry soil samples, with a distinct twist observed in the latter 

case. This peak is likely related to the absorption of Al-OH (Nawar et al., 2016; Viscarra Rossel and Behrens, 

2010; Sharififar et al., 2019). Moreover, in the dry soil spectra, a minor peak was observed around 2350 nm. 

It may be related to C-H in methyls (Tekin et al., 2012) and illite or mixtures of smectite and illite in the soil 

(Viscarra Rossel and Behrens, 2010). The similarity between the spectra collected by the micro-NIR sensor 

and the spectra in previous works suggests that the configured measurement methods for micro-NIR sensor 

in this study is good to get the correct spectra. 

3.3. Modelling results 

Results of the F dataset in SOC prediction were deemed satisfactory (RP
2 = 0.76, RMSEP = 0.27 %) 

(Table 3) by using SNV pre-processing method followed by PLSR modelling. Additionally, the model 

achieved an excellent level of reliability (RPIQ = 4.13). Predictive results for SOC of the D dataset were 

further improved thanks to the dry sample conditions, with RP
2 = 0.80, indicating a high level of correlation, 
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and  RPIQ = 4.26.  

  
Figure 2. Raw and preprocess soil spectra by means of standard normal variation (SNV)  

Table 3. Prediction accuracy of micro-NIR spectroscopy for top (0-20 cm) soil organic carbon (SOC) 

and clay contents using partial least squares regression (PLSR) analysis by means of standard normal 

variation (SNV). 

Soil properties Datasets RP
2 RMSEP RPIQ 

SOC, % 
F 0.76 0.27 4.13 

D 0.80 0.28 4.26 

Clay content, % 
F 0.34 3.29 1.52 

D 0.48 5.00 2.20 

The predictive results for clay estimation of the F set using different pre-processing methods exhibited 

consistently poor performance. Although the results of the D set were slightly better than that of the F set, 

they were still rather of moderate accuracy (RP
2 = 0.48). These could be viewed as relatively good models 

based on the RPIQ scores (RPIQ = 2.20).  

3.4. Effect of spectral feature selection on model performance 

The key spectral wavelengths selected by different feature selection methods were not the same. The most 

significant wavelengths of SOC were around 2160 nm, 2224 nm, 2260 ~2270 nm, 2350 nm, and 2450 nm, 

which were selected by almost all three methods for the F dataset. However, for the D dataset, the significant 

wavelengths were at 2056~2060 nm, 2160 nm, 2260 ~ 2270 nm, and 2450 nm. It was not hard to find that 

wavelengths centred around 2160 nm, 2260 ~ 2270 nm, and 2450 nm were selected for both the F and D 

datasets, which were consistent with or close to the reported wavebands associated with SOC prediction (e.g., 

2160 nm [Hummel et al., 2001; Ng et al., 2019]; 2260 ~ 2270 nm [Hummel et al., 2001; Miloš et al., 2022; 

Tekin et al., 2012]; 2450 nm [Hummel et al., 2001; Liu et al., 2021; Miloš et al., 2022; Ng et al., 2019; 

Pinheiro et al., 2017]). Notably, wavebands around 2224 nm and 2350 nm were identified in models of the 

F dataset, but not in models of the D dataset. This suggests that the presence of soil moisture may influence 

the performance of micro-NIR for SOC prediction, since wavebands around 2224 nm and 2350 nm are 

influenced by the C-H band in functional groups of SOC (Hermansen et al., 2016; Tekin et al., 2012; Wu et 

al., 2022). Additionally, wavelengths around 2056~2060 nm were identified by all three feature selection 

methods in models with the dataset D, which is possible to be associated with the stretch combination of C-
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N and C=O (Barthès et al., 2010).  

The key featured wavebands of micro-NIR spectroscopy in clay prediction models were not found as 

distinct as those for SOC models. Wavebands centred around 2010 nm, 2200 nm, 2260 ~ 2270 nm, 2360 ~ 

2370 nm, and 2430~2450 nm were consistently selected by three feature selection methods. Based on 

previous works, the absorption between 2100 and 2500 nm may be associated with clay minerals such as 

kaolinite, illite, and smectite (Jaconi et al., 2019).  

The prediction accuracy of SOC for the F dataset was improved the most using selected bands after SMA 

(RP
2 increased from 0.76 to 0.79 and RPIQ increased from 4.13 to 4.40; Table 4). All three feature selection 

methods improved the prediction accuracy of SOC for the D dataset, while CARS improved it the most (RP
2 

= 0.84; Table 4). However, the improvement achieved through feature selection was limited. The results of 

clay prediction were improved after spectral feature selection, for the two datasets (Table 4). Although 

improvement was observed in the prediction of clay content in the F dataset, the results did not meet the 

acceptable RPIQ threshold (RPIQ ≥ 1.4). Similarly, improvement was observed in the prediction of clay 

content in dry soil, despite the accuracy did not reach the next level (RPIQ > 2.5). Despite the relatively 

limited prediction accuracy for clay compared to that for SOC, the feature analysis approach was shown to 

enhance the accuracy of micro-NIR for SOC and clay content predictions. 

Table 4. Prediction accuracy of micro-NIR spectroscopy for soil organic carbon (SOC) and clay contents for 

dataset of fresh samples (F) and dry samples (D) after feature selection. 

Soil properties Datasets VS RP
2 RMSEP RPIQ 

SOC, % 

F 

CRAS 0.78 0.26 4.28 

SPA 0.78 0.25 4.31 

SMA 0.79 0.25 4.40 

D 

CRAS 0.84 0.25 4.84 

SPA 0.82 0.27 4.50 

SMA 0.83 0.26 4.67 

Clay content,% 

F 

CRAS 0.36 3.24 1.54 

SPA 0.41 3.13 1.60 

SMA 0.31 3.38 1.48 

D 

CRAS 0.56 4.62 2.38 

SPA 0.55 4.64 2.37 

SMA 0.51 4.85 2.27 

VS: variable selection methods 

4. Conclusions 

The potential of a low-cost and short spectral range micro-NIR sensor coupled with PLSR has been 

evaluated for predicting the SOC and clay contents under fresh and dry soil sample conditions. Results 

showcased the potential of micro-NIR spectroscopy as a viable technique for measuring both SOC and clay 

contents. Micro-NIR sensor seemed to be accurate in predicting SOC in fresh soil and can provide improved 

accuracy for dry soils. However, the accuracy can be suboptimal for soil clay content predictions. Feature 

selection by the CARS method can enhance the accuracy of SOC (RP
2 = 0.84 and RPIQ = 4.84) and clay 

contents (RP
2 = 0.56 and RPIQ = 2.38) for dry soils, compared to the feature selection by SPA and SMA 

algorithms. Soil samples used in this research were collected from one field, further study is required to use 

samples with various soil texture and types in larger scales to evaluate the performance of the micro-NIR 

sensor.  
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Abstract 

In recent years the demand for animal products has increased considerably with a direct impact on 

increased energy consumption of livestock facilities. This problem can be managed by adopting energy 

efficient equipment and optimal planning of energy use picks but also by adopting Renewable Energy 

Sources (RES). By interconnecting these technologies using the Internet of Things (IoT) and controlling 

them with smart control systems based on artificial intelligence combined with the breeding and fattening 

cycles of the livestock, it is possible to optimize energy production and consumption and their respective 

emissions, with simultaneous improvement of the animals’ well-being due to optimized microclimate. In 

this paper, we first reviewed the current state of the art of smart control technologies/practices and data 

analytics techniques for optimal indoor environmental conditions of the main livestock species (poultry, 

cattle and swine), combined with the main RES technologies for livestock facilities. Then, we showcase the 

research opportunities, technical and financial challenges as well as the knowledge gaps for precision 

environmental control of livestock buildings and finally a smart livestock building control system prototype 

is presented analysing its novel topology to enable: (i) remote monitoring of environmental parameters, (ii) 

optimal penetration of different RES units, and (iii) energy consumption reduction prospects aiming at 

optimum livestock performance in relation to the indoor environmental conditions and the energy 

consumed. 

Keywords: livestock, indoor environmental smart control, energy consumption, renewable energy sources 

1. Introduction 

Several trends are driving transitions in the global livestock sector. On one hand, growing human 

population along with the rising income and modern lifestyle changes are driving increases in the demand 

for animal products and by-products (Michalk et al., 2019). On the other hand, the decreasing number of 

farmers, especially in developed countries, is leading the industry to focus production on larger farms in 

order to satisfy the market needs (Eurostat, 2022). In addition, there is a steady shift in consumer demand 

for livestock goods produced under well-being production strategies. 

In this context, there is a need for the farming industry to adopt new practices towards healthier 

breeding conditions based on continuous monitoring of both animals’ behaviour and the environmental 

parameters to gather data and implement smart control techniques that can optimise livestock living 

conditions (Jiang et al., 2023). To do so, already deployed technologies from other industries are adapted in 

livestock facilities, such as the IoT, which has experienced considerable development in recent years and 

can be applied to livestock farming utilizing different smart devices. IoT can allow smart processes during 

different stages of livestock rearing, such as management, feeding, energy efficiency, finances, safety, 

reliability, etc (Grogan, 2012). Each livestock type requires different environmental conditions in order to 

increase the output efficiency, but the main limiting factor for all types is optimal temperature control. In 

addition, other factors, including the relative humidity, the concentration of dangerous gases and the 

quantity and timing of feeding are also crucial (Hansen & Bjerg, 2018). Livestock housing systems that are 

able to control these major parameters along with others lesser ones, support the integration of Precision 

Livestock Farming (PLF) concept in existing and new livestock farms. 

Additionally, increases in animal population and density in industrial farms in combination with the 
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high mechanisation of these facilities leads to increased energy consumption that reduce the profit margin 

and simultaneously add to the environmental impact of the livestock sector (Paris et al., 2022). These 

energy needs could be reduced by installing energy efficient equipment and the remaining energy 

consumption could be partly or in total covered by renewable energy systems, decreasing their 

environmental footprint and allowing for more sustainable animal husbandry. Furthermore, in the context 

of climatic change there is increasing recognition, which is reflected in policy and governance, that 

livestock practices need to become more sustainable and that “smart” technological systems play an 

important role in this transition. 

Such a system, that supports effective precision indoor environmental control combined with RES 

integration in farm buildings regulated in accordance to the livestock facility energy needs, requires various 

systems to monitor a set of environmental and energy flow parameters that will allow the collected values 

to be stored and processed. This data can provide useful information towards overall animal comfort in real 

time, to allow the control of the different systems and ensure optimal living conditions for the animals, with 

low fossil energy consumption (Paris et al., 2022). Data processing techniques in such a system include a 

set of methods ranging from simple statistical analysis and a set of thresholds up to complex Machine 

Learning (ML) models. The output of this monitoring and analysis drives a set of automation and control 

methods that calibrate various parameters of the installed equipment for ventilation, heating, cooling, etc., 

thereby creating an optimal microclimate within the farm while also recording and projecting the energy 

needs provided by RES.  

Relatively little previous research has been carried out on the smart control strategies for optimal 

environmental conditions and minimum energy requirements in livestock facilities. Farooq et al., (2020) 

conducted a systematic review of IoT technologies in agriculture and located only 67 relevant published 

articles between 2009 and 2019. This study aims to showcase a state of the art paradigm for smart control 

in livestock farms, aiming at combining optimal environmental conditions for animal livelihood with 

minimum energy requirements. 

1.1. State of the art 

1.1.1. Smart control systems 

The main purpose of intelligent control systems is to allow integration of security, heating/cooling 

systems, air quality, energy monitoring, lightning, etc. by deploying smart devices, sensors and actuators to 

monitor and control different systems. Various smart control systems and techniques have been developed 

and introduced in recent years in order to ensure efficient environment control of the livestock building 

with extensive equipment used to measure different environmental values and vital livestock points. 

O’Grady and O’Hare (2017) provide an overview of various exemplar models for smart farming that 

effectively harnesses on farm information and communication technologies in livestock systems, including 

GRAZPLAN, EcoMod, NRC, Norfor, TDMI, Biopara-Milk, Karoline. Black & Banhazi (2013) have 

demonstrated the economic and social impact of the new technologies such as IoT and data analytics and 

the importance of proper data collection to optimize the livestock industry. Continuous sensing and 

adaptability of a smart control system is important and the ability for immediate response to optimize the 

environmental conditions increases the complexity of such systems. 

In general, livestock facilities require different control and automation systems to handle a variety of 

factors for efficient indoor environment control. Ventilation is needed at all times to provide adequate fresh 

air to remove odours, minimize moisture and prevent airborne diseases. Natural ventilation in many cases is 

not adequate to mitigate these issues as it is affected by the environmental conditions such as temperature, 

wind blow rate fluctuations and other factors. Mechanical ventilation is required to ensure decent indoor 

conditions especially for small animals that are susceptible to low temperatures and sudden temperature 

changes (Jones et al., 2015). In recent years various studies have investigated the potential of “smart” 

mechanical ventilation systems including Fournel et al. (2017), who found that the general control 

strategies for thermal management of livestock buildings needs to be updated, while Shin et al. (2022) 

developed a smart system for demand-controlled ventilation. 

Mechanistic approaches based on observations regarding the physiological and behavioural responses 

of animals to their physical microenvironment are primarily based on either the laws of physics and 

chemistry or on equations with known characteristics derived specifically to represent the perceived 

mechanisms of a system, supplemented with empirical values as needed. They offer a means of predicting 
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heat production under a broader range of conditions than empirical models do, by integrating, for instance, 

nutrition, genetics, and environment. Whereas dynamic data modeling recognizes that due to the dynamic 

changes of inputs (i.e. animal heat production and ventilation rate) and disturbing factors (outdoor climate), 

the calculated indoor conditions rapidly change over time (Banhazi et al., 2015). 

Consequently, dynamic data-based models imply that the following statements are fulfilled: (i) animal 

responses to the microenvironment are measured continuously and the information is fed back to the 

controller, and (ii) a mathematical model of the system allows the process response to be predicted 

accurately under both steady-state and dynamic conditions. 

1.1.2. IoT in the livestock industry 

Continuous monitoring and the ability to mitigate in real-time changes of the indoor microclimate in 

relation to the livestock type, age and breed is highlighted above. In recent years, a range of technologies 

based around the IoT that provide smart devices capable to assist the continuous monitoring of critical 

factors, have been adopted by the livestock sector (Mateo-Fornés et al., 2021). This is important as IoT 

generally combines several “smart” technologies and focuses on creating efficiencies, scalability and 

interoperability between them. 

Currently, most livestock farms are dependent on older and less efficient equipment. In these cases the 

procurement of a full system upgrade to up to date monitoring equipment and the upgrade of legacy 

systems is cost prohibitive. In these instances, IoT technology can be a solution as smart devices can be 

installed as standalone equipment, have the ability to retrofit legacy systems and can provide evidence and 

measurements to address the automatic control and monitoring of the farm. For instance, several studies 

suggest that using technologies such as wireless (Wi-Fi, ZigBee, LTE, LoraWAN, etc.) and wired 

communication sensing networks that transmit information to servers can be created. The data collected 

combined with expert knowledge and data processing techniques can realize critical actions towards precise 

farming and proactive actions to maintain an optimal environment for livestock (Symeonaki et al., 2021; 

Neethirajan & Kemp, 2021; Dos Reis et al., 2021; Zhang et al., 2016). 

The ability to connect the IoT devices to the cloud allows remote monitoring, actuation and early 

warning. These can assist farmers make better decisions, while at the same time reducing their 

environmental footprint (Almalki et al., 2021).  The IoT for agriculture is still in the early stages as most of 

the systems are in the development, prototype or research state (Farooq et al., 2020). Different stakeholders 

are trying to understand the ability of IoT in the agricultural sector and due to this, many studies focus on 

different aspects of IoT and adopt varying approaches, for instance, Ariza-Colpas et al. (2019) investigate 

the potential for geo-referencing livestock; Yadavalli et al. (2021) propose a monitoring and control 

mechanism for livestock agriculture that control a range of parameters through a smart algorithm; Paunova-

Hubenova et al. (2021) investigate farm management information systems and their potential in dairy 

farming. 

1.1.3. RES units and livestock farms 

The current trends towards zero emission and carbon neutral farms combined with a focus on the 

circular economy and the current legislation towards minimization of energy consumption and the carbon 

footprint is pushing towards the wide adoption of RES technologies (Kumar et al., 2023). Popular RES 

technologies used on farms include: solar, wind, bioenergy, geothermal and heat pump systems. Their 

applicability, testing and adoption to the livestock sector have seen rapid increase in recent years driven by 

considerable technological improvements and cost reductions. 

Microgrids combining different RES technologies including generation, storage and also proper 

dissipation of energy have been established. The technoeconomic aspect has been highlighted in various 

researches where different energy sources, including fossil fuels, have been evaluated (Ahmad et al., 2018). 

Various hybrid systems that combine energy from a variety of sources have been tested. Jahangir et al. 

(2022) investigates the potential of various hybrid RES systems for livestock farms finding that they can 

lead to considerable decreases in fossil dependency and Greenhouse Gasses (GHG) emissions. Elahi et al. 

(2019) optimises renewable and non-renewable energy inputs in livestock systems using an artificial neural 

network and Attard et al. (2017) investigates the RES potential of livestock wastes on Mediterranean 

islands. 

Regarding specific RES sources, the role and potential of biogas production systems on livestock farms 

using manure as feedstock is well documented, though considerable potential in expanding these systems 
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remains (Scarlat et al., 2018; O’Connor et al., 2021). Similarly, in recent years the costs of solar power 

generation systems have fallen dramatically while efficiencies have increased in suggesting appropriate use 

to livestock systems. Various studies have commented on this (Paris et al., 2022). For instance, PVTs 

(Photovoltaic Thermal hybrid solar collectors) combine the features of standard PV (Photovoltaic) panels 

and solar thermal collectors, producing both heat and electricity and their energy yield per m2 is about 40-

50% higher than having separate PV and solar thermal collectors with the same total surface area, making 

them ideal for buildings with restricted rooftop surface (Sirin et al., 2023). Gad et al. (2020) compare 

poultry houses powered by PV and a flat-plate solar collector and Rudenko et al. (2019) provide technical 

recommendations for designing power supply systems for livestock based on solar and wind.  

Following the rapid and successful development of heat pumps in the housing and construction sectors, 

efforts are being made to apply them to livestock facilities. Choi et al. (2012) observed that using a 

geothermal heat pump to heat broiler houses significantly reduces overall energy demand as compared to 

conventional systems and Islam et al. (2016) found that a geothermal heat pump in pig houses substantially 

reduces electricity use, carbon emissions and costs. Licharz et al. (2020) investigated the energy efficiency 

of heat pumps in two pig houses in Germany. These studies generally suggest that the adoption of heat 

pumps in livestock facilities are applicable to and will improve energy efficiencies of livestock systems. It 

is important to note that depending on the type of livestock sector and the local climate the heating and 

cooling requirements are very different. As such, different concepts of either passive or active cooling 

systems are necessary which in turn impact the load on the geothermal source and the cost-effectiveness of 

the system. 

2. Materials and Methods  

Based on technological developments, expert inputs and the research conducted in the framework of 

Horizon 2020 Project RES4LIVE, this study proposes an IoT system that provides effective remote 

monitoring and actuation by combining energy efficiency measures and the effective management of RES 

systems. The potential lies in combining smart systems, IoT and renewable production to move towards a 

sustainable and efficient livestock system. The proposed system that utilizes an IoT platform was applied to 

4 pilot farms and its functionality is being tested. The system follows the IoT paradigm where IoT devices 

communicate through a local sensor network and monitor the indoor and outdoor microclimate conditions 

as well as any hazardous gasses and transmit the collected data to a cloud infrastructure. Then, data is 

analyzed and through the analysis, which includes various methods and techniques, a set of decisions and 

actions is proposed. The two pillars of the proposed IoT system are the: (a) monitoring and data collection 

and (b) smart control. 

2.1. Monitoring and data collection 

Monitoring equipment is crucial for IoT systems as in order to be able to perform effective data analysis 

and provide inputs for the smart control, different units and sensors are required. Each monitoring device 

may be used to measure one or more parameters, and the values are then transmitted to be stored, visualised 

and further processed. The system herein presented is used to: (a) collect data in real time and utilise it as 

input to the smart control system in order to optimise the microclimate in terms of indoor air quality and 

thermal environment and; (b) collect baseline data to compare the conditions before and after the 

installation of the smart control system and the integration of RES technologies in the pilot farms. 

Various sensors and accompanying equipment were selected for the integrated system according to the 

specific needs of the 4 pilot farms and the available infrastructure. Indicatively, prerequisites such as 

buildings/barns of interest, internet availability, convenient sensor installation points, integration of legacy 

equipment, and many more were taken into account for the selection and installation of sensors aimed at 

indoor sensing, outdoor sensing, electricity consumption and fuel consumption. The sensors that were 

decided to be installed on site are divided into 3 separate categories: 

• Environmental sensing 

• Weather station 

• Energy consumption 

Each category required additional research in order to proceed by selecting the appropriate equipment 

suited for the harsh conditions of livestock monitoring and to be able to work within specific conditions and 
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the defined range. For each category, the research for the different requirements for each sensor included 

expert knowledge from the project partners according to the type of livestock, general research from 

academia and industry leaders and reports and findings from manufacturers. Factors such as availability, 

after sale support for calibration and maintenance, durability and expected lifetime, calibration intervals, 

and more, were taken into account. 

2.1.1. Environmental sensing 

The various sensors utilized for environmental sensing have been selected with respect to the sensing 

sensitivity required for the application and the longevity of the different sensors. The working principles of 

the sensors vary. For example, some sensors include transmitters that can communicate directly with the 

gateway, which is the preferred solution. On the other hand, in some other cases, an additional module is 

needed, which heavily increases the cost and sets some limitations. All sensors selected for ambient 

monitoring use widely available protocols and technologies; the 3 main technologies are listed below: 

• Variable resistance load: These sensors include a variable resistance and measure the electric current 

or electric load to calculate the sensing value according to the ohmic value of the resistor, which 

changes according to the sensing value. 

• Electrochemical: These sensors have the same working principles as the resistive load sensors 

described above, but the variable resistance is changing its ohmic value according to a chemical 

component that is very sensitive to the desired measured value. 

• Optical: These sensors are based on converting the light rays into electronic signals. They measure the 

quantity of light and translate it into a readable form. 

Different types of farms and different livestock led to a wide selection of sensors (Table 1). All 

environmental sensors were selected to be able to work with the Modbus TCP/RTU protocol, which is the 

industry standard. 

Table 1. Environmental sensors’ requirements. 

Sensing value Range Accuracy Sensor type 

Temperature and Relative Humidity 0...100% RH 

-40...+85 oC 

0.1% RH 

0.1 oC 
Digital 

CO2 (Carbon Dioxide) 0-10,000 ppm 1 ppm Optical NDIR 

NH3 (Ammonia) 0-1000 ppm 1 ppm Metal Oxide Semiconductor 

H2S (Hydrogen Sulphide) 0-100 ppm 0.1 ppm Electrochemical 

O2 (Oxygen) 0-25% 0.01% vol Electrochemical 

VOC (Volatile Organic Compound) 0-1000 ppm 1 ppm Metal Oxide Semiconductor 

2.1.2. Weather station 

A weather station is a collection of instruments that measure atmospheric conditions to help study the 

weather and climate of a specific location. Most weather stations measure temperature, humidity, 

barometric pressure, wind speed and direction, and rainfall. The selected weather stations utilise an external 

solar panel and a battery-powered central unit to avoid sudden power outages and be autonomous for up to 

10 days. The weather stations were programmed to transmit wind speed and direction, solar radiation, air 

temperature, humidity and pressure, precipitation and rainfall level data every 15 minutes. 

2.1.3. Energy consumption 

In order to measure the various electrical loads in the 4 pilot farms, energy monitoring devices were 

required. The measurements are also being utilised for the comparison of the electricity needs before and 

after the interventions in the pilot farms to evaluate various installed technologies as well as the complete 

system through a thorough Life Cycle Assessment (LCA). 

Between electromechanical type induction meters and electronic energy meters, the latter were selected 

to be used for the purposes of this study. Electronic energy meters are an accurate, precise and reliable type 

of measuring instrument when compared to electromechanical induction-type meters which are 

characterised by their proneness to tampering. Additionally, when connected to loads electronic energy 

meters consume less power and start measuring instantaneously. 

 The number of installed energy meters per farm varied, depending on the complexity of each facility 

and the number of consumers that were deemed necessary to be recorded. An example of the installed 
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meters can be seen on Figure 1 (Split core CTs – Current Transducers). 

  

Figure 1. Installed energy consumption sensors in a pilot farm. 

2.2. Smart control 

Having installed the complete monitoring system, all data is sent to the cloud platform in order for the 

smart control operations to be carried out. The platform utilised (https://cloud.gr/) is a custom IoT cloud 

platform developed by PLEGMA S.A. that provides IoT management and efficiency services to 

commercial & residential buildings, smart cities & agriculture, and the energy & industrial sectors. 

Within RES4LIVE, the smart control system (Figure 2) is able to offer multiple functionalities and 

targets maximizing the penetration of the energy produced by the RES units making use of the system 

components as described below, and finally reducing the energy consumption of the pilot farms. Moreover, 

the smart control system actuates the heat pumps, to achieve the optimal environmental conditions 

according to each farm type, and also controls the ventilation in some areas of the pilot farms, to make sure 

that certain thresholds of hazardous gases are not surpassed. The ventilation control may be performed 

either in a direct way, by controlling the fans/ventilators, or through notifications on mobile phones of the 

farm staff, in case actual remote control of ventilators/fans/windows is not possible. 

 

Figure 2. The proposed smart control system. 

2.2.1. Smart control module 

The Smart Control Module (SCM) is the key component of the gateway system that is used to maintain 

optimal conditions for animals. It gathers data from sensors or a local database and uses this information to 

make decisions about how to control the environment. The SCM uses an advanced rule engine and a smart 

control algorithm to determine the best actions to take to achieve the desired environment for the animals. 

It then prioritises and activates the necessary devices to maintain the desired conditions. Written in Node.js, 

the SCM is a reliable and efficient way to ensure that animals are living in a comfortable and healthy 

environment. The SCM has four main components: the rule engine, the smart control algorithm, the local 

actuator listener, and the cloud actuator listener. It runs the rules every time new sensor data arrives to 

ensure that the thresholds are strictly applied, and if it detects that values are below or above the threshold, 

it sends control commands to the heat pump and ventilation units to maintain temperature, humidity, and 

hazardous gas concentrations within the threshold levels. 

 It is important to note that the automation process described above can be overridden by manual 

actions from the farm administrator. In case the automation process is not working properly or maintenance 

of the farm is required, the administrator can turn off the module or override any actions taken by the 

system. 
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2.2.2. Rule engine 

The rule engine is a solution that was customised and integrated into the platform to perform further 

analysis and apply meaningful rules that will be set and defined by heterogeneous sources and produce 

various outputs. It is triggered by the incoming or requested data in order to perform various actions and its 

main advantage is that it utilizes the suggestions received from the smart control algorithm, and it may 

apply additional rules on top of them. For example, override a command if a specific hazardous gas 

concentration exceeds a specific dangerous threshold, and prioritize the air quality by opening a ventilator, 

at the expense of energy consumption because of heat losses. Another important functionality is the ability 

to create notifications in case the data received from the sensor monitoring network, either the 

environmental sensors or the energy consumption sensors exceed specific thresholds set by the farm 

administration. 

2.2.3. Demand forecasting 

The prediction of electricity consumption is an important area of study for the efficient operation of 

power grids. Within the energy demand forecasting module, a Recurrent Neural Network (RNN) based 

approach which takes as input hourly energy demand data in kilowatt-hours (kWh) from the past week and 

forecasts the energy demand for the next hour is used. This module utilizes RNNs due to their superiority in 

solving problems with sequential data such as time series, according to the literature. 

2.2.4. Solar forecasting 

Forecasting the energy output of a solar power plant is crucial for the smart grid system, as it enables 

alignment of future supply and demand. This allows for scheduling high energy-consuming tasks during 

periods of high production to avoid wasting solar energy. In the context of this study, weather forecasts are 

provided through third-party services and/or the weather stations that are installed in the pilot farms. 

2.2.5. Energy-intensive task scheduler 

This module is developed to provide energy-intensive task scheduling recommendations to the farm 

managers based on the forecasted energy generation of the solar panels. This asset is supposed to assist 

them in better organizing and scheduling energy-intensive tasks (e.g. EV charging, heating, cleaning with 

hot water, etc.) to save energy and/or costs according to the different consumption tariffs. The input of the 

component is the schedule of the user, along with the prediction of the hourly generation of the PV panels 

in kWh with the relevant timestamps. 

3. Results and Discussion 

The proposed smart control system results in the control of the selected farm equipment either 

automatically or through suggestions of actions to be taken manually by the farms’ staff as follows: 

3.1. Automatically controlled equipment 

The equipment that is controlled through the smart control system are all the heat pumps that are 

installed in the pilot farms, as well as the complete ventilation system in two pilot farms, and part of the 

ventilation system in the third farm. 

The heat pumps are controlled through the smart control mechanism, which employs the Modbus 

protocol to manage its various functions. This allows the heat pump to be controlled remotely from expert 

personnel or automatically, and makes it possible to integrate the heat pump into a variety of different 

systems and environments. 

A ventilation control system is a set of devices that work together to regulate the amount of fresh air 

that enters each barn. The Smart Control system monitors factors like temperature and humidity and 

concentrations of various hazardous gases (e.g., CO2, VOC, NH3, O2, H2S) and adjusts ventilation 

accordingly to keep indoor air quality within safe levels. 

An indicative example of a control strategy at the poultry pilot farm made possible by the smart control 

systems is the operation of a heat pump, when the barn houses both pullets and laying hens, each requiring 

different thermal conditions. In the farm, the system user first specifies on the cloud platform that both 

rooms are occupied and sets the required temperature for each. Since pullets need higher temperatures and 
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are more sensitive to temperature fluctuations, the heat pump prioritizes maintaining the pullets' room at its 

set point before attending to the laying hens' room. 

Depending on the weather conditions, if the laying hens' room needs heating, the heat pump also 

provides heating to the pullets' room. If the laying hens' room requires cooling while the pullets' room 

needs heating, thermal lamps supply the necessary heat for the pullets. When the heat pump operates in 

cooling mode, the fans supplying air to the pullets' room are either deactivated or run at low speed to 

maintain a higher temperature. 

3.2. Manual control through suggested actions 

It was deemed necessary for the system to be able to suggest specific actions, besides the directly 

controlled equipment. Current implementation supports suggestions to open windows or doors within a 

specific room in order to increase the airflow and to facilitate temperature control and the various 

hazardous gases concentration control. Thus, if the smart control algorithm outputs decide that a specific 

door or window within a barn should change its state (either open or close), it alerts through an email 

notification the assigned persons, so that they can go to that location and manually perform the suggested 

action. The system supports any kind of relevant action suggestions, which allows the system to be 

expandable and scalable in case additional requirements arise. 

4. Conclusions 

Agriculture 4.0 is the new approach towards farm management and precision agriculture. The ability to 

harness the technology advancements from other industries such as computer science allowed, agricultural 

sector to evaluate and adopt them to achieve energy efficiency and optimal indoor conditions for the 

livestock. Agriculture 4.0 is combining low-cost sensors and actuators, with cloud computing and Artificial 

Intelligence to achieve its goals and help farmers make better decisions, while at the same time reducing 

their environmental footprint. 

Utilizing farmer-defined scenarios that consider specific livestock requirements, the areas occupancy 

and other characteristics, the IoT system is enabling smart control towards heating, cooling and ventilation 

and optimize the microclimate, in terms of indoor air quality and thermal environment. 

To allow the smart control system to operate automatically, farms utilize smart sensors to monitor the 

different environmental parameters, such as temperature, relative humidity, wind speed and direction, 

hazardous gases, as well as energy consumption data. Moreover, the system collects baseline data to 

evaluate, assess and compare “before” and “after” conditions. 

Precise indoor environmental and energy smart control are integral parts of the RES4LIVE Project 

implementation. Data is available in real time through the cloud platform, which: (a) allows remote 

monitoring, (b) provides useful analytics, and (c) performs actual control of the connected devices. The 

above-mentioned features will assist in both everyday operations and long-term farm management. 

It is expected that the Project will finalise its findings by Q3 2024. Detailed information about the 

system installations as well as the ongoing technical, economic, environmental and social assessments can 

be requested by the RES4LIVE Project Consortium through the dedicated contact form at 

https://res4live.eu/contacts/. 
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Abstract 

The adoption of digital technologies in agriculture offers significant potential to enhance productivity, 

sustainability, and resilience. This paper presents initial insights derived from an ongoing study aimed at 

evaluating the challenges and opportunities for farmers in adopting data-driven solutions. During the initial 

phases, the study utilised an online workshop with 46 participants from various agri-stakeholder groups to 

conduct a comprehensive PESTLE analysis, exploring the political, economic, social, technological, legal, 

and environmental factors influencing the adoption of data-driven solutions in agriculture.   

Key findings indicate that cohesive governmental policies, innovative business models, and targeted 

educational initiatives are essential for fostering digital transformation in agriculture. Political and regulatory 

challenges such as aligning cross-border data sharing frameworks and ensuring consistent policy 

implementation must be addressed. High costs and technical knowledge requirements are substantial 

economic barriers, particularly for smallholder farmers, necessitating tailored financial support and 

cooperative business models. Socially, the digital divide and trust issues in data security highlight the need 

for equitable infrastructure distribution and trust-building measures. Technological advancements like IoT 

and blockchain offer opportunities but require robust data governance and cybersecurity frameworks. From 

a legal perspective, simplifying regulatory compliance and clarifying data ownership are crucial for 

facilitating adoption. While digital agriculture practices support sustainability goals, environmental risks 

such as electronic waste and increased carbon footprint need careful management.  

The insights gathered from diverse agri-stakeholders provide an understanding of the factors impacting 

digital transformation in agriculture. This research contributes to understanding the specific barriers faced by 

farmers in adopting data-driven solutions and offers actionable recommendations for creating inclusive and 

effective data-driven agricultural initiatives. 

Keywords: smart farming, digitisation, smallholder farmers, technology adoption, climate resilience. 

1. Introduction 

Smart agriculture is revolutionising traditional farming practices by leveraging advanced technologies to 

optimise agricultural processes. The integration of various technologies such as cloud computing, remote 

sensing, big data analytics, and the Internet of Things (IoT) can potentially enable data-driven decision-

making, enhance crop yields, and improve the quality of food products (Wolfert et al., 2017). The essence of 

smart agriculture lies in its data-driven approach, where data management and smart analytics play pivotal 

roles in supporting critical decision-making processes (Wolfert et al., 2017). The utilisation of Artificial 

Intelligence (AI) and Machine Learning (ML) algorithms further enhances the monitoring and efficiency of 

agricultural operations, contributing to improved ecological outcomes (Gupta et al., 2023). Despite the 

significant potential benefits, the adoption of smart farming technologies is not without challenges. Farmers, 

especially smallholders, face numerous obstacles, including climate change, low commodity prices, 

environmental degradation, and limited access to resources (Jiménez et al., 2019). Moreover, the acceptance 

and trust of farmers in these technologies are crucial for their successful implementation (Schukat & Heise, 

2021).  

Understanding the unique challenges and opportunities specific to farmers is vital in the context of smart 

agriculture. Most smart farming research focuses on technological advancements and their potential impacts 

on agricultural productivity, often overlooking the complexities involved in the adoption process from the 

farmers' perspective. This gap is particularly pronounced for smallholder farmers, who constitute a significant 

portion of the global farming community (FAO, 2021). 
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This study aims to address this gap by conducting a thorough exploration of the challenges and 

opportunities based on insights gathered from an online workshop involving diverse agri-stakeholders, 

including agricultural professionals, researchers, data scientists, policymakers, farmers, educators, 

agribusiness representatives, and students. Utilising a PESTLE (Political, Economic, Social, Technological, 

Legal, and Environmental) analysis, this research examines the external factors influencing digital 

transformation in agriculture. The insights gained from this analysis provide valuable guidance for 

policymakers, industry leaders, and other stakeholders in crafting strategies to support the digital 

transformation of agriculture.  

 

2. Methodology 
 

2.1. Participants and Stakeholders 
The online workshop was held, with a total of 46 participants joining out of 60 registered individuals. 

The participants represented a diverse array of agri-stakeholders, including agricultural professionals, 

researchers, data scientists, policymakers, farmers, educators, agribusiness representatives, and students. The 

diversity of the cohort allowed for obtaining a comprehensive perspective on the adoption of data 

technologies in agriculture. Participants registered by providing their names, email addresses, institutional 

affiliations, and occupation statuses. 

 

2.2. Workshop Design, Data Collection and Data Analysis 

The workshop was conducted using Microsoft Teams, with a Miro Board integrated to facilitate 

interactive activities and collect real-time feedback. The agenda was designed to ensure maximum 

engagement and effective data collection. The core of the workshop consisted of a brainstorming session 

focused on the PESTLE analysis. Participants added their own suggestions of challenges and opportunities 

related to each factor. The session concluded with discussions on future steps and closing remarks. The Miro 

Board captured all participant inputs during the brainstorming and discussion sessions. The data collected 

from the Miro Board was subjected to thematic analysis (Braun & Clarke, 2012). Each frame’s content was 

reviewed to identify common themes and significant factors within each PESTLE category. This qualitative 

approach ensured that the analysis captured the depth and breadth of the participants' insights. Key themes 

were synthesised to provide a coherent PESTLE analysis. 

 

3. Results and Discussion 

 

3.1. Political Factors 

The digital transformation in agriculture is inherently political, demanding a critical approach that 

incorporates local contexts and broader political economy perspectives (Benegiamo et al., 2023). Participants 

identified a significant need for a common contractual framework for cross-border data sharing, emphasising 

the importance of aligning member states within the European Union (EU) and subsequently expanding this 

framework globally. Such a framework would facilitate smoother and more secure data exchanges between 

countries, enhancing the effectiveness of digital technologies in agriculture. This need is supported by 

literature that underscores the necessity for robust governmental frameworks and enhanced data exchange 

among stakeholders (Nehrey et al., 2023). 

Participants also highlighted that state-protected policies and activities can enhance trust among farmers 

towards these technologies, which is vital for their widespread adoption. Creating policies that focus on the 

needs and perspectives of farmers ensures they are practical and beneficial, further facilitating adoption. 

Literature supports this argument, noting the pressing need for comprehensive laws, regulatory frameworks, 

and public-private cooperation to foster trust and market structure (Kosior, 2020). Existing voluntary codes 

of conduct, like the EU Code of Conduct on agri-data sharing, offer guidance but highlight the need for 

modernised regulations to address data privacy and security issues (Kaur & Dara, 2023). 

Participants identified the importance of partnerships with governmental agencies and policymakers in 

advancing digital transformation in agriculture. Participants indicated that many incentives provided by 

governments have the power to encourage farmers to adopt digital technologies. Subsidies and grants can 

reduce the financial burden of investing in new technologies, addressing one of the main reasons farmers 

hold back. Additionally, it was mentioned that some governments have introduced digital notebooks to track 
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crop data, which help maintain records of crop activities and data, facilitating better decision-making and 

compliance with agricultural standards.  

Despite these potentials, key policy challenges involve issues of data ownership, control, access to 

technology, and data security. Addressing these requires reshaping the political and economic landscape to 

ensure equitable agricultural practices, particularly in the context of tensions between digital agri-tech 

developments and agroecological approaches (Rotz et al., 2019). Moreover, the limitations of digital 

infrastructure, such as high-speed internet and mobile coverage pose barriers, emphasising the role of policy 

and investment in overcoming these technical challenges (Knierim et al., 2019). 

3.2. Economic Factors 

Economic constraints were a major focus of the workshop discussion. High costs and the required 

technical knowledge associated with digital tools were referenced as significant obstacles for many farmers. 

Participants noted that high costs and long amortisation processes often mean that by the time technology 

costs are recovered, the technology might already be obsolete. Literature supports this, highlighting that the 

high cost associated with adopting robotic technologies and smart farming systems remains a significant 

drawback, particularly for smallholder farmers (Yépez-Ponce et al., 2023). Farmers are particularly 

concerned about the return on investment (ROI) when implementing new technologies, as the scarcity of 

relevant on-farm examples and intangible benefits, such as simplifying farming tasks or increasing 

enjoyment, complicates ROI calculations (Yépez-Ponce et al., 2023). This uncertainty can reduce lenders' 

willingness to finance large technology investments due to the perceived high risk for early adopters, leading 

to inhibited or delayed financing (Eastwood et al., 2023).  

Participants also mentioned that cooperation in sharing technologies can reduce costs, and aggregated 

data can provide better decision support, leading to efficiencies and risk management (Jakku et al., 2019; 

Regan, 2019). However, in case of cooperation, the literature indicates that farmers fear that competitors 

might use their data to outbid them in markets for land and other resources, that agribusinesses could target 

marketing efforts more effectively, and that governments might impose stricter regulations (Rozenstein et 

al., 2024).  Even if issues of data ownership, privacy, and standardisation are resolved, economic and social 

constraints such as the lack of demonstrated value, mistrust of data aggregation organisations, and the cost 

of adopting new technologies will persist (Rozenstein et al., 2024).  While anonymisation has facilitated data 

sharing in other sectors, anonymising farm field data is challenging due to the unique field signatures 

provided by soil type, yield maps, and other spatial information. Thus, anonymisation by a trusted 

organisation is essential, but financial or other incentives are necessary to motivate data collection 

(Rozenstein et al., 2024). 

Participants raised concerns about the economic viability of products from startups, highlighting the 

challenges new entrants face in establishing financially sustainable operations. Literature shows that while 

there are inspiring examples of startup companies providing digital technologies to smallholder farmers in 

developing countries, such as the "Uber for Tractors" initiative, there is widespread concern that digital 

agriculture may enhance the market power of large agribusiness enterprises (Birner et al., 2021). Non-

governmental organisations have expressed concerns that access to extensive data from numerous farmers 

could reinforce existing trends of concentration in the input industries, enabling manufacturers to optimise 

machinery costs and gain competitive advantages (Birner et al., 2021). Additionally, these manufacturers 

might exploit this information for pricing strategies, increasing their profit margins at the expense of 

farmers.Additionally, participants highlighted the importance of utilising market analytics to help farmers 

make informed decisions and gain monetary benefits. It was stated that the current business models do not 

generate sufficient income to justify the high costs of digital technologies, making them particularly 

prohibitive for smallholder farmers. Innovative business models, such as technology cooperatives or 

subscription-based services, could mitigate these issues by spreading costs and risks among multiple users.  

Participants discussed the potential economic value of data. The economic value of information 

technologies hinges on the decisions altered by access to new information, which can be challenging to 

quantify as it requires comparing decisions made with and without the new information. The availability of 

economic incentives and financial support mechanisms was seen as essential to promoting the adoption of 

digital technologies. Financial support for research and development (R&D) and the availability of grants for 

tool implementation and training opportunities were also highlighted as crucial incentives that could drive 

adoption. These incentives should be designed to be more accessible and targeted towards the unique needs 
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of all scales of farmers. 

3.3. Social Factors 

The social environment plays a crucial role in the adoption of digital technologies in agriculture, 

encompassing cultural attitudes, social norms, and equity issues. Participants in the workshop highlighted 

that cultural attitudes and social norms significantly impact the acceptance and integration of digital 

technologies. Educating local farmers and communities about the benefits of sustainable farming was seen 

as essential to enhancing this acceptance. However, there is a prevailing uncertainty and resistance among 

farmers regarding the trustworthiness of digital advice compared to traditional 'in the field' decisions. 

Literature supports this, noting that farmers often value traditional practices and peer recommendations over 

external directives, showing greater trust in data generated on their own farms (Eastwood et al., 2023; 

Jiménez et al., 2019). 

A major barrier identified is the low level of trust in data security, with many farmers fearing that digital 

technologies might compromise their privacy. This is corroborated by studies indicating widespread 

discomfort among farmers with data sharing and concerns over the lack of transparency and control over 

their data (Wiseman et al., 2019; Falcão et al., 2023). Additionally, the unequal distribution of digital 

infrastructure and resources in rural areas exacerbates the digital divide. The World Bank's 2021 report 

highlights the critical need for rural broadband expansion to support digital agriculture. This divide is further 

deepened by generational differences, with younger farmers being more open to new technologies than older 

generations, and by gender inequities, which worsen existing disparities in agriculture (Kaur & Dara, 2023; 

Birner et al., 2021). 

There are also concerns about the potential impact of digital agriculture on job roles and the overall 

number of jobs in the agricultural sector. Automation could shift farm work from hands-on activities to more 

management-focused tasks, potentially altering the sector's job landscape (van der Burg et al., 2019; 

Eastwood et al., 2023; Regan, 2019). Moreover, the increasing market power of large agribusinesses through 

digital agriculture could exacerbate the divide between different types of farms and regions. Nonetheless, 

public initiatives and the involvement of new actors could help mitigate these threats and promote equitable 

access to digital technologies (Birner et al., 2021). 

For smallholder farmers, trust issues with agri-tech providers and a lack of clearly defined roles for data 

intermediaries pose significant barriers. However, fostering an open-minded mentality and self-awareness 

among farmers regarding new digital solutions can drive adoption.  

Addressing these social barriers requires innovative approaches that consider ethical dimensions and 

ensure technology development and governance systems are inclusive and reflective of all stakeholders' 

needs, particularly small-scale farmers in developing regions (Eastwood et al., 2023). By fostering trust, 

transparency, and equitable access, the digital transformation in agriculture can be directed towards more 

inclusive and socially just outcomes. 

3.4. Technological Factors 

Participants identified technological innovations as offering unique advantages for improving agricultural 

productivity and efficiency. The potential for enhanced efficiency and improved quality of agricultural 

production through digital technology has been widely recognised in the literature, leading to increased 

awareness among farmers about the benefits of integrating computer and IT networks into their production 

processes (Yao & Sun, 2023). 

Robust modelling based on weather and soil data, mentioned by the participants, can improve farm 

sustainability by optimising input usage and managing risks. Providing precise data to farmers through 

advanced data analytics and modelling techniques enhances decision-making, ensuring more sustainable 

agricultural practices (Fielke et al., 2019; Jakku et al., 2019). For instance, integrating weather station data 

was highlighted as a significant enhancement of agricultural productivity by providing farmers with precise 

information for critical decision-making. Participants also noted that IoT sensors are a vital innovation, 

allowing for the monitoring of various agricultural parameters such as soil moisture, crop health, and 

environmental conditions. Blockchain technology emerged as a valuable tool for ensuring transparency in 

agricultural processes, from farm to table, according to the participants. Automated technologies that require 

minimal maintenance, labour, or technical knowledge were discussed as ways to streamline agricultural 
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operations, making them more efficient and less dependent on human intervention. However, significant 

disparities exist among agricultural producers in terms of their technological development, financial 

capabilities, and resource quality, creating substantial constraints on the widespread adoption of digital 

technologies in the sector (Kurnosova et al., 2021). Farmers may also struggle to access up-to-date and 

reliable technology performance reviews, further hindering the adoption of new technologies (Ingram et al., 

2022). 

Participants pointed out a lack of interoperability between agriculture and other industries. They stressed 

the importance of developing interoperable systems that enable communication and data exchange between 

different agricultural technologies and platforms to create a cohesive agricultural ecosystem. Inadequate data 

infrastructure, particularly in regions with fragmented smallholder farms, where public policy and access to 

digital infrastructure are insufficient, is a key barrier (Kaur & Dara, 2023). Participants also identified a low 

level of trust in data security and interoperability obstacles between on-farm machinery and data transfer 

between providers as major issues. Insufficient standards on data governance highlight the need for robust 

ethical frameworks for data exchange, ensuring data integrity and security. This is supported by literature, 

which notes that technical issues related to data quality, transfer, privacy, and ownership pose significant 

challenges at multiple scales, impacting the seamless integration and utilisation of digital technologies 

(Ingram et al., 2022; Eastwood et al., 2023). Developing new models of data ownership and governance that 

are transparent and inspire trust is vital. This includes the use of interoperable standards, publicly funded 

development of analytic tools, and responsible innovation approaches that incorporate ethical considerations 

(Eastwood et al., 2023). 

Concerns about how collected data are stored and who has access to them were paramount among the 

participants. They noted that agricultural data might reveal sensitive personal information, such as farmers' 

financial situations, leading to privacy risks. To address these concerns, participants suggested the need for 

mediators between technological solutions and end-users, ensuring that privacy and security issues are 

adequately managed. Technical limitations and compatibility issues can hinder the seamless integration of 

digital tools across different farming systems. Literature suggests that this digital divide is exacerbated by 

differences in digital knowledge and expertise between agri-tech providers and farmers. Ag-tech providers, 

possessing advanced skills in collecting, aggregating, and analysing farm data, can dominate the 

establishment of processes and protocols, leading to power imbalances (Kaur & Dara, 2023). The 

performance and design of digital technologies must be robust enough to withstand on-farm conditions and 

align with farming practices (Eastwood et al., 2023). Cybersecurity vulnerabilities and data privacy concerns 

were also mentioned as significant risks to the integrity and reliability of digital agriculture systems. 

Participants, especially smallholder farmers, highlighted the significant risks from cyber-attacks, which can 

compromise farms’ data and operations. Compliance with technical standards was identified as another 

barrier, as many small farmers find it difficult to understand and follow these standards. Participants stressed 

that technologies need to be both economically viable and easy to use, ensuring that smallholder farmers can 

see a tangible economic payback.  

Developing a trust framework that is easy to understand and implement is essential to foster confidence 

among smallholder farmers in adopting digital technologies. Finally, poor internet connectivity in rural areas 

was noted by participants as a challenge that further exacerbates these issues. Literature supports this 

argument, noting that the lack of reliable rural internet access remains a critical challenge, as most data-

driven agricultural technologies depend on robust internet connectivity, which is often sporadic or non-

existent in many rural areas (Rozenstein et al., 2024). 

3.5. Legal Factors 

During the workshop, participants discussed various legal factors, highlighting the importance of 

regulatory frameworks, intellectual property rights, and data governance in enabling digital transformation 

in agriculture. They emphasised that ensuring regulatory compliance is not just about adherence but also 

about fostering an environment that encourages ongoing innovation in the agricultural sector. Adherence to 

local, national, and EU regulations, particularly in data handling and agricultural practices, is essential for 

protecting the innovation and adoption of digital technologies in agriculture. Compliance with these 

regulations ensures that digital practices are legally sound and can be safely integrated into existing 

agricultural systems. Literature further emphasises this, noting that the legal dimension of digital 

transformation in agriculture encompasses several challenges, primarily revolving around the protection and 
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management of agricultural data. A significant hurdle is the absence of comprehensive regulatory 

frameworks for safeguarding farm data, often leading to terms of use being established through complex and 

potentially biased data license agreements (Kaur & Dara, 2023; Wiseman et al., 2019). 

Participants highlighted those differences in data privacy regulations between Europe and other 

continents further complicate compliance, leading to challenges in managing data across borders. Literature 

supports this by pointing out that legislation often lacks clarity, particularly in distinguishing between data 

production and intellectual property rights related to information systems derived from that data (Ellixson & 

Griffin, 2017). Participants stressed the importance of clarifying data ownership—whether it belongs to the 

farmers or the agri-tech companies—to mitigate legal risks and ensure compliance. The ongoing nature of 

data streams complicates the establishment of ownership and usage rights, making it challenging to contract 

and manage these resources effectively. Data ownership disputes further complicate the landscape, with 

various sectors and stakeholders claiming ownership while having differing needs and interests (Rozenstein 

et al., 2024). The intertwining of private and commercial data, especially in family-run farms, adds another 

layer of complexity, as personal financial records and business data often overlap, raising privacy concerns 

(Brown et al., 2023). This ambiguity can hinder the buying, selling, sharing, and management of agri-data.  

Workshop participants noted that complex regulatory requirements and a lack of clear guidance act as 

significant barriers, making it difficult for farmers to navigate the legal landscape. Simplifying these 

regulations and providing clear, accessible information can help farmers embrace digital technologies more 

readily. There is a pressing need for standardised, ready-to-use data sharing contract templates that farmers 

can utilise to protect their rights and facilitate smooth transactions. These templates can reduce the 

complexity of legal agreements and provide clear guidelines for data usage and sharing. Such frameworks, 

participants noted, facilitate international collaboration and data exchange, enhancing the global applicability 

of digital agricultural technologies. Literature supports this argument, highlighting the development and 

enforcement of legal frameworks that govern the collection, sharing, and usage of farm data as crucial to 

encouraging the adoption of smart farming technologies among farmers (Wiseman et al., 2019). Another 

issue discussed in the workshop is the context-dependent value of data. Data that might seem insignificant to 

one actor could be invaluable to another, creating obstacles in persuading stakeholders to share their data 

without clear compensation mechanisms (Kenney et al., 2020). The value of agri-data is complex and yet not 

clearly defined or measurable in literature. Additionally, the spatial component of agricultural data, essential 

for adding value through geolocation, can inadvertently disclose sensitive information about individual 

farms, posing additional privacy risks. 

Participants also mentioned that establishing specific data standards and protocols could ensure 

compliance with regulations and facilitate data sharing and product traceability within the food chain, which 

is vital for maintaining the integrity and trustworthiness of digital agricultural practices. Positive incentives 

for data sharing, coupled with advanced legislation, could enable the utilisation of accumulated agricultural 

data for the public good (Rozenstein et al., 2024). Therefore, a trust-reinforcing regulatory framework is 

imperative for effective farm data gathering, sharing, and analysis. 

3.6. Environmental Factors 

Participants discussed both the potential benefits for sustainability and the environmental risks and 

challenges that digital technologies might entail. Precision agriculture, involving the use of digital tools to 

minimise inputs such as water, fertilisers, and pesticides, was cited as a method to significantly reduce the 

overall environmental footprint of farming activities and maintain biodiversity. They also pointed out that 

monitoring and optimising energy consumption can lead to more sustainable farming operations. Efficient 

use of resources like water and fertilisers not only conserves these vital inputs but also supports more 

sustainable farming practices. Additionally, digital tools can help farmers adapt to changing climatic 

conditions by providing timely information and forecasts, enhancing their resilience to climate change. 

Preventing desertification was highlighted as another significant benefit, with digital technologies able to 

monitor soil health and manage land use more effectively.Karunathilake et al. (2023) supports the argument 

by stating that precision agriculture demonstrates the potential of using technology to manage spatial and 

temporal variability in agricultural fields, enhancing performance and environmental quality. Site-specific 

management practices enable more accurate decision-making per unit area and time, which conserves 

agricultural inputs, reduces costs, and mitigates environmental impacts. Digital agriculture is often perceived 

as innovative and modern, with societal recognition of its potential to improve environmental stewardship 
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(Fielke et al., 2022; Eastwood et al., 2023). Enhanced food system traceability methods also facilitate the 

certification of goods based on their environmental performance or the sustainability of their production 

practices. The benefits of digital transformation extend beyond individual farms, creating broader 

environmental advantages that justify public policy support. The reduction in monitoring costs and ensuring 

that environmentally beneficial practices are applied have expanded the range of agri-environmental policy 

options (Weersink et al, 2018). Public policies play a crucial role in maximising these external benefits, 

ensuring that digital agriculture contributes positively to environmental sustainability while addressing the 

concerns and challenges faced by farmers. 

Despite these benefits, participants acknowledged that the widespread use of digital technologies in 

farming can also pose environmental risks and lead to unintended consequences. One primary concern is the 

increase in electronic waste resulting from the higher usage of digital devices. The production and disposal 

of these devices contribute to the carbon footprint, and the energy consumption required for digital 

infrastructure can have an unintended environmental impact. Changes in the farming landscape, such as the 

encouragement of larger, more uniform fields, might result from the implementation of digital technologies. 

Participants also expressed concerns that over-reliance on digital solutions may lead to the loss of unique 

local farming knowledge, which is valuable for maintaining diverse and resilient agricultural practices. There 

were also concerns among farm groups about the potential misuse of data by environmental groups or 

regulatory agencies to penalise farms for non-compliance with regulations, particularly in nutrient 

management. However, data can also help farms demonstrate compliance with sustainability certifications 

more accurately, thereby reducing litigation risks (Coble et al., 2016). Environmental threats and climate-

related challenges can disrupt agricultural production systems and undermine the effectiveness of digital 

interventions. Extreme weather conditions, such as floods, droughts, and storms, can damage digital 

infrastructure and limit the effectiveness of digital tools. Climatic suitability is crucial, as some digital devices 

may not function effectively in extreme conditions, limiting their usefulness. These climate extremes pose a 

direct threat to the reliability and functionality of digital agricultural technologies.  

4. Conclusions 

This study utilised an online workshop with 46 participants from various agri-stakeholder groups to 

conduct a comprehensive PESTLE analysis of the factors influencing the adoption of digital technologies in 

agriculture. The analysis revealed multifaceted challenges and opportunities across political, economic, 

social, technological, legal, and environmental dimensions. The workshop highlighted the necessity for 

cohesive and farmer-centric policies, innovative and accessible business models, and targeted education and 

support to bridge the digital divide. The importance of robust data governance, clear regulatory frameworks, 

and sustainable practices was also emphasised. 

Key takeaways from the workshop include the need for governments to harmonise cross-border data 

sharing frameworks and develop cohesive policies that involve stakeholders at all levels in the decision-

making process. Providing targeted incentives, such as subsidies and tax breaks, can encourage technology 

adoption across various farm sizes. Innovative business models, like cooperative cost-sharing schemes and 

subscription-based services, can make digital technologies more accessible and financially viable. Investing 

in rural broadband infrastructure and offering targeted education and training programmes to build digital 

literacy and trust in data security is essential to bridge the digital divide. Establishing robust data governance 

frameworks and developing privacy-preserving technologies will ensure data privacy and security, fostering 

a trustworthy digital ecosystem. Promoting the use of open data can empower farmers with access to valuable 

climate and market information, enhancing their decision-making capabilities and integration into the 

emerging data economy. 

For smallholder farmers, these measures are particularly critical. Tailored business models, affordable 

technology solutions, and specific financial support mechanisms can help overcome the unique barriers they 

face. Additionally, supporting the environmental sustainability of digital agriculture by ensuring proper 

disposal of electronic waste, minimizing the carbon footprint of digital devices, and preserving local farming 

knowledge alongside digital innovations is crucial. 

In conclusion, addressing these identified challenges holistically will be crucial for fostering a more 

productive, sustainable, and resilient agricultural sector. The insights gained from this workshop provide a 

valuable foundation for policymakers, industry leaders, and stakeholders to drive forward the digital 

transformation of agriculture, ensuring that all farmers, particularly smallholders, can benefit from these 
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advancements. 
 

Acknowledgements 

This research was funded by the EnTrust project (MSCA-DN-101073381) within the Horizon Europe 

Marie Skłodowska-Curie Actions and by the AgriDataValue project (Grant Agreement No. 101086461) from 

the EU Horizon Europe research and innovation programme. 

 

References 

Benegiamo, M., Corrado, A., & Fama, M. (2023). Agricultural digitalisation and just transition: a framework for the 

analysis. Italian Review of Agricultural Economics, 78(2), 5-17.  

Birner, R., Daum, T., & Pray, C. (2021). Who drives the digital revolution in agriculture? A review of supply‐side 

trends, players and challenges. Applied economic perspectives and policy, 43(4), 1260-1285. 

Braun, V., & Clarke, V. (2012). Thematic analysis. American Psychological Association. 

Brown, C., Regan, Á., & Van Der Burg, S. (2023). Farming futures: Perspectives of Irish agricultural stakeholders 

on data sharing and data governance. Agriculture and Human Values, 40(2), 565-580. 

Coble, K., Griffin, T., Ahearn, M., Ferrell, S., McFadden, J., Sonka, S., & Fulton, J. (2016). Advancing US 

agricultural competitiveness with big data and agricultural economic market information, analysis, and research. 

Eastwood, C., Turner, J. A., Romera, A., Selbie, D., Henwood, R., Espig, M., & Wever, M. (2023). A review of 

multi-scale barriers to transitioning from digital agriculture to a digital bioeconomy. CABI Reviews, (2023). 

Ellixson, A., & Griffin, T. (2016). Farm data: Ownership and protections. Available at SSRN 2839811. 

Falcão, R., Matar, R., Rauch, B., Elberzhager, F., & Koch, M. (2023). A Reference Architecture for Enabling 

Interoperability and Data Sovereignty in the Agricultural Data Space. Information, 14(3), 197. 

FAO Report (2021) Small family farmers produce a third of the world’s food. 

https://www.fao.org/newsroom/detail/Small-family-farmers-produce-a-third-of-the-world-s-food/en  

Fielke, S. J., Garrard, R., Jakku, E., Fleming, A., Wiseman, L., & Taylor, B. M. (2019). Conceptualising the DAIS: 

Implications of the ‘Digitalisation of Agricultural Innovation Systems’ on technology and policy at multiple levels. NJAS: 

Wageningen Journal of Life Sciences, 90(1), 1-11. 

Ingram, J., Maye, D., Bailye, C., Barnes, A., Bear, C., Bell, M., ... & Wilson, L. (2022). What are the priority research 

questions for digital agriculture?. Land Use Policy, 114, 105962. 

Jakku, E., Taylor, B., Fleming, A., Mason, C., Fielke, S., Sounness, C., & Thorburn, P. (2019). “If they don’t tell us 

what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS-

Wageningen Journal of Life Sciences, 90, 100285. 

Jiménez, D., Delerce, S., Dorado, H., Cock, J., Muñoz, L. A., Agamez, A., & Jarvis, A. (2019). A scalable scheme 

to implement data-driven agriculture for small-scale farmers. Global Food Security, 23, 256-266. 

Kaur, J., & Dara, R. (2023). Analysis of Farm Data License Agreements: Do Data Agreements Adequately Reflect 

on Farm Data Practices and Farmers’ Data Rights?. Agriculture, 13(11), 2170. 

Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: 

Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. 

Kenney, M., Serhan, H., & Trystram, G. (2020). Digitization and platforms in agriculture: organizations, power 

asymmetry, and collective action solutions. Power Asymmetry, and Collective Action Solutions (June 20, 2020). 

Knierim, A., Kernecker, M., Erdle, K., Kraus, T., Borges, F., & Wurbs, A. (2019). Smart farming technology 

innovations–Insights and reflections from the German Smart-AKIS hub. NJAS-Wageningen Journal of Life Sciences, 90, 

100314. 

Kosior, K. (2020). Economic, ethical and legal aspects of digitalization in the agri-food sector. Zagadnienia 

Ekonomiki Rolnej/Problems of Agricultural Economics. 

Kurnosova, N. S., Kurnosov, S. A., & Ulez’ko, A. V. (2021, June). About models of agriculture digital 

transformation. In IOP Conference Series: Earth and Environmental Science (Vol. 786, No. 1, p. 012011). IOP 

Publishing. 

AgEng 2024 Proceedings

101

https://www.fao.org/newsroom/detail/Small-family-farmers-produce-a-third-of-the-world-s-food/en


Nehrey, M., Klymenko, N., & Kostenko, I. (2023, March). Formal and Non-formal Education of Ukraine: Analysis 

of the Current State and the Role of Digitalization. In International Conference on Computer Science, Engineering and 

Education Applications (pp. 1085-1098). Cham: Springer Nature Switzerland. 

Regan, Á. (2019). ‘Smart farming’in Ireland: A risk perception study with key governance actors. NJAS-Wageningen 

journal of life sciences, 90, 100292. 

Rotz, S., Duncan, E., Small, M., Botschner, J., Dara, R., Mosby, I., ... & Fraser, E. D. (2019). The politics of digital 

agricultural technologies: a preliminary review. Sociologia ruralis, 59(2), 203-229. 

Rozenstein, O., Cohen, Y., Alchanatis, V., Behrendt, K., Bonfil, D. J., Eshel, G., ... & Lowenberg-DeBoer, J. (2024). 

Data-driven agriculture and sustainable farming: friends or foes?. Precision Agriculture, 25(1), 520-531. 

Schukat, S., & Heise, H. (2021). Smart Products in Livestock Farming—An Empirical Study on the Attitudes of 

German Farmers. Animals, 11(4), 1055. 

Van der Burg, S., Bogaardt, M. J., & Wolfert, S. (2019). Ethics of smart farming: Current questions and directions 

for responsible innovation towards the future. NJAS-Wageningen Journal of Life Sciences, 90, 100289. 

Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and challenges for big data in 

agricultural and environmental analysis. Annual Review of Resource Economics, 10, 19-37. 

Wiseman, L., Sanderson, J., Zhang, A., & Jakku, E. (2019). Farmers and their data: An examination of farmers’ 

reluctance to share their data through the lens of the laws impacting smart farming. NJAS-Wageningen Journal of Life 

Sciences, 90, 100301. 

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural systems, 

153, 69-80. 

Yao, W., & Sun, Z. (2023). The impact of the digital economy on high-quality development of agriculture: A China 

case study. Sustainability, 15(7), 5745. 

Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D., & Sanchis, J. (2023). Mobile robotics in smart farming: 

current trends and applications. Frontiers in Artificial Intelligence, 6. 

 

AgEng 2024 Proceedings

102



Advancing dairy farm management: leveraging data, neural networks, and 

interactive web design 

Razieh Abdollahipour a,*, Mostafa Sayeed a, David Janke a, Thomas Amon a, b, Barbara Amon c, d, 

Sebastian Opalinski e, Joanna Frontczak f, Sabrina Hempel a 
a Department of Sensors and Modelling, Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, 

Germany 
b Department of Veterinary Medicine, Institute of Animal Hygiene and Environmental Health, Free University Berlin, 

Berlin, Germany 
c Department of Technology Assessment, Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, 

Germany 
d University of Zielona Gora, Faculty of Civil Engineering, Architecture and Environmental Engineering, Zielona 

Góra, Poland 
e Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 

Wrocław, Poland 
f University of Zielona Góra, Institute of Sociology, Zielona Góra, Poland 

* Corresponding author. Email: rabdollahipour@atb-potsdam.de 

Abstract 

Within the framework of the ET4D project, we introduce a data management system (DMS) designed to 

transform dairy farm management. This system builds on findings from a social diagnosis of attitudes along 

the dairy production chain and a detailed analysis of on-farm communication ecosystems. It utilizes cutting-

edge technology, including deep neural networks, for in-depth data analysis and predictive insights. 

Additionally, it features an interactive and user-friendly web application designed to improve operational 

transparency and sustainability. The transdisciplinary ET4D initiative is spearheaded by the Leibniz Institute 

for Agricultural Engineering and Bioeconomy (ATB) in Germany alongside partners from seven countries 

representing academia and industry. It provides a data space and uses data analysis and machine learning to 

process and interpret farm data. This approach enables the modeling of farm dynamics, yielding predictions 

and insights. Key focus areas include enhancing animal welfare, optimizing productivity, and minimizing 

environmental impact. At the heart of this project is a user-centered dynamic web application, characterized 

by its interactive and engaging design. Users from various segments of the dairy industry, including farmers, 

stakeholders, and consumers, are equipped with tailored tools and dashboards. Users can access relevant, up-

to-date information, facilitating informed decision-making and strategic planning. In conclusion, this 

segment of the ET4D project is setting new standards in dairy farm management. By blending cutting-edge 

artificial intelligence technology with a focus on interactive web design, we aim to usher in a new era of data-

driven decision-making. This project not only enhances farm productivity and sustainability but also reshapes 

the interaction between technology and agriculture, driving the industry toward a more informed, responsible, 

and collaborative future.  

Keywords: Data Management System, Dairy Farming, Machine Learning, Software development, 

Sustainability. 

1. Introduction 

The increasing demand for sustainability and transparency in dairy farming necessitates innovative 

technological solutions. Precision Livestock Farming, a concept driven by data analytics, sensor 

technologies, and machine learning, promises significant improvements in farm management and 

environmental sustainability. However, the complexity of dairy farm management necessitates innovative 

approaches. Within this context, the ET4D project ("Development of a practical data management system 

with embedded sensors for improved environmental management and transparency of dairy farming") aims 

to develop and implement a comprehensive Data Management System (DMS) that leverages sensor data, 

empirical modeling, and machine learning to improve dairy farm management.  

Multi-criteria assessment (MCA) frameworks have been widely used to evaluate and improve farm 

management practices. Oliveira et al. (2021) explored the circular economy in dairy production by employing 

integrated environmental assessments to promote efficient resource use and waste management. Zucali et al. 
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(2016) proposed a comprehensive scoring system to assess dairy farms based on animal welfare, 

environmental impact, and production efficiency, while Herva and Roca (2013) reviewed combined MCA 

approaches for corporate environmental evaluation. Moreover, Hajkowicz and Wheeler (2008) used MCA to 

evaluate dairy effluent management options, illustrating the need to consider both economic and 

environmental factors. Van Calker et al. (2006) developed a multi-attribute sustainability function 

specifically for Dutch dairy farms, balancing economic, environmental, and social criteria. More recently, 

Wilfart et al. (2023) introduced DEXi-Dairy, an ex-post MCA tool to assess dairy production systems across 

Europe. These studies underscore the value of holistic assessment frameworks in improving transparency 

and decision-making in dairy farming. 

Empirical modeling is essential for predictive analysis and decision support in dairy farming. Machine 

learning algorithms, particularly supervised learning models, have shown promise in predicting various 

aspects of farm management. Yeo et al. (2023) applied regression models to estimate internal air temperature 

and CO₂ concentrations in pig houses, while El Alaoui et al. (2023) evaluated machine learning methods for 

predicting greenhouse microclimate parameters. Bovo et al. (2021) used Random Forest models to predict 

milk yield under heat stress, and Arulmozhi et al. (2021) developed machine learning-based models to 

forecast indoor temperature and humidity in swine buildings. In dairy farming, Hempel et al. (2020) 

demonstrated the potential of supervised machine learning for estimating methane emissions in naturally 

ventilated dairy barns. 

Overall, these empirical models and machine learning algorithms provide a strong foundation for data-

driven decision support systems in dairy farming. The ET4D project builds upon these methodologies, 

integrating embedded sensors with a comprehensive Data Management System (DMS) to improve 

environmental management and transparency in dairy farming.  

The ET4D project focuses on achieving the following primary objectives: 

• Improve Dairy Farm Communication Infrastructure: Develop dependable wireless connectivity for 

seamless data transfer within the farm and towards the cloud. 

• Create an Advanced DMS Platform: Integrate embedded sensors with machine learning algorithms to 

provide valuable predictive insights. 

• Enable Evidence-Based Decision Making: Offer dairy farmers tailored reports and data visualizations 

via an intuitive web application to support their operational strategies. 

• Promote Sustainable Practices: Utilize data insights to enhance animal welfare, optimize productivity, 

and minimize environmental impact. 

More information can be found at the ET4D homepage: https://et4d.eu/. 

2. Materials and Methods  

The ET4D project adopts a comprehensive, transdisciplinary approach to develop a Data Management 

System (DMS) designed to improve environmental management and transparency in dairy farming. The 

DMS integrates embedded sensors, multi-criteria assessment, empirical modeling, and web-based decision 

support systems. The project comprises six work packages, of which four are depicted in Figure 2. Work 

packages 5 and 6 focus on 'Dissemination, Exploitation and Communication,' and 'Project Coordination and 

Facilitation,' respectively. Currently, the project is in the first half of its progression. 
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Figure 1. Four of the basic work packages involved in the ET4D data management system. 

2.1. Embedded Sensors and Communication Infrastructure  

Work Package 1 of the ET4D project currently focuses on analyzing and modeling existing 

communication infrastructures in selected regions for our on-farm case studies. Enhancement measures for 

connectivity are still under discussion and have not yet been implemented. In Work Package 2, we have 

selected case study farms, reviewed existing sensors, and started integrating additional project-specific 

sensors. 

This sensor network will monitor environmental parameters, animal welfare indicators, and production 

efficiency metrics. The data collected will eventually be transferred to a cloud-based repository through a 

wireless connectivity. 

2.2. Social Diagnosis and Multi-Criteria Assessment 

A social diagnosis involving surveys and in-depth interviews is designed to understand the information 

requirements of different stakeholders along the dairy production chain. Based on these insights, a multi-

criteria assessment framework is developed, incorporating criteria such as animal welfare, environmental 

compatibility, human health, production costs, disease management, and regulatory compliance.  

Each criterion will be weighted appropriately, leading to a comprehensive scoring system that classifies 

and aggregates data into Key Performance Indicators. These indicators provide insights into animal welfare, 

environmental impact, production efficiency, and overall farm sustainability. 

We have started with a small pilot study on consumer attitudes in May 2024, which will be followed by 

a larger study in autumn 2024 and a study with farmers in winter 2024. The results shall be the basis for 

refining the design of the demo web app. 

 

2.3. Data Aggregation, Management, and Empirical Modeling  

Data collected from embedded sensors and the social diagnosis will be aggregated into the DMS. Some 

empirical models are developed using machine learning algorithms such as LSTM, ARIMA, and SARIMA. 

These models provide predictive insights into the future values of certain features. To ensure accuracy and 

reliability, the models are evaluated using metrics such as Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). Predictions may include methane (CH₄), ammonia (NH₃), and carbon dioxide (CO₂) 

emissions, depending on the needed criteria. The functionality of these models will then be compared to 

determine the most effective one. 

2.4. Web App Design 

We are developing a web application using the Django framework, providing an intuitive user interface 

tailored to different user groups (farmers, stakeholders, consumers). The application features a dynamic 

dashboard where users can log in and access data, based on their specific needs. 

The data in the DMS will be updated automatically and frequently. Users can visualize time series data 

collected from farms and view predictive insights from machine learning models. They can interact with the 

dashboard to explore how changes in one parameter affect other controllable parameters, providing valuable 

decision support for strategic planning and operational optimization. Figure 2 illustrates a demo of the 

dashboard. 
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Figure 2. A part of the Environmental Data Visualization Dashboard 

 

This interactive dashboard provides tailored insights, enhancing transparency and evidence-based 

decision-making in dairy farm management. 

3. Conclusions 

The ET4D project aims to develop a comprehensive data management system to improve environmental 

management and transparency in dairy farming. By integrating data from embedded sensors with multi-

criteria assessment and machine learning models, the project seeks to provide valuable insights into farm 

productivity, greenhouse gas emissions, and animal welfare. The web application will offer tailored 

dashboards and predictive tools, enabling farmers, stakeholders, and regulators to visualize data and 

understand some parameters affect other factors. This approach supports informed decision-making and 

strategic planning, working towards enhancing transparency and sustainability in dairy farming.  

Sensor implementation began in Poland in April 2024, focusing on measuring humidity, temperature, 

dust, and gas concentration. Initial data collection from the sensor network on one farm in Poland is 

successfully completed and preliminary analysis is started. The basic structure of the web app design is in 

progress. The next steps include installing sensors in other partner farms, investigating different predictive 

models to find a suitable model for our data, and continued integration of sensor data for environmental 

management and farm productivity. We anticipate that the final outcome of this project will be a useful and 

effective DMS that enhances currently available farming tools and that makes livestock farming conditions 

more transparent for regulating bodies and the broader public. 
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Abstract 

Precision Agriculture with silage corn (Zea mays L.) can reduce annual agricultural operating costs by 

optimizing resources such as seeds, fertilizers, and pesticides. Self-Propelled (SP) Forage Harvesters 

equipped with yield monitor systems record yield data files that can be used to obtain yield maps. In this 

study, we have worked with 201 silage corn yield files recorded by an agricultural contractor company in 

northwest Spain during four harvest seasons (2019-2022). Yield data files were obtained in 68 fields and 

cleaned with SMS Advanced software (Spatial Management System - Ag Leader Technology) to remove 

errors. 

The study's main objective was to analyse the spatial and temporal variability of the corn silage dry yield 

data gathered by the SP Forage Harvesters. Dry matter yield, fresh matter yield, crop moisture, FAO maturity 

group, precipitation, thermal integral, field area, average field slope, average field topographic wetness index 

(TWI), and corn seeding rate were used as variables.  To estimate the precipitation data, data from 

Meteogalicia (Galician regional meteorological agency) and AEMET (Spain state meteorological agency) 

were used. An estimation of the precipitation was carried out using regression kriging with secondary 

variables (latitude, longitude, and elevation) using a script in R computing software. 

A Principal Component Analysis (PCA) of all the variables studied has been carried out. When the individual 

data were analysed, two populations were observed, one corresponding to the year 2019 and another 

population to the years 2020, 2021 and 2022. This feature probably was caused because the year 2019 

recorded the lowest rainfall in the summer. When analysing only the data from the years 2020, 2021 and 

2022, the first component that is associated with the yield parameters is also closely related to topographic 

factors such as TWI, slope and elevation of the plot 

Keywords: Precision Agriculture, Yield Maps, Variability, Corn Silage, Principal Components. 

1. Introduction 

Corn silage is a major crop in northwest Spain, where the Galicia region is ranked first in dairy production 

in the whole country. In 2022 71,257 ha were planted in this region, which represents 82% of the total crop 

area in Spain (MAPA, 2023). The self-propelled forage harvesters used for corn silage harvesting have 

sensors that measure forage production and moisture content, so georeferencing this data with the positions 

calculated by a GNSS receiver located above the cabin, allows yield maps to be obtained (Bueno et al., 2023). 

Yield maps allow to visualize yield variability and to manage it with precision agriculture tools. But 

variability in crop yield occurs spatially and temporally, and only with several years’ worth a geospatially 

explicit yield data can these be fully understood (Adhikari et al., 2023). 

Properties of the field such as topographic parameters (elevation, slope) have an important role on the 

temperature and humidity regimes, which are related to yield (Heil et al., 2018). Also, properties of the crop 

as seeding rate and maturity group or climate variables as rainfall or degree-days, affect spatial and temporal 

variability. Even there are other factors (e.g. fertility level, plant management, and insect, disease, and weed 

pressures, etc.) that can affect the production of maize, there is no doubt that precipitation is one of the most 

important factors controlling maize yield both for grain and silage (Maitah et al., 2021). Early maturing 

hybrids within location yield less than later types (Guyader et al., 2018) because longer-season hybrids tend 

to produce higher silage yield. Different weather conditions in different seasons can recommend changing 

the hybrid maturity group for adapting the crop to a sooner or later planting date. 

The main objective of this work was to develop a model to predict the spatial and temporal variability of 

the corn silage dry yield using field, crop and climate variables. 
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2. Materials and Methods  

2.1. Yield datasets and yield data cleaning 

Yield monitor data were collected from 68 fields located in northwest Spain (Galicia and Asturias regions) 

with planting and harvesting data during the seasons of 2019, 2020, 2021 and 2022. In total, 201 yield files 

have been managed. AgFiniti cloud-based platform (Ag Leader Technology) was used as a gateway to 

download these files from the John Deere Operations Center (JDOC) to the SMS software (Ag Leader 

Technology). Raw data files were cleaned with the SMS software where two filters were applied. We have 

first eliminated data points of corn silage with a moisture content of less than 46% following the protocol of 

Kharel et al. (2018). Then the data with yields whose values deviate by +/- 1 standard deviations (STD) from 

the mean have been deleted, thus disappearing anomalous values with very high or very low yields. 

2.2. Field, crop and climate variables 

For each field and year, the average wet and dry yield data and moisture content of corn silage were 

calculated automatically by taking the clean yield files for each field and year. In turn, the climatological data 

of daily precipitation and average daily temperature were interpolated in a 200 m cell from the Meteogalicia 

and AEMET data, using a script in R, through regression kriging-RK (using the X, Y coordinates and 

elevation as secondary variables for estimation). If it was not possible to apply regression kriging due to 

problems in fitting a semivariogram model, the ordinary kriging (OK) method was used to estimate the mean 

temperature and daily precipitation data in the centre of each field for each field and year. 

In geostatistical predictions, the use of secondary variables can help improve estimates, which is known 

as a multivariable model. The simplest way to consider two or more variables is the Additive Model, which 

assumes that the variables act linearly and independently (Rossiter, 2017). In the case of this work, the use 

of the elevation of the terrain can be used to improve the quality of the prediction. In the estimation by KR, 

the additive method is carried out using the commands of the GSIF package of R, while for the KO it was 

carried out using the commands of the gstat package. To increase the speed of the calculation process for 

regression kriging, parallel programming was used, dividing the tasks to be performed between the different 

cores of the processor, reducing the process time by approximately half. 

With the daily average temperature data, 8ºC was used as a base temperature to calculate degree days. 

The mean data of elevation, slope, aspect and topographic wetness index (Beven and Kirby, 1979) were also 

calculated for each plot. These topographic parameters were calculated from the IGN MDTs of 2 m 

resolution. 

Soil moisture affects key environmental processes and controls the growth, distribution and development 

of plant communities (Fan et al., 2019; Kemppinen et al., 2019; le Roux et al., 2013). To indirectly estimate 

the different soil moisture areas of the field, soil moisture indicators derived from digital elevation models 

(DEM) are used. Without a doubt, the most popular is the Topographic Wetness Index (Beven and Kirkby, 

1979). The Topographic Wetness Index (TWI) integrates water supply from the uphill catchment area and 

downhill water drainage for each cell in a DEM. TWI is calculated as a natural logarithm of the quotient 

between the upstream drainage area divided by the width of the cell, and the slope (Beven and Kirkby, 1979). 

SAGA-GIS has been used to calculate TWI. The spatial pattern of TWI depicts areas that show local water 

accumulation and therefore high soil water saturation. 

2.3. Principal component analysis 

An analysis of main components was carried out. Principals can be assumed as a comprehensive method 

of Factor Analysis. The goal of principal component analysis (PCA) is to construct new variables, known as 

principal components, from a set of existing original variables. New variables are created by linearly 

combining the current variables. The PCA reduces an extensive dataset of variables into a few elements 

known as the principal components, which can then be analyzed to show the underlying data structure. One 

of the characteristics of the primary components is that they are not correlated or orthogonal to each other. 

When a dataset has significant variance, the first major component absorbs and represents as much variance 

as possible. The second component absorbs the remaining variation as possible, and so on. The maximum 

number of principal components or major components is equal to the total number of variables in a model 
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unless otherwise is specified. Principal component analysis is recommended to reduce the dimensionality of 

multivariate data and to work with highly correlated data. The work of Reyes et al (2019) used PCA to 

delineate two types of cluster analysis were applied to delineate management zones. This analysis was 

performed using the R package factoextra (Kassambara and Mundt, 2020) and FactoMineR (Le et al., 2008). 

Hierarchical cluster analysis (HCA) was applied to studied parameters to group sites with similar 

characteristics. Cluster analysis identifies relatively homogeneous groups of objects based on their 

similarities/dissimilarities. 

3. Results and Discussion 

3.1. PCA analysis 

After performing PCA, the first three components were retained; These components explain 63% of the 

total variance. The factor loadings for the variables and the three retained components are shown in Table 1 

and Figure 1a. Figure 2a presents the factor loadings of the first three components. The factor loadings most 

associated with the first component, which explains 27% of the total variance, were dry and wet matter yield, 

elevation, TWI, and slope. The dry and wet matter yield, precipitation and seeding rate explained 20% of the 

total variance. In the third component, which represents 17% of the total variance, the greatest contributions 

came from the FAO maturity group and degree days. In Figure 1a, it is observed that in component 1 there 

is a positive correlation between the yield variables and TWI and an inverse correlation with elevation and 

slope, results that are logical. 

Table 1. Factor loadings of each variable for the first three principal components. In parentheses are the 

percentages of explained variance for each component of the data for the years 2019, 2020, 2021 and 2022. 

 
Dim.1 (26.5%) Dim.2 (19.9%) Dim.3 (16.8%) 

Dry yield tonne ha-1 0.49 0.72 -0.39 

Moisture % 0.46 0.11 0.16 

Wet yield tonne ha-1 0.60 0.70 -0.31 

FAO Maturity group 0.22 0.16 0.84 

Area planted ha 0.04 0.11 0.27 

Seed rate_seeds ha-1 -0.10 -0.51 -0.05 

Elevation m -0.80 0.37 -0.10 

TWI 0.83 -0.22 -0.20 

Slope % -0.79 0.36 -0.10 

Degrees-day 0.19 0.17 0.83 

Precipitation mm -0.24 0.73 0.24 

 

It can be seen in Figure 3 that there is a clearly differentiated population in 2019, with different values of 

component 2, associated with production. The data of accumulated precipitation and average air temperature 

from May to September are showed in Figure 4, where 2019 was the year with the lowest precipitation in 

summer. Another issue related with the different behaviour of 2019 data could be the fact that it was the first 

year that the contractor company obtained yield maps with the SP Forage Harvesters. The lack of experience 

of operators in the use of the yield monitor could have affected the quality of data. Due to this reason, the 

analysis of principal components was done again without considering the data of the year 2019. 

After performing this second PCA analysis, the first three components explain 65% of the total variance. 

The factor loadings for the variables and the three principal components are shown in Table 2 and Figure 1b. 

Figure 2b presents the factor loadings of the components. The factor loadings most associated with the first 

component, which explains 29% of the total variance, this component is closely linked to the yield 

parameters, and is also highly correlated with TWI. The FAO maturity group, degree days and precipitation 

explained 19% of the total variance. In the third component, which represents 17% of the total variance, the 

greatest contributions came from the yield parameters and the seeding rate. In Figure 1a, it is observed that 

in component 1 there is a positive correlation between the yield variables and TWI and an inverse correlation 

with elevation and slope, results that are logical, in the analysis excluding the data from 2019 it is possible 

to exclude the effect of precipitation on the main components is linked to production. 
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Table 2. Factor loadings of each variable for the first three principal components. In parentheses are the 

percentages of explained variance for each component of the data for the years 2020, 2021 and 2022.  
Dim.1 Dim.2 Dim.3 

Dry yield tonne ha-1 0.66 0.05 0.57 

Moisture % 0.55 0.19 0.38 

Wet yield tonne ha-1 0.76 0.10 0.59 

FAO Maturity group 0.45 0.72 -0.27 

Area planted ha 0.07 0.29 0.17 

Seed rate_seeds ha-1 -0.08 -0.34 0.55 

Elevation m -0.72 0.31 0.41 

TWI 0.75 -0.43 -0.17 

Slope % -0.71 0.24 0.45 

Degrees-day 0.32 0.70 -0.39 

Precipitation mm -0.14 0.73 0.19 

 

 
Figure 1. a) Grouping of the variables in two principal components for years 2019, 2020, 2021 and 2022. 

b) Grouping of the variables in two principal components for years 2020, 2021 and 2022. 

 

                                                                            
Figure 2. a) Square cosine or squared coordinates of variables for each dimension for years 2019 to 2022. 

b) Square cosine or squared coordinates of variables for each dimension for years 2020 to 2022. 

a) b) 

a) b) 
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Figure 3. a) PCA biplot for two principal components for years 2019, 2020, 2021 and 2022. 

b) PCA biplot for two principal components for years 2020, 2021 and 2022. 

 

a) 

b) 
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Figure 4. Accumulated precipitation and average air temperature from May to September 

4. Conclusions 

The principal component analysis made it possible to distinguish the different behaviour of the variables 

studied in 2019, probably due to the lower rainfall in the summer of that year. When performing the principal 

component analysis with the rest of the years, it was found that the first main component that is related to the 

yield parameters is closely related to the topographic parameters TWI, slope and elevation. Therefore, TWI 

is an important parameter related to the water content of the land, and the analysis of principal components 

allowed us to discriminate the factors most related to the yield parameters. 
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Abstract 

The analysis of clusters with the K-means method and the Pam method, using the Silhouette width 

criterion, gives us the optimal number of 2 clusters. The K-means method is considered ideal, since it allows 

us to discriminate the two populations according to the first principal component that is linked to the yield 

parameters. This classification model was tested with 35 fields for which yield data for the years 2020, 2021 

and 2022 were available. The model classified 32 fields in the same cluster for the 3 years, indicating stability 

in production. 

The Random Forest (RF) model was used for estimating dry matter yield. This model explained a 50% 

percentage variance and a correlation coefficient of 0.7 when we used data from year 2019 to 2022. The most 

important variables in the model were year, geographic longitude, and topographic wetness index (TWI). 

The RF model also was performed without considering the data from the year 2019, and the model in this 

case has a less explained variance of the order of 20%. The TWI index of the field had a great importance in 

the model. 

Keywords: Precision Agriculture, Yield Maps, Cluster Analysis, Corn Silage. 

1. Introduction 

Precision Agriculture (PA) is a farming management concept based on observing, measuring and 

responding to inter and intra-field variability in crops. In northwest Spain, agricultural contractor companies 

that work with self-propelled (SP) forage harvesters equipped with yield mapping systems, usually harvest 

lots of small fields in every season. For example, the contractor company that has obtained the yield files 

used in this work harvests around 700 fields each season, of which 50% have an area of less than 1 ha. In this 

scenario, working with between-field variability may be more advisable for optimizing the management of 

each field (seeding rate, corn variety, fertilizer rate…). Between-field variability implies the variability 

among fields, where each field can be considered as a unit. 

In this work we test a classification model using cluster analysis in order to have a tool for a better 

management of great number of small fields in corn silage production. 

2. Materials and Methods  

2.1. Yield datasets and yield data cleaning 

Yield monitor data were collected from 68 fields located in northwest Spain (Galicia and Asturias regions) 

with planting and harvesting data during the seasons of 2019, 2020, 2021 and 2022. In total, 201 yield files 

have been managed. AgFiniti cloud-based platform (Ag Leader Technology) was used as a gateway to 

download these files from the John Deere Operations Center (JDOC) to the SMS software (Ag Leader 

Technology). Raw data files were cleaned with the SMS software where two filters were applied. We have 

first eliminated data points of corn silage with a moisture content of less than 46% following the protocol of 

Kharel et al. (2018). Then the data with yields whose values deviate by +/- 1 standard deviations (STD) from 

the mean have been deleted, thus disappearing anomalous values with very high or very low yields. 

2.2. Field, crop and climate variables 

For each field and year, the average wet and dry yield data and moisture content of corn silage were 

calculated automatically by taking the clean yield files for each field and year. In turn, the climatological data 

of daily precipitation and average daily temperature were interpolated in a 200 m cell from the Meteogalicia 
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and AEMET data, using a script in R, through regression kriging-RK (using the X, Y coordinates and 

elevation as secondary variables for estimation). If it was not possible to apply regression kriging due to 

problems in fitting a semivariogram model, the ordinary kriging (OK) method was used to estimate the mean 

temperature and daily precipitation data in the centre of each field for each field and year. 

With the average daily temperature data, to calculate degree days, 8ºC was used as a base temperature. 

The mean data of elevation, slope, aspect and topographic wetness index (Beven and Kirby, 1979) were also 

calculated for each plot. These topographic parameters were calculated from the IGN MDTs of 2 m 

resolution. 

2.3. Cluster analysis 

The principal components analysis (PCA) is detailed in Bueno et al. (2024). Cluster analysis was carried 

out on the principal component data of the crop parameters, climatic parameters of the years 2020, 2021 and 

2022, and topographic parameters. After dimension reduction, clustering of the features obtained by PCA 

analysis will be done. One of the most popular methods of clustering es the K- means algorithm. The method 

requires to choose optimal metric and number of clusters. 

Firstly, proper number of clusters was established by Silhouette statistics graph, The Silhouette width 

ranges between -1 and 1 and well clustered observations have a value close to 1 (Rousseeuw, 1987). Two 

clustering methods were used: K- Means, that it's one of the most popular methods of clustering algorithms 

(MacQueen, 1967; Hartigan and Wong, 1979) and PAM - Partitioning Around Medoids (Kaufman and 

Rousseeuw, 1990). The second method of clustering is PAM algorithm, which is a more robust version of 

K- means and less sensitive to outliers. This cluster analysis was tested with the 35 of the 68 fields for which 

yield data for the years 2020, 2021 and 2022 were available. 

2.4. Random Forest 

For the estimation of dry and wet production parameters of forage corn, random forest classification and 

regression models were constructed using the 'Random Forest' package (Liaw and Wiener, 2002) in the free 

statistical software R (R Core Team, 2021). Random forest regression models were constructed using 500 

trees derived from 500 bootstrap data sets. The random forest algorithm can rank the relative importance of 

each predictor variable. The importance of the variable is based on the regression prediction error of the out-

of-bag portion of the data, also called OOB (Breiman, 2001; Liaw and Wiener, 2002; Rossiter, 2019; 

Everingham et al., 2016). For classification models, the prediction error is calculated as the classification 

error rate, while for regression, the root mean square error is calculated. In the 'Random Forest' package, the 

importance of the predictor variable is reported as a mean percentage decrease in the classification rate for 

the classification model or a mean increase in the mean squared error for the regression model if that variable 

was removed of the analysis (Everingham et al., 2016). Additionally, for each tree we can use observations 

that were not used to build it for true validation (OOB validation), in this case the method averages the OOB 

cross-validations calculated during forest construction (Rossiter, 2019). 

To apply the random forest model to predict the dry matter yield of corn silage, we used continuous and 

qualitative parameters as predictors: year, latitude, longitude, FAO maturity group, precipitation, degree 

days, slope and mean elevation of the field, aspect, TWI and corn seeding rate. 

3. Results and Discussion 

Figure 1 show the biplot graph of the two components of the years 2020 to 2022. In Figure 2 can be seen 

that component 1 is very linked to yield and topographic parameters. A Silhouette analysis was performed to 

determine the optimal number of clusters for both K-means method (Figure 3a) as for the PAM method 

(Figure 3b). Average Silhouette is equal to 0.6 for both the K-means method as for PAM method which 

means that clustering quality is between reasonable and strong. The reason of that could also be low intra-

cluster variability in relation to total variability. 

AgEng 2024 Proceedings

116



 

Figure 1. Biplot graph of the first two components main for each plot and year. 

 

 

Figure 2. Parameter participation in each main component. 
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Figure 3. (a) Silhouette mean width of the number of clusters for the k-means method. 

(b) Silhouette half width of the number of clusters for the PAM method 

 

 

Figure 4 show the plot with the clusters wearing the K-means method and in Figure 5 the grouping is 

found in clusters wearing the PAM method, choose the K-means method, since it groups the data in function 

mainly from the value of component 1, which is the most linked to the factors of crop yield. 

 

 

Figure 4. Clusters for K-means method. 
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Figure 5. Clusters for PAM method. 

 

To analyse the stability of the plots in regarding the production parameters, it has been used the cluster 

analysis using K-means method, using only the data from the 35 fields where were available yield data for 

the years 2020, 2021 and 2022. 32 fields of the 35 were classified in the same cluster for all years, of which 

13 plots were in cluster 1 (linked to higher crop yield) and 19 plots in cluster 2. 

Random forest regression model combines multiple decision trees to create a single model. Each tree in 

the forest builds from a different subset of the data and makes its own independent prediction. The final 

prediction for input is based on the average or weighted average of all the individual trees' predictions. It was 

decided to apply this method to data wearing as a dependent variable of production the dry matter yield. 

First, the 4 years of data (2019-2022) were used, using all parameters, in a single simulation obtained the 

data shown in Table 1. 

 

Table 1. Random Forest model parameters for dry matter yield for the years 2019, 2020, 2021 and 2022. 

 % IncMSE IncNodePurity 

Year 54.66 990.25 

Latitude 11.37 172.17 

Longitude 21.99 295.36 

FAO maturity group 9.43 41.95 

Planted area 3.16 104.88 

Seeding rate 11.29 129.50 

Elevation 15.82 128.81 

TWI 22.24 237.02 

Slope 7.30 82.95 

Aspect 3.72 111.69 

Degree-days 8.21 152.90 

Precipitation 8.90 79.72 

N_days 6.90 79.51 

 

% IncMSE es the most robust and informative measure. % IncMSE is simply the average increase in 

squared residuals of the test set when variables are randomly permuted (little importance = little change in 

model when variable is removed or added) and IncNodePurity is the increase in homogeneity in the data 

partitions. Data in Table 1 shown that the most important parameter is the year, followed by the TWI and the 

geographical longitude. In this case is obtained a variance explained by the model of 55%, a mean square 

error of 2.6 and a correlation coefficient between observed and estimated by model 0.74, you can see In 

Figure 6 the relationship existing among the results observed and estimated by the model. 
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Figure 6. RF Model Results vs. Data measured for the years 2019, 2020, 2021 and 2022. 

 

As has been discussed previously in the paper by Bueno et al. (2024), the data corresponding to the year 

2019 have a different behaviour, which is why the analysis with random forest method was repeated 

excluding the data from the year 2019, obtaining the results shown in Table 2 and in Figure 7. 

Table 2. Random Forest model parameters for dry matter yield for the years 2020, 2021 and 2022. 

 % IncMSE IncNodePurity 

Year 3.55 33.75 

Latitude 10.03 146.98 

Longitude 14.58 158.35 

FAO maturity group 9.10 40.73 

Planted area 5.47 96.45 

Seeding rate 8.96 125.42 

Elevation 15.07 112.11 

TWI 19.82 215.70 

Slope 6.17 82.36 

Aspect 5.96 53.99 

Degree-days 3.39 94.99 

Precipitation 8.23 77.81 

N_days 3.76 77.04 

 

Data of Table 2 shown that the most important parameter is the TWI, elevation, and geographical 

longitude, and the year has no longer importance as an explanatory variable. In this case is obtained a variance 

explained by the model of 28%, a mean square error of 2.6 and a correlation coefficient between observed 

and estimated by the model of 0.54. Figure 7 show the relationship among the results observed and estimated 

by the model. 
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Figure 7. RF Model Results vs. Data measured for the years 2020, 2021 and 2022. 

 

 

As a conclusion, it can be said that excluding the variable “year” that has a great influence in the model 

when considering the data for the year 2019, it is of great importance in the model the TWI index of the field, 

since this parameter provides information on the degree of soil wetness in a particular area based on the 

topography of the land. TWI is calculated using the slope and flow accumulation of the terrain and can be 

used to identify areas of the landscape with high or low soil moisture content. 

The low variance value explained in the RF model with data from the years 2020, 2021 and 2022, can be 

seen as a negative result. Explained variance is a measure of how well out-of-bag predictions explain the 

target variance of the training set. Unexplained variance would be due to true random behaviour or lack of 

fit. 

4. Conclusions 

Cluster analysis using the K-means method allows us to discriminate two populations based on the first 

component, which is related to crop yield parameters. It also should be highlighted that the cluster analysis 

indicates the stability in terms of the classification of clusters of the three years studied, since 32 of the 35 

plots are classified in the same cluster for all three years. 

The random forest model allows us to consider the influence of the year on the dry matter yield, with an 

explained variance of more than 50%. If the data are analyzed without considering the data for the year 2019, 

the explained variance is greatly reduced and the most important factor in the dry matter yield model is TWI. 

This topographical index is a parameter closely related to the moisture content of the soil and easily estimated 

from a digital elevation model of the terrain. 
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Abstract 

A chisel plow is considered an effective implement in different agricultural soils, especially in heavy 

soils requiring improvement of their physical properties. The effectiveness of this plow may differ 

depending on various parameters as soil type, tillage depth, operating work conditions, power required, 

and chisel tines shape. So, the main goal of this study is to ameliorate the performance of chisel plow in 

heavy soils using different mechanical and operating parameters. Three main factors were studied four 

sweep chisel widths (pointed-15cm, pointed-20cm, severed-15cm, and served-20 cm), three tillage 

depths (15, 25, and 35cm), and two tillage speeds (1.87, and 2.74km.hr-1). A complete randomized 

block design in split-split plot was used to analyze data. The findings illustrated that the chisel pointed 

shape-20 cm using a tillage depth of 15 cm and tillage speed of 2.74 kmh-1 significantly influenced in 

comparison to the other chisel shapes in recording the lowest draft force of 12.91 kN.m-2, the lowest 

slippage percentage of 31.37%, and the lowest fuel consumption rate (4.78 lha-1). Although the severed 

chisel with a width of 20 cm was superior in increasing the percentage of pulverized soil and reducing 

the percentage of resistance to the soil penetration, it recorded the highest percentage of slippage, 

44.4%.    The interaction between the tillage speed (2.74 km.h-1) and the chisel-pointed shape at 20 cm 

width recorded the highest value in the efficiency of energy (38.35 Mj.m-3) using the tillage depth 

15cm. it is recommended by using a chisel-pointed shape, a maximum tillage speed, and the lowest 

depth as result to ameliorate the performance of the chisel plow under heavy soil conditions.    

Keywords: Tillage depth, forward speed, tines shape, soil characteristics, energy  

1. Introduction 

Obtaining acceptable soil properties largely depends on the quality of the soil tillage which enhances 

the effectiveness of all subsequent agricultural processes (Upadhyaya et. al., 2001; Muhsin, 2017).  

Tillage equipment using agricultural machinery is considered one of the main solutions and key to the 

improvement of soil quality and minimizing power consumption. So, soil tillage is a major concept in 

the process of crop production, which consumes nearly 30 to 35% of the total energy requirements of 

crop production (Osman et al., 2014). Chisel tillage refers to soil conservation technologies, and chisel 

tools provide low power. In addition, preservation and rational use of soil moisture that is relevant in 

arid climates. Using a chisel plow in heavy soils compared to conventional tillage systems was 

investigated in various studies to improve their performance (Aday and Muhsin, 2019). The best 

benefit of a chisel plow in the field is to leave more crop residue on the ground surface and fuel 

consumption is significantly lower. As well as, the weeds and large amounts of straw may also cause 

considerable practical difficulties and require adequately dimensioned chisel plows. Sowing equipment 

that can cope with surface residue is required (El-Iraqi et al., 2009). The chisel was able to penetrate 

down to the bottom of a compacted layer at 12–20 cm depth except for the duck-foot type. The plow 

works in comparison with the other primary tillage equipment except the subsoiler plows provides 

more depth of soil (0.38 m when 0.15 m real tillage and 0.2 m in the control variant) at comparable 

energy consumption. 
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During operating conditions, different factors affect the performance chisel plow as the tine shape on 

the plow frame, the forward speed and the working depth (Kirisci , 1993; Grisso et al., 1996; Chandon 

et al., 2002). The draft force of the plow is affected by the tillage depth, especially in the heavy soil. 

The increases in the draft force were significant with an increase in depth due to the change in moisture 

content, soil cohesion, and the volume of soil accumulated in front of the plow (Moinfar and 

Shahgholi, 2018). Various researchers carried out many modifications to the chisel plow, aiming to 

increase the efficiency and performance of the plow, which often contributes to an increase in the draft 

force necessary by adding the shallow tines on the sides of the plow (Jebur et al., 2016). As a result, the 

increase in depth will cause the tractor to carry an additional load, then increasing the engine load and 

increasing the rate of fuel consumption. This matter requires additional fuel and a lot of energy spent 

from the engine to overcome the load located behind the tractor (Ghali, 2019). So, the main objective 

of this work is to evaluate and optimize the performance of the developed chisel plow in heavy clay 

soils using different tine shapes, depths tillage, and tillage speeds. 

2. Materials and methods 

2.1. Chisel plow structure 

The chisel plow at a total working width (7 tines) is placed in two rows. The distance between 

two adjacent tines in one row is 50 cm, and between one row and another is 80 cm. The plow 

tines are placed interchangeably so that the distance between the plow tines is approximately 

25 cm, the penetration angle of the plow tines was 30º. Two different types of chisel plow 

were used in the current study as shown in Figure 1. 

 

Figure 1: Main features and construction of chisel plows used (a) traditional plow (b) 

developed plow 

2.2. Measurement of soil penetration resistance: 

A digital Cone Pene Trometer device was used to measure soil penetration resistance.  To use this 

device, by applying pressure of the device handle perpendicular the soil surface to push the cone into 

the soil surface. Measuring the pressure necessary to push the cone to the required depth using the 

pressure gauge supplied with it. 

 2.3. Measuring soil moisture content and bulk density: 

The soil moisture content and soil density were determined by taking depth samples from the trail field. 

Then, the samples were dried in the oven using Core at a temperature of (105 °C) for 10 hours. The 

oven percentage was calculated for moisture based on dry weight. The bulk density of soil was 

calculated from Equation (1) according to the method described in (Black et al., 1993), and the results 

are shown in a Table (1) 
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𝑝𝑏 =
𝑀𝑠

𝑉𝑡

… … … … … . . (1) 

Where Pb is the bulk density (Mg.m-3); Ms is the mass of dry particles (g); Vt is the total of soil volume 

(m-3). 

Table 1: Some of physical soil characteristics in the experimental field 

Depth tillage 

(m) 

Penetration resistance 

(kN.m-2) 

Bulk density (Mg.m-3) Moisture content (%) 

0-15 2200 1.20 16 

15-25 3100 1.22 16.65 

25-35 5600 1.25 22.44 

 

2.4. Soil texture 

Soil separations were estimated using the absorbent method mentioned in (Black et al., 1993), to 

determine the texture, and the results are shown in Table (2). 

Table 2: Soil texture in the experimental field 

Clay (gm.kg-1) sand (gm.kg-1) loam (gm.kg-1) Soil texture 

527.74 261.05 211.21 Clay 

2.5. General procedure 

After determining the main factors to perform the experiments, two types of agricultural tractors 

(Massey-Ferguson) were used in this study. The first one (driver tractor) was used for pulling. The 

second type (driven tractor) was utilized for mounting the chisel plow.  The main characteristics of the 

tractors are shown in Table 3. 

Table 3: Main description of tractors used in this study 

Characteristic 

Type of Tractor 

Massey-Ferguson 440 extra 

(driver tractor) 

Massey-Ferguson 285s 

(driven tractor) 

Total weight (kg) 33.64 31.5 

Nb of cylinders 4 4 

Total cylinder size (cm3) 4400 1552 

Total volumetric engine size (liter) 4.4 4.06 

Maximum engine speed (rpm) 2200 2200 

Total energy (kw) 60.1 56.60 

Wheel drive type 2WD 2WD 

Type of engine Diesel Diesel 

Manufacture year 2011s 1995s 

 

2.6. Draft force measurement 

To calculate the draft force for the chisel plow using a load cell device, the load cell was used on the 

drawbar of the driver tractor (Figure 2). The driven tractor and the chisel plow were pulled using a 

flexible wire, while the tractor was being driven, the gearbox remained in the neutral position when 

working, traction force readings were separately recorded via a laptop for each depth, tine shape, and 

forward speed through the Load cell connector connected to the load cell. 
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Figure 2: Draft force measurement using the load cell 

2.7. Specific resistance 

The specific resistance of chisel plow was calculated using the equation 2 by dividing the plow draft 

force on the total pulverized area of soil. 

𝑆𝑅 =
𝐹

𝐴
… … … … … . . (2) 

Where SR, is the specific resistance (kN.m-2); F is the draft force (kN); A is the pulverized area (m2). 

2.8. The requirement of the draft energy  

The draft energy was calculated according to the following equation (3) 

𝐷𝑝 = 𝐹 ∗ 𝑉𝑎…………………..(3) 

Where Dp, is the draft energy (kw); F, is the draft force (kN); Va, is the actual forward speed (m.sec-1).  

2.9. Determination of mean weighted diameter  

Soil samples were randomly collected from the field in three replications for each treatment, and then 

manually sifted using different diameters sizes of sieves (02, 10., 30, 50, 90, 120, 250, 350, 450) mm. 

Each soil sample on the sieve was weighed and then after calculating the total weight for the sample by 

summing the weights of the soil collected on each sieve. The percentage of each weight on the sieve 

was calculated according to the method mentioned in (Hille, 1980) by the following equation (4) 

𝑀𝑊𝐷 =
𝑚.𝑤𝑖

∑ 𝑤
…………………… (4) 

Where, MWD, is the mean weight diameter; wi, is the weight of soil collected on the sieve (kg); m, is 

the mean sieve diameter (mm); w, is the total sample weight (kg) 

The power lost by slipping the wheels of a tractor was calculated from the equation that proposed by 

Macmillan (2002). 

𝑝𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑡 (𝑘𝑤) =
𝑑𝑟𝑎𝑓𝑡 𝑓𝑜𝑟𝑐𝑒 (𝑡ℎ𝑒𝑟𝑜𝑡𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑝𝑒𝑒𝑑)

3.6
… … … (5) 

The actual field productivity and soil volume were calculated according to the method of Roth et al. 

(1977) and Bukhari et al., (1988) 
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3. Results and discussion 

3.1. Effect of chisel tine shape, tillage depth, and forward speed on draft force 

The results in Figure 3 showed a highly significant effect of the tine plow shape used on the draft force 

compared to the traditional chisel plow. The traditional chisel plow recorded the highest draft force of 

19,421 kN. Meanwhile, the developed plow type (severed-15cm) had the lowest draft force ( 11,712 

kN), this  may be attributed to the large area of soil contact with the traditional type in comparison  to 

the developed plow shape in their small area of contact with the soil.  In addition to, the developed 

plow contains two types of shape. These results are agreed with Al Nuaimi and Al Rijabo (2020). The 

results in Figure (3) also showed an increase in the draft force with increasing of the plowing depth. 

The depth of (35 cm) recorded the highest draft force of 15.768 kN.m-2. This increase may be attributed 

to increased soil volume with an increasing of plowing depth. Results also illustrated that the draft 

force increases due to forward speed increases.  

 

Figure 3: Draft force values according to plow tines shape and depth 

The forward speed of 2.74 kmh-1, recorded the highest draft force of 13.891 kN.m-2. These results 

agreed with the results of Alrijabo and Al-TAI (2013) and Bashir et al., (2015). For the interaction 

between the depth and the shape of the plow (Figure 3), the pointed shape at (20 cm) width with a 

depth of 15 cm recorded the lowest draft force (8.019 kNm-2). This decrease may be due to the space 

required for the plow to be pulverized at a depth of 15 cm. This contributed to the plow for penetrating 

the soil and reducing the draft force. This result agreed with Al Nuaimi and Al Rijabo (2020).  

3.2. Effect of chisel tine shape and plowing depth on the fuel consumption rate 

Results as shown in Figure (4) showed a highly significant difference between the types of tines used 

on the developed chisel plow. The use of the pointed shape (20 cm width) contributed to a clear 

decrease in the rate of fuel consumption (5.726 lha-1). Meanwhile, the traditional chisel plow recorded 

the highest fuel consumption rate (9.386 lha-1). This reduction may be due to the design of the tine 

shape and their arrangement in two rows in the developed plow. As well as,  the second row contains 

two types of tines that contribute to facilitating the penetrating into the soil. These results are agreed 

with the findings of Al Nuaimi and Al Rijabo (2020). The findings also illustrated a significant 

difference between the plowing depth and forward speed on the fuel consumption rate (Figure 4). The 

depth of 35 cm and the speed of 2.74 kmh-1 recorded the highest fuel consumption rate of 8.081 lha-1. 

This increase may be attributed to increased load engine, especially when the plowing depth increases 

as a result of a larger volume of soil. This result is agreed with the findings of Jebur et al., (2016); and 
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Ghali (2019). The interaction between the plowing depth and the shape of plow on the fuel 

consumption rate, the pointed type at 20cm performed the lowest fuel consumption rate (4.782 lha -1). 

This reduction may be attributed to the developed plow better penetrating the soil than the traditional 

plow, which contributes to reducing the draft force and then reduces the fuel consumption rate. 

 

Figure 4: Fuel consumption rate according to plow tines shape and the plowing depth 

3.3. Effect of chisel tine shape and plowing depth on the power loss  

Figure (5) showed highly significant differences in the power lost for chisel tine shape compared to the 

traditional chisel plow. The lowest rate of power lost due to slippage wheel of the tractor (3.15 kW) 

(T3). Whereas, the traditional chisel plow (T5) recorded the highest percentage of power lost due to 

slippage (7.61 kW). The findings also revealed a significant effect of plowing depth on the power lost 

due to slippage. The plowing depth (30 cm) recorded the highest rate of power lost due to slippage 

wheel (5.87 kW). While, the plowing depth (15 cm) recorded the lowest of power lost (3.39 kW). This 

increase can be attributed to the increase in the volume of soil, which increased the density of the soil 

with plowing depth. This result is agreed with the findings of Aday et al., (2010); Al Nuaimi and Al 

Rijabo (2020). 
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Figure 5: Statement of power loss rate according to tine shape and working depth 

4. Conclusions 

It can be concluded that the developed chisel plow is significantly superior to the traditional plow by 

recording less draft force, fuel consumption rate, slip percentage, and power reduction loss. The 

interaction between the plowing depth of 15 cm and the pointed shape type (T3) revealed the least draft 

force, the best fuel consumption rate, and the lowest slip percentage. Also, adding an upper tine to the 

back row of the developed chisel plow contributed to the movement of some soil at the top, reducing 

penetration resistance and increasing soil fragmentation. This development in a chisel plow improved 

both mechanical and operating parameters especially in the clay soils. 
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Abstract 

Technology and the digital transition appear as a fundamental solution to improve the efficiency of companies 

on the agrifood sector and respond to the current problems. One aspect in which technology can improve the 

efficiency of farmers is in crop monitoring, since it is a valuable tool to optimize agricultural production, 

study the evolution of the crop, identify problematic areas within the field, etc. This project aims to improve 

the acquisition and analysis of data on vegetative parameters of a crop using a low-cost RGB camera (camera 

acquisition cost was 35€) and image processing software with which valuable vegetation indexes of interest 

could be extracted. A low-cost RGB mounted on a dedicated 2m high frame was used to monitor a soybean 

crop (Glycine maz (L.) Merril) seeded on April 2023. This camera was operated and images were acquired 

by mobile App. Image analysis was carried out using ImageJ free software obtaining Excess Green Index 

(ExGI) and the ground canopy cover (GCC). ExGI and GCC were compared with main crop parameters 

obtained by destructive methodologies (plant biomass, plant water content and leaf area index) and manual 

non-destructive methodologies (phenological stage and height of plant). The ExGI showed a strong 

correlation with the water content of plants and with plant biomass (R2 =0.9) indicating this technic as a 

prominent tool to reduce efforts on field for crop monitoring. In addition, ground canopy coverage expressed 

as a ratio of the ground and ground covered by leaves, was related with leaf area index (R2 = 0.84) with 

maximum values of LAI of 0.84. The low-cost RGB camera arises as a fast and cheap solution for intense 
crop monitoring both for research purpose and for farmer. Data obtained is correlated with main indicators 
of health of the crop (water content, biomass and leaf area index) that are used for crop management 
inputs such us crop protection, fertilization and irrigation needs.  
 
Key words (max. 5): Low-cost image, ExGI, Soybean, digitalization, crop monitoring 

1. Introduction 

 

Crop monitoring is a valuable tool for optimizing agricultural production, studying crop development, 

identifying problem areas within the field, improving managing decision for resource efficiency, 

distinguishing diseases, deficiencies, or other threats to the harvest, and assisting in complex issues related 

to food security. In this sense, several studies had demonstrated the effectiveness of the RGB cameras (Lu et 

al., 2019, Wang et al., 2023, Barbosa et al., 2019) as a tool to obtain data from crops.  

Among many RGB image data indicators, two well-studied indices can be used to analyse and evaluate 

vegetation: the Excess Green Index (ExGI) and the percentage of vegetation cover. Studies that have used 

these two indices, even when using simple image acquisition devices, show good results in both open-field 

and controlled greenhouse cultivation, although, in the case of ExGI, a greater effectiveness was observed 

on greenhouse crops. As other authors have noticed, using these indices instead of traditional methodologies 

to study crop development can result in a considerable reduction in time spent on these tasks (Xiong et al., 

2019, Meyer & Neto, 2008). 

The main objective presented in this research work was present a simple and easy way to use 

RGB camera based to characterize and monitor a soybean crop during a complete season measuring 

vegetative parameters. For this purpose, a low-cost system to obtain images was developed. 

Vegetative parameters were assessed as height of the crop, % of ground surface covered by crop, 

biomass expressed as water content, foliar area and EXGI parameter.  
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2. Materials and Methods  

2.1. Field plot  

Field experiments were carried out at Barcelona School of Agricultural and Biosystems Engineering from 

the Universitat Politècnica de Catalunya, (Castelldefels, Spain) at coordinates 41º16’36’’N 1º59’11’’E. A 

dedicated parcel of 21m width and 45m long was used to seed a soybean crop to be monitored during a 

complete season (from 06/01/2023 until 09/29/2023). For this purpose, soybean variety Avril inoculated 

with Rhizobium (Bradyrhizobium japonicum) was seed at a plant density of 356000 plants ha-1 corresponding 

to a plant pattern of 3.75 x 75 cm (distance between seeds by distance between lines). Seeds were planted at 

a depth of 3 to 5 cm. The crop was irrigated to supply the plants water need. To improve the efficiency of the 

irrigation and reduce the water loses, dripping system underneath the crop at 10cm depth was deployed. With 

the underneath system, two objectives were accomplished: first, avoid mechanical breaking of the system 

due the monitoring process; second: avoid the effect of the dripping line on the obtention of RGB images.  

The parcel was divided into 6 different zones with the same size to obtain biomass, crop height and leaf 

area surface, into 9 zones with same size for RGB image gathering.  

2.2. Low-cost camera photo acquisition system 

The RGB camera used during the campaign was a LILYGO model TTGO T-Camera ESP32 WROVER 

with a resolution of 1200 x1600 pixels. It operates powered by an external 5V battery and it is operated 

through a Wi-Fi connection hosted by the camera device by a mobile phone. The camera was mounted on a 

dedicated 2 m high plastic frame, where the camera was holded zenithally at a distance of 1m from the vertical 

frame. The total cost of the image acquisition device was 36.2 € (in Spain on 1rst semester of 2023) divided 

into: 17.79 €/camera, 5.45 €/plastic frame, 12 € external battery, 0.96€/cable USB connection.  

The operation of the camera was carried out through mobile telephone, where the configuration was 

adjusted according the height and focus of the camera. All images were recorded on the mobile telephone 

data storage system. 

2.3. Data acquisition 

Samples and measurements of the soybean plants were taken starting on 06/12/2023, 2 weeks after 

sowing, until 09/29/2023, when the crop was considered to have reached full maturity. During the last 3 

weeks, the field showed no changes, so the crop was considered finished. Biomass, leaf area surface and 

RGB image were monitored once a week, and the height of the crop that was measured twice a week. Height 

of the plants were measured from the ground level to the most extended leaf. 20 measurements were carried 

out in each zone of the parcel, resulting into 120 measurement per parcel and date of measuring.   

Biomass data of the plant was obtained through a destructive methodology. This process involves cutting 

the plants at ground level, quickly placing them into a sealed paper bags (without handles) to avoid dry matter 

losses, loading them onto heat-resistant plastic trays, and stored into the laboratory. The freshly cut plants 

are weighed to obtain the fresh weight, then placed back in the paper bags. The bags are then placed in a 

convection oven for at least 48 hours at 60°C. After the 48 hours of drying, the dehydrated samples are 

removed and weighed, providing the dry weight of the plant. A total of 2 plant per zone were selected 

resulting into 12 samples per date of sampling. From the biomass, data Water Content (PWC) expressed as 

fresh height content was obtained.  

Leaf area surface of the crop was expressed as Leaf Area Index (LAI) that is an indicator of the 

photosynthetic capacity of the plants and helps us understand the relationship between biomass accumulation 

and crop yield. The same plants used to obtain the plant biomass were used to determine leaf area. All leaves 

from each individual plant selected were scanned (without considering stems of the plant). A post processed 

analysis of the leaves scanned was carried out using ImageJ free software. LAI was expressed as a ratio of 

total leaf area surface of a plant and proportion of the ground associated to this plant.  

As mentioned previously, from RGB images two parameters were obtained: Excess Green Index (ExGI) 

and vegetation cover (%VC) (Figure 1). ExGI is an indicator obtained by contrasting the green channel (or 

the green band) of the visible spectrum with the blue and red channels to discern vegetation from soil. This 

index provides information about the intensity of green in the plants, primarily the leaves. Since the shades 
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of green in the leaves indicate photosynthetic efficiency and activity, this index gives us a general idea of the 

state of the plants. The ExGI is expressed as two times green channel minus red and blue channel (Woebbecke 

et. al., 1995). To obtain ExGI, RGB images were processed using a modified version of an original macro 

developed by Mathew et. al. (2021) obtained from "Image.sc" developed for ImageJ.  

The vegetation cover (%VC) is an indicator that express the coverture of the ground produced by the 

leaves. Obtaining the percentage of vegetation cover allows us to monitor and study crop growth, the area 

occupied by the plants, and the time it takes for them to completely cover the soil. RGB images were 

processed to calculate the percentage of pixels in an RGB image that correspond to the vegetation cover 

relative to the total number of pixels, assuming that the total number of pixels are composed by pixels related 

to crop cover and pixels with no crop cover (Xiong et. al., 2019).  

To obtain these values, the RGB images obtained during soybean season were processed with the program 

ImageJ. The developed program was an adaptation of a code developed by Xiong et. al. (2019). 

 

 
Figure 1. Example of the RGB image taken with the low-cost device measuring ExGI and VC. 

3. Results and Discussion 

Different relations were observed among different measures carried out during the soybean season. The 

most relevant and interesting for crop monitoring are expressed on Table 1. As it is observed, the global 

Coefficient of correlation that estimates the relation between Vegetative cover and LAI I close to 0.85, 

indicating a very good correlation. During dry period of the crop, the leaf area index has been reduced 

dramatically in comparison to VC (Figure 2). In contrast, the correlation at vegetative period of the Plant 

water content and ExGE is very low, indicating that the assessment of the green index is very bad during the 

first 30 days after transplanting (Figure 3). After that, the ExGI is a good estimator of the plant water content.  

 

Table 1. Coefficient of correlation between VC and LAI and PWC and ExGI for the average values 

obtained during the complete season separated by crop period  

 VC vs LAI PWC vs ExGI 

Vegetative period 0.95 0.28 

Reproductive and maturity period 0.9 0.97 

Dry period 0.83 0.98 

Global 0.84 0.9 
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Figure 2. Evolution of the % of Plant Cover and Leaf Area Index during the soybean crop period 

expressed as days afters seeding.  

 

 
Figure 3. Evolution of the % of Plant Water Content and the Excess Green Index during the soybean 

period expressed as days after seeding.  
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4. Conclusions 

The results of this campaign demonstrate that it is possible to develop a system for obtaining useful RGB 

images in crop monitoring without large. Image processing has been possible using free public code for open 

source ImageJ software. 

Both indices (ExGI and VC) complement each other showing significant correlations with various 

vegetative parameters and providing with information on both the crop's health status and the evolution of its 

biomass.  

In the case of ExGI, it shows a strong correlation with plant water content (PWC), with an almost perfect 

Pearson correlation coefficient "R" of 0.97 and R² coefficient of 0.9; providing the idea of the crop's water 

demand at that moment. On the other hand, the analysis of vegetation cover shows a strong correlation with 

leaf area index (LAI), with a Pearson correlation coefficient "R" of 0.9 and an R² coefficient of 0.84, with 

14.33 being the highest LAI value observed during the campaign, belonging to a plant with a leaf area of 

4020.5 cm². The analysis of vegetation cover (VC) also presents a strong correlation with biomass and a 

slightly lower correlation with crop height evolution. 

Although determining crop vegetative parameters through manual destructive and non-destructive 

methods provides empirical and reliable results, obtaining such data is a lengthy and tedious process. The 

incorporation of a system for obtaining useful RGB images in crop monitoring can lead to a reduction in both 

economic costs and time spent monitoring a crop, at least in a small field. 
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Abstract
Fruit	cracking,	a	major	concern	causing	significant	yield	loss,	is	influenced	by	a	complex	interplay	of	

plant	traits,	environmental	conditions,	and	management	practices	such	as	irrigation	and	nutrient	application.	
This 	study	 investigates 	 the 	effectiveness 	of 	 remote 	sensing	 techniques 	and	analyzes 	 the 	 integration	of	
proximal 	 and 	 remote 	 sensing 	 data 	 to 	 observe 	 and 	 understand 	 fruit 	 cracking 	 in 	 pomegranate 	 (Punica	
granatum)	crops.	Conducted	in	Argos,	central-east	Peloponnese	in	Greece,	the	study	aims	to	evaluate	the	
correlation	between	vegetation	indices	(NDVI	and	EVI)	and	the	incidence	of	fruit	cracking	under	different	
irrigation	treatments.	The	experiments	involved	intensive	data	collection	using	proximal	methods	alongside	
unmanned	aerial	vehicles	(UAVs).	Ground-based	data	collection	was	undertaken	using	a	thermal	camera,	
complemented	by	LiDAR	sensor,	and	manually	measuring	on-tree	fruit	weight,	stem	water	potential,	and	the	
total	number	of	cracked	fruit	per	plot	for	each	treatment.	The	UAVs	were	equipped	with	multispectral	and	
thermal	cameras,	which	generated	valuable	data	on	various	vegetation	indices	and	captured	unique	spectral	
signatures	emitted	by	the	crops.	The	methodology	enabled	the	creation	of	detailed	3D	point	clouds	under	
varying	orchard	conditions,	providing	essential	geometric	information	about	the	crop	canopy	and	segmented	
fruit.	The	results	revealed	that	NDVI	values	for	red	fruit	(0.654	±	0.109)	were	significantly	higher	than	for	
harvest-dark	red	development	stage	(0.382	±	0.03)	with	a	p-value	of	0.0014,	indicating	significant	variation	in	
vegetation	density	between	these	two	stages.	Other	parameters,	such	as	EVI,	SWP,	on-tree	fruit	weight,	and	
canopy 	 temperature, 	 remained 	 relatively 	 stable 	 across 	 different 	 developmental 	 stages 	 and 	 irrigation	
treatments.
Keywords:	Punica	granatum,	fruit	cracking,	remote	sensing,	proximal	sensing,	Unmanned	Aerial	Vehicle	

1. Introduction
The	fleshy	fruit	of	pomegranates,	like	other	fruits	such	as	citrus	and	apples,	is	protected	by	a	peel	(skin	or	

rind)	comprising	a	thick,	spongy	inner	tissue	and	a	smooth	outer	layer.	This	structure	must	endure	growth	
stresses	and	protect	against	pests,	pathogens,	and	harsh	environmental	conditions	(Joshi	et	al.,	2021).	Fruit	
cracking,	a	prevalent	disorder	affecting	fruit	marketability	by	reducing	quality	and	yield,	begins	with	surface	
cracks 	 that 	 penetrate 	deep 	 into 	 the 	 fruit, 	 compromising 	 its 	 appearance, 	 promoting 	moisture 	 loss, 	 and	
facilitating	pathogen	invasion	(Knoche	&	Lang,	2017).	Environmental	factors	such	as	climate	and	orchard	
management	practices,	including	irrigation	and	nutrition,	significantly	influence	the	likelihood	of	cracking	
(Khadivi-Khub,	2015).	Research	has	shown	that	extreme	climate	conditions	and	improper	irrigation	during	
key	growth	phases	can	weaken	the	fruit's	skin,	increasing	cracking	susceptibility.	Despite	the	observed	
correlation	between	high	water	content	and	cracking,	optimal	irrigation	strategies	tailored	to	local	conditions	
are	still	under	development.	Efforts	to	enhance	skin	resilience	through	the	application	of	growth	regulators	
and	minerals	like	calcium	have	shown	promise,	though	their	cost	and	applicability	vary	across	different	crops.

In 	 crops, 	 proximal 	 and 	 remote 	 sensing 	 technologies 	may 	 offer 	 crucial 	 insights 	 into 	 various 	 fruit	
parameters,	including	cracking.	Proximal	sensing	tools,	such	as	non-contact	infrared	thermal	measurements	
and	advanced	RGB	sensing	technologies,	help	monitor	temperature	variations	and	structural	characteristics	
of	fruit	and	canopies.	These	tools	facilitate	the	characterization	of	light	and	water	interception,	moisture	
distribution,	and	fruit	ripening.	Remote	sensing	provides	vital	data	for	agricultural	management	by	capturing	
information	on	plant	health	and	environmental	conditions	from	a	distance	and	provide	information	for	
automated	harvesting	process	(Ranjan	et	al.,	2022)	or	irrigation	management.	Techniques	like	fluorescence-,	
RGB-,	laser-scanning,	thermal	imaging,	and	near-infrared	spectroscopy	(NIRS)	assess	water	status.	These	
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remote	technologies,	integrated	with	machine	learning,	are	proving	invaluable	in	enhancing	the	precision	of	
crop	management	and	the	mitigation	of	risks	like	fruit	cracking	(Whatley	et	al.,	2023).

The	aim	of	this	study	is	to	investigate	the	effectiveness	of	integrating	proximal	and	aerial	remote	sensing	
techniques	in	monitoring	and	understanding	the	factors	contributing	to	fruit	cracking	in	pomegranate	crops.	
Specifically,	the	study	seeks	to	evaluate	the	correlation	between	vegetation	indices	(NDVI	and	EVI)	and	the	
incidence	of	fruit	cracking	under	different	irrigation	treatments,	and	to	determine	the	role	of	these	indices	and	
irrigation	practices	in	managing	and	mitigating	fruit	cracking.

2. Materials	and	Methods	

2.1. Field	site		and	irrigation	plan	
The	study	area	is	located	in	Argos,	near	Corinth,	Greece	(Fig.	1),	situated	in	the	central-eastern	part	of	the	

Peloponnese	peninsula.	The	geographic	coordinates	are	37°38'59.8"N	latitude	and	22°47'22.0"E	longitude,	
based	on	imagery	from	Google	Earth	(Google	Earth,	2023).	The	area	encompasses	a	0.35	ha	plot,	which	is	
organized	into	9	rows.	The	terrain	is	generally	flat	and	exhibits	a	regular	topography.	Soil	samples	were	
collected	on	October	11,	2023,	from	depths	of	0-30	cm	and	30-60	cm	in	the	experimental	pomegranate	
orchard.	The	soil	is	predominantly	clayey,	with	34.7	%	sand,	18.6	%	silt,	and	46.7	%	clay.	Key	findings	
indicate	high	pH	and	salinity	levels,	highlighting	the	need	for	organic	matter	maintenance,	strategic	nitrogen	
application,	and	sodium	drainage.	Elevated	Total	CaCO3	levels	also	suggest	micronutrient	challenges	that	
require	attention.	

Figure	1.	Experimental	site	location	on	a	scale	of	1:1,200,000	and	the	study	area	(Google	Earth,	2023).
Based	on	this	analysis,	irrigation	was	carried	out	from	March	to	October,	consisting	of	20	irrigation	

events.	Each	event	lasted	3	hours,	with	an	irrigation	dose	of	40	m³	per	hour.	The	irrigation	experimental	
design	involved	three	distinct	protocols	for	pomegranate	trees:	the	standard	method	with	eight	drippers		per	
tree,	a	high	water	amount	(HWA)	protocol	which	increased	water	supply	by	20	%	above	the	standard	by	
adding	two	additional	drippers,	and	a	low	water	amount	(LWA)	protocol	which	reduced	water	supply	by	
approximately	30	%,	utilizing	only	five	drippers	per	tree	(Fig.	2).	These	variations	aimed	to	assess	the	impact	
of	different	water	availability	levels	on	fruit	cracking	and	overall	crop	performance.

Figure	2.	Experimental	design	for	pomegranate	irrigation	treatments	in	the	pomegranate	orchard.	Plots	
labeled	with	'H'	represent	the	high	water	amount	treatment,	'S'	denotes	the	standard	commercial	water	

amount	application,	and	'L'	indicates	the	low	water	amount	treatment	(Google	Earth,	2023).
The	study	was	conducted	during	the	2023	season	in	a	pomegranate	orchard,	featuring	the	'Wonderful'	

AgEng 2024 Proceedings

137



cultivar	of	Punica	granatum	on	both	scion	and	rootstock,	which	was	established	in	2020.	Therefore,	it	was	in	
its	third	year	of	growth	at	the	time	of	the	study.	The	plants	were	arranged	in	a	layout	of	2.8	m	by	4.1	m,	
resulting	in	a	density	of	180	trees	per	hectare.

2.2. Climate	data
Daily	and	hourly	climatic	information	is	gathered	from	an	on-site	meteorological	station.	This	data	

includes	Daily	Leaf	Temperature	(°C)	and	Precipitation	(mm),	which	are	critical	for	understanding	the	
environmental	conditions	affecting	the	pomegranate	crops.

Figure	3.	Select	and	use	the	built-in	styles	in	this	template.
Daily 	Leaf 	Temperature 	provides 	 insights 	 into 	 the 	 thermal 	 stress 	experienced	by 	 the 	plants, 	while	

precipitation	data	helps	in	assessing	the	water	availability	and	its	impact	on	fruit	cracking	(Fig.	3).

2.3. Data	Collection
2.3.1.	Aerial	remote	sensing	measurements

For	 this 	study, 	 two	types	of 	unmanned	aerial 	vehicles	(UAVs)	were	utilized: 	one	equipped	with	a	
multispectral	camera	and	the	other	with	a	thermal	camera	sensor.	The	DJI	Mavic	3	Thermal,	equipped	with	a	
high-resolution	thermal	imaging	camera	and	a	12	MP	zoom	camera,	was	used	for	crop	health	analysis	and	
irrigation	planning.	It	features	synchronization	of	the	drone,	camera,	and	RTK	with	ground	control	points,	
flying	at	a	50	m	altitude.	Additionally,	the	DJI	Mavic	3	Multispectral	was	employed,	which	combines	a	RGB	
camera		and	a	multispectral	camera	(4	×	5	MP,	G/R/RE/NIR),	providing	centimeter-level	RTK	positioning	
and	microsecond-level	time	synchronization,	also	flying	at	50	m.

	2.3.2.	Isolating	and	analyzing	trees	of	interest	using	NDVI	and	EVI	indices
Crop	vigour	at	2	different	critical	developmental	stages	of	the	pomegranate,	namely,	the	red	fruit	and	

harvest-dark	red,	was	assessed	by	measuring	the	Normalized	Difference	Vegetation	Index	(NDVI)	and	the	
Enhanced 	Vegetation 	 Index 	 (EVI) 	 (Table 	 1). 	These 	 developmental 	 stages 	were 	 selected 	 for 	 cracking	
observation	because	high	temperatures	and	irrigation	practices	during	critical	growth	stages	significantly	
impact	fruit	integrity.	

Table	1.	The	spectral	vegetation	indices	that	were	used	in	this	study.
Spectral	Vegetation	Index Equation Bibliography

Normalized	Difference	Vegetation	Index Rouse	et	al.,	1973
Enhanced	Vegetation	Index Jiang	et	al.,	2008

To	isolate	only	the	trees	of	interest,	a	Shapefile	mask	was	initially	created.	This	mask	was	later	used	to	clip	
the	data	within	its	boundaries	to	calculate	statistical	data	for	each	tree.	Using	the	Raster	Calculator	in	ArcGIS,	
the	spectral	index	NDVI	was	calculated.	NDVI	values	indicate	soil,	water,	or	vegetation,	and	it	was	observed	
that	values	greater	than	0.20	primarily	correspond	to	vegetation.	Therefore,	pixel	values	less	than	0.20	were	
disregarded	as	they	would	affect	the	statistical	results.	To	eliminate	pixels	with	values	less	than	0.20,	the	
Reclassify	command	was	used	to	assign	values	below	0.20	as	0	and	values	above	0.20	as	1.	After	calculating	
the	NDVI	and	EVI	spectral	indices,	these	indices	were	multiplied	by	the	corresponding	Reclassify	channel,	
ensuring	zero	values	for	non-vegetation	pixels.	To	remove	zero	values,	they	were	declared	as	No	Data	Values	
during	export.	The	“Extract	by	Mask”	command	was	then	used	to	limit	the	data	to	the	boundaries	of	the	trees	
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of	interest.	Finally,	from	the	properties	of	the	channels	created	with	the	“Extract	by	Mask”	command	for	each	
tree,	statistical	data	for	each	index	and	for	all	dates,	including	maximum,	minimum,	and	average	values	and	
standard	deviation,	were	obtained.

2.3.3.	Proximal	sensing	measurements
Stem	water 	potential 	 (SWP)	was	monitored	monthly	using	a	pressure	chamber	(Pump-Up	Pressure	

Chamber,	PMS	Instrument	Company,	Albany,	USA),	limited	to	20	bar,	to	assess	the	water	status	of	the	trees.	
The	higher	the	value	is	read	in	the	pressure	cell,	the	higher	the	stress	is	(	more	pressure	is	needed	to	apply	in	
order	to	get	the	water	drop).	SWP	values	need	to	be	converted	into	negative	values	to	reflect	the	value	in	the	
plant.	To	ensure	accurate	measurement	of	the	stem	water	potential	and	not	the	leaf	water	potential,	the	leaves	
were	covered	for	2	hours	with	aluminum	bags	before	measurement.	Also,	on	tree-fruit	weight	was	recorded	to	
determine	the	effects	of	irrigation	treatments	on	yield.	Specifically,	two	fruits	were	randomly	collected	from	
each	 tree, 	and	 the 	average	weight 	was 	calculated	 for 	analysis. 	Additionally, 	meteorological 	data 	were	
collected	from	a	nearby	meteorological	station,	providing	information	on	temperature,	humidity,	wind	speed,	
and	precipitation	to	correlate	with	physiological	data	and	environmental	conditions.

Geometric	and	thermal	information	of	pomegranate	canopies	were	obtained	using	a	terrestrial	orchard	
monitoring	system	(TOMMY)	(Fig.	4).	This	multisensory	platform	includes	a	2D	mobile	LiDAR	sensor	
(LRS-4000,	Sick	AG,	Germany)	and	a	thermal	camera	(A655sc,	FLIR	Systems	Inc.,	USA)	with	a	6.5	mm	
focal	length	lens.	The	sensors,	mounted	on	a	tooth	belt	linear	conveyor,	recorded	canopies	at	10	mm/s	
constant	speed.	Temperature-annotated	4D	point	clouds	were	created	by	calibrating	the	LiDAR	and	thermal	
camera	using	a	method	by	Tsoulias,	Jörissen,	and	Nüchter	(2022).	The	pomegranates	were	then	manually	
segmented	from	the	canopy	using	CloudCompare	(2.10,	GPL	software,	Paris,	France),	and	all	fruit	point	
clouds	were	exported	as	comma-separated	files	(.csv).

Figure	4.	Terrestrial	orchard	multisensor	monitoring	yaw	(TOMMY).

1.1. Fruit	cracking	rate
For	the	assessment	of	fruit	cracking,	the	total	number	of	fruit	and	the	number	of	cracked	fruit	in	each	plot	

were	recorded.	The	fruit	cracking	rate	was	calculated	using	the	formula	(Kaur	et	al.,	2023):

This	method	provided	a	quantitative	measure	of	the	extent	of	fruit	cracking,	allowing	for	a	comparison	
across	different	irrigation	treatments	and	conditions.	The	percentage	of	cracked	fruits	was	determined	by	
dividing	the	number	of	cracked	fruits	by	the	total	number	of	fruits	and	multiplying	by	100.

2.4. Map	construction	and	statistical	analysis

The	maps	for	vegetation	indices	of	the	study	were	produced	using	ArcGIS	10.2	software	(ESRI	Inc.,	
Redlands,	CA,	USA).	Statistical	analyses	were	performed	using	STATGRAPHICS	Centurion	XVI.I	and	
Microsoft	Office	Excel	2013.	Analysis	of	variance	(ANOVA)	at	a	5%	significance	level	and	Pearson’s	
correlation	were	conducted	to	evaluate	the	relationships	between	different	variables	and	to	identify	significant	
differences	among	the	treatments	and	developmental	stages.	These	analyses	help	determine	the	impact	of	
various	irrigation	treatments	on	key	parameters	such	as	NDVI,	EVI,	SWP,	on-tree	fruit	weight,	and	canopy	
temperature,	as	well	as	the	incidence	of	fruit	cracking.	By	understanding	these	relationships,	the	study	aims	to	
develop	more	effective	irrigation	strategies	and	improve	overall	crop	management	practices.
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3. Results	and	Discussion
3.1. Fruit	cracking	(%)
No	fruit	cracking	was	observed	in	any	plots	on	any	dates	before	harvest,	as	expected.	Additionally,	none	

of 	 the 	 commercially-standard 	 irrigated 	plots 	 exhibited 	 cracking 	 at 	 all. 	However, 	 at 	 the 	harvest 	 stage,	
significant	differences	were	noted.	The	highest	irrigation	application	exhibited	8.667	±	21.229	cracked	fruits,	
whereas	the	lowest	irrigation	application	showed	only	0.667	±	1.634	cracked	fruits	(Table	4).	Also,	no	early	
micro-cracks,	which	are	typically	lignified,	were	observed;	only	late	cracks	leading	to	fruit	splitting	were	
present.

Figure	5.	Cracked	pomegranate	fruit	from	HWA	Treatment.
The	proceedings	book	requires	that	all	figures	be	formatted	consistently	and	highly	legible.	Please	read	the	

following	suggestions	to	create	high	quality	printing	of	your	figures.	
• Design	or	resize	your	figures	so	that	the	text	in	the	figure	will	appear	approximately	10	pt	font	size,	

which	is	the	size	of	Body	Text	in	the	paper.	
• Format	the	Layout	of	figures	using	“In	line	with	Text.”	Do	not	have	floating	figures.
• Colour	will	be	shown	in	the	e-version	only,	but	not	in	the	printed	book.	Please	test	your	colour	

figures	by	printing	in	black	and	white	paper	and	make	sure	that	they	are	legible.
• Figures	will	not	be	reduced	in	printing.	Limit	their	maximum	width	to	15	cm.	
• Figures	should	be	high	quality	(1200	dpi	for	line	art,	600	dpi	for	grayscale	and	300	dpi	for	colour,	at	

the	correct	size).

1.1. Vegetation	index	maps
To	analyze	vegetation	health,	NDVI	and	EVI	maps	were	generated	by	isolating	the	nine	trees	of	interest,	

excluding	other	trees	and	soil	from	the	dataset.	This	method	ensured	precise	and	focused	analysis	on	the	
selected	plots.	The	resulting	maps,	presented	in	the	accompanying	figure	(Fig.6),	illustrate	the	vegetation	
indices,	offering	a	detailed	assessment	of	crop	health	and	vigor	for	the	nine	targeted	trees.

	
Figure	6.	Maps	of	NDVI	and	EVI	during	the	harvest-dark	red	development	stage	for	the	plots	of	

interest	are	presented.	The	first	image	(a)	shows	the	NDVI	values,	and	(b)	displays	the	EVI	values.

3.2. Stem	water	potential	(SWP)	and	on-tree	fruit	weight
The 	on-tree 	 fruit 	weight 	 is 	 an 	 important 	 parameter 	 as 	 it 	 directly 	 relates 	 to 	 the 	 overall 	 yield 	 and	

marketability	of	the	pomegranate	crops.	It	helps	in	assessing	the	effects	of	different	irrigation	treatments	and	
developmental	stages	on	fruit	growth	and	quality.	The	average	values	of	SWP	and	on-tree	fruit	weight	are	
presented	in	Table	3	for	the	developmental	stages	and	Table	4	for	the	different	irrigation	treatments.	
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1.1. Canopy	temperature	of	fruit	analyzed	by	TOMMY	system
The	mean	fruit	temperatures	of	segmented	pomegranate	fruits	for	each	scanned	canopy	are	shown	in	

Table	4,	while	Figure	7	presents	histograms	and	density	plots	of	temperature	distributions	for	canopies	with	
cracked	fruits,	illustrating	the	Gaussian	distribution	of	the	recorded	temperatures.	

Figure	7.	Histogram	and	density	plot	of	all	segmented	pomegranate		trees	for	canopy	with	cracked	fruits,	
according	to	gaussian	distribution.

The	errors	in	the	temperature	estimation	may	be	due	to	wind	and	resulting	moving	branches,	disabling	to	
register	precise	canopy	point	clouds.	The	thermal	data	provided	a	sum	of	the	moving	plant	parts	and	various	
backgrounds	appearing	during	the	scan, 	resulting	in	high	standard	deviation	and	bias	according	to	 the	
background	temperatures.	

3.3. Comparative	analysis	of	developmental	stages	and	irrigation	treatments
The	analysis	of	average	values	and	standard	deviations	of	NDVI,	EVI,	SWP,	on-tree	fruit	weight,	on-site	

tree	canopy	temperature	collected	from	the	TOMMY	system,	and	the	percentage	of	fruit	cracking	between	the	
developmental 	 stages 	 red 	 fruit 	 and 	harvest-dark 	 red 	 revealed 	notable 	 findings 	 (table 	2). 	Among	 these	
parameters, 	NDVI 	 displayed 	 statistically 	 significant 	 differences 	with 	 a 	 p-value 	 of 	 0.0014, 	 indicating	
significant	variation	in	vegetation	density	between	these	two	stages.	Specifically,	the	NDVI	values	for	red	
fruit	(0.654	±	0.109)	were	significantly	higher	than	for	harvest-dark	red	(0.382	±	0.03).	This	suggests	NDVI	is	
a	reliable	indicator	of	changes	in	vegetation	health	that	correlate	with	the	incidence	of	fruit	cracking..	

In	contrast,	no	statistically	significant	differences	were	observed	for	EVI,	SWP,	on-tree	fruit	weight,	
on-site	tree	canopy	temperature,	or	the	percentage	of	fruit	cracking	between	the	red	fruit	and	harvest-dark	red	
stages.	For	example,	the	EVI	values	were	0.159	±	0.117	for	red	fruit	and	0.183	±	0.007	for	harvest-dark	red.	
Additionally,	the	percentage	of	fruit	cracking	was	0%	for	red	fruit	and	6.222	±	17.2176%	for	harvest-dark	red.	
These	findings	suggest	that	while	NDVI	significantly	varies	and	can	be	a	key	variable	in	monitoring	and	
managing	fruit	cracking	in	pomegranate	crops,	the	other	parameters	remain	relatively	stable	between	these	
two	critical	developmental	stages.	

Table	2.	Average	values	and	standard	deviation	of	all	parameters		at	red	fruit	and	harvest-dark	red	stages.

Development	stage NDVI EVI
Cracked	
fruits	
(%)

On-tree	
weight	(g) SWP	(bar)

Canopy	
temperature	

(oC)
Red	fruit 0.654a	±

0.109
0.159a	±
0.117

0a 258.667a	±
365.032

-10.833a	±
1.118

28.18a	±
2.856

Harvest-dark	red 0.382b	±
0.03

0.183a	±
0.007

6.222a	±
17.2176

264.889a	±
366.875

-10.556a	±
1.261

26.914a	±
1.273

Note:	Means	sharing	different	letters	differ	significantly	at	P≤0.05.
Table	3	presents	the	average	values	and	standard	deviations	for	NDVI,	EVI,	percentage	of	cracked	fruits,	

on-tree	weight,	SWP,	and	canopy	temperature	for	the	three	irrigation	treatments:	high	water	amount	(HWA),	
standard	(S),	and	low	water	amount	(LWA).	The	only	parameter	showing	a	statistically	significant	difference,	
with	a	p-value	of	0.0001,	is	the	stem	water	potential	(SWP).	Specifically,	the	SWP	for	the	LWA	treatment	
(-9.333	±	0.931	bar)	is	significantly	higher	compared	to	both	the	HWA	(-11.417	±	0.492	bar)	and	S	(-11.333	±	
0.408	bar)	treatments,	as	indicated	by	different	letters	(a,	b)	in	the	table.	This	significant	difference	in	SWP	
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suggests 	 that 	 the 	LWA	treatment 	 induces 	 less 	water 	 stress 	 in 	 the 	 trees 	compared	 to 	 the 	higher 	water	
treatments.	In	contrast,	the	NDVI,	EVI,	percentage	of	cracked	fruits,	on-tree	weight,	and	canopy	temperature	
did	not	show	statistically	significant	differences	among	the	treatments,	indicating	that	these	parameters	
remain	relatively	stable	across	different	irrigation	levels.	This	stability	implies	that	while	SWP	is	sensitive	to	
irrigation	variation,	the	other	measured	factors	are	more	resilient	or	less	directly	affected	by	the	changes	in	
water	amount.

Table	3.	Average	values	and	standard	deviation	of	all	parameters	for	the	3	different	treatments.

Development	stage NDVI EVI
Cracked	
fruits	
(%)

On-tree	
weight	(g) SWP	(bar)

Canopy	
temperature	

(oC)
HWA 0.483a±

0.113
0.123a±
0.073

8.667a±
21.229

539.0a±
535.578

-11.417a±
0.492

27.475a±
2.127

S 0.54a±
0.190

0.205a±
0.0929

0a 149.167a±
34.307

-11.333a±
0.408

27.825a±
1.556

LWA 0.531a±
0.160

0.185a±
0.064

0.667a±
1.634

97.167a±
24.71

-9.333b±
0.931

27.025a±
2.886

Note:	Means	sharing	different	letters	differ	significantly	at	P≤0.05.

3.4. Pearson	product-moment	correlations	between	each	pair	of	variables
Table	4	shows	Pearson	product-moment	correlations	between	each	pair	of	variables, 	measuring	the	

strength	of	their	linear	relationships.	P-values	below	0.05	indicate	statistically	significant	correlations	at	the	
95.0%	confidence	level.

Among	the	parameters	analyzed,	no	pairs	of	variables	exhibited	statistically	significant	correlations,	as	all	
p-values	were	above	0.05.	Despite	this,	some	notable	relationships	were	observed:

• EVI	and	on-tree	weight:	Moderate	negative	correlation	(-0.274,	p	=	0.272).
• EVI	and	NDVI:	Moderate	positive	correlation	(0.264,	p	=	0.289).
• On-tree	weight	and	SWP:	Notable	negative	correlation	(-0.459,	p	=	0.055).
• NDVI	and	canopy	temperature:	Moderate	positive	correlation	(0.351,	p	=	0.263).
• SWP	and	EVI:	Moderate	positive	correlation	(0.307,	p	=	0.215).
• Percentage	of	cracked	fruit	and	NDVI:	Weak	negative	correlation	(-0.185,	p	=	0.463).
These	findings	indicate	that	while	some	parameters	exhibit	moderate	correlations,	none	were	statistically	

significant,	implying	that	the	linear	relationships	between	the	parameters	are	not	robust	enough	to	draw	
definitive	conclusions	from	this	dataset.

EVI On-tree	
weight NDVI Percentage	of	

cracked	fruits SWP	 Canopy	
temperature

EVI -0.274
(0.272)

0.264
(0.289)

0.063
(0.805)

0.307
(0.215)

0.233
(0.466)

On-tree	weight -0.277
(0.272)

-0.179
(0.476)

-0.101
(0.69)

-0.459
(0.055)

-0.268
(0.401)

NDVI 0.264
(0.289)

-0179
(0.476)

-0.184
(0.463)

0.022
(0.932)

0.351
(0.263)

Percentage	of	
cracked	fruits

0.063
(0.805)

-0.101
(0.690)

-0.185
(0.463)

-0.029
(0.908)

-0.219
(0.493)

SWP 0.307
(0.215)

0.021
(0.932)

0.022
(0.932)

-0.0229
(0.901)

-0.189
(0.557)

Canopy	
temperature

0.233
(0.467)

-0.267
(0.401)

0.351
(0.263)

-0.219
(0.493)

-0.189
(0.557)
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4. Conclusions
The	results	of	this	study	indicate	that	NDVI	is	a	reliable	indicator	for	monitoring	changes	in	vegetation	

health	that	correlate	with	fruit	cracking	in	pomegranate	crops.	Specifically,	the	significant	variation	in	NDVI	
between	the	red	fruit	and	harvest-dark	red	stages	underscores	its	potential	as	a	key	variable	in	precision	
agriculture.	The	NDVI	values	were	0.654	±	0.109	for	red	fruit	and	0.382	±	0.03	for	harvest-dark	red,	with	a	
p-value	of	0.0014,	highlighting	the	significant	difference	between	these	stages.	Additionally,	the	percentage	
of	cracked	fruits	was	0%	for	red	fruit	and	6.222	±	17.2176%	for	harvest-dark	red,	indicating	an	increase	in	
fruit	cracking	at	later	stages.

In	contrast,	no	statistically	significant	differences	were	found	for	EVI,	SWP,	on-tree	fruit	weight,	or	
canopy	temperature	between	the	red	fruit	and	harvest-dark	red	stages,	suggesting	these	parameters	are	more	
stable	and	less	influenced	by	developmental	changes.	Furthermore,	the	irrigation	treatments	revealed	that	
SWP	was	significantly	higher	in	the	LWA	treatment	(-9.333	±	0.931	bar)	compared	to	the	HWA	(-11.417	±	
0.492	bar)	and	S	(-11.333	±	0.408	bar)	treatments,	with	a	p-value	of	0.0001,	indicating	reduced	water	stress	
under	lower	water	conditions.

One	critical	reason	for	not	having	many	cracked	fruits	is	that	during	September,	the	temperature	and	
rainfall	were	optimal,	which	likely	contributed	to	the	reduced	incidence	of	fruit	cracking.	Due	to	the	limited	
data	collected	in	this	initial	year	of	study,	these	results	should	be	considered	preliminary.	The	study	will	
continue	for	two	more	years,	during	which	additional	data	will	be	collected	and	analyzed	to	validate	these	
findings	and	provide	a	more	comprehensive	understanding	of	the	factors	influencing	fruit	cracking.	The	
extended	duration	of	the	study	will	help	refine	irrigation	strategies	and	enhance	the	effectiveness	of	remote	
sensing	technologies	in	mitigating	fruit	cracking,	ultimately	contributing	to	improved	yield	and	quality	of	
pomegranate	crops.		
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Abstract 

Many modern agricultural machines incorporate Precision Agriculture (PA) technologies, such as variable 

rate application of inputs. To implement variable rate dosing, an initial assessment of within-field variability 

is often conducted, followed by the creation of a prescription map that is uploaded to the machine prior to 

application. However, this process is streamlined in the context of topdressing fertilization through the 

integration of proximity optical sensors on the machinery. These sensors detect field variability in real-time, 

and using specific software, translate this information into an appropriate application rate, commanding the 

fertilizer spreader to adjust accordingly within milliseconds. This approach eliminates the need for the labour-

intensive and costly creation of prescription maps. 

This study aims to analyze the readings obtained from proximity optical sensors and compare them with 

crop variability indicators. Specifically, soil apparent electrical conductivity (ECa) was measured, and 

satellite imagery was captured concurrently with the sensor readings to calculate the Normalized Difference 

Vegetation Index (NDVI). The analysis focused on evaluating the correlation between sensor readings, 

NDVI, and ECa. Results indicated a strong correlation between the proximity optical sensor readings and 

NDVI, whereas the correlation with ECa was notably lower. These findings suggest that the real-time 

application rate adjustments made by the sensors would closely mirror those derived from a prescription map 

based on the field's NDVI, thus validating the efficacy of using proximity optical sensors for real-time 

variable rate fertilization. 

Keywords: precision agriculture, satellite images, apparent electrical conductivity, variable rate 

application, cereal management. 

1. Introduction 

The heterogeneity within plots, often influenced by field leveling due to land consolidation or similar 

activities, results in variable crop performance within the same plot (Valero, 2020). This phenomenon is 

known as intra-plot variability. Understanding and managing this variability is crucial for maintaining 

productivity (Martínez-Casasnovas et al., 2022). Data collection and subsequent analysis enable the 

identification of zones within a plot that exhibit variability, facilitating decision-making to enhance efficiency 

and reduce costs. Additionally, the integration of sensors and actuators in agricultural machinery (Moreno, 

2020) can improve, simplify, and automate operations, allowing for differential treatment of each zone 

(Uribeetxebarria et al., 2018). 

Current agriculture demands precise nitrogen fertilization management due to rising costs and 

environmental restrictions (Cartelat et al., 2005). Precision Agriculture employs advanced technology and 

machinery (Pina, 2023), leveraging the convergence of physical, digital, and biological realms to achieve 

extraordinary technological advancements (Moreno, 2020). The common factor is data-driven decision-

making and execution (Ibarra, 2022). 

PA technologies can be categorized into information technologies and action technologies. Information 

technologies include all devices that capture data and convert it into georeferenced maps, such as mobile soil 

sensors (measuring electrical conductivity, organic matter, moisture), vegetation sensors (optically measuring 

crop vigor), fixed crop sensors (measuring soil moisture, rainfall, temperature), remote sensing (satellite or 

drone imagery), external databases (weather, irrigation, market data), production sensors on harvesters 

(quantifying yield per square meter), machinery sensors for operational monitoring, and satellite positioning 

(Valero, 2020). Action technologies encompass systems that enable differential input application in the field, 
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including auto-guidance, variable rate technology (VRT) machinery (fertilizers, seeds, water, pesticides), and 

autonomous agricultural robots (Valero, 2020). 

Within-field variability can be spatial, due to fertility, organic matter percentage, texture, or topography; or 

temporal, due to rainfall, nitrogen fertilization, moisture, crop type and variety, or rotation (Ramos del Viejo, 

2017). Crop performance is usually interpreted as a good indicator of within-field variability. Understanding 

this variability requires knowledge of both physical and chemical soil properties, which can enhance 

productivity and product quality. However, farmers often perceive this information as expensive and fail to 

see the short, medium, and long-term benefits (Best et al., 2014). Moreover, this information is only useful 

if utilized for crop management. 

Nitrogen is the nutrient most directly influencing plant production and grain crop protein content 

(Aranguren, 2021). Excessive fertilizer application is common to ensure potential yield is achieved annually 

(Aranguren et al., 2019). However, excessive nitrogen fertilization is costly and results in nitrogen losses 

through volatilization, denitrification (conversion of nitrate to nitrous oxide), contributing to global warming 

(Aranguren et al., 2019), and nitrate leaching into groundwater, causing eutrophication (Gaju et al., 2016), 

and negatively impacting the environment (Argento et al., 2021). Conversely, insufficient fertilization results 

in suboptimal yields and lower product quality (Argento et al., 2021). Studies show that variable rate 

fertilization can reduce fertilizer use by 20% compared to conventional application and improve harvest 

efficiency by 30% (Morimoto et al., 2017). Nitrogen content in plants is generally determined through 

laboratory chemical analyses, though alternatives like sap nitrate testing or chlorophyll measurement as an 

indirect indicator of plant nitrogen content exist (Gómez, 2016). 

PA variable rate technology (VRT) includes two approaches: on/off application with 100% or 0% rates and 

continuously variable rate application. The latter involves either prescription map-based application or real-

time sensor-based application. Prescription map-based application involves several stages: analyzing current 

or historical data to detect within-field variability and delineate management zones, implementing the map 

in the field, obtaining an application map that should closely match the prescription map, and generating new 

production data for future management (Escolà et al., 2018; Valero et al., 2010). Real-time (TR) sensor-based 

application involves mobile sensors that continuously read soil fertility or, more commonly, crop vigor 

(Valero, 2010). These readings are used to calculate vegetative indices, which feed into algorithms that 

determine and implement the appropriate fertilizer rate in real-time (Escolà et al., 2018). 

Various proximal optical sensors measure crop nitrogen status, classified into fluorometers, chlorophyll 

meters (transmittance), and reflectance sensors or radiometers (Padilla, 2016). These sensors measure 

specific spectral regions (Gómez, 2016), capture crop variability, and translate it into nitrogen requirements, 

automatically adjusting the fertilizer spreader. Good correlations between yield and plant spectral response 

have been found, making these sensors widely used (Best et al., 2014). 

2. Materials and Methods  

The experimental trial was conducted on several rainfed agricultural plots located in the towns of Valsalada 

and Tardienta, in the province of Huesca, NE Spain. The study area consists of seven irregular plots, covering 

a total area of approximately 56 ha. The plots are numbered as V1, V2, and V3 for the three plots situated in 

Valsalada and T1, T2, T3, and T4 for the plots situated in Tardienta. These soils are typical of semi-arid 

regions with a high presence of limestone. The annual precipitation is below 451 mm, with significant 

temperature fluctuations, a pronounced water deficit, and irregular rainfall distribution. Due to these climatic 

characteristics, the area is classified as semi-arid rainfed land in the Ebro Valley. During the cropping season 

in which the trial was conducted, all plots were sown with winter cereals: durum wheat (Triticum durum L.) 

and barley (Hordeum vulgare L.). 

For intra-plot characterization, the Topcon CropSpec proximity optical sensor was implemented in a tractor 

John Deere 6155 R. This active sensor measures crop reflectance using near-infrared (as an indicator of 

biomass) and red-edge (highly sensitive to nitrogen deficiency stress even at later growth stages), calculating 

a vegetation index known as S1. The CropSpec system employs a dual-sensor configuration, with an oblique 

viewing angle (15° relative to the horizontal) and sensors mounted on top of the tractor cab. Installation 

required a base platform (1.67 m x 0.18 m) mounted transversely on the cab roof, with brackets that secure 

each sensor, allowing for easy mounting, dismounting, and position adjustment through simple screw 

adjustments. The sensors were directly connected to the Topcon console through its own Isobus line, 
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independent of the tractor's Isobus line. The sensors were also linked to the compact GNSS AGM1 receiver 

(placed on the same platform as the sensors), enabling geolocation of the data obtained (scalable accuracy: 

Autonomous and Egnos). The X25 Isobus console was connected to both sensors and the Isobus spreader, 

sending real-time variable rate data. Simultaneously, the tractor operated with its own independent receiver 

and guidance system. To set the sensor measurement area, specific measurements were taken and entered 

into the console's configuration system. The sensors covered a width of 3.81 m on each side of the tractor, 

and the sensor position was crucial to sweep the desired width and avoid the tractor tracks. The measurements 

were carried out in March, during the late tillering stage of the cereal. The data obtained from the sensor were 

downloaded from the commercial platform from Top Con into a vector file in shapefile format and 

geostatistically interpolated using local kriging with the VESPER (Variogram Estimation and Spatial 

Prediction Plus Error) software to generate a raster image containing the collected information. 

To compare the intra-plot variability detected by the CropSpec sensor and correlate it to soil properties, an 

ECa map was generated using the Veris 3100 sensor (Veris Technologies, Salina, KS, US), a contact (or 

galvanic) apparent electrical conductivity meter. The sensor reports ECa values from the topsoil layer (0—

30 cm) and deeper layers (0—90 cm). These data were used to generate an interpolation grid with 2 x 2 m 

pixels, where ECa values were estimated using local kriging with the VESPER and QGIS V 3.16.4 software. 

Additionally, for analyzing satellite images obtained from the PlanetScope constellation, QGIS was 

employed. Using the raster calculator in this program, the Normalized Difference Vegetation Index (NDVI) 

for the same date was calculated from the images. The pixel size of the satellite images is 3 x 3 m. To compare 

NDVI with the data read by the CropSpec sensor, satellite images taken on the same day as the sensor 

readings were used. 

Using the Point Sampling Tool in QGIS, data from all measurements were collected into a single layer of 

random points. To ensure the absence of autocorrelation, distances between points were established to be 

greater than the stabilization distances of the semivariograms developed during the interpolation process. 

From these data, a matrix containing all analyzed variables was created. The correlations between the 

variables were then studied using Spearman's test in SPSS V 26 software. 

3. Results and Discussion 

Figures 1 and 2 depict the NDVI maps, CropSpec S1 values, and ECa maps for the Valsalada plots (V1, 

V2, and V3) and the Tardienta plots (T1, T2, T3, and T4), respectively. 
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(a) (b) 

  
(c) (d) 

Figure 1. (a) NDVI map; (b) S1 value map read by the CropSpec sensor; (c) ECa map - depth; (d) ECa 

map – shallow; for the V1, V2 and V3 plots. 
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(a) (b) 

  
(c) (d) 

Figure 2. (a) NDVI map; (b) S1 value map read by the CropSpec sensor; (c) ECa map - depth; (d) ECa 

map – shallow; for the T1, T2, T3 and T4 plots. 

 

The figures show that in both locations, all plots exhibited a strong visual similarity among the three analyzed 

parameters. Previous studies had already demonstrated a high correlation between NDVI and ECa (Minuesa, 

2021). Furthermore, a strong correlation between ECa shallow and ECa depth was detected.  

Table 1 summarizes all the correlations obtained across the analyzed plots. 
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Table 1. Spearman correlation coefficients between NDVI, ECa shallow, ECa depth, and CropSpec S1 

measurements (p-valor < 0.0001 for all the correlations). 

Parcela Variables NDVI CropSpec CEa Shallow CEa Deep 

 V1 

NDVI 1 0.667 0.285 0.408 

CropSpec  1 0.484 0.549 

ECa Shallow   1 0.841 

ECa Deep    1 

V2 

NDVI 1 0.627 0.530 0.577 

CropSpec  1 0.637 0.719 

ECa Shallow   1 0.843 

ECa Deep    1 

V3 

NDVI 1 0.687 0.431 0.455 

CropSpec  1 0.454 0.411 

ECa Shallow   1 0.771 

ECa Deep    1 

T1 

NDVI 1 0.735 0.504 0.485 

CropSpec  1 0.513 0.487 

ECa Shallow   1 0.958 

ECa Deep    1 

T2 

NDVI 1 0.510 -0.443 -0.551 

CropSpec  1 0.142 0.103 

ECa Shallow   1 0.902 

ECa Deep    1 

T3 

NDVI 1 0.711 0.359 0.329 

CropSpec  1 0.514 0.466 

ECa Shallow   1 0.880 

ECa Deep    1 

T4 

NDVI 1 0.644 -0.519 -0.553 

CropSpec  1 -0.524 -0.529 

ECa Shallow   1 0.956 

ECa Deep    1 

 

The correlation analysis revealed a significant relationship between the variability observed in the NDVI and 

CropSpec mpas. This similarity, though slightly less pronounced, was also evident when comparing the 

NDVI or CropSpec values with the ECa maps. Notably, there was a high degree of similarity between shallow 

and depth ECa values, as indicated by the correlations observed across all analyzed plots. 

Previous studies by Minuesa et al. (2021) demonstrated that areas with high ECa levels are typically 

associated with loamy textures, while areas with low ECa levels tend to have clay-loam textures. Moreover, 

higher levels of macronutrients were observed in high ECa areas compared to low ECa areas. Additionally, 

areas with high ECa exhibited greater water retention capacity and cation exchange capacity, correlating with 

higher vigor observed in both NDVI and CropSpec readings. 

It is noteworthy that, contrary to the majority of analyzed plots, high ECa values were associated with higher 

vegetation indices and CropSpec S1 values. However, in plots T2 and T4, negative correlations were 

observed between NDVI and ECa, suggesting that higher ECa values corresponded to lower vegetation 

indices and reduced crop vigor. This phenomenon may be attributed to differences in soil texture or the type 

of crops cultivated in these plots. 

4. Conclusions 

The CropSpec optical proximity sensors from Topcon have proven to be an effective tool for real-time 

variable fertilizer application, offering a viable alternative to prescription maps. However, it is important to 

note that the variability observed between different plots, influenced by factors such as planting date, crop 

variety, and the inherent heterogeneity of the terrain, requires prior plot readings to properly calibrate 

fertilization limits and variable application levels. Otherwise, significant discrepancies may arise between 

the entered parameters and the actual fertilizer application. 
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Despite these considerations, CropSpec sensors can be highly beneficial by streamlining part of the 

prescription map generation process, thereby facilitating the rapid implementation of PA, particularly 

regarding variable fertilization among farmers. 

The correlation results with NDVI and soil ECa, both depth and shallow, indicate that the measurements 

from the CropSpec sensors are well correlated with NDVI, suggesting they can accurately measure crop 

variability. This positions them as a valid tool for real-time variable fertilization, yielding results similar to 

fertilization based on prescription maps generated from NDVI. 
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Abstract 

Unmanned aerial vehicles – UAVs is a novel technology introduced recently in agriculture for remote sensing 

purposes and field task operations. Their ability to carry small sensors, able to capture high resolution images 

has made them a unique tool for monitoring several crop attributes including yield. In the case of cotton, 

yield is associated with the intensity of the fiber when the crop is about to harvest. The presence of fiber can 

be easily recognized from a simple, high-resolution RGB image captured from a UAV platform. The present 

study capitalizes on that fact and examines different image resolutions and flight altitudes for choosing the 

most appropriate for accurate yield prediction. An UAV with a 4K RGB camera was used to monitor the 

field from alternative altitudes (15m, 30m, 45m and 60m) that provided different ground resolutions. The 

RGB images were converted to binary fiber, non-fiber rasters using a semi-automatic image classifier tool. 

Consequently, an index describing the fiber density named Cotton Fiber Index – CFI, was estimated. Ground 

truth, boll fiber samples were collected afterwards manually from a selected spot in the field. A fractional 

handpicking procedure was followed with successive harvesting and imaging events over the same spot. The 

gradual harvesting along with UAV images captured right after, allowed to build an accurate, CFI based 

model to address the cotton yield. The model was validated by additional samples obtained randomly in the 

field. Five pilot fields representing variable cultivation conditions were totally monitored that way in central 

and northern Greece during the 2022-23 period. The overall data was used to establish a universal linear 

regression model with a high accuracy (R2 = 0.870, RMSE = 0.501 t ha-1) in yield prediction. The experience 

gained from the present study was condensed on a protocol with well-defined steps for performing UAV-

based, cotton yield surveys for research or commercial purposes.   

Keywords: Drones, UAS, remote sensing, smart farming 

1. Introduction 

Yield maps are an essential asset for quantifying crop performance, farm inputs and cultivation practices 

efficiency, spatial variability of field productivity and for planning precision farming operations. Cotton is a 

crop with an advantage that allows a visual assessment of the expected yield prior harvesting by judging of 

the density of the fiber. Farmers, traders, and other stakeholders usually capitalize on this trait and make farm 

visits to get some primary yield assessments. Their judgment however is empirical and strongly restricted by 

their close to the ground field of view. The assessments are usually based on field border observations or on 

field scouting that still dismiss the “big picture” of a yield map. Today, yield maps can be obtained primarly 

from special sensors integrated on the cotton harvesting equipment. These sensors however are usually rare, 

they provide a low spatial resolution, and the information is obtained after harvesting. Another opportunity 

is the use of remote sensing. Some early attempts made by researchers like Huang et al. (2013) using aircraft 

platforms provided however poor outcomes.  

The introduction of UAV remote sensing into the agricultural sector recently, revealed new perspectives 

for obtaining cotton yield maps, prior harvesting. Their ability to fly safety at low altitudes allow the capturing 

of low cost, high-resolution images. Therefore, researchers are making several attempts to predict cotton 

yield from UAV imagery. Shi et al. (2022) for instance found that the difference between open cotton bolls 

and other targets in the blue and green bands is larger than that in the red band. They defined an index that 

normalizes the near-infrared band by the sum of blue, green, and red bands, which exhibited a high 

performance in highlighting information on open cotton bolls. Huang et al., (2016) utilized Laplacian image 

processing for segmenting cotton bolls from the background of digital images obtained just prior to harvest 

and defined an index called Cotton Unit Coverage (CUC), addressing the number of cotton boll pixels in a 

plot to the total number of pixels in the plot area. The index showed a good correlation with yield but the 

authors stress out that it is too difficult to directly segment cotton bolls in an RGB image using a global 

threshold value due to the light variation. To overcome this burden, Feng et al (2020), defined a similar index 

AgEng 2024 Proceedings

152



called Cotton Fiber Index (CFI) that focused on cotton fiber instead of cotton bolls because cotton fiber was 

more easily discriminated from the soil and leaves background. They utilized also Laplacian filtering for 

increasing the contrast and sharpness of the original images and discriminated the fiber with a normalization 

process. They found that plant height during the flowering stage and CFI close to harvest had the best 

performance in yield prediction. Ma et al. (2022) combined vegetation indices from visible bands with 

textural features based on Gray-Scale Co-occurrence matrix obtained from a UAV with an RGB camera 

flying at an altitude of 10 m that allowed ultra-high-resolution images. They found out that the combination 

of these features were highly correlated with the cotton yield. They also found that the non-linear regression 

models presented a higher accuracy. Xu et al. (2020) used fully convolutional networks to recognize the 

opening cotton bolls in high resolution RGB images obtained from a UAV and implemented a back 

propagation neural networks model to predict the single boll weight. The same author, on a later work (Xu 

et al., 2021) used a U-Net semantic segmentation network to extract the boll opening pixels and associate an 

index called Boll Opening Pixel percentage (BOP) with cotton yield. Rodriguez-Sanchez et al., (2022) used 

also machine learning and trained a Support Vector Machine (SVM) classifier with four selected features to 

recognize the cotton pixels achieving an accuracy of 89%.  

Undoubtfully, the current efforts provide promising results that pave the way for further investigations in 

order to establish a simplified procedure that can be broadly implemented and produce accurate estimations 

of cotton yield. The present study expands the positive findings of our preliminary work (Cavalaris et al., 

2023) by incorporating additional data from extra fields to capture alternative cotton growing conditions. It 

aims to introduce an alternative and transparent method with a clear monitoring and processing protocol for 

obtaining accurate, high resolution and low-cost cotton yield maps with the help of a small UAV equipped 

with a simple RGB sensor. 

2. Materials and Methods  

2.1. Field survey 

University of Thessaly established five cotton field trials in central (Magnesia, Trikala) and northern 

(Rodopi) Greece, in 2022 and 2023. The main objective of the trials was to compare conservation agriculture 

(CA) and traditional agriculture (TA) practices in cotton production. For that scope, each field was split into 

two plots, one conservational and one traditional. The fields were either irrigated or dryland, contained 

different cotton varieties planted at different densities and treated with a defoliant or not, according to the 

pre-harvest conditions. Therefore, they represent a wide variety of crop conditions that resulted in a high 

variance of cotton yields among the fields and between the treatments, as depicted in Table 1.   

 

Table 1. Experimental field characteristics. The ranges indicate the average values for CA and TA plots. 

 

 

A field survey was conducted on each field, one day prior the mechanical harvesting. A small orthogonal 

spot comprising of four adjacent rows, 4m each (4 x 0.95m x 4m = 15.20m2) was selected randomly for 

building the yield prediction model. The border plants outside the “model spot” were removed to provide a 

clear region of interest and the four corners of the region were marked with Ground Control Points (GCPs) 

to help align exactly all the successive images. The area was photographed with a DJI Phantom 4 Pro UAV 

using its on board 4K RGB camera set at a 20MP resolution and a nadir position. Successive images were 

captured from four heights, 15m, 30m, 45m and 60m providing respective ground resolutions of 0.40, 0.80, 

1.10 and 1.50cm. After the first set of images, a cluster of randomly selected open bolls from each of the four 

rows were picked up manually and the fiber seed was separated and weighted on a portable balance. One 

third of these bolls were selected from the top part of the plants, one third from the middle part and one third 

Field 
code Year Region Watering Variety

Area
CA+TA 

(ha)

Final 
population 

(1000pl. ha-1)
Open 

bolls m-2
Yield

 (t ha-1) Defoliant
F1 2022 Magnesia Irrigated Elsa 1.8+3.8 155-190 50.8-78.6 2.67-3.07 Yes
F2 2022 Trikala Irrigated Elsa 1.4+1.7 265-279 76.5-91.2 4.49-4.52 Yes
F3 2022 Rodopi Dryland Olivia 0.6+0.7 123-128 38.4-42.6 1.22-1.31 No
F4 2023 Rodopi Dryland Olivia 0.6+0.7 90-96 27.8-30.5 0.76-0.78 No
F5 2023 Rodopi Irrigated Olivia 1.1+1 169-173 57.4-84.6 3.10-3.85 No
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from the lower part. Consequently, a second set of vertical UAV images were obtained from the same heights 

and the procedure continued until all the open bolls were harvested. Three to six sets of images were totally 

obtained from each “model spot” until all the plants were stripped (Figure 1a). The successive weights of 

fiber seed were utilized to estimate the “yield fractions” that is the yield remaining in the “model spot” after 

each consequent handpicking. 

After accomplishing the “model spot” surveys, the whole fields were also monitored successively from 

the same four heights (15, 30, 45 and 60m). Prior this, GCPs were placed on the edges of each field as well 

as at particular number of “validation spots” (8-18) within the fields (Figure 4). The “validation spots” had 

double GCPs at both sides of two adjacent rows marking a clear distance of 2m on each. These spots were 

used later for model validation. The field survey was performed using the Pix4D Capture mobile app to 

schedule the flight missions for the DJI Phantom 4 Pro over the area. Nadir position images were captured 

with an 80% frontal and side overlap. The images were later processed with the Pix4D Mapper software 

(https:// pix4d.com) using its Ag RGB template to obtain four RGB orthomosaics from each field, for the 

four different heights. After completing the UAV surveys, the open boll fiber from the “validation spots” 

were harvested manually and weighted. The following day, the whole plots (CA and TA) were harvested 

mechanically and their weight was also registered. 

2.2. Image processing 

The RGB field orthomosaics as well as all the sets of single images obtained over the “model spots” were 

imported into the QGIS 3.36 open-source suite (QGIS Association. http://www.qgis.org) and georeferenced 

using the corresponding GCPs. An orthogonal vector polygon of the same dimensions with the “model spot” 

(3.8 by 4m) was designed to surround the plants inside the spot.   

The RGB images obtained from the “model spot” were grouped into four sets of the same pixel resolution 

(0.40, 0.80, 1.10 and 1.50cm). The images were classified into two major classes (fiber and non-fiber) using 

the open source QGIS Semi-Automatic Classification plugin (SCP v.7.10.5), (Congedo, 2021). A training 

input file was created for each set of images. The training file consisted of five macro-classes (cotton, bright 

vegetation, shadowed vegetation, bright soil, shadowed soil) while each macro-class was obtained from 5-

15 manually drawn regions of interest (ROIs). An empirical, stepwise process was followed using the 

classification preview option of the tool to test the performance and new ROIs were added or removed 

accordingly, until a satisfactory result was obtained. A separate final “training input” file was created for 

each field and each set of images on which the fiber pixels were assigned a value of “1” while all the non-

fiber pixels were assigned to “0”. The outcome of this process were binary rasters of the same dimensions 

with “1” representing fiber and “0” no fiber (Figure 1b). Consequently, the average value of each binary 

raster at a particular area was calculated. This area was either the whole  “model spot” or its four separate, 

4x0.95 m rows when they were clear distinct. The average value of the same resolution binary rasters was 

actually, the Cotton Fiber Index (CFI) defined by Feng et al (2020). 

 

 𝐶𝐹𝐼 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑜𝑡𝑡𝑜𝑛 𝑓𝑖𝑏𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎
 (1) 

 

3. Results and Discussion 

3.1. Model calibration. 

Figure 1 shows two sets of successive images obtained from a height of 60m above ground with a ground 

resolution of 1.5 cm. The images are cropped to the ROI defined by the “model spot” vector (3.8 x 4m). The 

first set (a) comprises of 4K, 20MP RGB images and the second set (b), of corresponding, binary classified 

fiber – non fiber images. Each successive image was obtained after handpicking a fraction of open bolls. A 

CFI was estimated for each classified image. 

The CFI values obtained from each set of same resolution images were plotted against the corresponding 

“yield fractions” of the successive harvests. As shown in Table 2, the coefficient of determination between 

CFI and yield were very high (R2 > 0.930 for single fields and R2 > 0.907 for all the fields) for all the ground 

resolutions. 
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Since the lower resolution 1.50 cm images (obtained from a 60 m flight altitude) were considered 

sufficient accurate in providing a fiber – non fiber segmentation (Table 2) that is well associated with yield, 

we decided to continue our further analysis only with the above dataset. The opportunity to fly a UAV at a 

higher altitude during a field survey allows greater speeds and eliminate the density of the successive 

passages, providing though the chance to survey a bigger area during a single mission.  

 
Figure 1. Model calibration at the “model spot” (4x3.8 m) area at field F1 with successive handpicking and 

photographing events. (a) 4K RGB images captured vertically from a height of 60m. (b) the corresponding 

classified images (white colour depict cotton fiber, black colour everything else). 

 

Table 2. Coefficients of determination (R2) for cotton yield and CFI obtained from RGB images captured 

from alternative heights on the “model spots” of five alternative fields. 

 
 

 
Figure 2. Correlations of CFI with cotton yield for RGB images captured on the “model spots” from an 60m 

height providing a ground resolution of 1.5cm (F1-F5 = pilot field code). 

Mission 
height 

Pixel 
resolutiion 

F1 F2 F3 F4 F5 All
60 m 1.50 cm 0.973 0.974 0.982 0.957 0.970 0.929
45 m 1.10 cm 0.975 0.990 0.989 0.989 0.978 0.927
30 m 0.80 cm 0.983 0.974 0.989 0.934 0.972 0.907
15 m 0.40 cm 0.962 0.968 0.947 0.928 0.966 0.928

R2, (CFI - Yield)
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Figure 2 shows the linear regression of yield and CFI obtained from the 1.5 cm resolution (60m altitude)) 

RGB images captured at the “model spots” of the different fields. A universal equation using a linear fitting 

model is derived as follows (equation 2) 

 

 𝑌 = 33.03 ∙ 𝐶𝐹𝐼 − 0.02 (2) 

were Y = cotton yield (t ha-1) and CFI = the Cotton Fiber Index (dimensionless). The accuracy of the 

prediction model is high with a coefficient of determination R2 = 0.929. 

3.2. Model validation. 

Having decided to utilize the 60m flight dataset, the corresponding 1.50 cm resolution orthomosaics 

obtained from the whole field surveys were initially georeferenced in QGIS and accordingly converted to a 

binary “fiber – non fiber” classified raster using the associated SCP QGIS training input file. The GCPs 

placed on the “validation spots” (Figure 5c) were utilized to draw vector polygons of 2 x 1.90 m encapsuling 

the two adjacent cotton rows. Accordingly, CFI was calculated for the “validation spots” and the universal 

equation 2 was used to estimate the cotton yield from the corresponding CFI values. The results were plotted 

against the handpicked obtained yield (Figure 3a). The validation reveal a high performance of the model. 

The R2 was 0.87, the RMSE 0.501 t/ha and the correlation line was close to the intersection 1:1 line. It is a 

sufficient result with fewer parameters compared to Feng et al (2020) who suggested the combination of CFI 

with plant height traits to predict cotton yield with an R2 = 0.90.  The Cotton Unit Coverage (CUC) defined 

by Huang et al., (2016) had an R2 = 0.83 for predicting yield from segmented cotton bolls.  

.  

Figure 3. Validation of the remote sensing prediction model against actual yield data obtained from ground 

truth handpicked samples (a) and from cotton picker average plot yield (b). (F1-F5 = pilot field code, CA = 

Conservation Agriculture plot, TA= Traditional Agriculture plot) 

3.3. Yield maps 

A 0.95x0.95m vector grid was laid over the binary, fiber – non fiber whole field rasters defining small 

rectangular polygons. The 0.95x0.95m size was selected to guarantee that each grid cell contains one cotton 

row regardless its orientation. A CFI was estimated for each polygon. Figure 4 presents a close view of the 

process over a small area of field F1. Figures 5a and 5b present the RGB orthomosaic and the resulting CFI 

map for the whole F1 field. Since the model validation revealed a high accuracy in yield prediction, the yield 

map in Figure 5c may be considered an accurate estimate of the actual yield and its variation in the field. 

Furthermore, Figure 3b depicts a plotting of the cotton picker estimated yield against the model yield. As 

mentioned on the beginning, the pilot fields were established to compare conservation agriculture (CA) and 

traditional agricultural (TA) practices. Each plot was harvested separately. The coefficient of determination 

is high (R2 = 0.98) but the fit line lies above the intersection line. This is reasonable as the mechanical 

harvesting induce yield losses which are overcounted with the remote sensing approach. Therefore, the 

suggested approach is proved more accurate for comparing field trial plots.  
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Figure 4. Conversion of an RGB part of an orthomosaic (left) to a binary classified image (center) with white 

pixels representing cotton fiber and black pixels non-fiber material. The right image shows a Cotton Fiber 

Index (CFI) image part at a resolution of 0.95x0.95m. 

 

 
Figure 5. Pilot field F1 overview. Estimation of yield map (c) from a model based on a CFI map (b) that was 

obtained from an RGB image with a 1.50 cm ground resolution (a) after a fiber / non-fiber classification. 

Numbered points indicate spots of ground truth measurements for model validation. 
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3.4. Yield mapping protocol 

Based on the experience gathered through the present study, a cotton yield mapping protocol with simplified 

steps is established in Figure 6. Two levels of field surveillance are defined: 

− The grey and the blue frames summarize the whole procedure followed in the current study.  

− The blue frames by their own, provide a brief standalone guideline that capitalize on the present 

findings, for creating valuable cotton yield maps.  

The novel, fractional harvesting – successive imaging approach suggested here. allow the artificial creation 

of high variable yield potentials, at the same field, that help build a safe and site-specific accurate yield 

prediction model. This is quite useful because researchers often have to establish their own, time and 

resources consuming field trials to introduce a natural yield variation in the alternative plots or search for 

other available such trials.  

The main weakness of the present approach is the subjective nature of the semi-automatic classification 

followed to segment the fiber from the background. It was true that in some of the examined fields (eg F4 

and F5) it was quite difficult and required a lot of effort until a satisfactory segmentation result was achieved. 

A potential case of an investigator failing to address effectively all the visible fiber on the images may 

probably lead to an underestimation of the actual yield. More robust, and independent methods should be 

implemented on this step, and this is a potential objective of some future research that will compare the 

alternative methods proposed by other authors (eg. Xu et al., 2021, Shi et al., 2022, Rodriguez-Sanchez et 

al., 2022 etc) along with the testing of some polar filters on the RGB cameras during the field surveys in 

order to augment the presence of the fiber on the images. 

 

 

 

Figure 6. Yield mapping protocol. 
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1. Conclusions 

▪ Efficient, low-cost cotton yield mapping is feasible thanks to the opportunity of using small and 

cheap UAVs carrying a simple RGB camera to survey large areas. 

▪ The cotton yield maps are of high resolution containing much more detail compared to maps 

obtained from cotton picker onboard sensors. 

▪ A universal, linear regression model was estimated that fits well to variable crop conditions (variety, 

plant density, plant vigour etc). 

▪ The validation of the model provided a high (R2 = 0.870, RMSE = 0.501 t/ha) prediction accuracy. 

▪ A novel method with a clear monitoring and processing protocol is introduced on the present study 

for obtaining high accuracy cotton yield maps little before the mechanical harvesting. 

▪ The suggested, UAV based cotton yield mapping approach may be used effectively to build cotton 

yield maps as also to make yield comparison on cotton field trials.  
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Abstract 

Suitable test standards for plant protection technologies exist but are not adapted to modern sensor-based 

or autonomous systems. Evaluations of the working success are lacking, partly due to the time-consuming 

data collection and low comparability. 

This gap was addressed in WeedAI and objective potential test methods were proposed. To test the 

guidance accuracy sugar beet – as an example – should be sown by use of generated AB-sinus-lines. Each 

weeding treatment is tracked by RTK. All waypoints can be compared and used for analyses of row-following 

precision.  

Hit-rate is proposed to determine the percentage of covered weeds by herbicides and the ratio of spot and 

plant size can be used to estimate potential herbicide savings. 

A prediction model for plant species was developed by use of instance-based segmentation and a 

mask2former framework. Drone observations provide the field images. The benefits of automated plant 

recognition were presented based on a field trial. Its estimation accuracy for recognizing sugar beet is about 

98%, and 90% for recognizing weeds.  

The model is currently being further developed at the Institute of Agricultural Engineering for a far-

reaching agronomic interpretation. Tests on guidance accuracy and hit accuracy are currently underway. 

All in all, the methods presented will be able to close the gap in machine testing. 

 

Keywords: AI weed detection, spot-sprayer, sensor hoes, drone observation 

 

 

1. Introduction 

Technological advances are having a huge impact on modern agriculture. For example, sensor-based 

weed detection can help to reduce the use of herbicides and thereby environmental impact [BmELF, 2013] 

as well as costs to the farmers. While such systems (figure 1) are being extensively researched and are 

becoming commercially available, they typically directly aim at the production level. However, there also is 

a demand for weed identification in agricultural trials, which typically require labor-intensive screening, 

which is inefficient as it typically implies manual plant counting or weed coverage estimation.  

- Lack of standardized methods to test systems like sensor hoes, spot sprayers, robots, … 

- Hard to interpret their effectiveness; lack of objectiveness 

 

So far, the test standard in place asks for (1) technology classification; (2) objective general description; 

(3) special features/characteristics; (4) general assessment; (5) tests and evaluation of function, operation, 

interface, among others; (6) field tests; (7) individual laboratory and field tests; (8) summary; as well as (9) 

commentary from the manufacturer. 

 

The aim is to extend this test norm by standardized tests regarding: 

-       The accuracy of row guidance control or hit-rate of tools or nozzles as a technology assessment 

-       Vegetation mapping (crops and weeds) before and after treatment events for assessment of effect 

-       Detection, identification, counting, and measuring size and properties of crops and weeds 

-       Calculation and evaluation of agronomically relevant metrics, including environmental performance 
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Figure 1. Modern weeding technology: Sensor hoe (Garford), spot-sprayer (Prototype) and weeding robot 

(Dynamobot) 

 

In this paper, the proposed methods and workflows are described in general. For drone observation and plant 

recognition results are shown and discussed as an example for our testing method. 

2. Materials and Methods  

2.1. Test the guidance accuracy: Row following – detection and stearing 

Guidance accuracy is important for mechanical weeding. Precise guidance increases the affected area by 

tools and hereby the weeding success. As a standard, a 100 m test lane is proposed. One-third straight, one 

with two moderate lateral deflections right and left, and the last with two longer deflections. This so-called 

AB-sinus line is generated between two given coordinates by an own software application. 

The lane will be sown out by use of an RTK-guidance system. On top of the precise seeder, an additional 

Leica GS 18 T GNSS-RTK-Rover (20 Hz sampling rate) is mounted to track the seeding path. 

For each machine test, the same RTK-tracking system is mounted on an equivalent position to track the 

lane.  

All logged tracks will be compared and analyzed for further use.  

2.2. Test of hit-rate 

The hit-rate determination targets the quality of weed coverage by herbicides. By using colored water, 

two results are of interest: 

- Percentage how often a weed is covered by an herbicide 

- Ratio between spot size and weed size to estimate herbicide savings 

All those parameters are measured by use of a drone and the ILT-WeedAI prediction.   

2.3. Automated plant scouting  

For this study, we captured a diverse set of RGB drone image data from sugar beet fields over the course 

of two consecutive years, with special emphasis on weed treatment assessment. In 2022, we recorded data 

from 11 different fields, each at multiple dates to cover weeding events as well as various relevant growth 

stages and environmental conditions. Further, those fields were distributed over a larger area within the 

Rhineland and Niederrhein regions in western Germany to increase diversity in soil types and weed species. 

In 2023, we collected data from a specifically designed trial field (see. Section …), in a similar timely manner 

to cover both before and after weeding scenarios. The diverse dataset from the first year was used to train the 

WeedAI- models, while the analysis in this study is run on unseen data from the second year. The evaluation 

of the models is carried out by use of the orthomosaics with the predictions on screen by persons.   
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2.3.1. Sensor 

All data were captured using a DJI Matrice 300 RTK drone and a 45 Megapixel DJI Zenmuse P1 camera, 

equipped with either a 35 mm lens in 2022 or 50 mm in 2023, resulting in ground sampling distances (GSD) 

of 1.5 mm/px or 1.1 mm/px, respectively. For our AI model, we downsampled the higher resolution test data 

to match the settings of those used for training. 

2.3.2. Data Processing 

Agisoft Metashape [Agisoft, 2022] was used with default settings to obtain 3D representations and 

georeferenced orthomosaics of the fields. Further, we selected a diverse set of 124 crops from the original 

images sized 1024x1024 px for model development. All plants were hand-labeled individually in a pixel-

perfect manner to enable high-precision instance segmentation tasks. We use 95 of those images to finetune 

a Mask2Former model [Bowen, 2022] with Swin-large backbone which was verified on the remaining 29 

images. For inference on the 2023 trial data, we use overlapping tiles of the same size as the training images. 

Leveraging information contained in the Metashape model, we project the center points of detected masks 

onto the orthomosaic to obtain their georeferenced locations. Using distance-based clustering, we are able to 

filter out redundant detections resulting from large overlaps in either the individual drone images or the tiling 

step at inference time. In the same step, we further use this redundancy to identify falsely occurring detections 

and classifications, thereby maximizing the precision of our predictions.  

Visualization, processing, and archiving of each dataset are managed by the use of QGIS [QGIS, 2024; 

Schmittmann, 2024]. 

2.4. Agronomical Evaluation  

Weed mapping can be used to assess both the efficiency of plant protection measures and their harmful 

effects. In the first step, it is the percentage of weed coverage [Wilbos, 2004], in the second the population 

densities and harmful effects of certain weed species that lead to an agronomic assessment. Environmental 

performance can also be taken into account. 

2.5. Test design 

The field trials with 3 repetitions were arranged on the experimental farm Campus Klein-Altendorf next 

to Bonn. This is a high-yielding site with loess soil. Each plot size was about 2000 m². Sugar beets are 

cultivated by use of good business practice with row distances of 50 cm and 20 cm spacing. Tree herbicide 

applications were done as usual. 

The technology was a precise seeder by Kleine synchro-drive (12 rows) [Ziegler, 2012], a sensor-guides 

hoe by Garford InRow (12 rows), and a spot-sprayer prototype (33 m boom width). 

3. Results and Discussion 

 

By use of a drone and the ILT-WeedAI prediction plants on the test site could be detected, located, and 

allocated into weeds and crops (figure 2). Also, the stem position is detected with high precision. The quality 

of differentiating between sugar beet was over 98 % and for weeds about 90 %. 
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Figure 1.  Excerpt of an orthomosaic of the field trial. Centre point of sugar beets marked with green, 

crops with red dots. 

 

As shown in figure 3, the relevant plots with the predictions can be selected individually. Maps can be 

created. 

 

 
 

Figure 3.  Selection of relevant plots for further use. 

 

The output of all data are files in CSV-format for use in Excel or other applications to calculate the 

efficiency of the weeding treatment and the corresponding values. Agronomical interpretation including 

threshold of damage and ecological effects can be derived. 

 

 Plant data can be assigned to different treatments and used to evaluate different technologies or setups. 

(figure 4). The variants can be compared and assessed in terms of their plant density, taking into account the 

aforementioned estimation accuracy.  

The degree of coverage of weeds as a further evaluation factor and the individual plant size are also 

determined. Based on this result data and its statistical evaluation, differences in technologies and spraying 

strategies can be determined in a scientifically correct manner. A comparison of different technologies such 

as hoes, sprayers, spot sprayers, hoeing automates or robots can also be carried out using meaningful 

parameters. 
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Figure 4. Plant number, size, and plant coverage of two spot-sprayer settings and a broadcast sprayer 

before and after three applications resp. four growing stages.  

4. Conclusions 

Suitable test standards for plant protection technologies exist but are not adapted to modern sensor-based or 

autonomous systems. Evaluations of the working success are lacking, partly due to the time-consuming 

data collection and low comparability. 

This gap was addressed in WeedAI and objective potential test methods were proposed. The use and 

benefits of automated plant recognition were presented based on a field trial. Its estimation accuracy for 

recognizing sugar beet is about 98%, and 90% for recognizing weeds.  

The model is currently being further developed at the Institute of Agricultural Engineering for a far-

reaching agronomic interpretation. Tests on guidance accuracy and hit accuracy are currently underway. 

All in all, the methods presented will be able to close the gap in machine testing. 
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Abstract 

Efficient water management in rice cultivation is imperative for sustainable agriculture, especially in 

water-scarce regions like southern Spain. This study explores the effectiveness of infrared thermometry and 

spectral indices in monitoring crop water stress in rice cultivation using reclaimed wastewater under varying 

soil water conditions. The field experiment spanned the 2022 and 2023 growing seasons at the Technological 

Center for New Water Technologies (Carrión de los Céspedes, Seville), utilizing an experimental wastewater 

treatment plant's effluent for irrigation. Two irrigation treatments were implemented: (T1) rice irrigated at 

100% of crop water requirements (ETc); (T2) rice irrigated at 90% ETc. Each treatment comprised 100 m2 

plots with three replications, and water requirements were determined following FAO-56 methodology. 

Infrared thermometers and spectral reflectance sensors were deployed to continuously measure crop canopy 

temperature and vegetation indices (NDVI). Stomatal conductance was also monitored throughout the 

growing season in both treatments. Crop temperature and climatic data were used to establish reference non-

water-stress baselines for calculating the Crop Water Stress Index (CWSI) under aerobic conditions. The 

derived reference baselines remained stable between 12-17h and across growth cycles. The CWSI, calculated 

using these baselines, effectively captured variations in crop water status induced by the irrigation treatments, 

correlating with stomatal conductance dynamics. In the initial growth stages, when CWSI accuracy was 

compromised due to the fraction of bared soil seen by the thermal sensor, NDVI provided complementary 

insights for interpretation. This study underscores the viability of infrared thermometry and spectral indices 

for real-time crop water stress assessment, offering a valuable tool for precision agriculture and informed 

water management decisions in rice cultivation. 

Keywords: deficit irrigation, Oryza sativa, thermal sensing, water stress 

1. Introduction 

Rice is the world's third most produced cereal, followed by corn and wheat, which rank first and second. 

Spain has a cultivated rice area close to 100,000 hectares (ESYRCE, 2023), making it, along with Italy, the 

main rice-producing countries in the European Union. Andalusia, located in the marshlands of the 

Guadalquivir River, accounts for nearly 40% of the cultivated rice area in Spain. The rice fields in this region 

are entirely irrigated under flooding. 

Unlike the major rice-producing areas in Asia, rice cultivation in Spain heavily relies on irrigation water. 

The rice growing cycle in the Guadalquivir marshlands coincides with months of high evapotranspiration 

demand and low rainfall, making rice production highly dependent on freshwater inputs. The primary source 

of freshwater for rice irrigation is the Guadalquivir River, pumped by irrigation communities and distributed 

through a network of canals to the fields. 

Due to the proximity of the rice-growing area to the river mouth, the zone where the water is pumped is 

influenced by ocean tides, resulting in high salinity levels unsuitable for rice cultivation. Therefore, 

significant releases of freshwater by authorities are required to push the saline wedge towards the estuary, 

allowing for water intake with a tolerable salinity level for rice cultivation. 

The primary challenges of this water management system involve the substantial volumes of freshwater 

needed for release into the river and the resulting reduction in cultivated rice areas due to drought-induced 

water shortages. As a result, alternative management strategies are necessary to reduce the vulnerability of 

the rice sector to increasingly frequent drought periods and high competition for available water resources. 

Two alternatives that can help mitigate the impact of drought on rice cultivation are the use of unconventional 

water sources, such as reclaimed wastewater, and implementing localized irrigation systems. 
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Reclaimed wastewater offers several advantages for agricultural irrigation, including reducing pressure 

on freshwater resources and providing nutrients that can reduce the use of mineral fertilizers. However, the 

salinity of some regenerated waters or the presence of pathogens can negatively impact crops and human 

health (Intriago et al., 2018). Likewise, although less commonly associated with rice cultivation, drip 

irrigation has shown promising results in optimizing water usage in this crop species (Bozkurt Çolak, 2021; 

Parthasarathi et al., 2018).  

Under aerobic conditions, such as drip irrigation, where the water supply to the crop is not constant, crop 

monitoring tools could enhance irrigation management. Given rice's high sensitivity to water deficit (Yang 

et al., 2019), developing indices for crop water status monitoring using remote or proximal sensing tools can 

be valuable for optimizing irrigation management. Thermal sensors are among the remote sensors that have 

provided more promising results for monitoring crop water status, owing to the existing relationship between 

canopy temperature and crop transpiration rate (Egea et al., 2017). However, one drawback of this technique 

is that the relationship between crop temperature and stress level is not univocal, as it is influenced by other 

climatic variables such as solar radiation, air temperature, or wind speed (Maes and Steppe, 2012). 

Various normalization methods for crop temperature have been proposed to address this issue, including 

thermal indices. One of the most renowned indices is the Crop Water Stress Index (CWSI), which can be 

empirically determined using the following expression (Idso et al., 1981): 

 

𝐶𝑊𝑆𝐼 =
(𝑇𝑐−𝑇𝑎)−(𝑇𝑐−𝑇𝑎)𝐿𝐿

(𝑇𝑐−𝑇𝑎)𝑈𝐿−(𝑇𝑐−𝑇𝑎)𝐿𝐿
    (1) 

 

where Tc and Ta represent crop and air temperatures, respectively, and LL and UL subscripts represent, 

respectively, the differences Tc-Ta for non-limiting soil water conditions and for a crop with maximum stress 

level and therefore not transpiring at all. 

Both reference values must be determined from reference lines that can be empirically obtained using the 

following expressions: 

 

(𝑇𝑐 − 𝑇𝑎)𝐿𝐿 = 𝑎 + 𝑏 · 𝑉𝑃𝐷    (2) 

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 = 𝑎 + 𝑏[𝑒𝑠(𝑇𝑎) − 𝑒𝑠(𝑇𝑎 + 𝑎)]   (3) 

 

where a and b are empirical coefficients, VPD is the vapor pressure deficit, and es represents the saturated 

vapor pressure. 

 

In recent years, there has been increasing interest in using infrared thermometry to monitor water stress 

in rice cultivation. This interest stems from the desire to optimize water usage in rice cultivation by 

transitioning to aerobic production systems or implementing management techniques that may induce water 

stress, such as Alternate Wetting and Drying (AWD) in paddy farms. However, while its effectiveness has 

been studied in various contexts, such as traditional rice cultivation, its evaluation in drip irrigation systems 

and under Mediterranean climate conditions remains unexplored. Therefore, this study aims to assess the 

efficacy of infrared thermometry in these specific conditions and establish reference lines for Crop Water 

Stress Index (CWSI) determination in drip irrigated rice.  

2. Materials and Methods  

2.1. Experimental site 

The experiment was conducted at the Technological Center for New Water Technologies (Carrión de los 

Céspedes, Seville, Spain) during the 2022 and 2023 growing seasons. This center has been developed on an 

urban wastewater treatment plant, whose reclaimed water has been used for drip irrigation of rice plots. The 

growth cycle 2022 took place outside the usual growth cycle in the region, which usually occurs between 

June and September. In 2022, the rice seeding and harvesting dates were August 2nd and January 17th, 

respectively. In 2023, the seeding and harvesting dates were June 6th and November 8th, respectively. The 

climate in the area is Mediterranean, with variable rainfall, dry and very hot summers, and mild and often 
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rainy winters that concentrate more than half of the annual rainfall. The soil is characterized to be sandy-

loamy with low salinity, low organic matter content, and low - normal nitrogen content. The plots were 

fertilized with NPK 4-4-12 four days before sowing.  Plots were seeded with the ssp. Indica cultivar 

‘Hispalong’. Seeding was conducted with a precision seeder using a seeding density of 170 kg/ha at a depth 

of 3 cm and a row spacing of 17 cm. Three days after seeding, the drip irrigation system was installed in the 

subplots and connected to the tanks of reclaimed wastewater. The drip irrigation system comprises PE 16 

driplines spaced 0.5 m apart, with drippers (1.7 L/h) also spaced 0.5 m apart. These driplines were connected 

to PE 50 submains, with each subplot equipped with a flow meter. 

2.2. Experimental design and irrigation treatments 

Two irrigation treatments were established with three replications per treatment in a randomized block 

design. Each replication consisted of a 100 m² rice subplot. Treatment T1 was an irrigation treatment without 

water limitation, receiving 100% of the crop's water requirements (ETc). Treatment T2 was a mild water 

stress treatment, receiving 90% of the ETc throughout the growing cycle. The ETc was determined following 

the FAO-56 methodology (Allen et al., 1998), using daily reference evapotranspiration values from an agro-

climatic station belonging to the Junta de Andalucía, located near the experimental plot. 

2.3. Real-time measurements 

Four infrared thermal sensors (model IR120, Campbell Scientific Ltd., Shepshed, UK) equipped with IR-

SS Solar Shields (Campbell Scientific Ltd., Shepshed, UK) were installed in two of three plots in T1 and T2 

irrigation treatments. The sensors were positioned facing the crop at an inclination angle of approximately 

45º from the vertical (Figure 1). Crop temperatures of T1 were used to determine the reference baselines 

(Eqns. 2, 3) needed for CWSI (Eqn. 1) determination. Only sunny and non-rainy days were used to determine 

the reference baselines. Additionally, an air temperature and humidity sensor (model ATMOS 14, METER 

Group, München, Germany) were installed to determine the vapor pressure deficit (VPD) values as follows: 

 

𝑉𝑃𝐷 (𝑘𝑃𝑎) =  𝑒𝑠(𝑘𝑃𝑎) − 𝑒𝑎(𝑘𝑃𝑎)    (4) 

 

where es and ea denote the saturated and actual water pressures. Additionally, five spectral reflectance 

sensors (SRS-NDVI) (Meter Group, Inc. Pullman, WA, USA), each equipped with two photodiodes with 

peak sensitivities at 650 and 810 nm, were installed in two out of three plots in T1 and T2 irrigation 

treatments. Of the five SRS-NDVI sensors, four were NDVI-field stop sensors with a field of view restricted 

to 36º, designed to point downward to measure canopy reflected radiation (Nr). The NDVI-field stop sensors 

were installed on masts at an inclination angle of approximately 45º from the vertical (Figure 1). The 

remaining SRS-NDVI sensor was a hemispherical sensor constructed with Teflon diffusers to perform 

hemispherical (180º field of view) cosine-corrected measurements, primarily designed for upward incident 

radiation (Ni) measurements. The reflectance values (Nr/Ni) calculated for each waveband were used to 

calculate the Normalize Difference Vegetation Index (NDVI) as follows: 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝑟/𝑁𝑖)810𝑛𝑚−(𝑁𝑟/𝑁𝑖)650𝑛𝑚

(𝑁𝑟/𝑁𝑖)810𝑛𝑚+(𝑁𝑟/𝑁𝑖)650𝑛𝑚
    (5)  

 

where (𝑁𝑟/𝑁𝑖) 810𝑛𝑚 and (𝑁𝑟/𝑁𝑖) 650𝑛𝑚 represent the canopy reflectance at 810 nm and 650 nm, 

respectively. All sensors were connected to a CR1000 datalogger (Campbell Scientific Ltd., Shepshed, UK) 

powered by a solar panel, which took readings every minute and stored the 30-minute averages. 
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Figure 1. Image of the experimental plot. 1: ATMOS 14 sensor, 2: IR120 sensor, 3: SRS-NDVI field 

stop sensor, 4: CR1000 data logger protective box, 5: solar panel.  

2.4. Gas exchange 

Stomatal conductance measurements were taken at midday in five fully expanded leaves per sub-plot 

(15 per treatment) throughout the 2023 growing cycle in both irrigation treatments. A leaf porometer model 

SC-1 (METER Group, München, Germany) was used. 

3. Results and Discussion 

 

Rice is susceptible to soil water deficit (Peng et al., 2006; Yang et al., 2019). Under aerobic conditions 

(e.g., drip irrigation), inappropriate water management can lead to significant yield losses. This study 

highlights that a mild reduction (10%) in the water required to meet the crop's needs negatively impacts both 

the crop's water status and vegetative development. Figure 2a illustrates the dynamics of the temperature 

difference between the crop and the air (T; a well-known indicator of water stress), showing higher crop 

temperatures in the T2 treatment. These differences were more evident up to approximately 80 days after 

seeding, decreasing after that due to the onset of leaf senescence. Regarding vegetative development, the 

NDVI index also showed differences between the two irrigation treatments (Figure 2b). 

 

  
(a) (b) 

Figure 2. (a) Temperature differences between canopy (Tc) and air (Ta) for T1 and T2 irrigation 

treatments throughout the 2023 growing season; (b) Seasonal dynamic of NDVI for T1 and T2 throughout 

the 2023 growing season. Vertical bars denote ± SD. DAS: days after seeding. 

 

Despite the sensitivity of T to water stress, it must be normalized to be used as a crop water status 

indicator (Equation 1). This normalization requires the establishment of reference baselines (Equations 2 and 

3) calibrated for local conditions. Figure 3 shows the strong relationship obtained (R2=0.90) between T and 

VPD for the T1 treatment (absence of water stress), confirming the stability of the relationship for the period 
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from 12 to 17 hours (local time). Using average T values for the 12 to 17h period, it was confirmed that the 

relationship obtained during an autumn growing cycle matched that obtained during the summer growing 

cycle, despite the marked differences in VPD observed between the two periods (Figure 4). This relationship 

showed a slope similar to that obtained by Ramos-Fernández et al. (2024) on the northern coast of Peru for 

flood-irrigated rice. However, the intercept differed significantly (negative value in their case). Under humid 

climate conditions and flood irrigation, the relationship obtained by Godson-Amamoo et al. (2022) differed 

substantially from that obtained in this study, both in slope and intercept. These results underscore the need 

to determine reference baselines for the local conditions of each region. 

 

 
Figure 3. Relationship between canopy-to-air temperature difference and vapour pressure deficit (VPD) 

for well-watered drip-irrigated rice (T1) during the diurnal period 12-17h (local time). The plotted data 

pertain to the 2023 growth season, from 56 to 86 days after sowing (August). This period was selected 

because the crop cover fraction had already reached its maximum (see Fig. 2b), minimizing the background 

(soil) effect. Of the two thermal sensors installed in T1, only the data from the plot that recorded the lowest 

temperatures were used to obtain this relationship, ensuring that the relationship corresponds to non-

limiting water conditions. Only sunny days are plotted. 

 

 
Figure 4. Relationship between canopy-to-air temperature difference and vapour pressure deficit (VPD) 

for well-watered drip-irrigated rice (T1) during the diurnal period 12-17h (local time) and over two 

growing seasons (2022 and 2023). The 2022 data pertain to 74 to 126 days after sowing (October-

November). Only sunny days are plotted. The mean canopy temperatures between 12:00 PM and 5:00 PM 

are displayed for each sampling day. 
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The reference baselines obtained in this study (Equations 2 and 3; Figure 4) were used to determine the 

CWSI index in T1 and T2 (Figure 5). This figure shows (1) that T2 maintained higher values than T1 for 

most of the growth cycle, (2) that until DAS 40, coinciding with NDVI values equal to or greater than 0.8, 

the CWSI of T1 did not reach the near-zero values typical of a well-watered crop, and (3) that from 

approximately DAS 90, the CWSI values of T1 and T2 increased again due to the onset of leaf senescence. 

To validate the sensitivity of CWSI to water stress, Figure 6 shows the dynamics of stomatal conductance 

(gs) in both treatments, with lower gs observed in T2 for almost the entire crop cycle. 

 

 

Figure 5. Seasonal time-course of crop water stress index (CWSI) in T1 and T2 treatments and 

normalized difference vegetation index (NDVI) in T1. CWSI has been determined using equations 1-3 and 

the empirical relationship obtained in Figure 4. Only sunny days are plotted. The mean canopy 

temperatures between 12:00 PM and 5:00 PM were used for CWSI computation. The data correspond to 

the 2023 growth cycle. DAS: days after seeding. 

 

 
Figure 6. Seasonal time-course of stomatal conductance (gs) in T1 and T2 irrigation treatments. The 

data correspond to the 2023 growth cycle. The error bars represent the standard error of the mean (n=3). 

 

The high CWSI values observed in T1 during the onset of the rapid vegetative growth phase are due to 

the fraction of soil seen by the sensor, whose temperature is higher than that of the crop canopy. The 

relationship obtained between CWSI of well-watered rice plants and NDVI during the vegetative growth 

period (Figure 7) could be useful for interpreting CWSI values during the crop's vegetative growth phase. In 

this sense, when the crop presents an NDVI lower than 0.8, the measured CWSI should be compared with 

that obtained from the relationship shown in Figure 6 to elucidate whether or not the crop is water stressed. 

However, further experimental data are still needed to validate this hypothesis. 
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Figure 7. Relationship between CWSI and NDVI for well-watered drip irrigated rice plots (T1). The 

data correspond to the period 25 to 45 DAS (2023), coinciding with NDVI values within the range of 0.45 

to 0.85 (incomplete vegetative development). DAS: days after seeding. 

 

4. Conclusions 

Mild soil water deficit caused reductions in vegetative development and the water status of drip-irrigated 

rice. The CWSI index has proven to be a good indicator of the crop's water status. During phenological stages 

where the vegetative cover is still incomplete, the NDVI index can be useful for interpreting the CWSI values 

recorded during that period. The derived reference baselines for CWSI computation remained stable between 

12-17h and across growth cycles, which implies that mean values of canopy temperature in the 12-17h period 

can be used to determine robust CWSI values. 
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Abstract 

Bolus-sensors are a precision livestock farming tool measuring physiological, behavioural, and production 

indicators of individual animals to improve herd productivity. Bolus-sensors collect data such as animal activity, 

rumination, and body temperature. On dairy farms, these data may be used to assess general cattle health, detect 

oestrus, and monitor presence of disease. 

This study focuses on oestrus detection and clinical mastitis (CM) monitoring via bolus-sensors on two dairy 

farms in northeastern Germany. The two farms use an automatic (AMS) and a conventional milking system (CMS), 

respectively. A Monte Carlo partial budgeting analysis is performed to quantify the probability of positive net 

economic outcomes after bolus-sensor adoption. Following previous economic research, the bolus-sensor is 

assumed to affect milk production and herd growth rates. Annual net economic outcomes are calculated for the 

two target functions and combined to assess the overall outcome when the bolus-sensor is utilised as a multi-

functional tool.  

Analysis results show that economic outcomes differ across farm types and functions considered. For CM 

monitoring, the probability of bolus-sensor adoption leading to increased profits is 58% on AMS farms and 99% 

on CMS farms. Conversely, the probabilities for oestrus detection on AMS and CMS farms are 80% and 59%, 

respectively. When the two functions are combined, the likelihood of increased profit is 75% on AMS farms and 

93% on CMS farms. Annual economic benefits span from €26,470 to €110,301 on the AMS farm, and from 

€27,420 to €197,763 on the CMS farm. The mean economic advantage for both target applications is €126,257 

year-1 on the AMS farm and €214,670 year-1 on the CMS farm. However, these outcomes are highly variable and 

more data on the effects of bolus-sensors on herd productivity are required. Additionally, further research is 

needed to identify potential trade-offs among economic benefits, animal welfare, and other non-economic aspects. 

Keywords: partial budgeting, Monte Carlo simulation, mastitis monitoring, oestrus detection, precision livestock 

farming 

1. Introduction 

Precision livestock farming (PLF) is a management system relying on continuous, real-time, and automatic 

collection of data related to individual animal behaviour, health, welfare, production, reproduction, and possibly 

environmental impact (Mayo et al., 2019; Herlin et al., 2021). PLF technologies are adopted to optimise livestock 

system efficiency (Mayo et al., 2019). Since the advent of milking robots in the 1990s, sensor technologies capable 

of measuring physiological, behavioural, and production indicators of individual animals have gained increased 

attention in PLF (Steeneveld et al., 2015; Herlin et al., 2021). These tools may replace or even enhance human 

inspection, thus leading to substantial labour savings, while also enabling more intensive livestock management 

by markedly increasing the amount of collected data (Herlin et al., 2021). Frequent, precise, and systematic data 

collection may also improve farmers’ ability to abide with animal welfare standards, which are increasingly being 

imposed via regulation globally (Herlin et al., 2021).  

Sensors can be categorised as animal- and non-animal-based (Herlin et al., 2021). Animal-based sensors may 

be fixed to ear tags, worn as collars or leg straps, or administered to the animal in the form of boluses (Herlin et 

al., 2021). Non-animal-based sensors are usually developed for indoor systems and installed in the animals’ 

vicinity (e.g., heat stress detection cameras) (Herlin et al., 2021). On dairy cattle farms, sensor systems are 

increasingly being used on a large scale to optimise farmers’ decision-making processes (Steeneveld et al., 2015). 

These sensors may provide information on feed and water intake, oestrus, calving, and presence of disease (Herlin 

et al., 2021). Certain diseases may even be detected before the manifestation of clinical signs, thus helping reduce 

milk losses and antimicrobials use (Kim et al., 2019; Herlin et al., 2021). Because most research efforts have 

concentrated on single-use sensors (Benaissa et al., 2020), this analysis focuses on two target applications in dairy 

cattle systems to understand the economic performance of multi-functional sensor technology. The type of sensor 

studied is an animal-based sensor-bolus placed in the cattle reticulorumen.  
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The first target application of the selected technology is the monitoring of clinical mastitis (CM). CM has 

been the first focus of sensor development in the dairy sector (Hogeeven et al., 2010). It usually occurs during 

lactation, thus severely impairing milk quantity and quality parameters on dairy farms (Kim et al., 2019). Early 

CM detection may reduce negative economic and animal welfare impacts (Kim et al., 2019). Using temperature 

data for CM detection is a reliable approach (e.g., Kim et al., 2019). This is especially true when data are gathered 

by sensor-boluses which, unlike external sensors, have no temperature interference from the surrounding ambient 

(Kim et al., 2019; Herlin et al., 2021). When compared to other diseases, CM leads to short-lived internal body 

temperature increases (Kim et al., 2019). Temperature data are usually augmented by other data types (e.g., cattle 

activity parameters) to improve CM detection accuracy. CM is conventionally monitored via visual inspection of 

pre-milk (Hogeeven et al., 2010; Kim et al., 2019). This makes it impossible to detect mastitis at the subclinical 

stage because clinical symptoms must first manifest (Kim et al., 2019). On dairy farms using automatic milking 

systems (AMS), CM monitoring via visual observation is even more challenging (Hogeeven et al., 2010). 

Alternative approaches to identifying CM cases include milk colour and homogeneity tests, measurement of milk 

electrical conductivity (EC), and quantification of L-Lactate dehydrogenase (LDH) or somatic cell counts (SCC) 

in milk (Hogeeven et al., 2010). Of these, EC, LDH and SCC are the most reliable (Hogeeven et al., 2010), but 

LDH and SCC usually require third-party laboratory tests whose cost hinders farmers’ motivation to diligently 

manage this disease (Boker et al., 2023). Thus, when visual observation of pre-milk is infeasible or impractical 

(e.g., on AMS farms), EC readings are frequently used to monitor CM and identify milk samples requiring 

laboratory testing (Steeneveld et al., 2015). Since the EC of milk can also be affected by factors other than CM 

presence, temperature and other data collected by sensors may further improve the efficiency of EC monitoring 

systems (Hogeeven et al., 2010).  

The second target application of the studied technology is oestrus detection. The reproduction efficiency of 

cattle significantly affects profitability on dairy farms (Benaissa et al., 2020). The most common approach to 

oestrus detection is visual observation of animals manifesting sexually receptive behaviours that are associated 

with reproductive readiness (Mayo et al., 2019; Lodkaew et al., 2023). Because this method is labour-intensive, 

costly, and prone to errors (Mayo et al., 2019; Lodkaew et al., 2023), sensor technologies are increasingly being 

used to monitor such behaviours automatically and continuously on dairy farms (Mayo et al., 2019; Benaissa et 

al., 2020; Lodkaew et al., 2023). If oestrus is not promptly detected, farmers may fail to artificially inseminate 

cattle at the optimal time before ovulation and must wait for another reproductive cycle (Lodkaew et al., 2023). 

Breeding failure results in fewer calf births and consequently in lower herd growth rates (Lodkaew et al., 2023). 

Previous research indicates that economic losses amount to US$ 360 per missed oestrus (Mayo et al., 2019). 

Sensor systems have been shown to detect 80-85% of oestrus events, compared to approximately 55% when these 

are identified via visual methods (Steeneveld et al., 2015). Improving oestrus detection by adopting sensor 

technologies may reduce calving intervals, which is a known contributor to increased milk production on dairy 

farms (Steeneveld et al., 2015). 

The sensor-bolus selected for the present economic analysis is commercialised by smaXtec Animal Care 

GmbH (Graz, Austria). The smaXtec® sensor-bolus continuously collects body temperature, rumination, water 

intake, rumen pH, and activity data (smaXtec, 2024). It is currently commercialised in the US, New Zealand, and 

several European countries (smaXtec, 2024). Upon sensor-bolus administration and activation, data are wirelessly 

transmitted to the smaXtec Cloud TruDTM and processed by artificial intelligence (AI) (smaXtec, 2024). 

Subsequently, the user receives processed data on a mobile phone application as well as recommendations for 

action (smaXtec, 2024). It is here hypothesised that the multi-purpose smaXtec® sensor-bolus could improve the 

economic performance of dairy farms. Economic effects of its use for CM monitoring and oestrus detection are 

assumed to be variations in milk production and herd growth rates. A Monte Carlo (MC) simulation is performed 

to quantify these effects on two dairy farms located in Germany. The two farms are an AMS farm and a 

conventional milking system (CMS) farm. Results are generated to answer the three following research questions 

(RQ): (i) what is the probability that smaXtec® provides a positive economic net outcome compared to 

conventional CM monitoring approaches? (RQ1); (ii) what is the probability that smaXtec® provides a positive 

economic net outcome compared to oestrus detection via visual observation? (RQ2); and (iii) what is the 

probability that smaXtec® provides a positive economic net outcome when simultaneously considering CM 

monitoring and oestrus detection applications? (RQ3). Interpretation of results is conducted from an 

agroecological perspective by discussing some implications of sensor-bolus adoption that go beyond economic 

considerations. 
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2. Materials and Methods 

2.1. Description of the modelled farms 

The two fictitious farms modelled in this study are located in the State of Brandeburg in northeastern Germany. 

On the AMS farm, conventional CM monitoring and oestrus detection methods are assumed to be EC readings 

and visual observation of cattle behaviour, respectively. The EC readers are installed on the AMS. AMSs may be 

sold with an optional SCC sensor (e.g., GEA Group, 2024), but these sensors often rely on California Mastitis 

Test protocols, which have been questioned for their low specificity rate (e.g., Lam et al., 2009; Kim et al., 2019). 

Besides, a farm survey of 414 dairy farms conducted by Steeneveld et al. (2015) in the Netherlands found that EC 

sensors were the most widely used sensor types on AMS farms. Thus, this analysis assumes that the AMS is not 

equipped with SCC sensors and that the farm manager sends milk samples identified via EC readings to a 

laboratory for diagnosing CM via more reliable tests such as the Porta SCC (Lam et al., 2009). The adoption rates 

of AMSs are difficult to quantify because equipment retailers do not make their data publicly available (Eastwood 

and Renwick, 2020). A recent estimate reported that 15% of German dairy farms used AMSs as of 2018 (Eastwood 

and Renwick, 2020). Thus, a second CMS farm was included in this study because CMSs are still widely used in 

Germany. On the modelled CMS farm, conventional CM monitoring is conducted via visual observation of pre-

milk (Lam et al., 2009; Boker et al., 2023), while conventional oestrus detection follows the same method of the 

AMS farm. Labour times for conventional CM monitoring and oestrus detection are based on authors’ experience. 

It is assumed that it takes 15 minutes to monitor the EC sensors at each milking event for the entire herd on the 

AMS farm, and 15 seconds per cow at each milking event to visually assess pre-milk on the CMS farm. Average 

milkings per day are assumed to be 2.7 and 2.2 on the AMS and CMS farms, respectively. For oestrus detection, 

visual observation of cattle behaviour requires 50 minutes per day for the entire herd. The farm labour hourly rate 

is assumed to be € 21.00 per hour (Achilles et al., 2020). The herd size is 227 milking cows, coinciding with the 

mean herd size in Brandeburg (Tergast et al., 2023). 

Both the AMS and CMS farms adopt the smaXtec® bolus-sensor system and move away from conventional 

CM monitoring and oestrus detection practices. Milk production and herd growth rate variations pre- and post-

adoption of the bolus-sensor system are obtained from Steeneveld et al. (2015). Milk production is simulated via 

10,000 MC iterations using mean, standard deviation, and correlation parameters provided in Steeneveld et al. 

(2015). The assumed milk price is the weighted average price in Germany in 2023 (CLAL, 2024). Herd growth 

rate increases are 2.50% and 2.20% on the AMS and CMS farms, respectively (Steeneveld et al., 2015). Calf 

value is € 136.65 head-1 (Saxon State Ministry for Energy, Climate Protection, Environment and Agriculture, 

2024). This value is for bull calves, which are assumed to be sold after four weeks following common practice in 

the study area (Tergast et al., 2023). On the other hand, heifer calves are usually kept on farm as replacement 

cattle (Tergast et al., 2023). Calf management costs are assumed at € 69.81 per bull calf from birth to sale (Redman, 

2023). The latter include direct labour and variable costs such as milk substitute, concentrate, and bedding 

(Redman, 2023). 

2.2. Description of the adopted bolus-sensor system 

The smaXtec® bolus-sensor has a size of 105 x 35 mm (Figure 1) (smaXtec, 2024). It is administered orally 

using conventional bolus applicators (smaXtec, 2024). It has a data measurement frequency of 10 minutes and an 

internal memory capacity of 6 days (smaXtec, 2024). The smaXtec® classic bolus collects the following data 

types: (i) inner body temperature (accuracy of ± 0.01°C), (ii) water intake, (iii) rumination, and (iv) animal activity 

(smaXtec, 2024). The adoption of the smaXtec® system involves three cost components. The upfront cost per 

sensor-bolus in Germany is € 29.99 (smaXtec, 2024. Pers. Comm.). The sensor-boluses have an average useful 

life of 5 years (smaXtec, 2024. Pers. Comm.). Subscription costs depend on the herd size, but these are on average 

€ 2.99 per sensor per month (smaXtec, 2024. Pers. Comm.). Subscription costs cover data processing, internet 

connection, customer support and sensor replacement charges in case of technical failure (smaXtec, 2024. Pers. 

Comm.). Based on these figures, the per-cow annual cost of the smaXtec® technology is estimated at € 41.88. 

Additionally, the smaXtec® system requires the installation of a base station costed at € 6,500, including 

infrastructure, installation labour, and farmer training fees (smaXtec, 2024. Pers. Comm.). The base station is 

where the data continuously collected by the sensor-boluses are processed. It is equipped with a common 

subscriber identity module card, an antenna, a bolus applicator and climate sensors collecting ambient temperature, 

air pressure, and humidity data (smaXtec, 2024. Pers. Comm.). The base station communicates with the smaXtec 

Cloud TruDTM and provides the user with processed data, alerts, and recommendations for action via a mobile 

application (smaXtec, 2024. Pers. Comm.). With an assumed useful life of 10 years, base station costs are 

estimated at € 1007.50 year-1 herd-1. This figure includes annual insurance (assumed at € 65.00 year-1, i.e. 1% of 

the base station cost) and opportunity cost of capital (€ 292.50 year-1 based on the most recent European Central 

Bank fixed rate of 4.50%). 
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Figure 1. The classic smaXtec® bolus-sensor (smaXtec, 2024) 

Following personal communication with smaXtec Animal Care GmbH, it is assumed that it requires 

approximately 15 minutes per day to supervise the mobile application alerts received by the system for the entire 

herd. For the herd size considered in this study, this is equivalent to 0.40 hours per cow per year for either CM 

monitoring or oestrus detection. The smaXtec® system exploits AI algorithms to provide farmers with CM case 

probabilities for individual animals based on body temperature, rumination, and activity data (smaXtec, 2024. 

Pers. Comm.). CM can be confidently detected after a second alert but, depending on the specific CM pathogen, 

certain CM cases may be detected at the first alert (e.g., E. coli CM) (smaXtec, 2024. Pers. Comm.). This may 

enable substantial savings in antimicrobial use and laboratory testing even on AMS farms where the EC sensors 

cannot detect EC changes in milk up to 48 hours after the first smaXtec® system alert (smaXtec, 2024. Pers. 

Comm.). For oestrus detection, the smaXtec® AI algorithms rely on rumination activity and animal movement 

patterns (smaXtec, 2024. Pers. Comm.). System alerts are triggered when an animal behaves in a substantially 

different manner compared to the rest of the group (smaXtec, 2024. Pers. Comm.).  

Although sensitivity and specificity percentages of the smaXtec® sensor are not available, this preliminary 

analysis assumes that this system has a reasonably accurate performance for the two tested functions. Ingestible 

sensors are an effective tool for CM monitoring, especially when body temperature data are correlated with 

additional biometric data (Hogeveen et al., 2010; Kim et al., 2019). According to Hogeveen et al. (2010), the 

minimum specificity and sensitivity of a CM detection system should be 80% and 99%, respectively. It is here 

assumed that the smaXtec® system meets these requirements. Likewise, sensor-supported activity monitoring is 

regarded as the most successful tool for oestrus detection (Benaissa et al., 2020). Thus, for oestrus detection, the 

smaXtec® sensor is assumed to at least match the previously reported 80-85% oestrus detection rate (Steeneveld 

et al., 2015). These assumptions will be revised in future research as more data become available.  

2.3. Description of the partial budgeting model 

The partial budgeting model used in the present economic analysis relies on the approach by Davies et al. 

(2022). Davies et al. (2022) conducted a MC simulation with 10,000 iterations to explore the net economic 

outcomes of transthoracic ultrasonography testing in subclinical cases of pulmonary adenocarcinoma in live sheep. 

This methodology is applied to the use of the smaXtec® system for CM monitoring and oestrus detection in dairy 

cattle over one year to quantify the probability of increased profit after the adoption of smaXtec®. The economic 

factors considered include a higher milk production and an increased herd growth rate (Steeneveld et al., 2015). 

The latter is a result of potentially shorter calving intervals. The net economic outcomes for CM monitoring 

(Scenario 1) and oestrus detection (Scenario 2) are separately calculated and subsequently combined to estimate 

an overall net outcome when smaXtec® is used as a multi-purpose technology (Scenario 3) (Table 1). The relative 

influence of individual model parameters is explored via sensitivity analyses. The model was developed in 

Microsoft® Excel® (Microsoft Corporation, 2024). 

Table 1. Scenarios tested in the Monte Carlo partial budgeting model 

Net economic outcome AMS farm CMS farm 

Clinical mastitis monitoring Scenario 1a Scenario 1b 

Oestrus detection Scenario 2a Scenario 2b 

Overall net economic outcome Scenario 3a Scenario 3b 

Net economic outcomes in Scenarios 1 and 2 are calculated via Eq.1. The individual components of Eq.1 are 

estimated using Eq.2, Eq.3, and Eq.4 for Scenario 1 and Eq.5, Eq.6, and Eq.7 for Scenario 2. Overall net 

outcomes (i.e., Scenario 3) are calculated via Eq.8. 
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Net outcome = [Effect on revenue (a)] − [Increased costs (b)] + [Saved costs (c)]   (1) 

aCM =  Δα ∗ HS ∗ p                               (2) 

where aCM is the effect on revenue of using smaXtec® for CM monitoring (€ year-1); Δα is a stochastic variable 

accounting for the effect on milk production after adoption of the smaXtec® system (l cow-1); HS is the herd size 

of the modelled farm; and p is the average weighted milk price in Germany in 2023 (€ kg-1). 

bCM = (β1
CM ∗ lab + γ1) ∗ HS + γ2         (3) 

where bCM is the cost increase incurred after adopting smaXtec® for CM monitoring (€ year-1); β1
CM is the labour 

time requirement to monitor the CM alerts on the smaXtec® application (h year-1 cow-1); lab is the hourly labour 

rate in Germany (€ h-1); γ1 is the yearly adoption cost per cow of the smaXtec® system excluding infrastructure 

costs (€ year-1 cow-1); γ2 is the yearly adoption cost per herd for the infrastructure costs of the smaXtec® system 

(€ year-1 herd-1); and HS is described in Eq. 2. 

cCM =  β0
CM ∗ lab ∗ mpd ∗ 365 ∗ HS          (4) 

where cCM are the costs saved thanks to the adoption of the smaXtec® system for CM monitoring (€ year-1); β0
CM 

is the labour time requirement to monitor CM via visual observation of pre-milk (h milking-1); mpd are average 

milkings per day; and HS and lab are described in Eq.2 and Eq.3, respectively. 

aOD = (Δα ∗ HS ∗ p) + (ΔHS ∗ HS ∗ cv)            (5) 

where aOD is the effect on revenue of using smaXtec® for oestrus detection (€ year-1); ΔHS is the herd growth rate 

increase after adoption of smaXtec® (%); cv is bull calf value in Germany as of April 2024 (€ head-1); and Δα, 

HS and p are described in Eq.2.  

bOD =  (β1
OD ∗ lab +  γ1) ∗ HS +  γ2 + ΔHS ∗ HS ∗ cmc                 (6) 

where bOD is the cost increase incurred after adopting smaXtec® for oestrus detection (€ year-1); β1
OD is the labour 

time requirement to monitor the oestrus detection alerts on the smaXtec® application (h year-1 cow-1); cmc is the 

bull calf management cost until its sale (€ head-1); lab, γ1, HS, and γ2 are described in Eq.3; and ΔHS is described 

in Eq.5. 

cOD =  β0
OD ∗ lab ∗ HS         (7) 

where cOD are the costs saved thanks to the adoption of the smaXtec® system for oestrus detection (€ year-1); β0
CM 

is the labour time requirement to detect oestrus via visual observation of cattle behaviour (h year-1 cow-1); and HS 

and lab are described in Eq.2 and Eq.3, respectively. 

Overall net outcome =  aCM +  aOD − bCM − bOD + cCM + cOD − γ1 ∗ HS − γ2   (8) 

where aCM, bCM, cCM, aOD, bOD and cOD are the outputs of the previous six equations; HS is described in Eq.2; and 

γ1, γ2 are described in Eq.3. The latter are subtracted from the overall net outcome to avoid double counting of the 

smaXtec® system adoption costs. 

3. Results 

The probability that smaXtec® provides a positive net economic outcome compared to conventional CM 

monitoring approaches was 58% on the AMS farm and 99% on the CMS farm (RQ1). Annual mean net economic 

outcomes for Scenarios 1a and 1b are shown in Table 2. 

Table 2. Mean net economic outcomes of clinical mastitis (CM) monitoring via smaXtec®. Standard deviation 

values are provided in parentheses. 

 AMS farm (Scenario 1a) CMS farm (Scenario 1b) 

Effect on revenue (aCM) € 33,671 (± € 138,444) € 194,234 (± € 86,930) 

Increased costs (bCM) € 12,421 (± € 0) € 12,421 (± € 0) 

Saved costs (cCM) € 5,220 (± € 0) € 15,950 (± € 0) 

Mean net economic outcome € 26,470 € 197,763 
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The probability that smaXtec® provides a positive net economic outcome compared to oestrus detection via 

visual observation was 80% on the AMS farm and 59% on the CMS farm (RQ2). Annual mean net economic 

outcomes for Scenarios 2a and 2b are shown in Table 3.  

Table 3. Mean net economic outcomes of oestrus detection via smaXtec®. Standard deviation values are 

provided in parentheses. 

 AMS farm (Scenario 2a) CMS farm (Scenario 2b) 

Effect on revenue (aOD) € 116,990 (± € 132,843) € 34,044 (± € 112,344) 

Increased costs (bOD) € 13,077 (± € 0) € 13,012 (± € 0) 

Saved costs (cOD) € 6,388 (± € 0) € 6,388 (± € 0) 

Mean net economic outcome € 110,301 € 27,420 

 

The overall economic outcome of smaXtec® adoption was calculated by combining the mean net economic 

outcomes shown in Table 2 and Table 3. The probability of overall increased profits was 75% on the AMS farm 

and 93% on the CMS farm (RQ3). Cumulative distribution functions and descriptive statistics of overall net 

economic outcomes for the two farms are provided in Figure 2. The cumulative distribution function of the CMS 

farm was found to stochastically dominate its AMS counterpart in the first-degree sense. The expected shortfall 

at 10% level on the AMS farm was substantially larger than that on the CMS farm indicating that adopting the 

smaXtec® system was a greater investment risk for the former farm type.  

 

Figure 2. Cumulative distribution functions and descriptive statistics of overall net economic outcomes for 

the AMS and CMS farms when smaXtec® is used as a multi-purpose technology (Scenarios 3a and 3b) 

Finally, sensitivity analyses were conducted to quantify the influence of the input data on the estimated net 

economic outcome probabilities. Parameter sensitivities were tested between 50% and 150% of the correspondent 

baseline value with a 25% step. Probability variations of up to 1% were considered negligible and were therefore 

not reported in this paper. Positive net outcome probabilities were found to be slightly sensitive (-2%) to a 50% 

milk price reduction on the AMS farm for CM monitoring (Scenario 1a) and on the CMS farm for oestrus detection 

(Scenario 2b). In the latter scenario, the probability of a positive economic outcome was also sensitive to a 50% 

smaller herd size (+2%), and a 50% reduction (+2%) or increase (-2%) in the per-cow costs of the smaXtec® 

system (i.e., the γ1 parameter). 

4.  Discussion 

The mean net economic outcomes shown in Table 2 and Table 3 are always positive on both the AMS and 

the CMS farms. However, their magnitude depends on the milking system type considered. The AMS farm had a 

higher probability of obtaining a positive economic outcome when smaXtec® was used for detecting oestrus, 

whereas the CMS farm was more likely to achieve economic benefits when this technology was used for CM 

monitoring. Indeed, it is known that farms equipped with different milking systems tend to adopt sensors for 

distinct target applications (Steeneveld et al., 2015). When the AMS farm used smaXtec® for CM monitoring 

besides oestrus detection, the probability of achieving a positive economic outcome decreased from 80% to 75% 

(-5%). Similarly, on the CMS farm, utilising smaXtec® as a multi-functional sensor resulted in a 6% reduction of 
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positive economic outcome probability from 99% to 93%. Thus, both farms were more likely to benefit from the 

smaXtec® system when this was used as a single-purpose technology targeting the most economically beneficial 

function i.e., oestrus detection on the AMS farm and CM monitoring on the CMS farm.  

The high standard deviation values in Scenarios 1 and 2 indicate that effects on revenue, and consequently 

economic outcomes, were extremely variable. This was particularly the case on the AMS farm, where the expected 

shortfall at 10% level in overall net economic outcomes (Scenario 3a) spanned from € -602,418 to € -114,842. 

The high variability is also reflected in the remarkably wide range between minimum and maximum overall profits 

for both farm types (Figure 2), though the first-degree stochastic dominance of the CMS curve indicated that 

smaXtec® adoption was a less risky investment in Scenario 3b. This high variability is due to the uncertain effects 

of sensor adoption on milk production. In the scientific literature, data on these effects are rarely available or do 

not possess sufficient detail to correlate productivity parameters with specific sensor types. For example, in the 

study by Steeneveld et al. (2015), the effects on milk production after adopting a CM monitoring sensor were 

aggregated for colour, EC, SCC, LDH, or other sensors despite distinct approaches achieving substantially 

different levels of accuracy. More field studies are required to fill this data gap.  

To further explore the uncertain effects of sensor adoption on farm economic outcomes, sensitivity tests were 

performed on all deterministic parameters. Depending on the milking system type and target sensor function, 

positive net outcome probabilities were found to be only slightly sensitive to milk price, herd size and cost of the 

smaXtec® bolus-sensors and monthly subscription costs. On the AMS farm, a 50% milk price reduction resulted 

in a 2% decrease of the positive net outcome probability when monitoring CM (Scenario 1a). A comparable 

decrease was found on the CMS farm when smaXtec® was used to detect oestrus (Scenario 2b). However, such 

a milk price has not occurred since June 2016 (CLAL, 2024). The lowest annual average milk price after 2016 

was encountered in 2020, corresponding to a 28% reduction in 2023 prices (CLAL, 2024). A 25% milk price 

reduction reduced the probability of increased profits by 1%. Herd size and per-cow smaXtec® costs affected net 

economic outcome probabilities in Scenario 2b. A 50% smaller herd size led to an increased probability of positive 

economic outcomes by 2%. Considering the lack of influence of parameters such as herd growth rate, calf 

maintenance costs, personnel costs and labour requirements, this was likely due to savings in the per-cow cost of 

the smaXtec® system. Indeed, γ1 was ten times the base station cost per cow (i.e., γ2/HS) with a herd size of 223 

and still about five times the base station cost per cow when herd size was 50% smaller. A 50% reduction and 

increase in personnel costs and labour requirements led to a 2% increase and a 2% decrease in positive net outcome 

probabilities, respectively. The relatively low influence of the tested parameters seems to corroborate that the milk 

production effect of sensor adoption is the most important variable.  

The cost increases across scenarios mainly resulted from the investment required to adopt the smaXtec® 

technology. These were always greater than the saved costs except for Scenario 1b. Nevertheless, the initial 

investment in the smaXtec® system appeared to be economically viable in all scenarios because of positive effects 

on revenue resulting from higher milk production and/or herd growth rates. The largest cost savings (€ 15,950) 

were achieved in Scenario 1b. Substituting visual observation of pre-milk for smaXtec® CM monitoring led to a 

large reduction in labour requirements, which was an important contributor to the high probability of achieving 

economic benefits after its adoption on the CMS farm. Labour savings are often regarded as a major driver for 

adoption of sensors and automatic milking systems on conventional dairy farms (Steeneveld et al., 2015; 

Eastwood and Redwick, 2020). A strong motivation for adopting sensor systems for CM monitoring on AMS 

farms might be antimicrobial use and laboratory test savings when mastitis is treated at the sub-clinical stage. 

However, these savings could not be quantified in this analysis in the absence of accurate data.  

A lower reliance on antimicrobial use and lower laboratory testing requirements, but also an increased work 

flexibility and a reduction in repetitive physical work are some of the potential non-economic and more 

agroecologically based benefits of smaXtec® adoption. Assigning a monetary value to improved working 

conditions is difficult. However, besides labour cost savings, reduction in drudgery and an improved work-life 

balance are among the major drivers for farmers’ adoption of AMSs (Eastwood and Redwich, 2020) and animal 

sensors (Steeneveld et al., 2015) across the world. The smaXtec® technology seems to be technically capable of 

enabling these benefits while maintaining economic feasibility. Besides, continuous, unbiased and reliable data 

collection from individual animals through sensors may facilitate abiding with animal welfare standards (Stygar 

et al., 2021). Compliance with such standards is gaining a growing attention from European consumers, who are 

willing to pay a 31% premium for milk produced on dairy farms proactively managing animal health and welfare 

(Stygar et al., 2021). Due to this increased attention by consumers, animal welfare standards are increasingly 

being mandated by regulation.  

In Germany, the Animal Welfare Act of 1972 and subsequent amendments requires livestock managers to 

regularly supervise animal health (Bundesministerium der Justiz, 1972). When animal health is monitored with 

the aid of technology, the Act imposes the implementation of precautionary measures in case of technical 
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malfunctions (Bundesministerium der Justiz, 1972). The smaXtec® system has a failure rate of 3% (smaXtec, 

2024. Pers. Comm.). When data transmission from a sensor-bolus stops, the system sends an error message to the 

user via the dedicated mobile application. After a second error message, the user receives an automated email. 

The farmer has 6 days to replace a faulty sensor without losing animal data, which keep being collected even 

when they are not wirelessly transmitted to the base station. Other issues may occur if cattle walk too far from the 

base station, if the base station goes offline, or if the bolus-sensor battery runs out (smaXtec, 2024. Pers. Comm.). 

In all these cases, alerts will be triggered so that the farm manager may promptly act to solve the issue and 

implement precautionary measures if needed. However, more studies are required to validate sensor-based welfare 

assessment, especially on commercial farms (Herlin et al., 2021; Stygar et al., 2021). Animal welfare is a 

multidimensional concept which is unlikely to be captured by a single technology and potential trade-offs should 

be taken into consideration (van Erp-van der Kooij and Rutter, 2020). For example, replacing human contact with 

sensors for monitoring CM and oestrus may lead to increased stress when animals are manually handled for other 

tasks (Herlin et al., 2021). Stygar et al. (2021) investigated into the commercial validation rate of available PLF 

sensor technologies for animal welfare assessment. They found that only 14% of the 129 identified technologies 

had been validated, with sensor-boluses representing the least validated category (7%).   

5. Conclusions 

The present analysis focused on the economic performance of the smaXtec® bolus-sensor system 

implemented for CM monitoring and oestrus detection on fictitious AMS and CMS dairy farms in Germany. 

Probabilities of positive net economic outcomes were estimated using a partial budgeting approach and a Monte 

Carlo simulation of the effect of bolus-sensor adoption on milk production and herd growth rates. The probability 

of achieving increased profits on the AMS farm for CM monitoring and oestrus detection were 58% and 80%, 

respectively. On the CMS farm, the probabilities were 99% for CM monitoring and 59% for oestrus detection. 

When smaXtec® was used as a multi-purpose tool targeting both functions, positive net outcome probabilities 

were 75% on the AMS farm and 93% on the CMS farm. 

Depending on the target application, the mean annual net economic outcomes of smaXtec® adoption ranged 

from € 26,470 to € 110,301 on the AMS farm, and from € 27,420 to € 197,763 on the CMS farm. When the two 

target applications were simultaneously considered, the mean overall net economic outcome was € 126,257 year-

1 on the AMS farm and € 214,670 year-1 on the CMS farm. The higher profits were mostly due to the increased 

milk production, higher herd growth rates and labour savings achieved after adopting the studied technology. 

However, the economic performance of the smaXtec® system was found to be highly variable and consequently 

these results should be interpreted with care. 

Agroecologically based benefits of bolus-sensor adoption on dairy farms may include an increased work 

flexibility, a reduction in repetitive physical work and an improved compliance with animal welfare standards and 

regulation. However, these aspects are not well documented in the scientific literature, especially as far as animal 

welfare is concerned. Further research is required to identify potential economic, social, and environmental trade-

offs of sensor-bolus use on dairy farms in Germany and globally.  
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Abstract 

The implementation of two maize crops with a 0.75 cm inter-row spacing faces recurring challenges, 

particularly regarding the optimal emergence of sown maize. To address this, an experimental trial was 

conducted on a 1.3-hectare plot, assessing the impact of widening inter-row distances while adjusting sowing 

doses and plant populations per hectare. By increasing row spacing to 1.50 meters, an over-density of plants 

within the rows was created, especially when augmenting the sowing dose. The primary objective of the 

experiment was to measure the emergence rate of over-density trials with a row spacing of 1.50 meters and 

sowing densities of 80000 and 16000 plants per hectare. A comparison was made with traditional row spacing 

of 0.75 meters and a density of 80000 plants per hectare. The results showed that the 80000-plant trial 

achieved a yield of 14.7 t ha-1, and the 160000-plant trial yielded 15.3 t ha-1, suggesting that widening inter-

row spacing does not directly impact yield compared to traditional spacing and that maize variety is a factor 

influencing productivity, prompting the research of other varieties under this system in future research. 

Keywords: Zea mays L., crop management, economic return, grain yield. 

1. Introduction 

Maize, one of the world’s most crucial cereal crops, plays a pivotal role in global food security and 

agricultural economics. Its cultivation practices significantly influence yield, resource efficiency, and 

sustainability. Farmers need to consider the specific hybrid's characteristics and the local growing conditions 

when deciding on plant densities. Modern hybrids allow for higher densities without significant yield 

penalties, but the exact density should be optimized based on factors like soil fertility, moisture availability, 

and risk of disease (Sangoi et al., 2002; Coulter at al., 2010; Green et al., 2019). Recent advances in precision 

agriculture have led to the exploration of variable rate (VRT) sowing as a potential strategy to optimize maize 

crop productivity (Ficher et al., 2018; Ramirez et al., 2020). This approach adjusts sowing densities and inter-

row spacings based on localized field conditions, aiming to maximize yield while minimizing resource waste. 

By combining the precise delivery of water and nutrients via drip irrigation with the benefits of larger 

inter-row spacing, maize growers can significantly improve the efficiency and productivity of their farming 

operations. This method aligns well with sustainable agriculture practices by optimizing resource use and 

minimizing environmental impact. Using large inter-row spacing combined with drip irrigation in maize 

crops enhances crop management, water efficiency, and overall yield. Drip irrigation, by delivering water 

directly to the root zone, minimizes water loss due to evaporation or runoff. Larger inter-row spacing can 

help reduce weed growth as it discourages weed germination between rows by targeting water more precisely 

where it's needed and not moistening the entire soil surface. This setup also allows for better air circulation, 

which can decrease humidity around the plants and lower the risk of fungal diseases. The increased space 

makes field operations such as planting and harvesting easier and allows machinery to navigate without 

harming the plants. 

Moreover, with more room available, maize plants' roots can expand more effectively without 
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competition, leading to stronger, healthier plants and potentially higher yields. The extra space can also be 

utilized for inter-cropping, improving field biodiversity, enhancing soil health, and providing an additional 

source of income. This method is not only efficient in optimizing resource use but also aligns with sustainable 

agricultural practices by preserving soil structure and reducing environmental impact. 

The concept of VRT is rooted in the understanding that spatial variability within fields affects crop 

performance. Traditional uniform sowing practices may not address the diverse environmental conditions 

present within a single agricultural plot, such as soil fertility, moisture levels, and microclimatic variations 

(Lobell et al., 2009; Zhang & Kovacs, 2012; Bernardes et al., 2021). Consequently, there is a growing interest 

in adapting planting strategies to better suit local conditions, potentially enhancing crop output and efficiency. 

In essence, VRT addresses the variability within fields by adjusting input applications in real-time according 

to the conditions detected, which is particularly beneficial in scenarios where precision is critical, such as 

with narrow inter-row spacing in maize crops. This not only helps in solving immediate issues related to 

irrigation and crop emergence but also enhances the overall sustainability and profitability of the farming 

operation. 

In this context, our study titled "Optimizing maize crop productivity: a variable rate approach from over-

density trials with different inter-row spacing and sowing densities" aims to assess whether such variations 

could lead to an optimization of emergence rates, growth patterns, and ultimately, crop yield. 

2. Materials and Methods  

The trial took place in Coruche, Portugal (geographical coordinates 38.941844, -8.512472) between May 

and September 2023 on a 1.3ha plot in a CSa Mediterranean climate region. According to Portugal's soil 

chart, the predominant soil types are Vt (litholic, non-humic, slightly unsaturated normal soils, with coarse 

sandstones) and Ppt (podzolised soils - non-hydromorphic podzols, with surraipa, with an incipient A2 

horizon, in or on sandstones). These soils are characterised by their low organic matter content and poor 

water retention capacity. 

The technical itinerary followed a minimum tillage model, with drip irrigation, and the sowing operation 

was carried out using an air-assisted, mechanically operated, seeder with seed distribution regulation in the 

row and inter rows. A control and two varieties of maize were sown under two different inter row width and 

two sowing rates, as shown in Table 1 and Figure 1. 

 

Table I. Variables per installed test 

Trial Maize 

varieties 

Inter-row width 

(m) 

Sowing density (nº seeds/ha) 

Control DKC 6092 0.75 75 000 

1 DKC 6092 1.50 80 000 

2 DKC 6092 1.50 160 000 

3 Ixabele 1.50 80 000 

4 Ixabele 1.50 160 000 
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Figure 1. Trial with 1.50m inter row spacing of the variety DKC 6092 with hiper density, and tester 

“Wile 200” used to measure the moisture content, test weight and temperature of grain. 

 

Samples for yield assessment were collected in 3 representative points, by marking 5 linear metres in the 

crop row, where the following parameters were observed: number of plants; number of corncobs; total weight 

of grain harvested; moisture content and specific weight of the grain. Yield and adjusted yield were 

determined following equations 1) and 2). 

 

Yield (kg/ha) = 1000 Kernel WeightNumber of Ears per Hectare×Average Kernel Weight per Ear×100                   eq.1) 

 

Adjusted Yield = Measured Yield × (Standard Moisture Content/Standard Moisture)                              eq.2) 

 

The data was subjected to descriptive statistical analysis and a mean comparison test. 

3. Results and Discussion 

Figures 1 to 5 show the average value of the samples to the number of plants and number of ears per 

variety and per sowing density, percentage of plants per variety and sowing density, specific weight of 

harvested grain by variety and sowing density, moisture content of harvested grain by variety and sowing 

density and estimated total yield and at 14% moisture by variety and sowing density, respectively. 
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Figure 1. Number of plants and number of ears per variety and per sowing density. 

 

The trials with a 1.50 metre row had higher plant numbers than the control, as would be expected given 

the higher sowing densities. However, it is the control trial that has the highest success rate of plants emerging 

(or reaching the end of the cycle), and only trial 3 comes close with a figure of 91.7 per cent. All the other 

trials have a lower emergence rate than the control trial (Figure 2). 

 

Figure 2. Percentage of plants per variety and sowing density. 

 

The trial with the highest specific weight was the control trial (75.8), followed by the trials with a sowing 

density of 160000 plants. The trials with a planting density of 80000 plants, regardless of variety, had the 

lowest specific weight values (Figure 3). 

 
Figure 1. Specific weight of harvested grain by variety and sowing density. 

 

In respect to the moisture content, the DKC 6092 variety had a similar moisture content in all three 

trials, between 18.8 and 20 per cent. The trials with the Ixabele variety had higher grain moisture content 

values (Figure 4). 
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Figure 4. Moisture content of harvested grain by variety and sowing density. 

 

The yield of the control trial was 14163.6 kg of grain maize per hectare at 14% moisture. The hyper 

density trials with the same variety were very close to the control trial, with the 80000-plant density trial 

achieving a yield of 14746.1 kg/ha and the 160000-plant trial achieving a yield of 15294.2 kg/ha. The trials 

with the Ixabele variety yielded around 12000 kg/ha. These results are shown in Figure 5. 

 

 
Significance using Student’s t test: *significative (P<0.05); **very significative (P<0.01); ***highly significative 

(P<0.001) 

Figure 5. Differences of the estimated total yield and adjusted yield to 14% moisture content by variety 

and sowing density. 

 

 

Considering that one of the main objectives of the trial was to measure the emergence rate of the hyper 

density trials with a 1.50 metre row spacing and compare them with a traditional 0.75 metre row spacing, it 

can be concluded that this method showed lower values than the control.  

However, the trials with a planting density of 80000 plants were close to the control, with deviations that 

appear to be of little significance. The trials with a density of 160000 plants were a little further away from 
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the control, so it might be interesting to investigate intermediate densities to see how this factor influences 

the rate of plant emergence and the number of plants that can fulfil the crop cycle by producing. Production 

remained the same from the control trial to the trials with a 1.50 row spacing, which means that this method 

of cultivation can be installed without directly altering production compared to the traditional row spacing. 

Regarding the second main objective of the trials, which is to analyse the influence of the 1.50 m row 

spacing on crop yields, we can see that the DKC 6092 variety achieved yields in the hyperdensity regime that 

were very similar to the yields in the control trial. However, the Ixabele variety yielded less than the control 

variety, but remained consistent with each other, with no major difference from one sowing density to the 

next. These results may indicate that the DKC 6092 variety is better suited to being sown with a 1.50 metre 

row spacing than the Ixabele variety. With this case study, it seems that the variety is a factor that can 

influence productivity, so it would be interesting to evaluate the performance of other varieties in this system. 

4. Conclusions 

This study opening strategies to the use of variable rate adoptions highlighting the importance of the 

maize variety and sowing density on productivity. It suggests exploring other varieties and densities to 

optimise the desired results by further research to better understand their impact on plant emergence and the 

number of plants that manage to complete crop cycle. 
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Abstract 

We developed a simple, easy, rapid, and non-chemical method to evaluate grape characteristics in the 

field. Grapes (Vitis vinifera ‘Shine Muscat’) grown in Makinohara City, Japan, in 2022 and 2023 were used 

as samples. An exemplary farmer visually inspected the bunches at different ripeness levels and categorized 

them into four groups: A (unripe) to D (overripe). After harvesting, the grape bunches were stored in a 

constant temperature chamber set at 25℃ (ambient temperature). Color images of the fruits and infrared 

spectra of the squeezed juices were acquired. At harvesting, the surface color parameters of the fruits differed 

among the ripeness levels, with significant differences observed in the H (Hue) values. The sweetness values 

of the juices were calculated based on infrared spectral analysis, which predicted the glucose, fructose, and 

sucrose content. These values increased as the fruits ripened, and the relationship between them showed good 

linearity for the grapes cultivated in 2022 and 2023. This experimentally demonstrates that the sweetness of 

the fruits at harvesting could be quantitatively determined by evaluating the H values of the surface color. 

Additionally, the sweetness values increased over time during storage and were well-fitted by a logistic 

function. These results suggest that it is possible to non-destructively predict the sweetness of the fruits based 

on the information taken at harvesting, considering the postharvest stage. 

Keywords: color image analysis, infrared spectroscopy, storage. sweetness, cultivation management 

1. Introduction 

Data-driven agriculture, a subsystem of the smart food system aiming to sustainably produce high-quality 

agricultural products, requires the development of simple, easy, rapid, and non-chemical measurement 

methods for acquiring biological information in the field. These methods are desirable as they can be applied 

to pre- and post-harvest processes, where the quality of agricultural products typically changes. Focusing on 

grapes, which are widely used for raw consumption and processed foods such as wines, we studied the 

relationship between their surface color and internal quality, as surface color information is readily obtainable. 

For internal quality evaluation, we applied infrared spectroscopy to understand the formation of constitutive 

components rather than relying on macro indices like Brix%. We selected Shine Muscat grapes, known for 

their deliciousness and high cost, as the sample. 

2. Materials and Methods  

2.1. Materials  

Grapes (Vitis vinifera 'Shine Muscat') cultivated in Makinohara City, Shizuoka Prefecture, in 2022 and 

2023 were used. An exemplary farmer visually sampled bunches of grapes at different ripeness levels, along 

with the leaves directly above the bunches. The ripeness of the grapes was classified into four groups: A 

(unripe) to D (overripe), where group C indicated optimal ripeness. Samples were brought to Mie University 

immediately after harvesting using a private vehicle. The surface color images of the fruits were acquired, 

and the infrared spectra of the squeezed fruit juices were collected. Additionally, the bunches were stored at 

a constant temperature of 25°C (room temperature). 

2.2. Methods 

2.2.1. Storage 

The sampled bunches were stored in a thermostatic chamber (FSL-2KPH, ESPEC Corp., Osaka, Japan) 
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maintained at 25°C (room temperature). Surface color image acquisition and infrared spectral measurement 

of the squeezed fruit juice were conducted periodically throughout the storage period to observe changes over 

time. 

 

2.2.2. Color image acquisition 

The standard imaging acquisition system developed in our laboratory (Motonaga et al., 2004; Tsukahara 

et al., 2020) was used to take color images of the fruit surface. Two light sources (Vitalight, 5500 K color 

temperature, CIE daylight, spiral bulb type) were placed outside a cylindrical white Kent paper, and the 

illumination was adjusted to 140 lx. A digital single-lens reflex camera (EOS Kiss7, Canon Inc., Tokyo, 

Japan) was used to acquire the images. A black felt-wrapped board was placed behind the grapes to create a 

black background, preventing reflected light and facilitating extraction of the fruit images. Five grapes were 

placed inside the imaging system and photographed from a single side. As the images were saved in RAW 

format, they were converted to TIFF files using Photoshop (Adobe Inc., San Jose, CA). RGB values for each 

pixel in the image were then obtained using the ColorImageAnalysis software (Hashimoto et al., 2015). 

Additionally, HSL values were calculated from the RGB values at each pixel, and the average values were 

obtained. 

2.2.3. Infrared spectroscopic measurement 

Five grapes per bunch, free of blemishes or discoloration, were sampled. The fruites were washed with 

pure water and cut horizontally. A drop of squeezed juice was placed onto a diamond IRE (Internal Reflection 

Element). Infrared spectra of the fruit juice were obtained using a compact FTIR (Fourier Transform Infrared) 

spectrometer (ALPHA, Bruker Optics Inc., Billerica, MA) equipped with an ATR (Attenuated Total 

Reflectance) accessory. The measured spectra were analyzed using the OPUS software (Bruker Optics Inc., 

Billerica, MA). 

3. Results and Discussion 

3.1. Optical sensing information at harvesting 

Figure 1 presents examples of infrared spectra in the fingerprint region (1200 to 900 cm-1) for grape juice 

components harvested in 2023. These spectra have been corrected by subtracting the water spectrum from 

the juice spectra. Variations in absorbance intensity and slight spectral patterns were observed among the 

different ripeness levels. These slight spectral differences could be attributed to variations in the composition 

of the juice at different ripeness stages. Similar results were also observed for the grapes cultivated in 2022. 
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Figure 1. Examples of infrared spectra of squeezed juice components in the fingerprint region. 

Figure 2 illustrates the influence of ripeness levels on the fructose, glucose, and sucrose content in grape 

juice. The content of each sugar was calculated simultaneously using spectral information at 1064, 1054, and 

1034 cm-1, corresponding to the characteristic absorption peaks for fructose, glucose, and sucrose, 
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respectively. This calculation was performed under the assumption of spectral additivity for the saccharides 

(Kameoka et al., 1998; Kanou et al., 2005). The content of all sugars increased with increasing ripeness 

levels, but the trends differed among the sugars. These findings suggest that the sweetness of the grapes 

increased, and the sugar composition changed as the ripeness level progressed. 
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Figure 2. Sugar concentration in squeezed fruit juice by ripeness level at harvesting. (a) fructose, (b) 

glucose and (c) sucrose. 

The surface color of the grapes was also influenced by the ripeness levels at harvest. Figure 3 depicts the 

relationship between the sweetness of the fruit juice and the average hue (H) value of the fruit's surface color. 

Sweetness was calculated based on individual sugar content, and it is influenced by the ratios and 

concentrations of these sugars (Maebashi, 2011). As shown in Figure 3, a very good linear relationship exists 

between sweetness and H values, regardless of the year of cultivation. These results suggest that sweetness 

at harvest can be quantitatively estimated by analyzing the surface color. Furthermore, infrared spectroscopic 

information, which can provide the concentration of each constituent sugar, is considered a valuable tool for 

evaluating fruit quality. Additionally, previous studies have demonstrated the ability to quantitatively 

evaluate surface color using a commercial digital camera under various lighting conditions in agricultural 

fields (Hashimoto et al., 2015; Hashimoto et al., 2017). In other words, it is possible to estimate the sweetness 

of grapes simply by capturing an image at harvest. 
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Figure 3. Relationship between sweetness of squeezed fruit juice and hue values of surface color of fruit at 

harvesting. 

3.2. Quality change during storage 

This section studies the relationship between changes in the sweetness of the squeezed fruit juice and the 

surface color of the fruits during storage. Figure 4 presents the time courses of the sweetness of the juice 

during storage. The sweetness increased exponentially during the storage period in this study. Additionally, 

the sweetness values for group D were the highest, while those for group A were the lowest. As illustrated in 

Figure 4, it is evident that the sweetness curves were influenced by the initial sweetness. 
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Figure 4. Time courses sweetness of squeezed fruit juice during storage. 

The time axis of the sweetness changes shown in Figure 4 was shifted parallel to the initial glucose 

concentration at the lowest ripeness level. The modified time courses are presented in Figure 5. As shown in 

Figure 5, all time course data exhibited one curve-like trend. We then performed curve fitting using a logistic 

function, with an upper limit set based on the fructose concentration, which contributes most to sweetness. 

The storage periods were shifted by -20, -18, and -5 days for grapes of Levels A, B, and C, respectively, at 

25°C. The data was well fitted with a determination coefficient of 0.96. These results, shown in Figures 3 

and 5, suggest that sweetness in the post-harvest process can be estimated solely by capturing an image at 

harvest. 
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Figure 5. Changes of sweetness of squeezed fruit juice in modified time during storage. 

4. Conclusions 

The sweetness values of the fruit juices were calculated based on the predicted glucose, fructose, and 

sucrose contents derived from the infrared spectral information. Sweetness at harvest could be quantitatively 

determined by evaluating the H values of the fruit's surface color. Additionally, the sweetness values 

increased over time during storage, and were well-fitted by a logistic function. Consequently, these results 

suggest that it is possible to non-destructively predict the sweetness of the fruits based on information 

acquired at harvest, considering the post-harvest process. 
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Abstract 

The world is now positioned in the first stages of the Fourth Industrial Revolution, complete with the 

Internet of Things (IoT) connected devices and non-IoT connected devices numbering in the billions. 

According to Statista, there will be just over 10 billion non-IoT active devices by 2025. Installing, 

maintaining, and replacing billions of batteries is a big logistical issue. In addition, improperly discarded 

lithium-ion (Li-Ion) batteries leak into the soil at landfills and cause air contamination. A special focus in the 

"Internet of Livestock" project is pointed on the topic of energy harvesting at the sensor level, since long-

term life cycles must be assumed for practical acceptance, especially in the case of sensors on animals. A 

number of approaches within the project "Internet of Livestock" to self-power a Multi-Sensor NECKTAG® 

to measure animal behavior and climate conditions directly at the individual animal have been investigated. 

It was also determined whether there is enough light available in the barn for energy generation via a solar 

cell even in darker periods such as autumn and winter. The solar cell output increases linearly with increasing 

illuminance and have problems to generate enough energy in different barn areas. The energy yield due to 

the Seebeck effect was surprising. By means of a Peltier element, the cow's body heat can be used to generate 

a flow of electricity. Especially in the cold and dark season, this effect can support energy production very 

well. The results of the present study indicated that a combination of a solar cell and a Peltier element would 

be ideal to supply energy to a Multi-Sensor. Due to the opposite conditions, the highest energy yield for the 

solar cell in the bright season and for the Peltier element in the cold season, this combination makes it possible 

to provide energy for the Multi-Sensor all year around.  

Keywords: Bluetooth 5.1, Multi-Sensor, animal tracking, energy harvesting, power supply 

1. Introduction 

Today's livestock industry faces many challenges in order to stay competitive. Increase the production to 

respond the global growing food demand, while preserving natural resources, the environment (Carillo and 

Abeni, 2020) and animal welfare as well as working cost efficient, while compensating the lack of skilled 

labor seem to be the main challenges in the livestock production. One opportunity to address these challenges 

is the increasing use of sensors and sensor networks in animal husbandry. 

In livestock husbandry, sensors can be used to monitor physiological and behavioral parameters of 

livestock animals. This allows farmers to evaluate the health and welfare status of the animals (Neethirajan, 

2017). Helwatkar et al. (2014) defined a sensor used in dairy husbandry as a device that measures a 

physiological or behavioral parameter of an individual cow and enables automated, on-farm determination 

of changes in this condition. Usually, this is related to a health or welfare issue and requires action of the 

farmer (Ahmann et al., 2024). Thereby, the monitoring will be done by two types of sensors: body sensors 

which monitor the vital parameters of the animals and environmental sensors to monitor the environmental 

conditions of the animals such as the barn climate (Bhavsar and Arolkar, 2012). Helwatkar et al. (2014) 

divide the sensors used for animal health monitoring in non-invasive and invasive sensors. Non-invasive 

sensors can be immobile sensors located in the barn (e.g. cameras, sensors to detect the barn climate) or 

mobile sensor boxes attached to the animal (e.g. pedometers, positioning sensors, ruminating sensor in a neck 

collar etc.). In contrast, invasive sensors are mobile sensor boxes swallowed or implanted to the animal (e.g. 

rumen bolus). 

Livestock industry has developed a lot of sensors to monitor more animals without increased contact time 
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and number of labor, and to provide reliable measures of animal health and welfare (Helwatkar et al., 2014, 

Neethirajan, 2017). Many of these systems are able to automatically record animal-related data of individual 

animals as well as group of animals in real-time to support health and welfare monitoring (Stachowicz and 

Umstätter, 2020). The long-term energy supply is a major challenge for these sensors. 

One possibility to face this challenge is the use of energy harvesting. Energy harvesting is defined as the 

production of a small amount of energy from environment sources like solar, thermal, wind or vibration 

(Anisi et al., 2017). Besides using energy from the environment, other sources such as body heat, foot strike 

or finger strokes could be converted to electrical energy as well (Sudevalayam and Kulkarni, 2011). 

According to Akhtar and Rehmani (2015), these sources can be used to prolong sensors battery life. 

In previous studies some energy harvesting methods were tested regarding their application in dairy 

farming. Machts et al. (2015) developed and tested thermoelectric generators using the temperature difference 

between the sensor probe and the ruminal fluid during water intake to provide a rumen bolus with energy. 

With this method a maximum electric power of 32 µW could be generated. Minnaert et al. (2018) investigated 

the possibility to use a wireless, inductive power transfer to charge on-body sensor networks for cattle wile 

cows are eating. It was possible to transfer on average 96 J per meal (average eating time: 160 s) using this 

method. Kong et al. (2022) and Blažević et al. (2022) successfully used the movements of the cows to convert 

kinetic into electrical energy. Dang et al. (2024) developed a self-powered cow monitoring system using 915 

MHz radio-frequency for sensor charging. With this system it is possible to charge the sensor tag within 5 

min and to use the tag over 90 min without the need for recharging. 

Since the most frequently used energy sources for sensors used in livestock husbandry are lithium-ion 

batteries which still have short battery lives, alternatives have to be investigated. Therefore, the aim of the 

present study was to investigate different energy harvesting methods to supply energy to a Multi-Sensor for 

dairy cattle. 

2. Materials and Methods  

A solar cell and a Peltier element were tested as energy harvesting methods to supply a Multi-Sensor with 

energy. The Multi-Sensor was developed to measure animal behaviour by use of the animals location as well 

as the climate conditions directly at the individual animal. 

2.1. Experiment 1 – Solar cell  

In a first step, measurements regarding the lighting conditions in different areas of the experimental barn 

were performed to find the most suitable solar cell. Based on these measurements, solar cells that are suitable 

especially for diffuse light and with a wideband light spectrum were investigated for their use as an energy 

harvesting method for a Multi-Sensor attached on dairy cows. Thus, a total of four solar cells were tested 

under laboratory conditions.  

Therefore, the solar cells to be tested were illuminated with a light source at different illuminance levels 

(50 lux; 100 lux; 200 lux; 300 lux). The generated current and voltage were measured using multimeters 

(Figure 1). 

 

AgEng 2024 Proceedings

195



 
Figure 1: Experimental setup to test different solar cells regarding their suitability as an energy 

harvesting method for a Multi-Sensor attached on dairy cows. 

2.2. Experiment 2 – Peltier element 

With this experiment, it was investigated whether energy can be obtained from temperature differences 

between the cow and its environment using the Seebeck effect. This effect is utilized by a Peltier element so 

that a current flow is generated when there is a temperature difference at this element. Therefore, the Peltier 

element to be tested was thermally connected to a cold plate, the temperature of which is monitored directly 

under this Peltier element using the multimeter (Figure 2). There was a second Peltier element on this one to 

be tested, which acts as a heat source (temperature difference generates a current flow ↔ current flow 

generates temperature difference). The temperature on the top of the Peltier element to be tested was 

measured using a thermal camera. The harvester board was used as a load and charges a capacitor (470 mF). 

The capacitor was deliberately oversized in terms of capacity so that the harvester could not charge it up to 

the end-of-charge voltage during the test period, which would have made a correct evaluation impossible. 

 

 

Figure 2: Experimental setup to test a Peltier element regarding the suitability as an energy harvesting 

method for a Multi-Sensor attached on dairy cows. 
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Tests were carried out with two temperature differences (5 K and 10 K) with a duration of 30 min for 

each temperature difference. The voltage of the capacitor is measured at the beginning and end of the test. 

3. Results and Discussion 

3.1. Solar cell 

Measurements of the lighting conditions in the different barn areas show average values of 150 to 250 

lux during the day. For comparison, outside the barn in the open air, values between 10000 lux (cloudy) and 

> 50000 lux (sunny, value exceeded the possible measuring range) were possible. As expected, the solar cell 

output increases linearly with increasing illuminance (Figure 3). 

 
Figure 3: Measured solar cell output detected with different illuminance level. 

 

However, it was already clear at this stage of development that the energy supply from the solar cell alone 

would not be sufficient. Akhtar and Rehmani (2015) confirm these results as they say that enough amount of 

light has to be available for optimal function of a solar cell. According to the authors, solar power is not 

steadily available since it is highly time and seasonal dependent. To efficiently use solar cells indoor, the 

source of indoor light is an important factor as the diverse sources have different types of irradiance spectra 

and outdoor solar cells are not suitable for indoor use (Biswas and Kim, 2020). 

3.2. Peltier element 

Under laboratory condition, energy could be generated using a Peltier element (Table 1). 

  

Table 1: Generated energy by using two temperature differences with the help of a Peltier element 

  5 K 10 K 

Voltage at the beginning of the test 0,08 V 0,146 V 

Voltage at the end of the test 2,01 V 2,695 V 

Generated energy 0,948 Ws 1,702 Ws 

Average power value 527 µW 945 µW 
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These results could be confirmed by the findings of other investigations. Earlier studies have shown that 

the Seebeck and the Peltier effect could be used to generate voltage (Sharma et al., 2017, Qasim et al., 2022). 

Zhou et al. (2021) found a high energy output using the Seebeck effect as well. Yuan et al. (2023) found out 

that thermoelectric generator systems based on the Seebeck effect are able to convert the heat energy in a 

road into electricity. Due to the measuring principle of the Peltier element, it will produce more energy in 

autumn and winter season because its efficiency depends on the temperature differences between the cows 

and the environment. The energy yield is higher, the colder it is in the barn. 

4. Conclusions 

Despite the poor lighting conditions in the barn and milking parlour, a significant energy yield can be 

achieved with the solar cell. However, a second, alternative energy source is needed to ensure the energy 

supply at night as well. Based on the measurement results, the decision was made in favour of the Peltier 

element. Under certain conditions, this energy source can generate a significant amount of energy. The Peltier 

element will tend to dominate energy generation in the cooler and darker seasons, as its efficiency depends 

on the ambient temperature. The colder it is in the barn, the higher the energy yield. The opposite is the case 

with solar cells, where efficiency increases on bright, sunny days. These opposite conditions make it possible 

to provide energy for the system all year round.  
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Abstract 

The objective of the project “Internet of Livestock” (IoL) was the development of a multifunctional sensor to 

record health-related data from dairy cows and to directly connect these data with operators, e.g. barn climate 

control operators. 

The sensor was developed for attachment to the cow's collar located on the back of the neck. The Multi-Sensor 

is designed according to a modular principle and contains of different sensors for data recording. 

With the developed sensor it is possible to measure the environmental traits illuminance (lux), relative humidity 

(%), air pressure (hPa), temperature (°C), as well as the air quality directly on the animal. The selected traits are 

suitable for detecting and describing deviations in behaviour and animal welfare from the biological normal state. 

With the new sensor system, a localization of the cows in the barn is possible as well. Therefore, an antenna system 

for networking the sensors as well as the connection to the host computer based on BLE_5.1 including 3D real-

time localization was set up.  

Data were transmitted using energy-saving Bluetooth 5.1 technology to the host computer, in order to create a 

standardized information provision for farm management and information systems at the farmer. Furthermore, the 

BLE_5.1 technology makes it possible for the first time to develop bidirectional communication for controlling 

actuators on the animal, on machines/devices or at the operator. The location data achieves sufficient measurement 

accuracy and reproducibility (within ±1m) to create animal-specific tracking routes and derive animal behaviour 

characteristics.  

By means of the developed application-open host computer software interface, the platform-independent data 

exchange and the networking option to higher-level farm management and information systems (Internet, cloud or 

farm network) as well as the feedback of control functions to the above-mentioned sensor technology were 

realized.  

Keywords: Bluetooth 5.1, Multi-Sensor, animal welfare, animal behaviour, dairy cattle tracking 

1. Introduction 

The automation and digitalization of various production and management processes have found their way into 

modern dairy farming. The use of innovative sensor technologies enables automatic and sensor-based data 

collection in almost all areas of the barn. Nowadays, there are virtually no limits to data collection. The continuous 

digital recording of data on the animal and its environment should enable conclusions to be drawn about animal 

welfare and increased productivity in dairy farming. 

Stachowicz and Umstätter (2020) already describe a large number of digital assistance systems, particularly 

for the dairy cattle sector. The sensor offerings in the agricultural sector are diverse but are only isolated solutions. 

The interfaces to the farm management systems are not compatible, which is why it is not yet possible to connect 

the sensors. The collected raw data is not transferred, but only aggregated. Therefore, livestock farmers are 

concerned about data ownership in their barns (Fadul-Pacheco et al., 2022) and they can only use the sensors to a 

limited extent. The integration of human, animal and technique in the development and use of digital assistance 

systems plays an important role as well (Ahmann et al., 2024). 

While sensors for recording health parameters such as activity, feeding time and rumination have become 

established in practice, the combination with environmental parameters plays a minor role. According to Leliveld 

et al. (2024), there are currently no systems available that integrate barn environment conditions in the detection 

of the animal welfare status. This led to the conclusion that curtains, ridge openings, fans and light are controlled 

by measuring the climate conditions outside the barn and not depending on the animal’s welfare status. Hempel et 

al. (2018) concluded that measurements to assess the barn climate should be taken in a height of about 3 m–3.5 m, 

because this height could represent the conditions in the animal occupied zone. According to the current state of 

knowledge, there is no evaluated sensor that takes measurements of the microclimate on the cow and derives 
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automated measures to improve the barn climate. 

Furthermore, there may be interference with sensors in the same frequency range. For this reason, most of the 

sensors established on the market for localization and health monitoring cannot be used in parallel in a barn.  

The use of the Bluetooth 5.1 (BLE_5.1) radio protocol standard provides options for bidirectional, low-energy 

data transmission and theoretically decimetre-accurate real-time localization (Unold et al., 2020). According to 

Makario and Maina (2021) the use of BLE_5.1 wireless communication protocol can help to improve farm 

management. Based on this standard, it is therefore possible to aggregate sensor and actuator information and 

control the status of the actuators via bidirectional transmission, in addition to real-time localization. 

The objective of the present study was to develop and test a smart locatable multifunctional sensor device for 

dairy cows to enable interconnectivity between operators and actuators by using Bluetooth Low Energy and energy 

harvesting. 

2. Materials and Methods  

2.1. Sensor device  

The sensor device consists of a sensor tag that measures animal related data, an antenna array that transfer the 

measured data and a host computer for data analysis. 

The tag is attached to the cow via collar and it is located on the back of the neck (Figure 1). The Multi-Sensor 

is designed according to a modular principle and contains of different sensors for data recording. The sensor is 

able to measure the environmental traits illuminance (lux), relative humidity (%), air pressure (hPa), temperature 

(°C), as well as the air quality directly on the animal. A localization of the cows in the barn is possible as well. 

 

 
Figure 1: Sensor on the collar of a cow. 

 

The tag uses BLE_5.1 for data transmission to the host computer and is supplied with energy via energy 

harvesting. 

Antenna arrays were developed to transfer the data measured by the sensor tag (Figure 2). These arrays use 

BLE_5.1 as well. With the help of the arrays a 3D real-time localization via 3D positioning of the sensors, which 

could be used for animals, machines and facilities, is possible. Due to a Power-Over-Ethernet connection, the 

antenna arrays communicate with the host computer and were supplied with energy. They have a water- and 

dustproof housing that make them suitable for indoor and outdoor use. 
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Figure 2: Antenna array with housing and external mounting for installation in the barn. 

 

The HOST-PC is used as the data and software centre. The developed software (Figure 3) was used for sensor 

data aggregation of the sensor as well as for antenna array control, data exchange and calculation of the 3D real-

time localization data and storage of the data in the database. It was also used to provide an interface for platform-

independent data exchange with higher-level third-party systems.  

 

 
Figure 3: Desktop view of the developed software on the host computer. 

2.2. Accuracy test of the localization system in a cubicle barn 

All accuracy tests of the developed localization system were performed in the dairy barn of the Saxon State 

Office for Environment, Agriculture and Geology in Köllitsch, Germany. 

This is a cubicle barn built in 1998 with a slatted floor for 120 dairy cows, which are divided into four 

performance groups and one wellness group. The cubicles are fitted with rubber mats, cleaned daily and overspread 

with a mixture of sawdust and lime. The slurry channel is located directly under the slatted floor, into which the 

animals' excrement is pushed several times a day by a slatted robot. The sides of the barn are open and can be 

opened or closed with curtains, depending on the weather conditions. The gable ends are fitted with wooden 

spaceboards at roof truss height. The gaps are designed to be 28 mm to allow light and air through. 
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2.2.1. Static accuracy test 

The localization accuracy was tested at 14 measuring points uniformly distributed over the complete barn area 

(Figure 4).  

 
Figure 4: Arrangement of the antennas (red), the reference sensors (blue) and the measuring points (green) in 

the barn compartment. 

 

At each measurement point, each of the two transmitters 80:66 and 6D:C9 was positioned at heights of 1.45 

and 0.45 m for three minutes to compare its true position with the positions determined by the antenna array via 

BLE 5.1.  

2.2.2. Dynamic animal localization test including animal observation 

To determine the accuracy of animal location measurements, the locations measured by the sensor tags were 

compared with direct observations. Therefore, four lactating cows were equipped with a sensor tag with the help 

of a collar. Direct observations were performed on six days for 2 hours from (7.30-09.30 a.m.) and on one day for 

4 hours (07.30-11.30 a.m.) by one observer. The locations of the animals (row/column of the barn grid) as well as 

the position (standing or lying) were recorded every two minutes. This means that 480 observation values were 

assessed for the four experimental animals. The tags recorded values every 30 seconds. 

3. Results and Discussion 

3.1.1. Static accuracy test 

When determining the position of the tags every 5 seconds, a positioning accuracy of 1 m was maintained. The 

tag C6:D9 deviated more strongly from the current position than the tag 80:66 and had some failures in the position 

determination. Tag 80:66, on the other hand, showed the actual position well at a radial distance of less than one 

meter. The technical error in tag C6:D9 was corrected after the examinations. 

The results of the static accuracy test show that the accuracy of the tested smart locatable multifunctional sensor 

device was not as good as that of commercially available systems. Ipema et al. (2013) found an average accuracy 

of 30.5 cm (± 25 cm) during a static accuracy test of a positioning system using Ultra-High-Frequency. A 

positioning system based on Ultra Wide Band radio signals measured the location of the tags in a static test with 

an accuracy of 17 ± 17 cm (Frondelius et al., 2014).  

3.1.2.  Dynamic animal localization test including animal observation 

In figure 5, the observations show that cow number 42 (green), cow number 117 (yellow) and cow number 41 

(red) moved around during this observation period.  Cow number 21 (blue) was lying down in cubicle 4, but was 

located in cubicle. During the dynamic animal localization test, an accuracy of 0.5-1.0 m could be achieved.  
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Figure 5: Results of the dynamic accuracy test with animal position determined by direct observations (dark 

coloured dots) and animal position detected by the sensor system (light coloured dots). 

 

The mentioned accuracy detected with the developed sensor system was also not as precise in the dynamic 

tests as those of other systems. Frondelius et al. (2014) found an accuracy of 0.17±0.17 m using Ultra Wide 

Band radio signals to detect the cow position. However, they did not mount their tags on moving cows, but on a 

wooden plank which was moved back and forth on eight specific measuring lines. Tullo et al. (2016) used a 

localization system using Ultra-High-Frequency and found correlations of 0.82, 1.00, 0.98 and 0.88 for the 

locations alley, cubicles, trough and at the drinker, respectively. 

4. Conclusions 

It could be concluded that a cow localization system using BLE_5.1 could be used to find dairy cows in the 

barn. Since this data transfer method is energy-saving compared with Ultra-High-Frequency or Ultra Wide Band, 

it could help to extend the lifetime of the sensor tags. Nevertheless, further developments and investigations are 

necessary to improve the accuracy of the localization system. 
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Abstract 

Modern greenhouses are energy consumers in order to control appropriately the internal microclimate 

and to serve the requirements of the crop growth. For the design of energy-efficient greenhouses with the 

possibility of utilizing locally available renewable energy sources, it is necessary to know not only the total 

annual energy consumption but also additional data such as: a) The time distribution of energy consumption 

(daily and yearly variation), b) The type of consumed energy (thermal or electrical) and, c) its distribution 

among the various production and environment control procedures. For the collection of the above 

information a procedure of energy audit is required. In the present text a procedure for the first steps of 

operational rating review is presented and applied to various greenhouses in Greece.  

The energy audits results are presented in terms of (i) power and energy distribution pies by energy type 

and procedure, (ii) SANKEY diagrams, and (iii) energy indices per greenhouses area and per production unit. 

To date, in the existing relevant bibliography it is customary to calculate the energy consumption in 

greenhouses with reference to the greenhouse unit area resulting to a wide dispersion of prices even for 

greenhouses located in the same climatic conditions and with the same cultivation since greenhouses 

mechanization level is ignored. Thus, low-tech greenhouses may appear better than high-tech greenhouses 

in terms of energy consumption, leading to a distorted picture since it ignores the greater productivity of 

high-tech greenhouses. In this work both energy indicators are calculated, energy consumption per 

greenhouse uit area in order to compare with the literature, and energy consumption per production unit. The 

energy audit results can guide the greenhouse manager to decision about operational strategy, used type of 

energy, equipment characteristics and local energy sources exploitation. 

 

Keywords: greenhouse, energy audit, energy performance, energy indices  

1. Introduction 

Modern greenhouses are energy consumers in order to control appropriately the internal microclimate 

and to serve the requirements of the crop growth. For the design of energy-efficient greenhouses with the 

possibility of utilizing locally available renewable energy sources, it is necessary to know not only the total 

annual energy consumption but also additional data such as: a) The time distribution of energy consumption 

(daily and yearly variation), b) The type of consumed energy (thermal or electrical) and, c) its distribution 

among the various production and environment control procedures. This information will allow the choice 

of adequate energy type, energy sources and equipment characteristics that would ensure reduced energy 

consumption and reduced environmental footprint.  

For the collection of the above information a procedure of energy audit is required. The concept of energy 

audit has been initially developed in USA and adopted in many applications in Europe almost 20 years ago. 

For the energy audits conduction (for industry and buildings) was developed methodologies according to 

relative European Union Directives (from 93/76/EC to 2018/844/EU) (EC 1993, 2010, 2018, EC/EP 2002, 

2012). Especially for the energy audits of conventional buildings this methodology was specified according 

to 2002/91/EC (Paris, Vandorou et al., 2022) directive supported by a number of European and International 

Norms. The case of industry energy audits has been addressed through European research and development 

projects like FP7 or Intelligent Energy and more recently Horizon2020, without to lead yet in specific 

Directive other that the 93/76/EC (EC 1993). 

 Energy audit is a systematic process that aims to: a) form a comprehensive view on the energy 

consumption profile of a building or system by identifying the factors that affect it, b) consider energy saving 
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options taking into account the total cost of the product, c) provide a comprehensive proposal to the unit 

manager regarding the energy saving measures he can implement (Baxevanou, Fidaros et al., 2021). 

In the present text a procedure for the first steps of operational rating review is presented and applied to 

various greenhouses in Greece. In this procedure various parameters affecting the energy consumption are 

accounted like: a) the local external climatic conditions, b) the cultivation characteristics, c) the greenhouse 

construction, d) the greenhouse operation strategy, e) the installed equipment for production and 

environmental control. The energy audits results are presented in terms of (i) energy distribution pies by 

energy type and procedure, (ii) SANKEY diagrams, (iii) greenhouse gases emissions and (iii) energy indices 

per greenhouses area and per production unit. 

2. Materials and Methods  

2.1. Energy audit procedure 

An energy audit is consisted of two discrete phases. The first phase is an operational rating approach 

which means that the energy consumption is calculated directly using the data of energy bills and of the 

production data. From the first phase auditor acquire a general perspective about the greenhouse energy 

performance but an analysis is required in order to be able to: a) distribute the consumed energy among the 

different procedures inside a greenhouse, b) allocate the most energy consuming activities, c) assess the 

efficiency of various procedures and finally d) suggest energy performance improvement measures. This 

analysis is realized in the second phase which is an asset rating approach (Baxevanou et al., 2021). The 

present work focuses in the first phase of the energy audit and extend in part of the second phase eg until 

distribution of the consumed energy among different procedures inside the greenhouse.  

In the first step (site visit) auditor: (i) records the installed equipment which consumes energy, (ii) record 

the construction characteristics, (iii) records the basic characteristics of the surrounding area, (iv) interview 

the unit manage (Baxevanou et al., 2021). 

In the second step auditor should collect data that cannot be recorded by greenhouse inspection. Most of 

them are collected and delivered by the owner/manager after the interview or during it. These data include: 

(i) Construction plans of the chambers and plans of the area, (ii) Manuals and technical characteristics 

specifications of the equipment, (iii) Existing energy consumption measurements, (iv) Energy consumption 

invoices (v) Production data in annual base for the last three years, (vi) Local climatic data. Energy 

consumption invoices can have covered the financial data (Baxevanou et al., 2021). 

The data analysis phase is constituted by following steps: (a) elaboration of the collected data, (b) 

Calculation of energy indices, (c) identifying energy-intensive processes and low performing equipment. The 

last will be analyzed in section 2.3  

2.2. Examined case studies 

The above-described energy audit procedure was implemented in 4 greenhouses in Central Greece. The 

basic characteristics of the 4 examined greenhouses where the procedure of energy audit were implemented 

are summarized in the following Table 

Table 1.  Examined greenhouses characteristics 

Greenhouse 

number 

1-Commercial 2–Commercial 3–Commercial 4–Experimental 

Greenhouse type Hydroponic, 

Gothic, multispan 

Arched, multispan Arched roof, 

multispan 

Gothic, multispan 

Greenhouse crop Cucumber Potted flowers Tomato tomato 

When was it 

constructed 

2010 2010 2011 2018 

When was it 

renovated 

2018, new 

(hanging) grow 

gutters 

2023, a new 1000 

m2  

No No 

Greenhouse 

location 

N 39o 54’ 43’’ 

E 22o 37’ 21’’ 

N 39o 14’ 14.56’’ 

E  22o 43’ 48.51’’ 

N 39o 15’ 16.3’’ 

E 22o 44’ 19.18’’ 

N 39o 23’ 41.14’’  

E 22o 45’ 29.16’’ 
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Altitude of 

greenhouse 

location 

65 [m] 70 [m] 81 [m] 85 [m] 

Greenhouse 

ground area 

5040 [m2] 8000 [m2] 5000 [m2] 800 [m2] 

Mean greenhouse 

heigh 

Gutter 5 [m], top 

7.35 [m] 

Gutter 4 [m], top 

6.2 [m] 

Gutter 3.5 [m] top 

6.1 [m] 

Gutter 5 [m], top 

7.35 [m] 

2.3. Data analysis 

The data analysis is the most interesting part and requires combination of recording, gathered information 

(from the manager interview), calculations and literature data. The elaboration of collected data in order to 

calculate the total installed power, the total consumed energy, the distribution of installed power to different 

procedures, the calculation of power indices and the calculation of general energy consumption indices is 

straight forward. However, for the distribution of consumed energy it is required calculations and use of the 

energy consumption invoices time series in monthly base with the concept of base load.  This procedure will 

be shortly described here with two examples of realized for the project energy audit.  

After elaboration of three years data the basic yearly pattern is determined. This pattern along with 

analytical calculations about the theoretical energy consumption is used for the determination of operation 

hours of each individual device, with the assumption that each device operates at full load continually. As 

already said the electrical energy consumption can be distinguished to the following procedures: (i) heating, 

(ii) cooling, (iii) ventilation, (iv) irrigation, (v) lighting, (vi) refrigeration, (vii) fertigation, (viii) transport 

system, (ix) other. 

 
Figure 1. Electrical energy time series in a Tomato crop greenhouse in Greece 

Usually from the manager interview information about the operation conditions of transport systems, 

refrigeration and other machines operation which however according to the literature are not the main power 

consumption points are gathered. Furthermore, with theoretical calculation of heating demand and the known 

power of heating production equipment the hours of operation of heating equipment can be calculated. 

Finally, the energy consumption for irrigation can be calculated theoretically by the water consumption  

(Kittas, Katsoulas et al., 2014) and from there the irrigation system operation time. It can also be considered 

that the operation time of fertigation system is the same with the operation time of irrigation system. Then 

the unknown operation hours concern the cooling system, the ventilation system and the lighting system. 

From the time series a base load (the lowest energy consumption usually achieved in autumn or spring 

months) can be determined that correspond to consumption independent of climatic conditions. The summer 

maximum corresponds to base load plus the cooling load and the winter maximum correspond to base load 

plus the lighting load.  Thus, a system with three equations and three unknowns is produced that allow the 
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operation time of equipment for cooling, ventilation and lighting. Of course, the above procedure each time 

is adapted to the characteristics of each examined greenhouse, the type of the crop and the information given 

by the manager. The heating needs are calculated in monthly base using the concept of representing day 

(according to ISO13790 (ISO 2008)) with quite accuracy, while the calculation of cooling needs would 

require more hideous calculations in hourly base and are not considered adequate for the purposes of an 

energy audit. In Figure 1 an example of the application of this method is presented. In the Figure 1 the 

electrical consumption time series of a tomato cultivation greenhouse in Central Greece is presented 

constructed from four months’ invoices. In the specific greenhouse energy is consumed for heating, cooling, 

ventilation and irrigation and fertigation. It should also account that the crop schedule is from January to 

September or October. In this case the base load corresponds to fertigation and irrigation, the winter load 

corresponds to base load + heating and the summer load corresponds to base load + ventilation+ cooling. 

3. Results and Discussion 

As stated earlier the energy audits results will be presented in terms of power and energy distributions, 

energy balance flow charts and energy intensity indices. 

3.1 Power and energy distributions 

In the Table 2 the distribution of total installed power among thermal and electrical is presented for the 

four examined greenhouses. From the total power distribution, it clearly comes out that thermal power 

accounts for the bigger part of the total installed power with merits that range between 4 to 13 %. In the 

Figure 2 the distribution of thermal energy to various procedures is presented. In the tomato greenhouses all 

the thermal installed power is used for heating, while in the other two greenhouses thermal power is also used 

for electricity production with generator pairs. This represents the 4% of the thermal power for the cucumber 

greenhouse and the 8% of the thermal power for the potted flower greenhouse.  

Table 2. Distribution of total installed power 

Greenhouse  Total thermal power [%] Total electrical power [%] 

Cucumber commercial 94 6 

Potted flower commercial 96 4 

Tomato commercial  87 13 

Tomato experimental 91 7 

In the Figure 2 the electrical power distribution among various procedures is presented. In all the 

commercial greenhouses the fertigation represents the 10 – 12 % of the installed electrical power. The 

installed power for lighting is negligible except for the case of potted flowers greenhouse where it represents 

the 25% of the total installed electrical power. As far it concerns heating and cooling the vegetable production 

greenhouses have similar behaviour while the potted flower greenhouse has no installed power for cooling 

but important installed power for heating. Installed power for ventilation ranges from 6 to 15%. While the 

installed power for irrigation is high enough in almost all the cases. It should be noted that usually this is due 

to drilling pumps which, however may serve other purposes too in the farm where the greenhouse is installed.  

 

  
Cucumber Commercial Potted flowers 
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Tomato Commercial Tomato Experimental 

Figure 2. Distribution of installed electrical power 

From the above it comes out that an important energy consumption procedure is the greenhouses heating. 

In the following Table 3 the efficiency of heating systems in each greenhouse is summarized. In the cases of 

biomass burners very low efficiency heating systems are observed.  

Table 3. Heating systems efficiency and fuel 

Audited greenhouse Heating system total efficiency Fuel 

Cucumber  26% Biomass 

Potted flower 42% Biomass 

Tomato commercial 65% Diezel 

Tomato experimental 89% Diezel 

For the commercial greenhouses data for real energy consumption are available. Since it is obvious that 

heating is the main thermal energy consumption it is good to account for the efficiency of heating systems 

used in each greenhouse and to adapt the real energy consumption for heating to the one that would arise if 

a heating efficiency degree of 75% would have been achieved. In this case the distribution between thermal 

and electrical energy consumption in terms of primary energy is presented in the Table 4. 

Table 4. Primary energy distribution 

Audited greenhouse Thermal energy [%] Electrical energy [%] 

Cucumber  65 35 

Potted flower 66 34 

Tomato commercial 69 31 

From Table 4 it arises the important contribution of electrical energy in the final energy consumption in 

greenhouses. For that reason, in the next Figure 3 the distribution of electrical energy consumption among 

various procedures is studied for two of the commercial greenhouses.  

  

Potted flower Tomato commercial 

Figure 3. Electrical energy distribution 

In both greenhouses the electrical energy consumed for heating is the 10%. In the tomato greenhouse 

cooling with 48% is the major power consumption process while in the potted flower greenhouse there is no 

such consumption and the need for cooling is covered by ventilation (representing the 6% of the 

consumption). In both irrigation accounts for the 1/3 of the total energy consumption. Fertigation system and 
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lighting complete the energy consumption for the potted flower greenhouse while in the tomato greenhouse 

the fertigation accounts for the 5% of the total consumption and the consumption for lighting is negligible. 

From the Table 5, where the distribution of final energy consumption of various procedures is presented 

along with literature values, it occurs that the observed values fall within the internationally expected range. 

Table 5. Comparative presentation of procedures participation in final energy consumption in 

Greenhouses 

s/n Procedure Energy audits Literature (Paris et al., 

2022) 

1 Heating 78 – 93% 0 – 99% 

2 Cooling 0 – 11% 

3 Ventilation 0.5% 

4 Irrigation 2 – 8% 1 – 19% 

5 Fertigation 1 – 3% 1 – 27% 

6 Pesticide 0 – 6% 

7 Lighting 0 – 1% 1% 

8 Other 0 - 0.5% - 

3.2 Energy indices 

In order to be able to assess the energy efficiency, the energy indices should be calculated. The 

international practice is to calculate the energy consumption reduced to the area of the greenhouse. Table 6 

shows the energy indices of the examined greenhouses as well as values derived from the international 

literature. The table shows a wide distribution of values of this energy index even for the same crops in areas 

with similar climatic conditions. This is due to different degrees of mechanization of the examined 

greenhouses. But in this way the energy indicator becomes unreliable because a different degree of 

mechanization means a different production per unit of greenhouse surface. For this reason, the energy 

consumption reduced to the production unit of the greenhouse is proposed as an energy indicator. 

Table 6. Comparative presentation of energy index kWh/m2 

Case Energy consumption 

per area [kWh/m2] 

Tomato energy audit 8.79 

Cucumber energy audit 488.9 

Potted Flower energy audit 78.17 

Spain high energy intensity tomato (Baptista, Silva et al., 2012) 386 

Spain low energy intensity tomato (Alonso and Guzmán 2010) 5.58 

Spain low energy intensity lettuce (Alonso and Guzmán 2010) 4.03 

Spain low energy intensity peppers (Alonso and Guzmán 2010) 5.56 

Spain low energy intensity beans (Alonso and Guzmán 2010) 4.31 

Greece high energy intensity tomato (Kittas, Elvanidi et al., 2016) 237 

Greece high energy intensity lettuce (Trypanagnostopoulos, Kavga et al., 2017) 200 

Greece high energy intensity flowers (Vourdoubas 2015) 318 

Greece low energy intensity tomato (de Visser, de Buisonje et al., 2012) 7.14 

Greece low energy intensity cucumber (de Visser et al., 2012) 6.9 

Italy low energy consumption tomato (Campiglia, Colla et al., 2007) 3.49 

Italy low energy consumption lettuce (Campiglia et al., 2007) 1.75 

Netherlands tomato (de Visser et al., 2012, Stanghellini, Baptista et al., 2016) (av.) 368 

Netherlands cucumber (de Visser et al., 2012) 398 

Netherlands sweet pepper (de Visser et al., 2012, Stanghellini et al., 2016) (av.) 376 

Germany tomato (de Visser et al., 2012) 351 

Germany cucumber (de Visser et al., 2012) 362 

In the Table 7 the energy intensity is given in terms of produced volume and produced pieces for the 

potted flower greenhouse and in terms of produced mass for the tomato greenhouse. 

Table 7. Energy consumption indices per greenhouse production 
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Energy consumption Potted flower [kWh/piece] Potted flower [kWh/lt] Tomato 

[kWh/kg] 

Thermal 5.212 3.148 8.792 

Electrical 0.400 0.242 0.935 

Total Primary  6.371 3.848 11.504 

Thermal Heating 5.191 3.136 8.792 

Power generation 0.020 0.012 0.000 

Electrical heating 0.041 0.025 0.095 

Electrical cooling 0.000 0.000 0.447 

Electrical ventilation 0.024 0.014 0.016 

Electricla irrigation 0.106 0.064 0.328 

Electrical fertigation 0.163 0.098 0.049 

Electrical tranpsort - sorting 0.000 0.000 0.000 

Electrical lighting 0.050 0.030 0.000 

Electrical cold-storage 0.016 0.010 0.000 

3.3 Energy flows 

In addition to energy indicators, an efficient way of representing the energy efficiency of a production 

facility is the visualization of energy flows through SANKEY diagrams. In the Figure 4 the SANKEY 

diagram of the energy flows for the potted flower greenhouse is presented in terms of final energy 

consumption as an example.  

 
Figure.4 SANKEY diagram of energy flows for potted flower greenhouse 

4. Conclusions 

This paper presents the process of the first stages of an energy audit of greenhouses, the operational rating 

phase. This process was applied in four greenhouses in central Greece with different crops and different 

technologies. From the produced results produced, it comes out that even the application of only the first 

steps of an energy audit can provide valuable information on the energy efficiency of the greenhouse and to 

enable the identification of energy-intensive and energy-inefficient processes. In the operational rating 

approach, no model was used for the prediction of greenhouse energy consumption, beyond the calculation 

model for the energy demand for heating. However, an energy audit to be considered completed require not 

only the identification of the energy-inefficient processes but also the proposal of measures accounting for 

their cost and their energy performance improvement.  

In agreement with the international literature, it appears that the main energy consumption concerns 
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heating. From the implemented energy audits, it comes out that biomass heating systems are often 

characterized by low efficiency which is not only due to the fuel but also due to the lack of standardization 

and automation. However, in terms of primary energy consumption electricity represents the 1/3 of the total 

primary energy consumption, and this draws attention not only to the improvement of electrical systems but 

also to the necessity of developing local energy production systems from renewable sources making 

photovoltaics the preferred option. This necessity becomes more pronounced when considering that electrical 

consumption will increase as greenhouses become mechanized in a move towards precision agriculture. 

Finally, the use f energy indices referred to production unit prove to be more adequate than energy indices 

referred to greenhouse area in order to assess the greenhouse energy performance. Furthermore, the use of 

SANKEY diagrams can also be used in this production process, as it is already done in all industrial 

processes, offering visualization of energy flows (however they can also be used for material flows) which 

easily leads to the identification of energy-intensive processes. 
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Abstract 

In Italy, the adoption of precision agriculture is escalating. Near-infrared spectroscopy (NIR) is an established 

low-cost technique used for soil analysis. This research presents the result of the application of NIR at a sub-

field scale for PA mapping purposes. The selected trial fields exhibit varied soil types and have undergone 

different tillage and fertilisation practices, which could affect soil attributes. Soil samples were collected 

according to a 50-meter regular grid at a depth of 30 cm. These samples were both analysed by an external 

laboratory employing standard wet reference methods and analysed utilizing a FOSS NIRSystem 5000 

spectrometer.  The NIR analysis, conducted on spectra obtained in diffuse reflectance within the 1100-2500 

nm range, employed the LOCAL calibration technique (US Patent # 5,798,526). The NIR-based estimations 

for clay, clay+silt, and organic carbon content were evaluated using Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and bias metrics. Specifically, the analysis focused on bias and the coefficient of 

determination (R²) correlating the actual, laboratory-measured values with the NIR-predicted values (0.70, 

0.62, 0.68 respectively). The bias evaluation identified a low value for the soil components under analysis in 

all the fields, except for one in clay+silt (bias > ±100) and two in organic carbon (bias > ± 0.4).  Results 

showed good skill of the NIR calibrations to estimate field averages of the parameters under analysis. The 

Range/MAE allowed the identification of in-field variation gradients. For clay the ratio ranged from 2.4 to 

9.9, for clay+silt from 1.4 to 8.4; for organic carbon from 3.4 to 5.9, depending on the variability of the field. 

The findings indicate that, after adjusting for bias, NIR LOCAL calibration data can be used not only for 

mean field values determination but also for effectively identifying trends in soil texture variation and organic 

carbon gradients. 

Keywords: Precision agriculture, NIR spectroscopy, soil characterisation, soil mapping. 

1. Introduction 

Precision Agriculture (PA), in Italy, has been growing fast in the last decade and the 10% target set is 

being achieved (Italy Ministerial Decree 33671, 2017).  

The adoption of PA techniques depends on rapid, cheap and non-destructive analysis for soil mapping, 

crop management and variable rate fertilisation (Kodaira and Shibusawa, 2012). Knowing the spatial and 

temporal characteristics of soil is very important to applying PA and allows farmers to make the best choice 

for the fields (Virgawati et al., 2018). 

 Soil texture is, together with Organic Carbon (OC), one of the most important parameters of soil; it 

affects structure, aggregation, water infiltration, nutrient availability and compaction. Estimating soil texture 

is time-consuming and expensive and concerns the sieving and sedimentation of suspended soil in solution 

(Jaconi et al., 2019).  

Spectroscopy is a valid alternative and low-cost OC and soil texture analysis technique. Specifically, the 

clay fraction is important for many physical and chemical processes (Jury and Horton, 2004); the clay+silt 

fraction protects the OC from microbic degradation (Hassink, 1997) and OC gives, with its mineralisation, a 

part of the nutrient necessary for plant growth (Bhupinderpal-Singh and Zed, 2007). 

The bibliography provides different studies on spectroscopy analysis with different instruments and 

different elaborations of soil spectra. Coblinski et al. (2020) use two different regions of spectra, Visible 

(VIS) - Near Infra-Red (NIR) – Shortwave Infrared (SWIR) and Mid Infra-Red (MIR), to estimate sand and 

clay in different soil samples; the cubistic model is applied to manage soil spectra acquired. The results 

confirm a good soil texture prediction for both spectra regions: MIR is more robust than VIS-NIR-SWIR 

with the highest R2 (0.94 for clay and 0.88 for sand) and lower RMSE (3.7 for clay and 5.1 for sand). The 

combination of this two different regions of spectra doesn’t improve the prediction value. 

Another study by Viscarra Rossel et al. (2006) compares three different regions of spectra (VIS, NIR and 
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MIR) for predicting soil attributes. The results show that the VIS region had lower R2 and less accuracy; MIR 

spectra are the best choice with more accurate results and major R2. However, the advantage taken by the 

accuracy of MIR instead of VIS or NIR spectra may not be significant because of the higher cost of MIR 

instruments, especially for the in-field variability. 

     With portable instruments, this low-cost technique has the opportunity to be installed on agriculture 

machinery for “on-the-go” mapping. Several studies have been conducted to compare laboratory spectra with 

on-the-go spectra. On-the-go sensors have minor predictive accuracy compared to laboratory instruments and 

do not describe the accuracy of the in-field variability. A valid solution is to use a sensor installed on 

machinery to take the variations of the field, and then recalibrate the results with laboratory instruments to 

correct the value of the predictive attribute of soil (Bricklemyer and Brown, 2010). 

This paper aims to use a NIR system to evaluate details of soil attributes (clay, clay+silt and OC) at a sub-

field scale for PA purposes in five different locations in upper Po Valley with varied soil types, tillage and 

fertilizations that could affect soil properties. The study evaluates the prediction ability of NIR and applies a 

script to estimate the systematic error of the component (BIAS) to improve the accuracy of predictions using 

only a few samples analysed with laboratory reference methods, with the target of reducing the operational 

costs of PA.    

2. Materials and Methods  

2.1. Field location and description  

The five fields are located in different zones of  Po Valley (San Giuliano Milanese, Northern Italy, 

45.389282N 9.247408E; Basiglio, Northern Italy, 45.343367N 9.156350E; Orzinuovi, Northern Italy, 

45.383283N 9.889133E; Sant'Angelo Lodigiano, Northern Italy, 45.227808N 9.427056E; San Giorgio di 

Lomellina, Northern Italy, 45.155391N 8.763586E). The total amount of experimental fields is 40 hectares. 

The history of soil and cultivation is very diverse: San Giuliano Milanese, Basiglio and Oriznuovi fields 

are characterized by long-term manure history and were continuously cultivated with maize for silage and, 

possibly, with the introduction of Italian ryegrass in winter months; San Giorgio di Lomellina field was 

cultivated with a single mono-succession of maize for grain and fertilized by civil wastewater sewage sludge; 

finally, the Sant’Angelo Lodigiano fields don’t have a yearly contribution of OC with manure, the principal 

nutrient for maize for grain cultivation comes from inorganic fertilizers.  

2.2. Soil sample and analysis 

Topsoil (0.0m – 0.3m) samples were collected at 186 (all fields) georeferenced points on a regular mesh 

grid of 50 meters (Figure 1), using a gouge auger (Eijkelkamp, 40-mm diameter) after maize harvest. 6 Kg 

for each sample were air-dried and sieved (Filtra Vibracion S.L., 2mm mesh) for correct skeleton estimation. 

The soil <2mm was analysed for physical and chemical properties with the reference methods (Table 1) and 

NIR spectroscopy; a portion of the samples was sieved to 0.5 mm for C:N.  

 
Figure 1. Experimental design of 186 samples of soil collected. (Google Satellite, modified by CREA) 
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Table 1. Analytical reference method of soil analysis (Ministero delle Politiche Agricole e Forestali, 2000) 

Attribute Method 
Method 

number 

Sand content (g kg-1) Dispersion by (NaPO3)6 and determination with pipette 

method  

II.5 

Silt content (g kg-1) Dispersion by (NaPO3)6 and determination with pipette 

method 

II.5 

Clay content (g kg-1) Dispersion by (NaPO3)6 and determination with pipette 

method 

II.5 

Carbonate (g kg-1) Decomposition by HCl and volumetric determination of 

the evolved CO2 with a calcimeter 

V.1 

OC (g kg-1) Total carbon measured by dry combustion with an 

elemental analyser. OC is calculated by subtracting 

inorganic Carbonate 

VII.1 

Total N (g kg-1) Dry combustion with an elemental 

analyser. 

VII.1 

 

Soil NIR spectra of 186 samples were collected in diffuse reflectance (range 1,100-2,500 nm) using a 

NIR system 5000 spectrometer equipped with a sample transport device (FOSS, Denmark). Texture and OC 

were predicted using a locally weighted regression calibration model (LOCAL, patent number US5798526A) 

developed for Northen Italy soils (Cabassi et al, 2005). This calibration is based on selecting a small 

calibration data set customised to the unknown sample from a big library of soil characteristics (0-30 cm) to 

obtain a specific calibration equation. LOCAL is a well-weighted mean of Partial Least Squares (PLS) 

models.  

2.3. Data processing 

Data were collected and elaborated using Microsoft Excel® with .csv and .xls extension.  

Clay, clay+silt and OC content estimation with NIR were evaluated with Root Mean Square Error (RMSE 

– Eq. 1), Mean Absolute Error (MAE – Eq. 2) and BIAS metric (Eq. 3), the systematic error of the component.  

   (1) 

where  are observed values (laboratory measured);   are predicted values (NIR);  is a total amount of 

observations. 

  (2) 

where  are observed values (laboratory measured);   are predicted values (NIR);  is a total amount of 

observations. 

  (3) 

where  are observed values (laboratory measured);   are predicted values (NIR);  is a total amount of 

observations. 

Finally, the coefficient of determination (R2 – Eq. 4) was determined for each soil component under 

analysis in comparison with laboratory-measured values.   

  (4) 
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where  are observed values (laboratory measured);   are predicted values (NIR);  is the mean observed 

value;  is a total amount of observations. 

2.4. Script-writing 

MATLAB R2023b (© 1994-2024 The MathWorks, Inc.) was used to create a script for calculating the 

optimal number of samples to be analysed with the reference method for the correction of NIR prediction. 

A random sampling approach was used to simulate the estimate of the BIAS using all of possible 

combinations of 3,4,5,6 samples to correct NIR prediction. Finally, the normalized histogram of the BIAS 

estimates distribution was plotted for 13 classes and every soil attribute and combination created. 

3. Results and Discussion 

The results obtained in the paper concern: i) the ability of calibration to predict soil attributes with NIR 

and ii) the estimation of BIAS of NIR predictions using a subset of few reference data from analysed with 

reference methods. 

3.1. Quality of prediction 

The prediction value was calculated by the use of NIR with LOCAL calibration. The value obtained with 

NIR is compared to data with the referenced method (Table 2). 
 

Table 2. Descriptive statistics of soil data (n=186) where pH pH in KCl, OC organic carbon, Ntot total 

nitrogen 

   Measured Variable 

Field Analysis  pH 
OC  

(g kg-1) 

Ntot  

(g kg-1) 
C:N 

Sand  

(g kg-1) 

Silt  

(g kg-1) 

Clay  

(g kg-1) 

San 

Giuliano 

Milanese 

NIR 

Mean 6.1 14.4 1.4 10.7 562.0 322.7 115.3 

SD 0.1 2.7 0.3 1.5 51.6 43.2 19.3 

CV 1.6 18.8 21.4 14.0 9.2 13.4 16.7 

Reference 

method 

Mean 5.7 14.6 1.5 9.7 432.6 426.7 140.7 

SD 0.3 2.1 0.2 0.4 80.1 57.9 26.6 

CV 5.3 14.4 13.5 3.9 18.5 13.6 18.9 

Basiglio 

NIR 

Mean 6.4 17.4 1.7 10.5 571.8 281.6 146.6 

SD 0.2 2.2 0.3 1.2 56.6 38.6 33.3 

CV 3.1 12.6 17.6 11.4 9.9 13.7 22.7 

Reference 

method 

Mean 6.1 15.9 1.7 9.4 480.0 342.5 177.5 

SD 0.3 2.5 0.3 0.5 48.7 41.9 25.7 

CV 4.9 15.7 15.3 5.0 10.1 12.2 14.5 

Orzinuovi 

NIR 

Mean 7.0 19.6 2.0 10.0 479.1 339.4 181.4 

SD 0.2 2.1 0.2 0.7 73.7 51.6 27.1 

CV 2.9 10.7 10.0 7.0 15.4 15.2 14.9 

Reference 

method 

Mean 7.3 15.5 1.7 8.9 492.0 334.0 174.0 

SD 0.1 2.7 0.3 0.6 119.8 90.3 35.4 

CV 1.4 17.4 17.2 6.6 24.3 27.0 20.3 

Sant’Angelo 

Lodigiano 

NIR 

Mean 6.3 11.6 1.5 8.0 454.4 405.3 140.2 

SD 0.1 1.1 0.2 0.6 48.9 38.8 15.1 

CV 1.6 9.6 10.7 7.9 10.8 9.6 10.8 

Reference 

method 

Mean 6.2 9.7 1.1 8.8 356.7 486.4 157.0 

SD 0.1 1.2 0.2 0.5 59.6 54.2 16.5 

CV 2.3 12.1 13.8 5.5 16.7 11.1 10.5 

San Giorgio 

di 

Lomellina 

NIR 

Mean 6.7 19.0 2.0 9.7 650.3 290.5 59.2 

SD 0.1 1.7 0.2 1.0 67.3 49.3 28.1 

CV 1.5 8.9 10.2 10.3 10.3 17.0 47.4 

Reference Mean 7.0 22.9 2.3 10.1 577.4 357.9 64.8 
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method SD 0.1 2.4 0.2 0.5 63.6 61.7 10.2 

CV 1.4 10.5 10.6 5.0 11.0 17.2 15.8 

SD and CV are the standard deviation and the coefficient of variation, respectively 

OC, was considered equal to total C according to the pH values and preliminary screening of samples with 

higher pH 

 

First of all, the soil parameters clay, claysilt and OC of the five fields are plotted to calculate R2: 0.70, 

0.62 and 0.68 respectively (Figure 2). 

 
Figure 2. Scatterplots and R2 of the model validation results for clay content (a), claysilt (b) and soil 

organic carbon (c)  

The coefficient of determination obtained by the 5 fields' data was quite similar for all the soil attributes 

in the literature. For clay parameters, the bibliography has a range of 0.62 to 0.93; high values were obtained 

by Tiruneh et al. (2022) in a study carried out in Ethiopia; values quite similar to those under study like 0.70 

(Camargo et al., 2015), and 0.66 (Silva et al., 2021). 

The attribute OC have a good R2 comparable to several studies in the literature: ranging from 0.57 to 0.93 

(Yang et al., 2012; Leone et al., 2012). 

Two different formulas were applied to measure the error in the prediction value of the five fields under 

analysis. Table 3 resumes the data obtained.  

 

Table 3. BIAS and evaluation of prediction error in the five fields for the three soil parameters under analysis. 

Field Attribute BIAS RMSE MAE Range/RMSE Range/MAE 

San Giuliano Milanese 

Clay 25.36 41.48 38.02 3.06 3.34 

Claysilt -129.39 157.71 149.36 3.57 3.91 

OC 0.01 0.22 0.19 3.47 4.01 

Basiglio 

Clay 30.91 37.70 32.48 5.69 7.12 

Claysilt 91.81 109.90 96.43 4.17 5.45 

OC -0.14 0.28 0.23 4.97 5.90 

Orzinuovi 

Clay -7.31 27.10 20.32 5.32 7.24 

Claysilt -12.71 83.77 62.67 6.20 8.44 

OC -0.41 0.48 0.42 4.56 5.52 

Sant’Angelo 

Lodigiano 

Clay 16.74 19.71 17.55 7.77 9.91 

Claysilt 97.76 109.39 97.76 5.52 6.50 

OC 0.19 0.22 0.20 3.13 4.11 

San Giorgio di 

Lomellina 

Clay 5.52 29.13 20.67 1.68 4.47 

Claysilt 72.89 90.32 75.80 4.61 6.18 

OC 0.38 0.58 0.45 1.74 3.36 
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Range is calculated by the difference between maximum and minimum of the samples in each field. 

Range/RMSE and Range/MAE are calculated with the BIAS correction. 

 

The prediction data in the fields comparable with results reported in other studies. The results in literature 

ranged from 2.21 to 5.40 for clay (Tiruneh et al., 2022; Vasava et al., 2019) and from 0.27 to 0.78 for OC 

(Tiruneh et al, 2002; Kuang et al. 2012). 

The data collected with NIR in comparison with wet reference method have proven to be a valid solution 

to show the field trend of soil texture and OC. Additionally, the calculated indices Range/RMSE and 

Range/MAE  demonstrated the capacity of NIR to identify the intra-field variation of soil attributes, necessary 

for PA purposes and for a qualitative identification of different management zones. 

3.2. Quantity of prediction 

To achieve the true value of the samples with the use of NIR models in order to have accurate estimated 

of the parameters it was necessary to correct the prediction with BIAS, the systematic error of the component 

arising from instrumental drift and from mall variations in the sample preparation method over time.  

As an example, the estimation of  BIAS on the Sant'Angelo Lodigiano field is shown using reference data 

of 3,4,5 or 6 samples randomly selected from the sample population. The procedure is the same for the 

remaining fields. 

MatLab software was used to create all the combinations in the 48 points of the field with three, four, five 

and six samples for BIAS calculation. The normalized distribution of the soil attribute means under analysis 

is shown in Figure 3. 

 
Figure 3. Normalised histogram of the mean distribution in all combinations calculated for clay (a), claysilt 

(b) and OC (c). 
 

The value in Figure 4 shows that the number of samples to be subjected to referenced analysis for BIAS 

calculation increases the accuracy of BIAS estimation.  

The distributions of the estimated sample means have shown, in accordance with the Central Limit 

Theorem, a progressively more Gaussian and less skewed behavior as the sample subset size increases. 

(Pelosi et al., 2009). This type of trend is more noticeable in the soil texture parameters (clay and claysilt); 

in contrast, the OC data show less intensely the increase in accuracy as the number of analysed samples 

increases. 

Finally, we calculated median BIAS estimations with the results of the different combinations, associated 

with each standard deviation.. The results show the reduction of SD, hence a more accurate estimation the 

greater the number of samples taken into account for laboratory analysis. SD are resumes in Table 4. 
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Table 4. SD of the soil attributes under analysis with the different number of combinations sub-dataset. 

Attribute 
Number of 

combinations 
BIAS estimated SD 

Clay content (g kg-1) 

3 -15.29 9.30 

4 -15.70 7.95 

5 -15.95 7.03 

6 -16.29 6.34 

Claysilt (g kg-1) 

3 -98.98 33.45 

4 -98.56 28.63 

5 -98.31 25.31 

6 -98.14 22.83 

OC (g kg-1) 

3 1.97 0.66 

4 1.96 0.56 

5 1.96 0.49 

6 1.95 0.44 

BIAS estimated is calculated as the difference between the mean of the NIR value and the median of the 

observed value in each combination.  

4. Conclusions 

NIR analysis is a quick and cheap excellent solution for the estimation of primary soil parameters (texture 

and OC), allowing the study of the in-field variations and highlighting different intra-field zones for careful 

management of fertilisation, sowing, etc. following the dictates of precision agriculture. 

The analysis of a reduced number of samples by laboratory reference methods in combination with NIR 

analyses, which are more expeditious and economical, can be a valid solution for estimating the quantitative 

value of clay, claysilt and OC. As noted, the greater the number of samples analysed, the greater the accuracy 

of our data. However, it is not possible to define the optimal number of samples, this will be a trade-off 

between costs and the size of the field and the degree of accuracy we wish to achieve. 

Further studies in this regard may use other expeditious technologies in association with NIR, e.g. geo-

electrical soil resistivity analysis, to help the farmer in the choice of soil points to be analysed by laboratory 

methods, reducing the error in the final accuracy of the estimate. 
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Abstract 

Monitoring plant health during the growth period is essential for ensuring product quality and reducing 

production costs. Therefore, early diagnosis of plant diseases is crucial. Hyperspectral imaging and artificial 

intelligence have enabled the diagnosis of plant diseases in their early stages and provide a distinct spectral 

signature for each disease. In this study, two tomato diseases, Alternaria alternata and Alternaria solani, 

were investigated using spectral reflectance analysis in the span of 400-950 nm. To this end, a dataset of 

images was recorded on days 1 to 7 (every other day) after disease transmission, and color, texture, and shape 

features were extracted in each band. Finally, two groups of diseased leaves and one group of healthy leaves 

were classified by the support vector machine algorithm. The classification results for days 1, 3, 5, and 7 

were 89, 91, 93 and 96%, respectively. Spectral reflectance in the imaging band range of 400 to 950 nm 

shows the spectral differentiation between the two diseases, indicating their unique spectral signatures 

compared to healthy leaves. Also, the Relief feature selection algorithm showed that texture features such as 

energy in bands 550 and 841, entropy in band 600, correlation in band 746, and standard deviation in band 

905 are superior to other features. This study demonstrated the potential of hyperspectral imaging and 

artificial intelligence for early detection and management of plant diseases. 

Keywords: Artificial Intelligence, Early Diagnosis, Monitoring Plant Health, Spectral Reflectance, Tomato 

Diseases. 

1. Introduction 
Plant leaves' spectral characteristics change due to alterations in plant biochemistry and cell composition. 

However, it is also essential to note that the spectral properties of leaves are not static, but rather change over 

time with various factors such as plant growth, aging, senescence, decay, and disease development (Javidan 

et al., 2023a). Despite the potential of hyperspectral imaging (HI) for plant disease diagnosis, the complex 

nature of the hyperspectral data and the need for efficient processing methods are significant challenges to 

maximizing its capabilities for identifying and managing plant diseases (Javidan et al., 2023b). 

In recent years, the demand for artificial intelligence (AI) enabled spectral sensing systems to identify 

plant diseases has increased. Consequently, the number of studies on AI-driven systems has also increased 

(Barbosa Júnior et al., 2024). These systems often rely on machine learning models for processing the 

hyperspectral data, with the goal of maximizing the accuracy of disease identification (da Cunha et al., 2023; 

Hariharan et al., 2023; Javidan et al., 2022).  However, the complexity of these models and the need for 

efficient processing methodologies to produce accurate and interpretable results are significant challenges to 

unlocking the full potential of HS for improved plant disease diagnosis and management. 

Fernández et al. (2021) studied powdery mildew in cucumber leaves using hyperspectral imaging in the 

range of 400-900 nm. They used principal component analysis to determine sensitive wavelengths in disease 

diagnosis. Two spectral variables, the red-well point and the red-edge inflection point, were extracted, and 

the support vector machine (SVM) with linear kernel was used to classify diseased and healthy leaves. The 

algorithm had an accuracy of 89% on day 6 after disease transmission. Zhang et al. (2022) used hyperspectral 

imaging in the range of 400-1000 nm to study rice blast disease. They used SVM for classification, which 
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had an accuracy of 92.92%. Last, Wu et al. (2023) identified gray mold disease in strawberries using 

hyperspectral images at 400-1000 nm. They used texture and vegetation characteristics from 24-hour infected 

leaves and healthy leaves. The classification models, namely, extreme learning machine (ELM), SVM, and 

k-Nearest Neighbor (k-NN), showed accuracies of 93.33, 93.33, and 96.67%, respectively. 

Image data acquisition with high precision and resolution allows the sensor to capture detailed 

information from the electromagnetic spectrum (Mohamadzamani et al., 2020). However, the large number 

of variables (i.e., features, wavelengths) measured leads to high-dimensional data that increases the 

complexity of processing to produce relevant information (Mohammad Zamani et al., 2023). In addition, the 

spectral data assessed in near-contiguous variables likely exhibits similar or overlapping information, leading 

to potential data redundancy and increased complexity in the analysis interpretation and the chance of 

overfitting occurrence. As a result, feature selection methods have been developed to identify and extract the 

most relevant and distinctive spectral features without sacrificing important information (Khakrangin et al., 

2021).  In this study, to evaluate the potential of hyperspectral imaging in the detection of two widespread 

fungal diseases affecting tomato leaves, analysis was performed on days 1 to 7 after disease transmission. 

Also, the detection performance of hyperspectral images and AI in the early, middle, and late stages of disease 

development was evaluated. The spectral signature of each disease was determined and the most optimal and 

effective features extracted from the images were identified as the most essential features for the diagnosis 

of fungal diseases.  

2. Materials and Methods  

The research is divided into 3 main parts: 1. Sampling, purification, and transfer of the disease to the 

plant, 2. Hyperspectral image capturing, and 3. Diagnosis and classification of the disease. This research was 

conducted on two tomato diseases, Alternaria alternata and Alternaria solani, which are among the most 

common and destructive fungal diseases in greenhouse and field crops. Figure 1 shows the different steps in 

this research.  

 
Figure 1. Three steps in diagnosing tomato diseases by hyperspectral images 

2.1. Sampling, purification, and transfer of the disease to the plant 

In order to prepare and isolate the disease agent, samples were taken from tomato fields. The samples 

were placed separately in paper envelopes and kept at a temperature of 4°C after being transferred to the 

laboratory. Using a sterile scalpel, small pieces of 1 cm size were cut from the infected tissues. The cut pieces 

were surface disinfected in 10% sodium hypochlorite solution for 10 minutes and immediately washed twice 

with water. After dewatering with filter paper, the samples were cultured on nutrient medium (potato dextrose 

agar) PDA. Then, the plates were incubated for 3 to 5 days at 25°C. From the grown colonies that had the 

characteristics of the disease considered in this study, they were purified by removing single spore or spore 

chain. 5 mm pieces of growing colonies were removed and cultured on PDA. To stimulate the sporulation 

pattern, the plates were incubated at 24°C with a light cycle of 8 hours of light and 16 hours of darkness for 

5 to 7 days. The isolates were identified using the general patterns of sporulation, including the arrangement 

of spores on the spore carrier, the number of spores in each chain, and the branching pattern of the chains, 

and the pathogenicity test of the isolates was proved. After 10 days of purification, the surface of petri dish 

was washed with sterile distilled water. 10 microliters of the solution obtained from disease spores was taken 

by a sampler and the number of disease spores was counted and their concentration was determined by 

counting under a light microscope with a hemocytometer slide. In counting the spores, it is important that the 

spores attached to the square lines of the slide at the top and right side can be counted, and the spores at the 
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bottom and left cannot be counted. The number of spores allowed at the time of disease transmission was 

5x106 for each disease.  

2.2. Hyperspectral image capturing 
The Spectral images of healthy and infected leaves were captured daily under laboratory conditions using 

a spectroscopic camera (Hyspim HSI-Vis_Nir-15fps, Sweden) with a spectral range of 400-950 nm in 1, 3, 

5, and 7 days after the disease transfer to the plants. The halogen light was vertically from above the leaf, 

and a dark background was used to place the leaf on the device scanner. To avoid the interference of natural 

light, the camera and the halogen lamps were placed in a chamber for image acquisition. The distance of the 

cameras from the leaves was 25 cm. Finally, for each disease and healthy leaf, 100 hyperspectral images 

were taken. Therefore, 300 images per sampling day and 1,200 images in total were obtained. 

2.3 Diagnosis and classification of the disease 

After the image was taken, in order to access all the information of an image, the features of texture 

(contrast, correlation, energy, homogeneity, mean, standard deviation, entropy, RMS, variance, smoothness, 

kurtosis, and skewness), color (mean, maximum, standard deviation, and median), and shape (area, perimeter, 

number of objects, major and minor axis length of the spots, eccentricity index, form, circular index, and 

compression index) were extracted from each band of the image (Javidan et al., 2024a,b).  After that, images 

were classified by the support vector machine classifier.  Then, the Relief feature selection (Javidan et al., 

2023a) algorithm was used to identify the best and most important influencing features. 

Also, the spectral signatures (reflectance spectra) of two common fungal diseases of tomato leaves were 

evaluated, and the ability of these spectral features to differentiate between the diseases was analysed. The 

spectral range of the measurements was selected to encompass the region of interest, including the visible 

and near-infrared regions, between 400 to 950 nm. The spectral signatures of the two fungal diseases were 

found to be unique and characteristic, and their distinguishing features were analysed in detail. This study 

has demonstrated the effectiveness of hyperspectral imaging in the diagnosis of plant diseases and the 

identification of specific spectral signatures associated with different diseases.  

2.3.1 Performance evaluation of the support vector machine classifier 

A classification algorithm’s performance is determined by its classification accuracy, which is calculated 

by maximizing TP and TN while minimizing FP and FN in a two-class problem, as represented in Eq 1.  

 ( )

( )

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (1) 

3. Results and Discussion 

3.1 Disease classification  
After extracting the features of texture, color, and shape from hyperspectral images and forming the 

feature matrix, the classification was done with the support vector machine, and the disease classification 

accuracy for each day of imaging (i.e. days 1, 3, 5, and 7) was obtained. Based on this, the classification 

accuracy for days 1, 3, 5, and 7 was 89, 91, 93, and 96%, respectively. Table 1 shows the results of the 

support vector machine classification. The obtained results showed that the algorithm was able to diagnose 

and classify the two diseases in early disease development stages, even when symptoms of both diseases 

looked similar visually, with high accuracy. Also, to compare the classification results of the SVM, other 

machine learning models such as k-nearest neighbor, decision tree, and random forest were trained and 

evaluated (Table 1).  In previous studies using hyperspectral images for crop disease monitoring, spectral and 

textural features were used simultaneously to develop a disease detection model that performed well 

(Kuncheva & Faithfull, 2014; Xiao et al., 2021; Khan et al., 2021; Guo et al., 2021; Chen et al., 2022; Nguyen 

et al., 2023). 

Table 1. Classification results of machine learning models on different days. 

Classifier Day 1 Day3 Day 5 Day 7 

k-Nearest Neighbor 60 63 71 86 

Decision Tree 63 70 75 88 

Random Forest 75 79 83 91 
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Support Vector Machine 89 91 93 96 

3.2 Feature selection  
It is very critical to identify the most important features that play a major role in the diagnosis of diseases. 

This can help researchers in future research to develop low-cost multi-spectral cameras to target these 

selected features for early disease detection. In this research, the relief feature selection algorithm was used 

to rank the features and determine the most important and influential ones. The most important features and 

bands for hyperspectral images are shown in Table 2. Among the top ten selected features, texture features 

had the most impact, followed by statistical features and descriptive shape. As can be seen in the images of 

disease symptoms, texture and descriptive statistical features are clearly effective in diagnosing diseases. 

Table 2. Features and bands effective in identifying and classifying diseases in Hyperspectral images. 

Band (nm) Feature Selected Features Type Rank 

550 Energy Texture 1 

600 Entropy Texture 2 

480 Max color 3 

663 mean color 4 

746 Correlation Texture 5 

886 Standard Deviation Texture 6 

850 Median color 7 

460 Median color 8 

841 Energy Texture 9 

905 Standard Deviation Texture 10 
 

3.3 Spectral signatures of the Alternaria alternata and Alternaria solani diseases 

As can be seen in Figure 2, the spectral identification symptoms for two tomato leaf diseases in the range 

of bands 500 to 550 and 740 to 950 have more distinction for identifying and diagnosing the disease in the 

early stages. Also, the average changes of the disease spectrum compared to the healthy spectrum in the leaf 

area are shown in Figure 2 A, B, and C respectively for the target area of Alternaria alternaria, Alternaria 

solani, and healthy leaf. According to Figure 2A, the light reflectance recorded in the Alternaria alternata 

disease in the spectral range of 550 to 950 nm was lower than the spectral reflectance in the healthy area, and 

it showed a sign of the disease symptoms in this area, which is the spectral sign of this disease. As mentioned 

before, slight changes in the healthy area were due to the slight heterogeneity of the leaf tissue, the surface 

structure of the tomato leaf, and its interaction with radiation. As Figure 4B shows, in the case of Alternaria 

solani disease, the reflection of the spectrum in the diseased area in the range of 550 to 950 nm showed less 

symptoms than the Alternaria alternata disease (due to the later showing of symptoms in this type). The light 

is reduced in this area compared to the healthy area of Figure 4C, and it can be used as a basis for diagnosing 

and identifying the disease of Solani species. Different substances, such as chlorophyll, display distinct 

absorption and reflectance values in specific wavebands, creating unique spectral characteristics (Nevalainen 

et al., 2017). The reflectance peaks near 550 nm and 700 nm correspond to the strong reflection region of 

chlorophyll, and the red edge phenomenon results from the low red reflectance and high internal leaf 

scattering of chlorophyll (Heim et al., 2015). Moisture absorption troughs near 1470 nm and 1940 nm and 

low reflectance in the range of 1300–2500 nm are related to plant moisture content and CO2 emissions 

(Mutanga et al., 2009; Lai el al., 2021). Hyperspectral imaging of the biological processes during plant–

pathogen interactions allows for the detection of plant diseases using hyperspectral imaging technology (Roth 

et al., 2015; Pu et al., 2019). 
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A B C 

Figure 2. Spectral signatures for: a. Alternaria alternata b. Alternaria solani and C. healthy leaf 

4. Conclusions 

The early diagnosis of plant diseases is necessary for effective disease management. Hyperspectral 

imaging and artificial intelligence have enabled the diagnosis of plant diseases in their early stages by 

analysing the images and providing a distinct spectral signature for each disease. In this study, two tomato 

diseases, Alternaria alternata and Alternaria solani, were investigated using spectral reflectance analysis in 

the span of 400-950 nm. The results showed a high level of accuracy in the classification of diseased leaves 

with accuracy rates of 89%, 91%, 93%, and 96% for days 1, 3, 5, and 7, respectively. The classification 

accuracy indicates the potential of hyperspectral imaging for early disease detection. The spectral reflectance 

in the imaging band range of 400 to 950 nm demonstrates the spectral differentiation between the two 

diseases, indicating their unique spectral signatures. Also, the results suggest that texture features such as 

energy in bands 550 and 841, entropy in band 600, correlation in band 746, and standard deviation in band 

905 are superior to other features for disease identification. The Relief feature selection algorithm provided 

insights into the effectiveness of different features, demonstrating that texture features are more precise for 

disease identification. Moreover, the study suggested the potential for a low-cost portable or UAV-based 

device, equipped with several light-emitting diodes/photodiodes in the range of visible 500-550 nm and near-

infrared 740 to 950 nm, for the detection of major tomato fungal diseases. These devices can be used instead 

of expensive laboratory equipment, providing the necessary data to classify diseases in a cost-effective and 

efficient manner.  
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Abstract 

Early detection of plant stress is crucial for optimizing crop yield and quality in precision agriculture. 

Reflectance data analysis from remote sensing technologies has significantly advanced the identification and 

quantification of physiological responses in stressed crops. Machine learning (ML) algorithms can analyse 

complex datasets and identify subtle patterns missed by traditional methods. This study presents two modeling 

approaches to assess water and nitrogen stress in pepper (Capsicum annuum L.) plants using hyperspectral data. 

A controlled experiment with a 3 x 3 factorial design evaluated three water stress levels and three nitrogen 

fertilizer levels across nine treatment groups. Hyperspectral data were collected using a spectroradiometer. The 

ecophysiological parameters measured include chlorophyll content (a & b), carotenoid levels, leaf specific mass 

and relative water content. Both modeling approaches compared reflectance data with each ecophysiological 

parameter individually. The first approach used linear regression models based on vegetation indices (NDVI, 

PRI, GNDVI, NDRE, NIRv). The second approach used the reflectance data as inputs for four ML algorithms: 

Random Forest, K-Nearest Neighbors, Support Vector Machines and Regularized Linear Regression. Results 

showed that the ML-based approach generally outperformed the VI-based approach. All four ML algorithms 

demonstrated high performance with most ecophysiological parameters (chlorophylls: R² > 0.83, RMSE < 0.42; 

carotenoids: R² > 0.84, RMSE < 0.39; LSM: R² > 0.65, RMSE < 0.61). Among VI-based models, NDRE and 

GNDVI performed best (chlorophylls: R² > 0.8, RMSE < 0.42; carotenoids: R² > 0.75, RMSE < 0.45), while the 

other indices showed moderate to low performance (chlorophylls: R² < 0.52, RMSE > 0.7; carotenoids: R² < 0.45, 

RMSE > 0.71; LSM: R² < 0.5, RMSE > 0.7). These findings indicate the potential of ML algorithms to surpass 

conventional VI-based methods for early detection and monitoring of plant stress using hyperspectral data in 

precision agriculture. 

Keywords: pepper, hyperspectral data, machine learning, vegetation indices, abiotic stress 

1. Introduction 

Water and nitrogen (N) are critical factors in agricultural production. Water, essential for normal growth and 

development, becomes a major limiting factor when mismanaged (Shao et al., 2009). Similarly, nitrogen is a vital 

nutrient for plants. Plants absorb nitrogen from the soil in the form of nitrate (NO3-) or ammonium (NH4+) ions. 

Nitrogen is then utilized in various metabolic processes, including protein synthesis, nucleic acid synthesis, and 

energy production (Von Wirén et al., 1997). It is responsible for plant development, as it is essential for the 

structure of chlorophyll, the function of photosynthetic proteins and enzymes, and maintaining photosynthetic 

capacity (Mu & Chen, 2021). Effective management of these resources is imperative for crop productivity and 

environmental sustainability, as inadequate practices often result in agricultural pollution and economic losses. 

Accurate assessment of crop needs and timely application of water and nitrogen are essential to address these 

challenges. However, to achieve optimal management, accurate and early detection of plant stress is needed.  

Remote sensing technologies offer a promising solution for non-destructive and efficient monitoring of plant 

stress in agriculture. Among these, hyperspectral imaging stands out for its ability to capture detailed information 

across hundreds of narrow spectral bands, providing insights into various plant traits and stressors (Behmann et 

al., 2014; Maki et al., 2023). While multispectral sensors, whether airborne or ground-based, have traditionally 

detected stressors such as N deficiency or water stress (Eitel et al., 2008), accurate differentiation remains 

challenging. Multiple stress factors often coexist, leading to similar outcomes such as chlorophyll decrease. Thus, 

a key objective is to distinguish between different factors. (Wang et al., 2011). Vegetation indices (VIs) derived 

from spectral data have been widely used to assess plant stress, offering insights into variables like biomass, 

chlorophyll content, and N concentration (Xue & Su, 2017). However, interpreting these indices is complicated 

by stress interactions and environmental factors, posing challenges in accurately quantifying individual stressors 

(Barnes et al., 2000). 

To address these limitations, machine learning (ML) techniques have emerged as valuable tools for analyzing 

hyperspectral data and extracting meaningful information related to plant stress. Fundamentally, machine 
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learning employs data-driven learning to detect patterns that may be overlooked using traditional analytical 

methods (Zhang & Ma, 2012). ML can utilize the entire range of the primary spectral information instead of a 

set of few spectral bands used in VIs. In agriculture, they can detect patterns using simultaneous combinations of 

multiple factors instead of examining traits individually (Fu et al., 2019). This can be proven really useful 

considering the high complexity of the environment surrounding plants. 

This study aims to investigate the potential of ML algorithms for accurately assessing water and nitrogen 

stress by leveraging hyperspectral reflectance data. The performance of ML models is compared to conventional 

vegetation index-based approaches, utilizing a variety of commonly used VIs in agriculture. 

2. Materials and Methods  

2.1. Experimental Design 

Pepper plants (Capsicum annuum L., cultivar "Shelby") were cultivated in 7-liter white plastic pots. The soil, 

sourced from the University Farm in Velestino, Thessaly, Greece, was mixed with perlite in a 3:1 ratio to enhance 

aeration and promote optimal growth conditions. The mixture filled the pots to approximately 5.5 litres each. The 

pepper plants were transplanted on May 9th, 2023, and the experiment ran for 63 days, concluding on July 10th, 

2023. A 3 x 3 factorial design was employed, evaluating three nitrogen fertilization levels in combination with 

three irrigation levels. This resulted in a total of nine treatment combinations. No additional fertilizers, herbicides, 

or pesticides were applied throughout the experiment. Each treatment was replicated ten times, bringing the total 

number of pots to 90. 

2.1.1. Nitrogen Fertilization 

A total of 20 units of nitrogen (N) per plant was designated as the optimal dosage for the experiment's duration. 

The three N fertilization levels consisted of a negative control (N1: 0 N), a half-optimal dose (N2: 10 units N), 

and the optimal dose (N3: 20 units N). Ammonium nitrate fertilizer (34.5% N) was used, divided into four equal 

applications administered every 13-15 days. The first application occurred eight days post-transplantation (May 

16th, 2023), with the final dose applied on June 30th, 2023. 

2.1.2. Irrigation 

The initial irrigation levels were set at 200 ml (H1), 400 ml (H2), and 600 ml (H3) per application. However, 

due to rising temperatures, these levels were subsequently adjusted to 300 ml, 450 ml, and 600 ml, respectively. 

All 90 pots were irrigated simultaneously during each watering event. Plants were watered every 3 to 4 days. 

During the second month of the experiment, as temperatures rose, the watering frequency was increased to every 

1 to 2 days. Over the experiment, the low, medium, and high irrigation treatments received a total of 10.1 L, 14.8 

L, and 19.5 L of water, respectively. 

2.2. Measurements and Analyses 

2.2.1. Physiological Measurements 

Physiological measurements focused on plant water status and photosynthetic pigments and were performed 

in a weekly basis. Relative Water Content (RWC) and Leaf Specific Mass (LSM) were determined to evaluate 

plant water stress. RWC was calculated using the equation: 

Relative Water Content, RWC = 
FW - DW

TW - DW
 

 

where FW is fresh weight, TW is turgid weight, and DW is dry weight. Leaf discs were cut and weighed to obtain 

fresh weight. Turgid weight was determined after putting the discs in distilled water for 24 hours. Finally, dry 

weight was obtained after oven drying at 80°C for 24 hours. LSM was calculated using the equation: 
 

Leaf Specific Mass, LSM = 
DW

A
 

 

where DW is dry weight (g) and A is leaf area (dm2). Chlorophyll a and b content, along with carotenoid content, 

were measured to assess photosynthetic activity. Pigments were extracted using 80% acetone followed by 
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centrifugation at 4000 rpm for 10 minutes. The absorbance of the supernatant was measured at specific 

wavelengths (720, 663, 646, and 470 nm) using a dual-beam spectrophotometer (SHIMATZU, UV-1900). 

Concentrations of chlorophyll a, b, and carotenoids were calculated using the equations established by 

Lichtenthaler and Wellburn (Lichtenthaler & Wellburn, 1983). 

The parameters derived from pigment extraction included the total concentration of chlorophylls and 

carotenoids per leaf surface area (μg cm⁻²) and leaf dry weight (μg g⁻²), and ratios chlorophyll a to b ratio and 

chlorophyll to carotenoid. These ratios are important indicators of stress response. For instance, the chlorophyll 

a to b ratio, typically around 3:1 in healthy plants, decreases under stress conditions, signifying degradation of 

chlorophyll b. Similarly, the chlorophyll to carotenoid ratio changes during stress, with chlorophylls tending to 

decline more rapidly than carotenoids (Merzlyak et al., 1999). Overall, eight physiological parameters used as 

dependent variables in both modelling approaches. 

2.2.2. Hyperspectral Reflectance Data 

Hyperspectral data, consisting of reflectance measurements from plant leaves, were collected non-invasively 

using a spectroradiometer (JAZ Spectrometer, Ocean Optics) on a weekly basis. The device captured reflectance, 

absorbance, and transmittance data from 340 nm to 1025 nm, encompassing the near-ultraviolet, visible, and 

near-infrared light regions. It offered a spectral resolution of approximately 0.3 nm. Importantly, the same leaf 

from each pot was used for each weekly measurement of all parameters (physiological and hyperspectral). 

Spectral data were collected first, followed by leaf collection for laboratory analyses of physiological parameters. 

2.3. Modeling 

Both modeling approaches that were developed to assess nitrogen and water stress in pepper plants, compared 

the reflectance data with each ecophysiological parameter individually. The first modeling approach comprised 

linear regression models based on vegetation indices (NDVI, PRI, GNDVI, NDRE, NIRv). In the second 

approach, the reflectance data from the spectroradiometer were used as input parameters in four machine learning 

model algorithms, i.e., Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machines (SVM) and 

Regularized Linear Regression (RLR). 

2.3.1. Vegetation Index – Based Approach 

In this modeling approach, hyperspectral data derived from the spectroradiometer were used to construct 

vegetation indices. The indices used in the experiment included NDVI, PRI, GNDVI, NDRE, NIRv, and REP. 

The indices were calculated using the following equations: 

 

Normalized Difference Vegetation Index, NDVI = 
R845 - R665

R845 + R665

 

Photochemical Reflectance Index, PRI = 
R531 - R570

R531 + R570

 

Green Normalized Difference Vegetation Index, GNDVI = 
R845 - R560

R845 + R560

 

Normalized Difference Red Edge, NDRE = 
R845 - R715

R845 + R715

 

 

Near-infrared Reflectance of Vegetation , NIRV = R845 NDVI 
 

 

Red Edge Position , REP  

 

where Rx represents the reflectance at wavelength x, calculated as the average reflectance over a 10 nm range 

centred around x. For instance, instead of using a single value at 845 nm, the average reflectance from 840 nm to 

850 nm was used. This approach was adopted to prevent small fluctuations between measurements from affecting 

the final value of each index. The Red Edge Position (REP) corresponds to the wavelength between 680 nm and 

760 nm at which the first derivative of reflectance reaches its maximum value. 

Vegetation indices (VIs) are used in precision agriculture to assess plant stress. NDVI assesses plant health 

and growth (Huang et al., 2021). PRI, sensitive to carotenoid pigments, evaluates photosynthetic efficiency and 

stress (Thenot et al., 2002). GNDVI, using the green band, correlates with Leaf Area Index and biomass, being 
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more sensitive to chlorophyll than NDVI (Candiago et al., 2015). NDRE detects nitrogen stress more accurately 

than NDVI (Li et al., 2014). NIRv, a newer VI, improves accuracy in estimating plant productivity and 

photosynthesis (Badgley et al., 2017). REP is sensitive to chlorophyll content and stress, shifting towards shorter 

wavelengths under stress (Velichkova & Krezhova, 2019). 

Each vegetation index was calculated for all nine treatments across four dates, ranging from May 30 to June 

22, 2023. This resulted in a sample size of 36. These variables were then used to construct the linear regression 

models. Each VI was used as a single predictor and was correlated with each individual physiological parameter, 

resulting in 48 simple linear regression models (6 VIs  8 parameters). 

2.3.2. Machine Learning – Based Approach 

In this approach, the hyperspectral data derived from the spectroradiometer were used as independent 

variables in four commonly used ML algorithms, i.e., random forests (RF), k-nearest neighbors (KNN), support 

vector machines (SVM) and regularized linear regression (RLR).  

Random Forest constructs multiple decision trees for regression, averaging predictions to reduce overfitting 

and enhance accuracy (Cutler et al., 2012). It is widely used in plant stress detection for its accuracy, robustness, 

and simplicity (Chemura et al., 2017; Vitrack-Tamam et al., 2020). K-Nearest Neighbors (KNN) predicts values 

by averaging the k nearest neighbors, handling classification and regression tasks effectively (Aha et al., 1991). 

Support Vector Machines (SVM) identify the optimal hyperplane for classification and use kernel functions for 

non-linear data, effective in high-dimensional spaces and robust against overfitting (Kecman, 2005), performing 

well in plant stress detection (Karimi et al., 2006; Moshou et al., 2014). Regularized Linear Regression (RLR) 

adds penalties to prevent overfitting, with Ridge (L2) and Lasso (L1) being common forms, robust and 

interpretable for multi-dimensional data (Pillonetto et al., 2022). 

The raw hyperspectral data, obtained directly from the spectroradiometer, span a wavelength range from 340 

nm to 1025 nm, with a spectral resolution of approximately 0.3 nm. The process of constructing the ML models 

involved data cleaning to remove noise and averaging approximately 15 consecutive values, resulting in a reduced 

spectral resolution of 5 nm. This process aimed to reduce the total number of independent variables utilized for 

training, testing, and validation. Ultimately, the final dataset comprised 90 independent variables, ranging from 

500 nm to 1000 nm. In all modeling approaches, data were randomly split into a training set (80% of data) and a 

validation set (20% of data) to assess performance efficiency. The same data splitting method was applied 

consistently across all models.  

2.4. Statistics 

The simple linear regressions between the predictors and the dependent variables for the first modeling 

approach and the machine learning for the second, were performed with JASP software version 0.18.3 (JASP, 

2024). Models’ performance was evaluated by the coefficient of determination (R2), root mean square error 

(RMSE, z-score standardized) and the slope of the best-fit line between measured and modeled values. 

3.  Results  

 3.1. Nitrogen and water stress 

 Figure 1 presents the total chlorophyll content (per leaf area) (1a) and RWC (1b) for all nine treatments 

throughout the experiment. In 1a, clear differentiation is observed between N1, N2, and N3 treatments, with 

chlorophyll content increasing with higher N doses. Additionally, chlorophylls increase within each treatment as 

the experiment progresses. Regarding RWC (1b), it tends to be higher with increased irrigation levels, with the 

most apparent difference occurring on 14/06/2023. Conversely, within the same irrigation level, higher N levels 

correspond to lower RWC values. This is expected due to increased biomass (Table 1), resulting in higher water 

requirements. 

 

Table 1. Total average dry weight (g) per treatment. Each value corresponds to the average dry weight for each treatment at 

the end of the experiment. 

 

 

 

Treatment H1N1 H1N2 H1N3 H2N1 H2N2 H2N3 H3N1 H3N2 H3N3 

Dry Weight (g) 12.77 17.48 20.21 15.38 25.57 30.77 18.09 31.69 40.50 
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3.2. Vegetation Index – Based Approach 

The results of the simple linear regression models demonstrate extensive variability in the performance across 

different physiological parameters and vegetation indices (Table 2). It is observed that several physiological 

parameters exhibit relatively high performance when correlated with certain vegetation indices. Overall, the best 

performing LR models feature NDRE as the independent variable, with an R2 > 0.79 and an RMSE < 0.47 for 

total chlorophylls (Figure 2a) and carotenoids per leaf area, and the chlorophyll to carotenoids ratio. The second-

best performing results were demonstrated when using GNDVI as an independent variable, with an R2 > 0.73 

and an RMSE < 0.53 for the same three physiological parameters. Figure 2b presents GNDVI’s performance whit 

total chlorophylls per leaf area as the dependent variable. It is also important to note that GNDVI achieves the 

highest performance with chlorophyll content per dry weight (R2 > 0.71 and an RMSE < 0.49). Conversely, 

NDVI, PRI, NIRv, and REP generally exhibit moderate to poor performance across most physiological 

parameters, with R2 < 0.6 and RMSE > 0.63 for all eight physiological parameters. An interesting observation is 

that NDVI, despite its widespread usage in plant stress detection, ranks among the least effective indices in this 

experiment. Regarding the physiological parameters used individually as dependent variables in the LR models, 

most of them exhibit consistent patterns in their correlation with the VIs. For example, most indices demonstrate 

poor performance in predicting RWC and LSM, with extremely low R2 (< 0.1) and high RMSE (> 1.2). An 

exception is observed in the NIRv – LSM linear regression model, which shows moderate performance with R2 

= 0.56 and RMSE = 0.68.  
 

Table 2. Performance comparison of the vegetation index – based, simple linear regression models (VI – LR). All eight 

parameters were used individually as dependent variables in combination with all six VIs. VIs were constructed by using 

hyperspectral reflectance data from 400 nm to 1025 nm. R2, coefficient of determination and RMSE, root mean square error 

(standardized, unitless) between measured and modeled values. The sample size used in the experiment is 36. 

Parameters 

VI - Linear Regression Models 

NDVI PRI GNDVI NDRE NIRv REP 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RWC 0.001 1.299 0.041 1.350 0.087 1.340 0.169 1.429 0.064 1.411 0.149 1.509 

LSM 0.057 1.577 0.020 1.214 0.000 1.395 0.063 1.236 0.567 0.677 0.030 1.360 

Chl (μg cm⁻²) 0.263 0.855 0.522 0.695 0.800 0.424 0.933 0.276 0.200 1.014 0.611 0.632 

Car (μg cm⁻²) 0.279 0.809 0.450 0.717 0.758 0.448 0.897 0.330 0.210 0.975 0.572 0.657 

Chl (μg g⁻²) 0.374 0.734 0.459 0.733 0.818 0.407 0.740 0.487 0.014 1.228 0.522 0.701 

Car (μg g⁻²) 0.432 0.670 0.312 0.815 0.713 0.491 0.545 0.631 0.005 1.301 0.382 0.797 

Chl/Car 0.234 0.961 0.521 0.779 0.738 0.533 0.792 0.473 0.104 1.195 0.562 0.708 

Chla/Chlb 0.000 1.157 0.214 1.441 0.123 1.219 0.300 1.351 0.405 1.564 0.142 1.366 

a b 

Figure 1. Chlorophyll content (a) and RWC (b) per treatment. Each color represents a different measurement at dates 

indicated in the graphs. H1, H2, H3 and N1, N2, N3 indicate low, mid and high levels of water and nitrogen, respectively. 
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Figure 2. Relationships between measured and modeled values based on the VI-LR approach, when using GNDVI (a) and 

NDRE (b) as predictors, with chlorophyll content to leaf surface area as a dependent variable. The coefficient of 

determination (R2), the root mean square error (RMSE) and the slope of the best-fit line are shown in the inserts. Blue line 

corresponds to the 1:1 line and red line to the best-fit line. 

 

3.3. Machine Learning – Based Approach  

In this approach, all hyperspectral data were used as independent variables in combination with each 

physiological parameter. All machine learning models outperformed the simple linear regression models (Table 

3). Additionally, all algorithms demonstrate comparable performances. No single algorithm stands out as 

superior. The best performing models are once again those concerning chlorophylls and carotenoids per leaf 

surface area (R² > 0.83 and RMSE < 0.42 and R² > 0.84 and RMSE < 0.39, respectively). Another improvement 

over the first modeling approach is the relatively high performance of all algorithms in predicting LSM, with R² 

> 0.65 and RMSE < 0.61. Lastly, RWC remains the only parameter that no algorithm can accurately predict (R² 

< 0.3 and RMSE > 0.93). In Figure 3, four of the best performing ML models are depicted.  
 

 

Table 1. Performance comparison of the ML – based models. All eight parameters were used individually as dependent 

variables and all hyperspectral reflectance data (500 nm to 1000 nm) were used as independent variables. R2, coefficient of 

determination and RMSE, root mean square error (standardized, unitless) between measured and modeled values. Sample 

size is 36. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

Algorithms 

RF KNN SVM RLR 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RWC 0.304 0.934 0.139 1.104 0.065 1.204 0.308 0.930 

LSM 0.732 0.530 0.654 0.610 0.708 0.555 0.805 0.447 

Chl (μg cm⁻²) 0.826 0.421 0.937 0.249 0.872 0.358 0.908 0.303 

Car (μg cm⁻²) 0.875 0.354 0.844 0.397 0.924 0.275 0.897 0.320 

Chl (μg g⁻²) 0.691 0.573 0.715 0.548 0.824 0.423 0.731 0.531 

Car (μg g⁻²) 0.695 0.569 0.665 0.599 0.680 0.583 0.698 0.566 

Chl/Car 0.814 0.436 0.725 0.537 0.88 0.347 0.854 0.385 

Chla/Chlb 0.483 0.770 0.472 0.780 0.480 0.773 0.470 0.782 
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Figure 3. Relationships between measured and modeled values based on the ML approach, when using chlorophyll content 

(a), carotenoid content (b), chlorophyll to carotenoid ratio (c) and LSM (d) as dependent variables. The type of regression, 

the coefficient of determination (R2), the root mean square error (RMSE) and the slope of the best-fit line are shown in the 

inserts. Blue line corresponds to the 1:1 line and red line to the best-fit line. 

4. Discussion 

In this study, the nine treatments created correspond to different combinations of water and nitrogen stress, 

as assessed by the different parameters (e.g. chlorophyll and carotenoid content, RWC, LSM) between treatments. 

The study findings highlight the differences between VI-based and ML-based approaches for assessing plant 

stress by utilizing hyperspectral data. In the former, specific indices, such as NDRE and GNDVI, display superior 

performance with certain physiological parameters, while others like NDVI and PRI show relatively inferior 

performance across most parameters. In the ML-based approach, all algorithms surpass the simple linear 

regression models. Notably, models correlating with chlorophylls and carotenoids as dependent variables 

consistently outperform others, indicating their importance in stress assessment. However, the performance of 

models for RWC remains subpar across both approaches. These results underscore the potential of ML algorithms 

in effectively analysing hyperspectral data for plant stress detection. Nonetheless, challenges persist, particularly 

in accurately quantifying specific physiological parameters like RWC. Further research is needed to examine 

various plant species and their distinct characteristics. Additionally, expanding the range of physiological 

parameters, such as fluorescence, and testing and refining different computational techniques is essential. 

Furthermore, incorporating a wider array of abiotic and biotic stresses into the models is recommended for 

enhancing their effectiveness. 
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Abstract 

Based on process analyses and working time studies when using two different robots for in-row weeding 

of organic sugar beets, the time requirements of the robots and the operators are modelled. If the time 

requirement is based on the hectare of area worked, it can be seen that on fields smaller than 3 ha, both the 

time requirement of the robot and the operator increases significantly. When the field size increases beyond 

10 ha, the time required by the robot hardly decreases. That of the operator even begins to increase slightly. 

Furthermore, the working speed, turning time, working width and number of faults have a significant 

influence on the time required by the robot. The operator's working time requirement is strongly influenced 

by the time required for teaching in the field, the frequency of malfunctions and necessary checks, and the 

field-yard distance. 

Keywords: in-row hoeing, field efficiency, fault time, execution time, operation time  

1. Introduction 

Weed control is very time-consuming when growing sugar beets organically. Fishkis et al. (2024) report 

an annual working time requirement of 164 - 172 h ha-1 for hand hoeing sugar beets. In Austria, farmers 

indicate in surveys that the working time required for hand hoeing is up to 200 h ha-1 (Jungwirth and Handler, 

2022). Numerous authors (van der Weide et al., 2008; Kunz, 2017; Lampridi et al., 2019; Vasconez et al.; 

2019; Bručienė et al., 2021; Vahdanjoo et al., 2023) show that precisely controlled hoeing devices, in-row 

hoeing devices and robots can make a significant contribution to reducing the working time required for hand 

hoeing sugar beets in organic farming. In order to exploit this potential, robots with in-row hoeing devices 

have been used in Austria since 2021. Although the robots can sow and hoe autonomously, they require an 

operator to transport from field to field, teach-in the field boundaries, adjust and monitor the quality of work 

and resolve faults. Based on work analysis and time studies, this study uses model calculations to examine 

the factors influencing the robots' work rate and the operator's working time requirements. 

2. Materials and Methods  

Two robots were used to collect data. The robots differed significantly from each other in terms of design. 

Robot I worked in six rows and had RTK-GNSS controlled in-row hoeing device. It could only be used on 

fields sown by it, as it recorded the exact position of the plants when sowing to control the hoeing tools. 

Before the first use on a field, the field boundaries and obstacles had to be digitized. To do this, the corner 

points of the field and the obstacles (e.g. wells) had to be approached with the robot mounted on the tractor's 

three-point linkage or with an RTK measuring rod and their position saved. Robot II also navigated via RTK-

GNSS. The inter-row hoeing tools were guided along the row using camera controls. The in-row hoeing tools 

were controlled via camera systems with AI-based individual plant recognition. The field boundaries were 

taught-in here by remote-controlled hoeing of the first working width in the partial areas of the field 

(headland, main area). 

Before the working time studies began, in a first step, analyses of the work process in relation to the robot 

and the operator were carried out on both robots when sowing or hoeing sugar beets. Based on this, the work 

process was divided into sections and work elements and the factors influencing their working time 

requirement were assigned. The developed structure formed the basis for the working time studies in the 

field. The procedure is based on Frisch et al., 2022. The data collected for the sections of the work process 

and the work elements was analysed using Analysis of Variance and General Linear Models in Statgraphics. 

Based on the results of the analysis of the work process and working time studies (Haider and Handler, 

2023, Jungwirth and Handler, 2022), model calculations (Handler and Blumauer, 2022) were carried out. 
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These were used to systematically examine the size of the influence of various factors such as field size, field 

shape, working width, working speed, time required per turn and frequency of robot malfunctions on the time 

requirement and the work rate of the robot and the working time requirement of the operator. 

To display the results of the model calculations, the total time is divided into operation time, fault time 

and non-productive time (Frisch et al., 2022). The operation time includes the working time necessary for 

the scheduled completion of the work task. It includes the time types execution time in narrower sense, 

turning time, loading time (e.g. refilling seeds), as well as time for adjustment and checking. The actual 

purpose of the work is carried out during the execution time in narrower sense. Fault time includes unplanned 

interruptions to work that delay the achievement of the work purpose and can be divided into functional and 

technical fault time, organizational fault time and weather-related fault time. The non-productive time 

describes planned activities that are necessary to establish and maintain the work system and to restore the 

initial state. It includes supply time (e.g. refuelling), job preparation and job closing time (e.g. set-up, 

operation briefing) as well as transit time between fields or between the field and the yard). The proportion 

of execution time in narrower sense in the total time of the robot corresponds to the field efficiency. 

E=
t111*100

tG
   (1) 

where E is field efficiency (%); t111 is execution time in narrower sense (h) and tG is total time (h). 

3. Results and Discussion  

Surveys on practical farms show that, in addition to sowing, the robot must be used for five to six hoeing 

passes (Jungwirth and Handler, 2022) in order to achieve sufficient weed reduction in sugar beet. Figure 1 

shows the total time required by the six-row robot - Robot I - (top) and the operator (bottom) for sowing and 

hoeing depending on the field size. For this purpose, a rectangular field with a length-to-width ratio of 3:1, a 

working speed of the robot of 750 m h-1, 45 cm distance between the rows and a field-to-yard distance of 

2 km are assumed. Six hoeing passes are taken into account in the model calculation. The time required per 

hectare for Robot I decreases significantly as the field size increases. The decrease between the one-ha field 

and the three-ha field is particularly clear at 24%. After that, the degression decreases significantly. The 

operation time is reduced primarily by reducing the proportion of turning time and the time required for 

adjustment (setting the field boundaries, the sowing elements and hoeing tools). The time required per hectare 

for hoeing (execution time in narrower sense) and refilling with seeds, on the other hand, changes relatively 

little depending on the field size. The non-productive time includes robot transport to and from the field as 

well as conversion from hoeing to sowing and vice versa. Since the duration of these process sections does 

not depend on the field size, there is a significant decrease in non-productive time per hectare. The fault times 

can be caused by blockages in the seeding elements, coulters and hoeing shares as well as by the detection 

of an obstacle or the onset of precipitation. The frequency of occurrence of faults varies greatly in practice 

and depends largely on factors such as soil conditions (unevenness, soil crusting, fluctuations in 

reconsolidation, soil moisture or soil type), stones, crop residues, slope and homogeneity of the crop. In the 

model calculation on which Figure 1 is based, it is assumed that a fault occurs on average every three hours 

(execution time in narrower sense) due to residues from the previous crop and root weeds on the headland. 

As the proportion of headlands decreases with increasing field size, the number of faults (see Table 1) and 

time required per hectare for faults decreases. It ranges between 4 and 2% of the total time required by the 

robot. If the working conditions are unfavourable and the operator's reaction time is longer, the duration of 

the faults can increase significantly. 

Figure 2 is based on the data from Figure 1 and shows the work rate and field efficiency of the robot when 

hoeing sugar beet depending on the field size. The work rate in relation to the execution time in narrower 

Table 1. Number of faults and work rate of the robot. 

  Field size [ha] 

  1 2 3 5 10 20 

Figure 1 
Mean number of faults per hectare  1.21 0.87 0.72 0.56 0.40 0.28 

Work rate when hoeing based on total time [ha h-1] 0.12 0.14 0.15 0.16 0.17 0.18 

Figure 3 
Mean number of faults per hectare  2.00 2.00 2.00 2.00 2.00 2.00 

Work rate when hoeing based on total time [ha h-1] 0.11 0.13 0.14 0.15 0.16 0.16 
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sense changes little with increasing field size, since the execution time in narrower sense in Figure 1 also 

hardly changes with increasing field size. Since the proportion of other operation time, fault time, and non-

productive time of the robot decrease with increasing field size (see Figure 1), field efficiency increases from 

64 to 93%. 

When using tractor-drawn hoeing machine for mechanical weed control, the working time required of the 

operator is higher than the operating time of the machines used due to the set-up time taken into account 

(Agroscope, 2024). When using a robot, the operator spends significantly less time overseeing the robot than 

the robot spends working on the field. In Figure 1 (bottom), the operator's total working time requirement for 

a field size of 1 ha accounts for 30% of the robot's time requirement. This value drops significantly up to a 

field size of 3 ha (18%). After that, the ratio changes little and is between 13 and 15%. The smaller the field, 

the more the operator's work is dominated by non-productive time, such as robot transport to and from the 

field and conversion from hoeing to sowing and vice versa, which occur regardless of the field size. It 

decreases per hectare as the field size increases. The operation time includes checking the quality of work 

when sowing and hoeing, refilling the seeds, recording the field boundaries, defining the field on the control 

terminal and adjusting the sowing and hoeing tools. Work sections such as recording the field boundaries, 

defining the field on the control terminal and adjusting the sowing and hoeing tools, which essentially only 

occur once at the beginning of the field processing, lead to a decrease in the operator's working time required 

per hectare as the field size increases. The frequency of checking required can vary greatly as it depends on 

the likelihood of faults that the robot does not detect and the changing operating conditions and the operator's 

willingness to take risks. In the present model calculation, it is assumed that an inspection tour to check the 

robot takes place every eight hours. The working time required per inspection tour increases with the size of 

 

 

Figure 1. Total time required by the six-row robot - Robot I - (top) and the operator (bottom) for 

sowing and hoeing organic sugar beet six times, depending on the field size (rectangular field with 

length-width ratio of 3:1, robot working speed 750 m h-1, 45 cm row spacing, field-yard distance 

2 km). 
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the field, as longer distances have to be covered on foot in the field. The same applies to refilling seeds. This 

means that the operation time of the operator begins to increase again for field sizes over 5 ha, so that the 

total working time requirement per hectare is also higher for a field size of 20 ha than for a field size of 10 

ha. Due to the decrease in the proportion of headlands as the field size increases and assuming that faults due 

to unfavourable working conditions only occur on the headland, the operator's working time requirement per 

hectare to resolve faults also decreases. It ranges between 6 and 9% of the total working time requirement. 

Compared to Figure 1, in Figure 3 the frequency of faults is increased to two faults (e.g. blockages on the 

coulters or hoeing shares) per hectare (see Table 1). As the size of the field increases, this causes the work 

rate of the robot to decrease by 3 to 11% based on the total time of the robot. The working time requirement 

of the operator to resolve faults increases with the size of the field, as longer distances have to be covered on 

foot in the field. There is also a significant increase in the proportion of fault time to 10 to 46% of the 

operator's total working time requirement. At the same time, the operator's non-productive times also 

increase, as the transit times between the field and the farm caused by the faults are counted as non-productive 

time. Compared to Figure 1 in Figure 3, this increases the operator's total working time requirement between 

6 and 92%. 

Figure 4 shows the work rate of a three-row robot for hoeing organic sugar beet fields three times. For 

each hectare of field size, two faults due to blockages in the hoeing shares and one inspection tour to the 

 

Figure 2. Mean work rate and field efficiency of a six-row robot - Robot I - for hoeing organic sugar 

beet depending on the field size (rectangular field with length-width ratio of 3:1, robot working speed 

750 m h-1, 45 cm row spacing, field-yard distance 2 km). 
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Figure 3. Working time requirement of the operator of a six-row robot - Robot I - for hoeing organic 

sugar beet depending on the field size (rectangular field with length-width ratio of 3:1, robot working 

speed 750 m h-1, 45 cm row spacing, field-yard distance 2 km). 
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robot every eight hours are taken into account on average. The possible working speed when hoeing depends 

largely on the robot design, the hoeing tools, the soil conditions and the growth stage of the crop and weeds. 

If the working speed when hoeing can be increased from 750 to 900 m h-1, the work rate of the robot increases 

between 11 and 15% under the assumptions made in the model calculation. The raise increases with 

increasing field size (compare line “900 m h-1; 2.96 min per turn” with line “750 m h-1; 2.96 min per turn”). 

The higher working speed results in a shorter execution time in narrower sense, which decreases field 

efficiency. For example, it decreases from 74 to 70% for a field size of 2 ha and from 88 to 86% for a field 

size of 10 ha (see Table 2). The corresponding working time requirement of the operator in Figure 5 for three 

chopping passes decreases by 0.14 to 0.49 h ha-1 (2 to 11%) due to the higher working speed. The reason for 

this is the assumption made in the model that inspection tours are carried out every eight hours of the robot's 

operation time. Surveys on farms by Haider and Handler (2023) show that three hoeing passes are necessary 

to reduce the weed population sufficiently.  

The proportion of turning time in the total working time of the robot decreases with increasing field size. 

Therefore a reduction in turning time from 2.96 min per turn to 1.00 min per turn with decreasing field size 

leads to a higher increase in the work rate of the robot (compare line “900 m h-1; 2.96 min per turn” with 

“line 900 m h-1; 1.00 min per turn”). The increase in Figure 4 ranges between 19% for a field size of 1 ha and 

4% for a field size of 20 ha. At the same time, field efficiency increases from 60 to 71% for a field size of 

 

Figure 4. Mean work rate based on the total time for hoeing organic sugar beet by a three-row robot - 

Robot II - at different working speeds, turning times and reduced time required for recording and 

defining the field (rectangular field with length-width ratio of 3:1, 45 cm row spacing, field-yard 

distance 2 km). 
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Figure 5. Working time requirement of the operator for hoeing organic sugar beet by a three-row robot 

- Robot II - at different working speeds, turning times and reduced time required for recording and 

defining the field (rectangular field with length-width ratio of 3:1, 45 cm row spacing, field-yard 

distance 2 km). 
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1 ha and from 89 to 92% for a field size of 20 ha (see Table 2). The operator's working time requirement 

decreases between 4 and 2% or between 0.26 and 0.11 h ha-1 as the field size increases (see Figure 5). The 

reason for this is the assumption made in the model that inspection tours are carried out every eight hours of 

the robot's operation time. 

Table 2. Mean field efficiency of a three- or four-row robot - Robot II – when hoeing sugar beet with 

reference to Figures 4 and 6. 

Conditions 
Field size [ha] 

1 2 3 5 10 20 

900 m h-1; 2.96 min per turn and 3:1; 3-rows; 2 km  60% 70% 75% 81% 86% 89% 

750 m h-1; 2.96 min per turn 64% 74% 79% 83% 88% 91% 

900 m h-1; 1.00 min per turn 71% 80% 84% 87% 91% 92% 

900 m h-1; 2.96 min per turn; red. field def. 61% 71% 76% 81% 86% 89% 

3:1; 4-rows; 2 km 55% 66% 72% 78% 83% 87% 

2:1; 3-rows; 2 km 58% 68% 74% 79% 84% 88% 

3:1; 3 rows; 10 km 57% 69% 74% 80% 85% 88% 

The time for field definition is part of the adjustment time and, for Robot II, includes recording the field 

boundaries and defining the field on the operating terminal. When working on the field for the first time, for 

example for a 2-ha field, it requires 60 minutes for the robot and operator and increases to 80 minutes for a 

5-ha field. Reducing the time required for field definition to 20% of the initial value causes an increase of the 

robot´s work rate by around 1% (compare line “900 m h-1; 2.96 min per turn” with line “900 m h-1; 2.96 min 

per turn; red. field def.” in Figure 4). Field efficiency increases by around one percentage point. For the 

operator, it leads to a reduction in the total working time requirement in the range of 3% (0.10 h ha-1) for 20-

ha fields to 10% (0.69 h ha-1) for 1-ha fields (see Figure 5). 

Figure 6 shows the influence of field shape, working width and field-yard distance on the work rate of 

the robot. Line “900 m h-1; 2.96 min per turn” in Figures 4 and 5 corresponds to the line “3:1; 3-rows; 2 km” 

in Figures 6 and 7. Under the chosen general conditions, the change in the ratio of field length to field width 

from 3:1 to 2:1 leads to a decrease in work rate between 4 and 1% (compare line “3:1; 3-rows ; 2 km” with 

“line 2:1; 3 rows; 2 km”). The difference decreases as the field size increases. Field efficiency drops by 1 to 

2 percentage points (see Table 2). The operator's working time requirement also decreases due to the shorter 

distances to be covered during inspection tours. With a field size of 2 ha it is reduced by 1% (0.01 h ha-1), 

with a field size of 20 ha the reduction is 6% (0.27 h ha-1). 

Increasing the working width from three to four rows brings a significant increase in work rate of 23 to 

31%, although this is higher on large fields (compare line “3:1; 3-rows; 2 km” with line “3:1; 4-rows; 2 km” 

in Figure 6). Due to the decrease in execution time in narrower sense, increasing the working width reduces 

field efficiency by 2 to 4 percentage points. The difference decreases as the field size increases. The operator's 

 

Figure 6. Mean work rate based on the total time for hoeing organic sugar beet by a three- or four-row 

robot - Robot II - at different field shapes and field-yard distances (rectangular field, 45 cm row 

spacing, working speed 900 m h-1, 2.96 min per turn). 
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working time requirement decreases by 3 to 15% by increasing the working width (compare line “3:1; 3-

rows; 2 km” with line “3:1; 4-rows; 2 km” in Figure 7). The reason for this is the decreasing operation time 

of the robot, which, according to the assumptions made in the model, reduces the number of inspection tours. 

By increasing the field-yard distance from 2 to 10 km, the work rate drops between 1 and 5% (compare 

line “3:1; 3-rows; 2 km” with line “3:1; 3-rows; 10 km” in Figure 6). At the same time, field efficiency also 

drops between 1 and 3 percentage points. In contrast, there is a significant increase in the working time 

requirement of the operator because he has to travel between the field and the yard more often than the robot. 

For example, for a field size of 2 ha the increase amounts 85% (4.37 h ha-1) or for a field size of 10 ha it 

amounts 62% (2.41 h ha-1) (compare line “3:1; 3-rows; 2 km” with line “3:1; 3-rows; 10 km” in Figure 7). 

The average driving speed assumed in the model is 60 km h-1 for trips for resolve faults, checks and refuelling 

and 20 km h-1 for robot transport. 

Table 3. Relationship between working time requirement of the operator and the robot. 

Conditions 
Field size [ha] 

1 2 3 5 10 20 

900 m h-1; 2.96 min per turn and 3:1; 3-rows; 2 km  18% 15% 13% 13% 13% 16% 

750 m h-1; 2.96 min per turn 16% 13% 12% 12% 13% 15% 

900 m h-1; 1.00 min per turn 21% 16% 14% 13% 14% 16% 

900 m h-1; 2.96 min per turn; red. field def. 17% 14% 13% 12% 13% 15% 

3:1; 4-rows; 2 km 22% 18% 16% 15% 15% 17% 

2:1; 3-rows; 2 km 17% 14% 13% 12% 13% 15% 

3:1; 3 rows; 10 km 32% 26% 24% 22% 22% 23% 

Table 3 shows the relationships between the working time requirements of the robot and the robot operator 

with reference to Figures 5 and 7. The numbers given indicate how many percent the working time 

requirement of the operator represents in relation to the time requirement of the robot. With regard to the 

time required by the robot, the operator spends the least amount of working time looking after the robot under 

the general conditions of the model calculations with an average field size of 5 ha. The values for a field size 

of 10 ha are also at a similar level. The values for a field size of 20 ha are somewhat higher. This is because, 

as the field size increases, longer distances have to be covered on foot in the field during checks, faults and 

refuelling. The increase in fields with one or two hectares is primarily caused by work sub-processes such as 

defining the field boundaries or transporting the robot to and from the field. Increasing the distance between 

the field and the yard also caused a significant increase in the working time required by the operator in 

relation to the time required by the robot. However, reducing the time required by the robot by increasing the 

working width to four rows also worsened the relationship, as the time required by the robot fell more than 

that of the operator. The same applies to reducing the turning time. 

 

Figure 7. Working time requirement of the operator for hoeing organic sugar beet by a three- or four-

row robot - Robot II - at different field shapes and field-yard distances (rectangular field, 45 cm row 

spacing, working speed 900 m h-1, 2.96 min per turn). 
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4. Conclusions 

The work rate of the robot depends largely on the size of the field. Due to the decreasing field efficiency, 

the work rate decreases relatively sharply, especially on fields smaller than 3 ha. At the same time, the 

working time required by the operator per hectare increases significantly. Even on areas larger than 10 

hectares, the operator's working time requirement per hectare begins to increase, as the distances covered on 

foot in the field for checks and troubleshooting increases as the size of the field increases. Depending on the 

general conditions, the working time required by the operator accounts for between 12 and 32% of the time 

required by the robot. Faults on the robot that have to be resolved by the operator, in combination with large 

field-yard distances, significantly increase the operator's working time requirement. One-off work sections 

in the field, such as recording the field boundaries or transporting the robot, has a negative impact on the 

operator's working time per hectare, especially in small fields. Increasing the working width and working 

speed as well as reducing the turning time are measures to improve the robot's work rate. 
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Abstract 

Previous research has shown that the amount of soil spatial variability across a farm and within an 

agricultural field is of key importance to determine the potential benefits of adopting effective management 

strategies. Precision agriculture (PA) intends to validate technological tools that capture soil and crop spatial 

variability, which constitute the basis for the establishment of differentiated management zones (MZs). Soil 

apparent electrical conductivity (ECa) sensors are commonly used to survey soil spatial variability. It is 

essential for surveys to have temporal stability to ensure correct medium- and long-term decisions. The aim 

of this study was to assess the temporal stability of MZ patterns using different types of ECa sensors, namely 

an ECa contact-type sensor (Veris 2000 XA) and an electromagnetic induction sensor (EM-38). These sensors 

were used in four fields of dryland pastures in the Alentejo region of Portugal. The first survey was carried 

out in October 2018, and the second was carried out in September 2020. Data processing involved 

synchronizing the geographic coordinates obtained using the two types of sensors in each location and 

establishing MZs based on a geostatistical analysis of elevation and ECa data. The ECa measurements 

showed statistically significant correlations in all experimental fields (correlation coefficients between 0.449 

and 0.618), which were reflected in the spatially stable patterns of the MZ maps (averaging 52% of the total 

area across the four experimental fields). This is a good indicator of potential for the use of ECa in medium 

and long-term management decisions. These results provide perspectives for future developments, which will 

need to occur in the creation of algorithms that allow the spatial variability and temporal stability of ECa to 

be validated through smart soil sampling and analysis to generate recommendations for sustained soil 

amendment or fertilization. 

 

Keywords: pastures, spatial variability, management zones. 

 

1. Introduction 

Previous research has shown that the amount of soil spatial variability across a farm and within a field is 

of key importance to determine the potential benefits of adopting effective management strategies (King et 

al., 2005). Understanding this spatial variability is the first step for site-specific crop management (Peralta et 

al., 2015). On the other hand, spatial variability and temporal stability are two essential conditions for the 

adoption of differential management strategies and are the bases for variable rate technology (VRT) 

implementation. However, relatively little is known about the degree of within-field spatial variation in soils 

used for livestock production, which leads to the common practice of uniform field management (Serrano et 

al., 2017). Site-specific crop management aims to increase profitability and reduce the negative 

environmental impact of modern farming (Mat Su and Adamchuk, 2023). 

Numerous studies use data from sensors to map soil physical and chemical properties to divide the field 

into smaller, more homogeneous areas (management zones, MZs) (Adamchuk et al., 2004). Surveying soil 

spatial variability is the basis for identifying within-field areas of soil similarity, defining MZs, and 

supporting decision making, for example, to decide on the locations of direct soil sampling (smart soil 

sampling) or for variable rate application (VRA) of agricultural inputs (McCutcheon et al., 2006; Medeiros 

et al., 2016; Serrano et al., 2017). These subfield regions constitute areas that have similar permanent 

characteristics, such as topography and nutrient levels (Moral et al., 2010). Typically, soil sampling of a field 

comprises a grid-sampling approach as well as laboratory work (Peralta et al., 2015). This is impractical at 
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the farming scale because it requires many soil samples in order to achieve a good representation of the soil 

spatial patterns, and it is labor intensive, time consuming, and expensive (King et al., 2005; Peralta et al., 

2015). Therefore, it is desirable to find other more rapid and low-cost means of obtaining information for 

detailed soil mapping (King et al., 2005). 

The use of geospatial measurements of apparent soil electrical conductivity (ECa), combined with global 

navigation satellite systems (GNSSs) and geographical information systems (GISs), has become instrumental 

in characterizing the spatial patterns of soil properties within fields (Moral et al., 2010; Peralta et al., 2015). 

There are two types of electrical conductivity sensors that are currently on the market: (i) contact sensors, 

such as the Veris 2000 XA (Veris Technologies, Salina, KS, USA) sensor, which use electrodes, in the shape 

of coulters, that make contact with the soil to measure the electrical resistivity (the inverse of electrical 

conductivity); and (ii) non-contact sensors, such as the Dualem 1S (Dualem, Inc., Milton, ON, Canada) or 

the EM-38 (Geonics Ltd., Mississauga, ON, Canada) sensors, which are based on the principle of 

electromagnetic induction (Moral et al., 2010). It is generally recognized that both types of sensors represent 

practical tools to delineate soil-based MZs (McCutcheon et al., 2006). 

Soil electrical conductivity has been frequently used in the establishment of soil MZs and in the inference 

of several edaphic physicochemical properties and their respective spatial variations (Peralta et al., 2015). 

Many studies carried out on agricultural soils have reported the relationship of ECa with other soil attributes, 

including salinity, texture, depth, pH, moisture, organic matter, and cation exchange capacity (Peralta et al., 

2015; Medeiros et al., 2016). According to Farahani and Buchleiter (2004), although the magnitudes of the 

absolute values of ECa may change in response to modifications in the soil dynamic properties, it is expected 

that the pattern of ECa spatial variability will not change significantly over time (Medeiros et al., 2016). It is 

therefore essential that ECa measurements portray the soil’s spatial variability pattern, expressed in terms of 

delineation of MZ, but to also do so in a stable way over time [13], guaranteeing the sustainability of 

management decisions in the medium and long term (Serrano et al., 2017). Considering that an MZ is often 

used for several years, the variables should be temporally stable (Schenatto et al., 2017). 

Several previous studies have evaluated and reported the temporal stability of ECa. Some have reported 

weak temporal associations [11], and others have shown that ECa has temporal stability (Martini et al., 2017; 

Serrano et al., 2017); however, there are no known studies evaluating the temporal stability of MZ, especially 

when obtained from measurements using sensors with different principles. 

The aim of this study was to assess the temporal stability of MZ patterns using two different types of ECa 

sensors, namely a contact-type (Veris 2000 XA) and an electromagnetic induction type (EM-38), after 

approximately 2 years in four fields of dryland pastures in the Alentejo region of Portugal. 

2. Materials and Methods  

2.1. Description of Experimental Fields  

The experimental work was carried out at four fields, namely two in the “Mitra” experimental farm 

(“ECO”, 38°53.10’N and 8°01.10’ W; area = 4.3 ha; and “MIT” 38°32.17’N and 7°59.83’ W, area = 20.2 

ha; both with loamy sand soil), one in the “Murteiras” farm (“MUR”, 38°23.4’N and 7°52.5’ W; area = 29.6 

ha; sandy loam soil), and another in the “Padres” farm (“PAD”, 38°36.4’N and 8°8.7’ W; area = 32.2 ha; 

sandy loam soil), which are all permanent and biodiverse dryland pastures of the Montado ecosystem, located 

in Alentejo, in the district of Évora, in southern Portugal. 

In this mixed ecosystem, the predominant trees are Holm oak trees, and the main animal species are cows 

and sheep in extensive grazing. The soil type is Cambisol, originating from granite [(FAO, 2006). The 

location of these fields is representative of the temperate climatic conditions of Portugal (classified as ‘Csa’: 

hot summer Mediterranean climate according to the Köppen–Geiger climate classification).  

2.2. Topographic and Soil Electrical Conductivity surveys 

A topographic survey of the four experimental fields was carried out using a Real-Time Kinematic (RTK) 

GNSS instrument (Trimble RTK/PP-4700 GNSS, Trimble Navigation Limited, Sunnyvale, CA, USA). The 

elevation data were sampled in the field with the GNSS antenna assembled on a tractor. For each field, the 

digital elevation model (DEM) was generated using the triangulated irregular network (TIN) interpolation 
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tool from ArcGIS 9.3. The TIN algorithm uses sample points to create a surface formed by triangles based 

on nearest neighbor point information. This vector information was converted into a grid surface with a 1 m 

resolution using the “Spatial Analyst” tool. 

The ECa in the four fields was measured using a Veris 2000 XA contact-type sensor (Veris Technologies, 

Salina, KS, USA) in October 2018. This sensor was mounted on a chassis supported by two wheels, and its 

active components consisted of two pairs of coulter-electrodes—adjustable rotating discs. The adjustment of 

the discs generates a set of topsoil data (from 0 to 0.30 m in depth). The sensor, equipped with a GNSS 

antenna, was towed by a tractor at an average speed of 2.0 m s−1, and successive passes spaced 10 m apart 

were made across the field. The ECa measurements were recorded every second, resulting in a spatial 

resolution of a 2 m by 10 m grid. 

The ECa was also measured using an EM38 non-contact sensor (Geonics Ltd., Mississauga, ON, Canada). 

It was employed in the horizontal dipole orientation to perform ECa surveys in each pasture field in September 

2020. The two receiver coils were positioned 0.5 m away from the transmitter. Although this sensor provided 

data from depth ranges of 0.75 m and 0.375 m, only the topsoil data in the range of 0–0.375 m were utilized 

in this study. The device was towed by an all-terrain vehicle equipped with a GNSS antenna. The vehicle 

maintained an average speed of 2.5 m s−1, making successive passes across the fields and recording the ECa 

measurements every second. From these ECa data, Kriged ECa maps were generated for each pasture field 

using the collected ECa data. The ECa values at each sample location were then extracted from these ECa 

maps. 

The estimation of ECa at unsampled locations was performed using the ordinary point kriging algorithm, 

which integrates the spatial correlation structure described with the variograms. The resulting kriged maps 

show the spatial distribution of ECa in the experimental field. Finally, the kriged ECa maps were generated 

using the ArcMap module of ArcGIS. 

2.3. Soil Sampling and Analysis 

On both dates and in each experimental field, following the ECa measurements, eight georeferenced 

composite soil samples were collected at depths ranging from 0 to 0.30 m using a gouge auger and a hammer. 

Each composite sample resulted from the combination of five sub-samples collected within an approximately 

10 m × 10 m area: one from the center of the sampling area and the other four from the respective quadrant. 

Soil samples were transported to the laboratory in metallic boxes, weighed, and then dried at 105 °C until a 

constant weight was achieved. Once cooled, they were weighed to establish the mean soil moisture content 

(SMC). Subsequently, the fine components of the soil (fraction with a diameter < 2 mm) underwent chemical 

analyses of pH, organic matter (OM), phosphorous (P2O5), potassium (K2O) and cation exchange capacity 

(CEC) using standard reference laboratory methods (AOAC, 2005). On date 2 (September 2020), soil 

samples were also processed for particle size distribution.  

2.4. Statistical Analysis and Data Processing 

The data of ECa obtained by a Veris sensor in October 2018 and by EM-38 in September 2020 were 

synchronized using the geographic coordinates of each point to evaluate the temporal stability of the ECa 

measurements.  

A combined dataset was created for each date: each Veris data point obtained was paired with the nearest 

data point obtained by EM-38 based on GNSS coordinates. If a match in spatial coordinates was not found 

within a 5 m radius, that point was removed from the dataset. The sets of data, that is, points with common 

geographic coordinates in both surveys (date 1 and date 2) in each experimental field underwent linear 

correlation analysis, which was conducted using the IBM SPSS statistical package (version 25, IBM Corp, 

Armonk, NY, USA), to obtain the Pearson correlation coefficients (r) using the method of least squares (p < 

0.05). 

The ECa results obtained on each date, combined with elevation data (survey conducted on the first date), 

served as the input for the geostatistical analyses, enabling the delineation of management zones (MZ) for 

each date and experimental field. These homogeneous subfields were determined using a fuzzy cluster 

algorithm Höppner et al. (1999), and the MZ Analyst (MZA) software (Microsoft Corp., Redmond, WA, 

USA) was employed in this study. The procedures for delineating and evaluating the number of MZs used in 

this software were described by Fridgen et al. (2004). From a practical standpoint, three MZs with different 

AgEng 2024 Proceedings

247



productive potential (less, intermediate, and more potential) were considered in each experimental field. 

In order to analyze the temporal stability of the MZ defined in each field, a comparison was carried out 

between each pixel of the MZ maps based on the ECa measurements made with both sensors. Thus, for each 

field, a reclassification process was performed on the two MZ maps, assigning the value 0 to the pixels of 

the MZ with higher potential, 1 to those with intermediate potential, and 2 to those with low potential. 

Subsequently, using map algebra, both MZ maps were overlaid, producing a new map distinguishing three 

possible zones: one where pixels have a value of 0, meaning that the MZ coincides on both maps; another 

where pixels have a value of 1, meaning that there is a difference of 1 between the values of the pixel on the 

two maps; and a third zone with pixels whose value is 2, meaning that the pixel of the two maps have a 

difference of 2 between them. In this new map, the zone containing pixels with a value of 0 is denominated 

“stable”, the zone with pixels having a value of 1 is called “unstable”, and the zone containing pixels with a 

value of 2 is called “very unstable”. 

3. Results and Discussion 

3.1. Correlation between Soil Apparent Electrical Conductivity Measurements 

The correlation between the ECa measurements in each date, after coordinate synchronization, for each 

experimental field is shown in Figure 1: ECO (a), MIT (b), MUR (c), and PAD (d). All correlations were 

statistically significant (p < 0.01), with very interesting correlation coefficients, between 0.449 (MIT field) 

and 0.618 (MUR field). 

 

Figure 1. Correlation between soil apparent electrical conductivity (ECa) measured using Veris 2000 

XA and EM-38 sensors in each experimental field: “ECO” (a), “MIT” (b), “MUR” (c), and “PAD” (d). 

** Statistically significant at 99% confidence level (p < 0.01). 

 

The spatial regressions and paired t-tests applied by McCutcheon et al. (2006) to investigate differences 

between the ECa values from different measurement dates (temporal persistence) with a contact sensor 

(Veris) provided correlation coefficients with a white range of variation (between 0.10 and 0.76). Martini et 

al. (2017) compared repeated EMI measurements with high-resolution soil moisture and temperature data 

and reported that the spatial patterns of ECa differed from those of the soil water content and that the relation 

between both variables was changing over time. Various correction or standardization methods have been 
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proposed, and it has been recommended that measurements be made under similar conditions; however, this 

is often not feasible in practice in fields where conditions change on small spatial scales. By using an EMI 

device four times (Dualem 1S), Serrano et al. (2017) found temporally stable spatial ECa patterns in a 

Mediterranean pasture over a period of 7 years despite changing environmental and management conditions. 

Various studies have demonstrated the possibilities for significant changes in the measured ECa over time, 

nevertheless, with relatively stable spatial structure representations (Mat Su and Adamchuk, 2023). 

In this study, the smallest number of points obtained by coordinate synchronization was found in the ECO 

field, which is a small field compared to the others (only 4 ha, while the rest have areas of 20 to 30 ha). The 

MUR field also has a smaller number of points, since in the southwestern area, the Veris sensor faced some 

measurement problems, which can be associated with the presence of stones on the surface, which interrupt 

the contact between the electrodes and the ground and reinforces the aforementioned difficulty of contact 

sensors in stony soils. It is important to note that the surveys were carried out by independent service 

providers. The results would have certainly improved if the sensor transects in the second survey had 

followed the paths of the first survey in each field, which would have allowed a much greater number of 

points as a result of synchronization and thus would have strengthened the correlation. 

 

3.2. Temporal Stability of Management Zones 

The application of geostatistical algorithms based on elevation and ECa data allowed for the MZs and the 

correspondent maps in each date to de defined and in each experimental field. 

Table 1 shows the area of each MZ (low, intermediate, and high potential) in each date, in percentage of 

the total area of each field. 

 

Table 1. Area of each management zone (MZ) in each date, shown in percentage of the total area of each 

field. 

Field ECO ECO MIT MIT MUR MUR PAD PAD 

Date 1 2 1 2 1 2 1 2 

MZ (%)         

Low Potential 45.7 76.9 28.7 28.5 49.9 27.4 14.3 0.9 

Intermediate Potential 41.5 17.2 31.6 37.2 34.9 32.3 60.1 42.3 

High Potential 12.8 5.9 39.7 34.3 15.2 40.3 25.6 56.8 

 

In this study, the temporal stability of an MZ was evaluated by an overlap reclassification process of MZ 

maps, allowing for the definition of three new zones, namely stable, unstable, and very unstable, expressed 

as percentages of the total area of each field (Table 2; Figure 2). In average, 52% of the area presented 

temporal stability (in the same MZ category in both ECa surveys, with a minimum value of 37.6% in the MIT 

field and a maximum of 71.2% in the MUR field), 42% of the area presented temporal instability (in the next 

or previous category in both ECa surveys), and only 6% presented very temporal instability (two categories 

above or below in both ECa surveys). This information, presented spatially through temporal stability maps 

(Figure 2), provides good prospects for the use of ECa in the medium- and long-term definition of MZ. If a 

spatial pattern is temporally stable within a field, then it is reasonable to suppose that it should be a reasonably 

good predictor of the spatial patterns in the following years. This assumes that the prevailing conditions and 

limiting factors are consistent over the years (Blackmore, 2000). 

 

Table 2. Temporal stability of management zones (MZ) between dates of evaluation, in percentage of total 

area of each field. 

Field ECO MIT MUR PAD 

Stable 52.5 37.6 71.2 48.1 

Unstable 41.8 48.8 27.5 49.5 

Very unstable 5.7 13.6 1.3 2.4 

 

The results of this study, especially those relating to the temporal stability of the MZ patterns obtained by 

different sensors, are very encouraging. However, various authors have shown inconsistent relationships 
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between the ECa and soil characteristics, probably since the ECa is influenced by various complex interactions 

between site-dependent soil properties (Moral et al., 2010). 

Despite the temporal stability of the ECa patterns, in relative terms, reflected in the temporal stability of 

the patterns of the MZ maps, it will be interesting, in future works, to extend the findings to other types of 

soils (in particular, with finer textures) and conditions (namely different SMCs) to identify the source of the 

discrepancy in absolute terms in the measurement of the ECa using different sensors (contact versus non-

contact), with systematically higher values obtained using the EMI sensor (EM-38 in this case) compared to 

the contact sensor (Veris 2000 XA in this case). 

 

 

Figure 2. Maps of temporal stability of management zones (MZ) of each experimental field: “ECO” 

(a), “MIT” (b), “MUR” (c), and “PAD” (d). Stable, unstable, and very unstable areas are indicated as 

percentages of total area. 

 

These results also suggest a next step in the logic of validating the MZ obtained by each of the sensors, 

either through soil smart sampling carried out in each MZ (Moral et al., 2010) or through the evaluation of 

vegetation indices, or VIs (namely the NDVI), which is an approach that has been followed in several 

research works (Georgi et al., 2018). Through a soil analysis, it will be possible to find the relationship 

between ECa measurements and soil parameters with potential for site-specific management in dryland 

pastures, for example, in terms of the differentiated application of lime or phosphorus amendments. To 

transpose these MZ maps to amendment or fertilization prescription maps, it is fundamental to develop 

algorithms to evaluate the agronomic significance of this classification (MZ) and establish more general 

methods of mapping and quantifying variable input prescriptions, for example, lime amendment and nitrogen 

or phosphorous fertilizer application (Bönecke et al. 2021). On the other hand, there is a growing interest in 

rapid MZ validation methodologies, such as those based on VIs obtained from remote sensing, by recovering 
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the time-series of the NDVI (for example) throughout the vegetative cycle, which is related with pasture 

productivity and quality, and complementing and improving the rigor of the validation obtained from smart 

soil sampling (Georgi et al., 2018). 

Given that this is an exploratory study that was carried out in a relatively restricted soil type under specific 

coarse-textured soils, further studies using different soil types should be conducted. 

4. Conclusions 

The results obtained in this study show significant correlation between soil apparent electrical 

conductivity measurements (different dates and sensors) after coordinate synchronization in all experimental 

fields (with correlation coefficients between 0.449 and 0.618). 

Based on a geostatistical analysis of the soil electrical conductivity and topographic surveys, three 

management zones were defined (with high, intermediate, and low potential). The soil electrical conductivity 

measurements with different sensors (contact and non-contact), carried out almost two years apart, revealed 

spatial patterns in management zones with remarkable temporal stability (averaging 52% of the total area 

across four fields), which is a good indicator of potential for the use of soil electrical conductivity in medium- 

and long-term management decisions. 

These results suggest that future developments should focus on creating algorithms to validate the spatial 

variability and temporal stability of soil electrical conductivity through smart soil sampling, extending the 

database and thereby enhancing the process of recommendations for sustained soil amendment or 

fertilization. 
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Abstract 

Smart farming technologies and robotic solutions may enable farming to move towards a more envi-

ronmentally friendly agriculture landscape. These solutions, whether already commercially available or 

still under development, represent the future of agriculture and will play a crucial role in supporting 

farmers in crop production. The involvement and opinions of farmers, advisors, and agriculture students 

are vital in ensuring the adoption and smooth transition from traditional to smart, robotic, and data-driven 

methods. Field demonstrations are an important method to familiarise these stakeholders with the new 

technologies. Autonomous robotic solutions were presented for weeding and spraying applications de-

veloped within the EU-funded project Robs4Crops in Greece. Feedback was collected from farmers, 

advisors and students who attended the demonstration. The survey aimed to engage them by documenting 

their opinions and beliefs during these demonstrations. The aim of the study was to present and analyse 

their feedback on the effectiveness of such demonstrations, the level of understanding of the presented 

robotic solutions, and insights into challenges and potential solutions for market adoption. The main 

results of the survey showed a very positive reaction towards the new innovative agricultural robotic 

solutions. The demonstrations significantly improved the participants' understanding of robotic technol-

ogies, with an impressive 100% expressing full agreement and approval of the presented solutions. In 

addition, 96% reported that their perception of the potential benefits of robotic agriculture was positively 

altered by the demonstrations, highlighting a transformative effect on their views. This collective agree-

ment of opinion among farmers, advisors, and agricultural students illustrates the effectiveness of the 

demonstrations in providing valuable information and promoting a more informed perspective on the 

potential and benefits of robotic agriculture technologies. The findings suggest that such demonstrations 

could play a key role in accelerating the adoption of smart agriculture technologies, paving the way for 

a more efficient and sustainable agricultural sector. 

Keywords: Robotic solutions, Smart Agricultural Technologies, Farmers’ perception, Students’ percep-

tion, questionnaire survey 

1. Introduction 

Smart farming technologies, including robotic solutions and precision agriculture technologies are 

considered as key components to achieve the transition towards a more environmentally sustainable fu-

ture (Papadopoulos et al., 2024). To ensure a smooth transition from traditional practices to smart, data-

driven agriculture, it requires not only innovative technological enhancements but also a comprehensive 

adoption process through effective strategies and engagement of key stakeholders such as farmers, stu-

dents, and agricultural advisors (Kanesh et al., 2022). These stakeholders play a crucial role not only as 

a knowledge base but also as influential decision-makers within the agricultural sector. Their perspectives 

and involvement are crucial for the adoption and incorporation of smart farming technologies into the 

current agricultural practices.  

Studying the smart farming technologies adoption process and impact is important for an effective 

transition to a new agricultural framework and thus many studies have been carried out world-wide to 

identify it. In their study, Kanesh et al. (2022) explored the perceptions and attitudes of farmers towards 

adopting smart farming technologies in the Batticaloa district of Sri Lanka. They gathered primary data 

through a questionnaire survey conducted with randomly selected farmers from February to April 2020. 

To analyse this data, they employed the Technology Acceptance Model to assess how farmers adopt and 

use precision agricultural techniques. Further analysis using Structural Equation Modelling, preceded by 
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Confirmatory Factor Analysis, helped them identify significant relationships between various factors. 

The findings revealed a generally positive perception among farmers regarding the adoption of precision 

agricultural techniques. 

Furthermore, Vrchota et al. (2022) investigated the adoption of precision agriculture technologies 

among Czech agricultural enterprises. They conducted a questionnaire survey involving 131 farms and 

employed a Chi-squared test to analyse the data. The survey revealed that 58% of enterprises used intel-

ligent weather stations, 89% utilized unmanned vehicles, and 62% employed navigation and optimisation 

systems for journey optimisation. These findings underscore a robust willingness among agricultural 

enterprises to embrace new technologies. They also provide valuable insights for policymakers on the 

implementation of these technologies and suggest directions for targeted funding towards grants and 

projects. This study, along with the survey by Kanesh et al., highlights the critical role of farmer engage-

ment in integrating smart farming technologies into daily routines. 

Within the EU-funded Robs4Crops project, which aims to develop robotic solutions for spraying 

applications, demonstrations were conducted in Greece showcasing to farmers, advisors, and students 

two innovative technologies: a) the autonomous spraying capabilities of a retrofitted tractor, and b) the 

practical applications and benefits of a Farming Controller (FC) through the use of Digital Twins (DT). 

These demonstrations were intended to engage directly with participants and enhance their understanding 

of these agricultural technologies, setting the stage for future improvements. Following the demonstra-

tions, a survey was conducted to gather feedback and assess participants' perspectives on smart agricul-

tural technologies and robotic solutions.  

The aim of this study was to present and analyse the results obtained from this survey, assessing the 

impact of demonstration activities on stakeholders' understanding, perception, and readiness to adopt 

smart farming technologies. Through structured demonstrations and subsequent surveys among farmers, 

agricultural advisors, and students, the study sought to identify key drivers of engagement, the educa-

tional effectiveness of the demonstrations, and the challenges and barriers to market adoption of robotic 

farming technologies. Additionally, the study aimed to gather actionable insights to inform future strate-

gies for technology implementation and educational efforts, facilitating smoother integration of innova-

tive agricultural technologies into mainstream farming practices. 

 

2. Materials & Methods 

2.1. Online questionnaires survey 

To facilitate the survey process, participants were categorised into two distinct groups: a) farmers and 

agricultural advisors, and b) students. Data collection was carried out through separate online question-

naires using Google forms, each comprising a structured format with a diverse range of questions 

grouped into specific categories. The breakdown of the survey questions categories used for each group 

are described below: 

Farmers, agricultural advisors: Eleven survey questions were formulated, each tailored to address the 

following categories: 'Participant Background and Affiliation', 'Evaluation of Demonstration Activities'. 

'Factors Influencing Attendance', 'Familiarity and Understanding of Robotic Farming', 'Quality of Infor-

mation and Perception Change', 'Challenges and Solutions in Market Adoption', and 'Suggestions for 

Improvement'. 

The section 'Participant Background and Affiliation' aimed to categorise the participants based on 

their professional background and affiliation, helping to understand the diversity of attendees. Subse-

quently, the questions under 'Evaluation of Demonstration Activities' focused on quality and impact as-

sessment of the demonstrations. Attendance feedback and ratings provided quantifiable measures for 

satisfaction and perceived effectiveness. The questions under 'Factors Influencing Attendance', explored 

the motivations for attending the demonstrations providing insights into what drew participants to the 

event. Following this, the section 'Familiarity and Understanding of Robotic Farming', aimed to under-

stand the participants’ knowledge baseline regarding robotics and evaluate how effectively the demon-

strations enhanced their understanding as well as the educational impact of the demonstrations. The ques-

tions under the 'Quality of Information and Perception' provided feedback to evaluate the quality of in-

formation provided and whether the demonstrations influenced attendees' perceptions about the benefits 

of robotic farming. Lastly, the segment on 'Quality of Information and Perception Change' endeavoured 
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to evaluate the quality of information provided and whether the demonstrations influenced attendees' 

perceptions about the benefits of robotic farming. 
Student engagement: Ten survey questions were formulated, each tailored to address the following cate-

gories: 'Familiarity and Understanding of Technologies', 'Demonstration Impact and Perception', 'Inter-

active Experience and Further Interest', 'Enthusiasm and User-Friendliness', 'Benefits, Challenges, and 

Enhancements’. 

The section 'Familiarity and Understanding of Technologies' aimed to assess participants' initial fa-

miliarity with the technologies, thereby providing a context for their level of understanding. Subse-

quently, the questions under 'Demonstration Impact and Perception' focused on evaluating how the 

demonstration influenced participants' understanding and perception of the technologies' importance, as 

well as their opinions on the potential future impact of these technologies. The questions under 'Interac-

tive Experience and Further Interest', delved into participants' interest in hands-on experiences and fur-

ther educational opportunities related to the technologies showcased. Following this, the section 'Enthu-

siasm and User-Friendliness', aimed to evaluate participants' enthusiasm for adopting the technologies 

and assess their perceived ease of use. Lastly, the segment on 'Benefits, Challenges, and Enhancements' 

endeavoured to identify perceived benefits and potential advantages of the technologies, as well as the 

obstacles that might encounter when adopting them. Additionally, it gathered students’ suggestions on 

how demonstrations could be enhanced to be more engaging and beneficial. 

2.2 Agricultural stakeholders’ outreach and Scale-up demonstrations 

The demonstrations were conducted in Greece, showcasing the application of autonomous spraying 

with a retrofitted tractor in a vineyard, alongside the use of a FC enhanced by DT. In total, four demon-

strations were held: one for farmers and agricultural advisors in the Kiato region of Peloponnese and 

three for students at the Agricultural University of Athens. 

During these events, detailed presentations were given on the robotic solutions developed under the 

Robs4Crops project while for the student sessions a focus was given on the features of the FC and inte-

grated DT for educational purposes. At the Kiato event, farmers and agricultural advisors were given the 

opportunity to witness a live demonstration of autonomous spraying with a retrofitted tractor, showcasing 

the technology in action. In contrast, at the Agricultural University of Athens, students were engaged 

through video presentations that not only demonstrated the FC and integrated DT but also included foot-

age of the autonomous spraying technology being applied in vineyards. At the end of the demonstrations 

a discussion was followed up and then all attendees were invited to complete the online survey. 

2.3. Data collection & statistical analysis 

This study involved primary data collection from a total of 46 farmers and agricultural advisors, 

alongside 63 students from the Agricultural University of Athens. Data was obtained using the two online 

questionnaires and the responses were extracted from Google survey directly into an Excel file for feed-

back analysis. 

For the statistical analysis, descriptive statistical methods were employed to summarize and interpret 

the participants' responses based on the predefined categories. Data were presented using frequency dis-

tributions, percentages, and graphical representations such as bar charts and pie charts to illustrate key 

findings.  

3. Results 

3.1. Farmers’ Perspective 
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3.1.1. Participant Background and Affiliation 

The results of the survey indicated a diverse rep-

resentation of respondents in terms of their profes-

sional roles or affiliations (Figure 1). Farmers con-

stitute the largest percentage, representing 39.13% 

of the participants, highlighting a significant pres-

ence of individuals directly involved in agricultural 

practices. Technology providers comprise 23.91% 

of respondents, showing significant interest from 

those offering agricultural tech solutions. Re-

search/academia professionals account for 19.57%, 

representing individuals involved in agricultural re-

search and education. Regulatory bodies account for 

4.35% of the participants, showcasing a smaller 

presence. The remaining 13.04% falls into the "Other" category, which implies a variety of roles not 

explicitly mentioned in the provided options. Overall, the data underscores a diverse and engaged group 

of participants, encompassing a range of stakeholders from farmers and technology providers to research-

ers and regulatory bodies. 

3.1.2 Evaluation of Demonstration Activities 

Through the feedback 

collection for the evalua-

tion of the demonstration 

activities, it has been iden-

tified through the answers, 

that a 69.6% of participants 

rated the activities as excel-

lent (5/5), while 30.4% 

gave a very positive rating 

of 4/5 (Figure 2). The high 

percentage of top ratings re-

flects a strong endorsement and suggests that the participants found the demonstrations to be not only 

satisfactory but also of a particularly high standard. 

3.1.3. Factors Influencing Attendance 

The survey was designed to capture the multi-faceted reasons for participants' participation and al-

lowed for multiple factor choices. A total of 51 responses were collected, providing insight into the fac-

tors influencing participation in the demonstration activities of this demonstration (Figure 3). 

A notable 65.2% of the participants stated a high interest in robotic farming technologies as the pri-

mary motivator for their participation.  This was followed by 13.0% who highlighted the potential impact 

on their professional practice or business, while 10.9% expressed a specific interest in learning about the 

ROBS4CROPS project. Notably, recommendations from colleagues or industry professionals signifi-

cantly influenced the decision of 21.7% of participants. 

Figure 2: Feedback for the evaluation of demonstration - Bar Chart 

Figure 1: Distribution of Participant Background 

and Affiliation - Pie Chart 

Figure 3: Feedback for the factors affecting attendance - Bar Chart  
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3.1.4. Familiarity and Understanding of Robotic Farming 

Participants' responses 

to the questions regarding 

their familiarity with ro-

botic farming before at-

tending the demonstra-

tions represent a diverse 

knowledge landscape 

(Figure 4). About 30.4% 

stated limited prior 

knowledge (rating 1/5), 

while 17.4% expressed 

advanced familiarity (rat-

ing 5/5). The middle ground (ratings 2/5, 3/5, and 4/5) accounts for 52.17%, illustrating a spectrum of 

moderate familiarity. 

In addition, a subsequent question on whether the demonstrations had improved understanding of the 

participants received positive feedback of 100% 'yes', indicating the success of the programme in achiev-

ing its educational objectives. This collective agreement suggests that the demonstrations effectively 

provided valuable insights, fostering a more informed perspective on robotic farming technologies 

among all participants. 

3.1.5. Quality of Information and Perception Change 

Participants' feedback 

on the quality of infor-

mation and knowledge dis-

seminated during the 

demonstration activities re-

flects a highly satisfactory 

experience, with 65.2% 

giving the highest rating of 

5 and an additional 34.8% 

rating it a 4 (Figure 5). The 

combined 100% approval 

underscores widespread 

satisfaction with the infor-

mation presented, suggesting its high value. Moreover, when asked if the demonstrations altered their 

perception of the potential benefits of robotic farming, a significant 95.7% responded affirmatively. This 

indicates a transformative effect on their views, emphasizing the program's success in influencing per-

spectives and fostering a greater appreciation for the advantages of robotic farming. 

3.1.6 Challenges and Solutions in Market Adoption 

The survey responses reveal a range of challenges anticipated in the market adoption of robotic farm-

ing technologies. A recurring concern is the high cost associated with these farming technology innova-

tions, creating financial barriers for farmers. Funding emerges as a potential solution to alleviate this 

challenge, suggesting a need for financial support mechanisms. Additionally, the insufficient education 

among farmers, particularly regarding the acceptance and understanding of robotic technologies is also 

considered as a challenge. The proposed solution involves intensifying educational efforts through sem-

inars and demonstrations to enhance operator knowledge. Other identified obstacles include the high cost 

of specific products, lack of expertise, and resistance from older generations. To overcome these chal-

lenges, strategies such as reducing product costs, providing economical alternatives, and facilitating 

farmer education are suggested. The survey reveals the importance of addressing constraints and pro-

moting comprehensive initiatives to foster the successful integration of robotic farming technologies into 

the agricultural landscape. 

3.1.7 Suggestions for Improvement 

There is a strong agreement among the survey respondents regarding the need for enhanced educa-

tional initiatives in future demonstration events or activities related to robotic farming technologies. The 

suggestions emphasize more active involvement of farmers, revealing the importance of real-life exam-

ples showcasing the successful implementation of these technologies in the fields. The desire for easy 

Figure 4: Feedback for Familiarity and Understanding of Robotic Farming 

- Bar Chart 

Figure 5: Feedback for Quality of Information and Perception Change - 

Bar Chart 
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access to seminars, more free education opportunities, and constant updates reveals the importance of 

ongoing learning. Additionally, recommendations were made for better presentations, including more 

tractors and technologies, involving farmers who have first-hand experience with the equipment.  

3.2. Students’ Perspective 

3.2.1. Familiarity and Understanding of Technologies 

Responses from stu-

dents regarding their famili-

arity with robotic farming 

before the demonstration re-

flect a varied knowledge 

landscape (Figure 6). A total 

of 20.63% reported a lack of 

familiarity, assigning a rat-

ing of 1/5. Limited 

knowledge (rating 2/5) was 

indicated by 42.9% of participants. The middle ground, representing moderate familiarity (rating 3/5), 

accounted for 31.7% of responses. High familiarity (rating 4/5) was expressed by 4.8% of the respond-

ents. Notably, none of the participants claimed to be "Very familiar" with the tools, highlighting a lack 

of highest-level familiarity with the technologies. 

3.2.2. Demonstration Impact and Perception 

The responses to the question assessing the im-

pact of the demonstration on students' understand-

ing of the FT combined with DT indicate a substan-

tial positive effect. A significant 60.3% of respond-

ents reported an "Improved" understanding, while 

34.9% noted a "Significantly Improved" compre-

hension. Notably, only 4.8% stated that there was 

"No Change" in their understanding. This distribu-

tion highlights the effectiveness of the demonstra-

tion in improving participants' understanding of the 

FC and DT integration (Figure 7).  

 

 

Furthermore, the responses strongly indicate a positive perception of the integration in shaping the 

future of agriculture. A significant 63.5% of students rated these tools a "crucial role" in the future of 

agriculture (rating 5/5), with an additional 30.2% expressing a belief in their significance but with slightly 

less intensity (rating 4/5). 6.3% 

of the respondents stated mid-

range rating with 3/5. Im-

portantly, no respondents rated 

lower than 3/5, indicating a 

strong agreement on the signif-

icant role of these technologies 

in shaping agriculture (Figure 

8). 

 

Figure 6: Familiarity and Understanding - Bar Chart 

Figure 7: Feedback for Demonstration Impact and Perception- Pie Chart. 

Figure 8: Feedback for Demonstration Impact and Perception- Bar Chart 
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3.2.3. Interactive Experience and Further Interest 

Participants' feedback re-

garding their willingness for an 

interactive experience with the 

FC combined with DT indicates 

a strong positive inclination. A 

significant 69.8% of respond-

ents rated their interest at 5/5, 

expressing high enthusiasm for 

interactive experiences. Addi-

tionally, 23.8% rated it 4/5, 

showing a positive attitude, 

while only 6.35% gave a mid-range rating of 3/5. (Figure 

9) Notably, no participants rated below 3/5. This high 

percentage of positive responses underscores the poten-

tial appeal of incorporating interactive elements into 

demonstrations. 

Similarly, students' responses indicate strong interest 

in more in-depth training on the FC combined with DT. 

Notably, 61.9% of respondents were "Very Interested," 

and 31.7% were "Interested," while only 6.4% were neu-

tral or less enthusiastic (Figure 10). With 93.6% express-

ing interest, there is a strong desire for comprehensive 

educational resources and training opportunities related 

to these technologies. 

3.2.4. Enthusiasm and User-Friendliness 

The students' responses regard-

ing their enthusiasm for engaging 

with technologies in their future ag-

ricultural careers are overall posi-

tive. A significant 68.2% of students 

rated their excitement at 4/5 or 5/5, 

indicating substantial enthusiasm. 

Additionally, 27% gave a moderate 

rating of 3/5, rated it 2/5, and only 

1.6% a negative response (Figure 

11). 

 Overall, participants showed a positive outlook on adopting agricultural technologies in their future 

careers, with many expressing high 

anticipation for these opportunities. 

Regarding user-friendliness of the 

FT and DT the responses suggest a 

generally positive perception. About 

9.5% of students rated it 5/5, and 

49.2% rated it 4/5, indicating high 

satisfaction (Figure 12). Mean-

while, 39.7% gave a moderate rating 

of 3/5, and only 1.6% rated it 2/5, 

indicating a less positive view. 

3.2.5. Benefits, Challenges, and Enhancements 

Benefits: Participants' feedback on integrating the FC with DT in modern farming reveals optimistic 

views on its benefits. Students emphasised reduced input costs, increased efficiency, and environmental 

sustainability, while highlighting precision agriculture's potential for automation and field management 

optimization. 

Challenges & Proposed Solutions: Survey responses highlight also challenges in adopting these 

technologies. Common barriers include high costs, financial constraints, limited farmer education, re-

sistance to change, and difficulties in understanding new technologies. Additionally, factors like insuffi-

cient land availability and technological illiteracy pose also challenges. Proposed solutions include 

Figure 9: Feedback regarding the Interactive Experience and Further 

Interest -Bar Chart  

Figure 10: Feedback regarding the Interactive 

Experience and Further Interest -Pie Chart 

Figure 11: Feedback for Enthusiasm and User-Friendliness - Bar 

Chart 

Figure 12: Feedback for Enthusiasm and User-Friendliness - Bar 

Chart  
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expanding technology use through funding, implementing eco-schemes, developing user-friendly envi-

ronments, promoting machinery rental, and organizing practical training sessions. Other suggestions in-

volve government or EU funding, industry cooperation, and continuous education programs. These in-

sights offer valuable strategies to overcome adoption barriers and enhance technology integration in ag-

riculture. 

Enhancements: The feedback from students indicates a strong desire for more engaging and benefi-

cial demonstrations of technologies like the FC combined with DT. They expressed the need for more 

interactive experiences including workshops with practical engagement and real-time exercises in the 

field while also suggested incorporating educational elements such as seminars and lessons. They seek 

more interactive, practical, and first-hand experiences to deepen their understanding and engagement 

with these advanced agricultural technologies. 

4. Discussion 

This survey indicated a significant shift in participants' views on smart farming technologies and 

robotic solutions, with 95.7% of them reporting that the demonstrations positively influenced their per-

ceptions. This strong interest mirrors the findings from Jabbari et al. (2023), who reported a 90.91% 

engagement rate among 550 farmers in Jizan, Saudi Arabia, showing a similar interest in IoT technolo-

gies for crop monitoring. Their study linked farmers’ awareness of IoT technologies to perceived benefits 

and willingness to adopt them. Additionally, students identified reduced input costs, increased efficiency, 

and environmental sustainability as notable benefits aligning with Tey and Brindal (2012) findings, who 

noted profitability as a major factor for using precision agriculture tools. As supported by Yarashynskaya 

et al. (2022), younger farmers, in particular, are showing a faster adoption rate due to their higher interest 

in new technologies. Students’ responses strongly indicated a positive perception of the integration in 

shaping the future of agriculture. A significant 63.5% rated these tools as playing a "crucial role" in the 

future of agriculture (rating 5/5), while a significant overall 93.6% (69.8% rated their interest at 5/5, 

23.8% rated it 4/5) expressed high enthusiasm for interactive experiences, confirming the younger gen-

eration’s high interest in smart farming technologies. 

Despite the high enthusiasm, the survey identified several barriers to adoption, with financial chal-

lenges at the forefront. The substantial costs associated with these technologies pose significant hurdles, 

as also highlighted by Yarashynskaya et al. (2022), who pointed to limited credit availability as a major 

obstacle due to high initial investments. Therefore, the findings of this study suggest that robust financial 

support mechanisms are essential to facilitate the adoption of these technologies. Furthermore, the study 

revealed that education level had a strong impact on technology adoption. The insufficient education 

among farmers, particularly regarding the acceptance and understanding of robotic technologies, was 

identified as a significant barrier. Therefore, as also suggested by the participants, intensifying educa-

tional efforts through seminars and demonstrations could enhance knowledge and acceptance of new 

technologies. These findings align with Bai et al. (2022) and Tamirat et al. (2018), whose studies high-

lighted the importance of socio-economic factors in the adoption of technologies. 

5. Conclusion 

The survey results highlighted a substantial interest in smart farming technologies, with 65.2% of 

participants citing it as their main motivator for attending, underscoring their enthusiasm for innovative 

agricultural practices. The demonstrations significantly improved participants' understanding of robotic 

technologies, with 100% expressing full agreement and approval of the presented solutions. Additionally, 

96% reported a positive change in their perception of the potential benefits of robotic solutions, under-

scoring the transformative impact of the demonstrations. The evaluation of the demonstration activities 

also revealed a high level of satisfaction, with 97% of participants rating the activities as excellent (5/5) 

or very positive (4/5), indicating the successful introduction of new agricultural technologies to stake-

holders. 

Unlike other surveys, the inclusion of students' opinions, who represent the future of agriculture, 

proved to be essential revealing a strong interest in integrating these tools into agricultural practices. 

Furthermore, the vast majority of them (93.6%) expressed the desire for further educational and training 

opportunities related to these technologies. This high level of interest highlights the importance of en-

gaging the next generation in discussions and initiatives related to modern farming technologies. 
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Nevertheless, the survey also identified challenges in market adoption, such as high costs and insuf-

ficient education, suggesting the need for financial support and intensified educational efforts. Benefits 

noted by participants included reduced input costs, increased efficiency, and environmental sustainability. 

Addressing these constraints and promoting comprehensive initiatives are essential for successfully in-

tegrating robotic farming technologies into modern agriculture. These insights are invaluable for guiding 

future research and enhancements, ensuring that the adoption of robotic farming technologies can be 

effectively supported and expanded. 
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Abstract 

Recent advancements in sensor technologies and deep learning algorithms have significantly contributed 

to continuously monitoring crops and vegetation in agricultural fields. Notably, researchers have extensively 

explored the identification and characterization of fruits on farms, as the physical attributes of fruits can offer 

valuable insights into the status of orchards. Visual sensors have been utilized to estimate fruit health and 

quality parameters. At the same time, robotic systems have been used to automate picking and harvesting 

tasks based on the location of fruits. Despite existing work on detecting and segmenting fruits in images, 

developing a robust application in real-world conditions remains a challenge. To address this, researchers 

have focused on leveraging different sensing modalities and deep learning techniques, particularly 

emphasizing the issue of fruit occlusion through semantic amodal segmentation approaches. Thus, the current 

study evaluates three state-of-the-art instance segmentation algorithms—cascade-RCNN, mask-RCNN, and 

rf-RCNN—for the amodal semantic segmentation of apples in challenging scenarios. The study encompassed 

2304, 814, and 807 images from a Fuji apple orchard for training, validation, and testing. The results 

demonstrated a mAP@75 value of approximately 0.71, 0.71, and 0.67 for cascade-RCNN, mask-RCNN, and 

rf-RCNN, respectively. Furthermore, qualitative assessments revealed that the evaluated networks exhibited 

potential for detecting occluded apples, with cascade-RCNN and Mask-RCNN showing the best outcomes. 

The insights revealed in the current work motivate the development of more sophisticated architectures to 

enhance the performance further and facilitate the deployment of the sensing systems in real-world 

agricultural settings. 

Keywords: amodal segmentation, instance segmentation, apple occlusion, deep learning. 

1. Introduction 

Currently, the apple industry in the United States is facing several challenges, including inflation and 

labor shortages. The last one is especially defiant since labor conditions, low wages, urbanization, and short-

term contracts have made workers switch to other industries. Given that manual labor is the main means to 

execute tasks like pruning and harvesting, in many cases, automation has become not just an option but a 

necessity. Using automated machinery or robots has the potential to revolutionize agricultural practices, 

optimize operations, reduce labor costs, and minimize food waste. 

A first step towards automation is the development of robust fruit detection systems, which can estimate 

the location of the fruit location within the canopy. While there is a vast amount of research work in this 

matter Koirala et al., 2019; Fu et al., 2020, robustness to changing illumination and occlusions has proven to 

be especially challenging in practical applications. For example, Tian et al., 2019 used known machine 

learning models to detect apples at different stages of growth. However, results showed a significant decrease 

in the performance of the detectors when the fruits were occluded by the canopy or by overlapping. To 

address occlusion, Li et al., 2022 used RGB images and a 3D point cloud to detect apples and estimate the 

location of their center. While the overall results outperformed the baseline, in most cases with occlusions, 

partial detection of the fruits resulted in a failure of the subsequent 3D reconstruction process. To solve this 

issue, Gené-Mola et al., 2023 presented a methodology to detect Fuji apples, "complete" the fruit shape 
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(including visible and occluded regions), and measure their size. The mean absolute error (MAE) recorded 

was 4.5mm, with heavily occluded samples significantly contributing to the overall error. 

While the results for detecting occluded apples using specific deep-learning algorithms have been 

promising, there is still a gap in the research. To the best of our knowledge, no benchmark models provide 

insights into the types of architectures that are most effective for amodal detection of apples. Precisely, this 

work aims to evaluate the suitability of three state-of-the-art instance segmentation algorithms for this task, 

namely cascade-RCNN, mask-RCNN, and rf-RCNN. We employed a public dataset previously published by 

Gené-Mola et al., 2024, which contains images of Fuji apples with different occlusion levels and illumination 

conditions.  

 This work is organized as follows: Section 2 presents the Apple dataset for amodal segmentation and the 

deep learning methodologies for performing instance segmentation. Section 3 shows the assessment of 

instance segmentation models and discusses the overall results of this study. Section 4 describes some 

concluding remarks on the applicability of these architectures for the recognition of apples in challenging 

scenarios. 

2. Materials and Methods  

This work focuses on evaluating advanced instance segmentation algorithms. Specifically, three state-of-

the-art algorithms—Cascade-RCNN, Mask-RCNN, and RF-RCNN—have been selected given their 

performance on large instance segmentation datasets (e.g., COCO dataset Lin et al., 2014). The general 

scheme of the methodology followed in this work is shown in Fig. 1. The process begins with training and 

validating these models using an amodal dataset that includes images of apple trees with corresponding 

annotations, accounting for occluded and non-occluded apples. The trained models are then tested on separate 

images to identify and segment apples in real-world scenarios. The advanced instance segmentation 

algorithms were implemented and trained using the deep learning framework mmDetection Chen et al., 2019. 

 

 

Figure 1. General scheme of the implemented methodology. The cyan arrows show no apples detected 

within the image. The AP and AR acronyms refer to Average Precision and Average Recall. 

2.1. Dataset 

The dataset used for this study was published by Gené-Mola et al., 2024. It contains 3925 and 2731 RGB-

D images for the Fuji and Elstar apples, respectively. This dataset includes both modal and amodal 

segmentation masks; modal masks cover only visible apple portions, while amodal masks also include 

occluded areas. Amodal masks were explicitly created by considering the spherical shape of apples and 

converting this into pixel dimensions through the pinhole camera model; see details Gené-Mola et al., 2024. 

Annotations were made with the VIA annotator software, ensuring detailed and accurate data. The dataset is 

available at https://doi.org/10.34810/data916. The Fig. 2 shows samples from this subset. 

In the current work, we evaluated instance segmentation algorithms with the amodal masks from the Fuji 

apple dataset. In particular, it has more than fifteen thousand apple samples in challenging scenarios, as 

shown in Fig. 2. The challenges to be faced in this dataset include but are not limited to self-occlusion, slice 

occlusion, and partial occlusion, among others. The Fuji apple images are grouped randomly into  2304, 814, 

and 807 training, validation, and testing sets. 
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Figure 2. Fuji apple instances from the amodal segmentation dataset. The second row shows black and 

white amodal masks, and the third row overlays the masks on the RGB images. 

2.2. Instance segmentation models 

The amodal segmentation of apples was carried out using state-of-the-art instance segmentation models. 

The implementation is based on the project Open-MMlab, particularly mmDetection Chen et al., 2019. In 

particular, the models selected for this comprehensive study are Cascade-RCNN (Cai & Vasconcelos, 2018), 

Mask-RCNN (He et al., 2020), and RF-RCNN (Gao et al., 2022). 

2.2.1. Cascade-RCNN 

This architecture has been proposed for addressing low-quality detection and bad detection performance 

due to the common fixation of Intersection over union (IoU) threshold (Cai & Vasconcelos, 2018). To this 

aim, the authors build a sequence of detector layers trained with an increasing IoU threshold. Specifically, a 

progressive resampling approach is implemented by using the output of a detector as a training set for the 

next. 

2.2.2. Mask-RCNN 

The Mask-RCNN can be seen as an extension of Faster RCNN that includes a branch for determining 

object masks while, in parallel, predicting a recognition bounding box (He et al., 2020). This network is one 

of the state-of-the-art models that won the COCO 2016 challenge. One of its main features is adding a small 

overhead to the Faster RCNN, running at five frames per second; core details can be found in He et al., 2020. 

2.2.3. RF-RCNN 

The RF-RCNN model is based on temporal/spatial receptive fields, yet instead of deriving a hand-

designed receptive field, the authors propose a global-to-local search scheme (Gao et al., 2022). The proposed 

scheme allows for determining an effective receptive field. Note that coarse combination can be found by the 

global search, while the local search helps on infering refined combination of receptive fields. 

3. Results and Discussion 

The experiments were carried out using a 12 GB NVIDIA GeForce RTX 4070 Ti, Intel Core i7-14700KF, 

and 32 GB RAM. The instance segmentation models were trained using a batch size of two, 12 epochs, and 

a validation interval of three. The optimizer was a Stochastic Gradient Descent with a weight decay of 0.0001, 

learning rate of 0.0025, and momentum of 0.9. Once the models were trained and validated, they were tested 

and evaluated using the mean Average Precision (mAP) metric and qualitative outcomes. The mAP values 

were computed by evaluation routines from the mmDetection framework using different IoU values.  

The performance of each instance segmentation network is shown in Tables 1 and 2. Specifically, the 

former shows segmentation outcomes, and the latter depicts detection results. Detection results refer to the 

computation of mAP and mAR using solely bounding boxes rather than segmentation masks. Tables 1 and 2 

show that instance segmentation models have similar performance when comparing the mAP@0.5; the 

maximum difference between them is about 0.041 and 0.034 for segmentation and detection experiments, 

respectively. Note that these values are computed considering all Apple instance sizes. However, the instance 
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segmentation metric values significantly decrease for IoU values ranging from 0.50 to 0.95. The behavior 

leads to the idea that Apple segmentation and detection might need to be more robust so that the predicted 

mask correctly aligns with the actual masks.  

Regarding the evaluation metrics for apples that occupy different area sizes within the image, it can be 

noted that the worst metric values are for the small areas. This outcome could be explained because the 

available images from the dataset were cropped to enhance the ratio between apple size (in pixels) and image 

size; see Gené-Mola et al., 2024. In this sense, it is inferred that most of the apples on the image occupy small 

and medium areas, the latter easier to identify, according to the mapped metric.  

Figure 3 shows that the models report similar performance in terms of AP. Although the three models 

show similar outcomes, one should be aware that images that yield an AP are equal to zero. However, these 

AP values take place on images with no apples. Thus, such images might be discarded in future works when 

performing training, validation, and testing procedures. In the current articles, those images were kept for 

comparing the current outcomes with the ones reported by Gené-Mola et al., 2023. Specifically, the work 

presented by Gené-Mola et al., 2023 shows that one can achieve an average precision between 0.44 to 0.51 

in terms of amodal detection when using a custom deep learning network based on Mask-RCNN and ResNet 

architectures. Although the outcomes reported in the current work surpass the ones shown by Gené-Mola et 

al., 2023, the latter work focused on estimating apple diameters rather than improving amodal segmentation 

outcomes.  

Qualitative outcomes are shown in Fig. 4. However, only the worst instance segmentation outcomes for 

the Cascade-RCNN model are depicted because of space limitations. In general, the instance segmentation 

networks fail to detect apples when a representative area of the apples is partially and self-occluded. In the 

former scenario, the deep learning models confuse the apple with the background. Conversely, in the self-

occlusion case, the model tends to segment as a single apple a group of apple instances; see Fig. 4. The still 

non-solved drawbacks open the opportunity for developing robust algorithms to recognize apples in complex 

scenarios. In particular, future work is envisioned to evaluate the performance recognition models at different 

occlusion levels. 

 

Table 1. Summary of instance segmentation outcomes for each deep learning model. The small, medium 

and large areas refer to < 32 × 32, 32 × 32 ≤ ≤ 96 × 96, and > 96 × 96 image pixels areas. 

 mean Average Precision 

 All Area 

    Small Medium Large 

IoU @ 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95 

Cascade-RCNN 0.623 0.861 0.715 0.659 0.705 0.000 

Mask-RCNN 0.595 0.902 0.710 0.638 0.667 0.002 

RF-RCNN 0.599 0.886 0.669 0.637 0.680 0.001 

Table 2. Summary of instance segmentation outcomes for each deep learning model. The small, medium 

and large areas refer to < 32 × 32, 32 × 32 ≤ ≤ 96 × 96, and > 96 × 96 image pixels areas. 

 mean Average Precision 

 All Area 

    Small Medium Large 

IoU @ 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95 

Cascade-RCNN 0.627 0.870 0.727 0.663 0.719 0.001 

Mask-RCNN 0.646 0.904 0.741 0.687 0.727 0.003 

RF-RCNN 0.596 0.887 0.675 0.639 0.686 0.001 
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Figure 3. Average precision for each instance segmentation models at IoU=0.50:0.95 per each sample. The 

solid black line represents the AP of the current model, the gray lines, behind black line, represent the 

performance of the other instance segmentation methods. 

 

 

Figure 4. The worst qualitative instance segmentation outcomes for the Cascade-RCNN model. The 

problematic areas are zoomed in. 

4. Conclusions 

We presented the assessment of three state-of-the-art instance segmentation models for the amodal 

segmentation of apples. Cascade-RCNN and Mask-RCNN presented the best mAP@75 metric values. In this 

sense, both networks are suitable for recognizing apples in challenging scenarios. Moreover, the evaluated 

deep learning models outperform the detection metric of previous research supporting the application of 

instance segmentation strategies for amodal segmentation. However, challenges remain and need to be 

addressed in future works. Specifically, one can be aware that the evaluated models have not completely 

solved partial and self-occlusion issues. The performance of implemented models tends to worsen in 

scenarios with apples partially or self-occluded. In this sense, future works are encouraged to leverage the 

insights of the current works and explore the effects of different occlusion levels for improving the 

identification of apples in real environments. 
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Abstract 

The adoption of ISO11783-compliant (commonly designated as ISOBUS) sprayers in viticulture lags 

behind their use in arable farming. Recent advancements in tractor technology, notably the integration of 

ISOBUS connectivity in narrow-tracked tractors, present an opportunity to enhance vineyard management, 

particularly in the area of crop protection. This technological development opens the door to more efficient 

and precise agricultural practices. Precision application of pesticides, driven by economic and environmental 

considerations, is becoming increasingly important. By optimizing pesticide usage, growers can significantly 

reduce costs and minimize environmental impact, ensuring a more sustainable approach to viticulture. 

This paper proposes a methodology to develop ISOBUS-compliant prescription maps for variable rate 

application (VRA) tailored to the specific needs of grapevine rows. Implementing this approach involves 

creating detailed prescription maps that reflect the heterogeneity of vineyard canopies, ensuring that each 

vine receives the appropriate amount of treatment based on the leaf area. To achieve this, 3D point cloud data 

were collected in the vineyard with a light detection and range (LiDAR) sensor and correlated with manual 

leaf area measurements. The resulting leaf areas from the vine rows were then used for the prescibed dose 

rates for individual sections in the prescription map. 

The results show a high correlation with R² = 0.92 between the manual measured leaf areas and the 

number of points from the generated point cloud. This served as the basis for calculating a dose rate and 

creating a grid-based prescription map in ISO-XML format, which can be used with ISOBUS-compliant 

VRA sprayers. The map created allows the dose rate to be varied for one meter of leaf wall and for the left 

and right sides of the sprayer simultaneously. 

Keywords: Vineyard, LiDAR, Precision Viticulture, ISOBUS, VRA 

1. Introduction 

Recent years have seen significant benefits in precision agriculture, particularly in arable farming, with 

the rise of ISO11783-compliant technologies facilitating standardized communication between tractor and 

implement. This standardization ensures compatibility and improves operational efficiency by allowing 

seamless control of multiple devices from a single terminal. Additionally, ISOBUS enhances data 

management and Precision Farming by facilitating the transfer of operational data and enabling precise 

control over application rates and equipment operation. 

While the utilization of this technology in agriculture has steadily expanded in recent years, ISOBUS-

compliant implements remain relatively uncommon in viticulture (Sharipov et al., 2023). Only in the last few 

years tractor manufacturers started to offer ISOBUS connectivity for narrow-tracked tractors. This opens up 

new opportunities for the integration of vineyard management equipment, particularly for plant protection. 

Developing prescription maps for variable rate application (VRA) and utilizing ISOBUS-enabled sprayers 

can significantly enhance precision in pesticide usage, offering economic benefits and promoting 

environmental protection by adapting application rates to the heterogeneity of the vines, thus allowing for 

on-demand crop protection delivery. 

In the field of detecting canopy parameters in vineyards, several publications have been published over 

the last few decades. There is already a wide range of sensors available for detection, such as mobile laser 

scanners (Sanz et al., 2013), camera systems (López-Granados et al., 2020), multispectral (Campos et al., 

2021) or ultrasonic sensors (Llorens et al., 2011). LiDAR systems, which benefit from high resolution and 

point density when analysing leaf walls, are particularly promising (Escolà et al., 2023). The data obtained 

was correlated with leaf area, volume or density and used to determine canopy characteristics. The resulting 

data can then be processed into dose rates for prescription maps and used for VRA sprayers (Gil et al., 2014). 
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The development and use of prescription maps in ISO-XML format in arable farming is already 

widespread (Sharipov et al., 2020). In the meantime, polygon-based maps were also used in spatial 

cultivation, including in viticulture (Campos et al., 2020, Garcia-Ruiz et al., 2023). However, these maps are 

often based on manufacturer's proprietary formats, not standards like ISOBUS. Additionally, due to the high 

heterogeneity in vineyards, high-resolution prescription maps are required in comparison to arable farming. 

To achieve that, this work aims to develop a methodology to create an ISOBUS compliant prescription map 

for vineyards based on the leaf area derived from a 3D point cloud of grapevine rows by means of light 

detection and range (LiDAR) systems. 

2. Materials and Methods 

2.1. Leaf area estimation 

During the growing season from 39 to 109 days after bud break (DABB) in 2023, a phenotyping platform 

with a LiDAR (Puck Lite VLP-16, Velodyne, San José, CA, USA), an inertial measurement unit (IMU, VN-

100, VectorNav, Dallas, TX, USA) and an RTK-GNSS (R10, Trimble, Sunnyvale CA, USA) was mounted 

on a tractor to acquire georeferenced 3D point clouds of vines (Figure 1). The trials took place in a vineyard 

at Geisenheim University (49.9945 N, 7.9747 E, Geisenheim, Hesse, Germany) planted to Vitis vinifera L. 

´Riesling´ grafted to ́ Börner´ rootstock. The tractor was driven at 0.5 km h-1 along the rows, while the LiDAR 

mounted parallel to the vines. The 360° field of view of the LiDAR allowed to simultaneously acquire both 

sides of the vine in one row. The data acquisition of the individual sensors was done with a C# software. 

Sensor data fusion and point cloud reconstruction were then carried out in Matlab software (R2023a, 

MathWorks, Natick, MA, USA) (Figure 2). 

The points were extracted from soil, steel stakes, metal wires, trunks and branches using various 

segmentation methods. The first step was to filter only the points from 0.3 to 2 m in height and up to 1 m in 

depth to eliminate the soil and points that belong to other rows. The second part was the calibration of the 

reflectance. Board targets, coated with white barium sulphate (BaSO4, ODP97, Tuerkenfeld, Germany) for 

maximum and blackened topcoat (90FH, NEXTEL Suede Coating 3101, Mankiewicz Gebr. & Co., 

Hamburg, Germany) for minimum referencing were applied to calibrate the backscattered intensity of the 

LiDAR, obtaining the reflectance at 903 nm for each point in the 3D point cloud. This was used to calibrate 

the backscattered reflectance, in the range between 0 and 100 %. To eliminate the steel stakes and metal 

wires, only the points above the threshold of 15 % of the calibrated reflectance were used for further 

processing. The last filtering step was the calculation of point cloud density at a radius of 0.2 m using the 

Matlab function "findNeighborsInRadius" and the segmentation of the sections with a number of points 

higher than 1500. 

 

Figure 1. Sensor frame for the data acquisition in vineyards 
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In addition to the LiDAR recordings, manual measurements were carried out by means of defoliation of 

two vines over the growing stages (n = 19). A leaf area scanner (LI-3100C, LI-COR, Bad Homburg, 

Germany) was used to estimate the entire leaf area per 2 vines. The total number of points (NoP) on both 

vines was determined from the LiDAR data after the filtering process described above. Thus, a linear 

regression model was built to express the relationship between manually obtained leaf area data and 

remaining NoP, separately for each growth stage. The resulting regression equation can then be used to 

calculate the leaf areas and the associated dose rates for creating the prescription map. 

 

Figure 2. Generated point cloud of two vines with the calibrated reflection 

2.2. Prescription map 

The creation of a prescription map with a dose rate adapted to the leaf area was divided into two parts. In 

the first part, a grid-based map was created as a shape file using the QGIS software (3.36.0, QGIS.ORG, 

Grüt, Gossau, Switzerland). In the second step, the shape file was imported into the SMS farming software 

(Spatial Management System Basic 24.00, Ag Leader Technology, Ames, Iowa, USA) and exported to an 

ISO-XML file by considering the necessary parameter selections according to the ISO11783 standard. 

Creating a map as a shapefile involved several steps. Initially, a shape layer was generated as a line along 

the rows of vines, which was then divided into parallel lines with the specific row width. Subsequently, points 

were generated along these lines at a defined interval of 1 m, and rectangles with a length of 1 x 2 m were 

created from the centre of these points. The size of the rectangles was based on the row width of 2 m and, in 

relation to the length of 1 m, on an estimate of the delay between the set and the actual dose rate at a tractor 

speed of 6 km/h. These rectangles were then rotated to adjust their orientation to the vines and their corner 

points have been extracted. The result was exported as a csv file and utilized in Matlab for dose rate 

calculation. For each rectangle, the corresponding georeferenced leaf-filtered point cloud was extracted by 

using the Matlab function “inpolygon” with the coordinates of the corner points. Subsequently the leaf area 

was calculated based on the number of points using the established correlation from manual leaf area 

measurements.  

A dose rate per rectangle was calculated from the leaf area per rectangle and a ratio of the average leaf 

area per row and the application rate recommended by the regional authorities according to growth stage. 

Thus, the rate along the rows varies by the dose rate used in practice with traditional spraying methods. 

Finally, the table with rectangles and dose rates were imported into QGIS again and saved as a Shapefile in 

WGS84 coordinate system.  

The final shapefile was then loaded into the SMS software and a spraying prescription map was created. 

A field boundary was also defined and individual parameters such as farm, field and year were specified. The 

developed map was then converted to the ISO-XML task file that is readable and recommended format for 

the ISOBUS-compliant virtual terminals (VT). 
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3. Results and Discussion 

3.1. Leaf area estimation 

The field measurements with the sensor frame provided georeferenced point clouds throughout the growth 

period. The applied filtering steps resulted in an almost pure leaf-based point cloud without steel or woody 

parts, albeit with longer computation times (Figure 3Figure 2). It should be mentioned that there are already 

a large number of other filtering algorithms that could possibly improve the extraction and make the extracted 

point cloud more precise (Garrido et al., 2015). The extracted number of points were then used for 

calculations of the prescribed dose rates. 

 

Figure 3. Leaf extracted point cloud of two vines with the calibrated reflection 

 

The correlation between leaf area (LA) and the number of points (NoP) from filtered point cloud is shown 

in Figure 4 with a scatter plot and the corresponding regression line. The high coefficient of determination 

(R²) of 0.92 indicates a strong linear relationship between the measured leaf areas and the number of points 

in the point cloud. This suggests that the method for estimating leaf area using point clouds is promising. 

However, it should be noted that the number of measurements (n=19) is limited. Therefore, further 

measurements are needed for more reliable conclusions. The resulting regression equation was used to 

calculate the prescribed dose rate per rectangle and is given by: 

 𝐿𝐴 = 5 × 10−5 × 𝑁𝑜𝑃 − 0.5353 (1) 
 

 

Figure 4. Linear regression between the number of points and the measured leaf area (n = 19). 
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3.2. Prescription map 

The generated map in shape format illustrates the spatial distribution of rectangles along the vine rows 

(Figure 5). A single rectangle with a width of one metre extends centrally over a vine and ends in the middle 

of the row. This ensures that an individual dosing rate is specified for both the right and left side when 

travelling with the sprayer. The calculation of dose rate was based on a ratio of the average leaf area per row 

and the prescribed dose rate according to growth stage and professional practice. This representation allows 

for a more precise adjustment of dosage based on leaf area variation along the vine rows. 

After exporting the prescription map in ISO-XML format, the task file can be transferred to any 

ISOSBUS-capable terminal. The prerequisite for applicability is the AEF ISOBUS functionalities “Task 

Controller Geo” and “Section Control” with the addition of subsections to differentiate between the right and 

left sides. Secondly, the sprayer must be able to process the dosing rates received individually for both sides. 

 

 

Figure 5. Prescription map with 1 x 2 m grids and leaf area adapted dose rates 

4. Conclusions 

The data obtained from the vineyard using the phenotyping platform provided a leaf segmented point 

cloud by applying several filtering steps. The manual leaf area measurements showed a 0.92 coefficient of 

determination with the number of points from the plants. Based on these results, the dose rates to be applied 

were determined and a VRA ISO-XML prescription map was created successfully. This allows a dosage 

recommendation for both sides of the sprayer adapted to the characteristics of the vines with a resolution of 

one meter in relation to the length of the leaf wall along the row.  

Future work includes the validation of the actual dose rates compared to the prescribed ones by using a 

prototype ISOBUS sprayer for vineyards, on the test facilities of Geisenheim University that are utilized for 

commercial spraying machine certification. Another point to investigate is the delay between the set and the 

actual dose rate at the nozzles including the possibility of smaller grids and higher resolution, respectively. 

Further development of the prescription map to address vertical heterogeneity and individual nozzle control 

is also planned for future research. In addition, the degree of automation of the entire workflow could be 

improved and the possibility of direct export to ISO-XML, without additional software such as SMS, could 

be investigated in more detail. 
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Abstract 

This study presents a method for creating detailed digital twins (DT) of apple orchards using an 

unmanned ground vehicle (UGV) and a combination of sensors, including a handheld laser scanner 

(HLS), a low-cost depth camera, and a Global Navigation Satellite Systems (GNSS) receiver. We aim to 

provide an updatable 3D geospatial database to automate agricultural processes, such as apple monitoring 

and collection. The workflow was tested in a portion of an apple orchard in northwest Italy and is 

comprised of four phases. Phase 1 involves sensor-integration on the vehicle and data acquisition. Phase 

2 defines and stores the orchard's geometries in a georeferenced 3D model; this phase also includes the 

segmentation of individual trees within each row. Phase 3 detects and segments apples using an artificial 

intelligence (AI) algorithm applied to RGB images captured by the depth camera; segmented apples are 

then projected onto the 3D model. Our work demonstrates how unmanned ground vehicles (UGVs) 

integrated with sensors can be applied to create a detailed, updatable orchard DT, a tool which can inform 

and automate agricultural tasks, ultimately increasing efficiency and reducing waste. 

 

Keywords: smart farming, agricultural digital twin, mobile robotics, artificial intelligence, crop 

monitoring 

1. Introduction 

The optimisation of agricultural systems is vital as they face growing demands and pressures. One 

widespread approach to achieving this is precision agriculture (PA). PA uses spatiotemporal data from 

agricultural systems to guide management decisions and improve productivity, sustainability, and 

resource-use efficiency (ISPA, 2024). In the 1990s, PA was hailed as “an information technology 

revolution”. Today, agriculture is experiencing another revolution, called “Agriculture 4.0”, which 

includes the rise of smart farming (Javaid et al., 2022). Smart farming goes a step further than PA, 

utilising information and communications technologies (ICT), such as artificial intelligence (AI) and 

Internet of Things (IoT), to automate and optimise not only agricultural operations but overall farm 

management, leading to even greater efficiency and productivity (Kamilaris et al., 2016; Moysiadis et 

al., 2021).  

The employment of unmanned ground vehicles (UGVs) in agriculture is on the rise thanks to its 

synergy with the smart farming paradigm, which depends heavily on extensive and repetitive data 

collection to perform informed, precise agricultural tasks. In this context, a UGV can assist farmers by 

effortlessly performing repetitive tasks without losing accuracy throughout the day.  

Besides a limited number of robotic UGVs developed to autonomously perform agricultural tasks 

such as weeding, pruning, spraying, and harvesting (Visentin et al., 2023),  most agricultural UGVs are 

entirely dedicated to sensing and monitoring of the crop or the soil. In this sense, UGVs navigate through 

the field as mobile sensor carriers to collect data such as soil structure and composition, water content, 

plant and fruits condition, presence of pests or diseases, crop yield, and more (Vulpi et al., 2022). 

Different combinations of sensors can be mounted on the UGV at different times to collect all relevant 

data, making modular robotic platforms very flexible and effective (Tiozzo Fasiolo et al., 2023). This 

ability to carry multiple sensors or robotic components gives UGVs an advantage over unmanned aerial 

vehicles (UAVs), which are more mobile but limited by the weight of their payload (Tardaguila et al., 

2021; Apeinans et al., 2023).  

The synergy between smart farming and robotics enables the collection of vast amounts of crop data, 

which must be organised, processed, and stored. When the collected information describes the system 

exhaustively, it can be organised and stored in a Digital Twin (DT).    

A DT is comprised of three parts: (1) the physical component, (2) the virtual component, and (3) the 

flow of information that connects them (Grieves, 2015). The European Commission’s Destination Earth 

program (Destination Earth, 2024) aims to expand the use of DTs to describe the processes of our planet 

and the related human activities, including agricultural systems. Agricultural DTs are accurate digital 
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replicas of real agricultural systems, continuously updated by smart farming techniques and sensors. 

They have been proposed to simulate machinery performance (Tsolakis et al., 2019), provide a decision 

support system for aquaponics (Ghandar et al., 2021), and to improve water efficiency by automating 

irrigation systems (Alves et al., 2023), among other applications. 

Nonetheless, adoption of DTs in agriculture has been found to be lagging behind other sectors, with 

most agricultural DTs still in the prototype stage (Pylianidis et al., 2021). Furthermore, most of the 

agricultural DTs reviewed were of non-living systems (such as machinery or structures) rather than living 

systems, likely due to their complexity (Pylianidis et al., 2021). For the few DTs of living systems, the 

reported benefits included early detection of disease and other threats, lower costs, and higher product 

quality (Pylianidis et al., 2021).  

Orchards are an ideal agricultural setting for testing methods of generating DTs of living systems, as 

the objects of interest (principally trees) are sessile, can be differentiated from one another, and are often 

organised in recognisable patterns. These qualities allow for repeatable data collection and data storage 

at the tree-level. Potential applications of orchard DTs include yield estimation, monitoring fruit 

development, detecting pests or diseases, autonomous harvesting, and more. To date, there are few 

examples of orchard DTs and, to the knowledge of these authors, none that propose an exhaustive 

workflow combining UGV technology and sensors to build a georeferenced DT of an apple orchard.  

This work seeks to develop a workflow for the creation of a high-quality DT of an apple orchard. 

This requires the achievement of several sub-objectives, which are: (1) to test the performance of the 

UGV ‘Agri.Q’ in an orchard environment and the arrangement of sensors on Agri.Q; (2) to create a 3D 

model of the orchard and segment individual trees in order to increase our resolution from a row- to tree-

level; (3) to train a deep learning model to segment apples.  

2. Materials and Methods  

This work was carried out in three phases that correspond to our sub-objectives.  

Phase 1: Data acquisition 

Data acquisition was carried out on October 10, 2023, in an apple orchard belonging to the Research 

Centre for Fruit Cultivation (Centro Ricerche per la Frutticoltura) of Fondazione Agrion, located in 

Manta, Piedmont, Italy (Fig.1(a)). The study area was comprised of flat, grassy terrain with three parallel 

rows of mature apple trees, each row about 90m long and 4m apart (Fig.1(b)). At the time of acquisition, 

the trees were fruit-bearing. Several apple varieties were represented. 16 black and white geometric 

markers were placed at varying heights throughout the rows to be used as references during point cloud 

construction.   

 

 

 

 

(a) (b) 

Figure 1. (a) The location of Fondazione Agrion in Piedmont, Italy and (b) orchard HLS point 

cloud. 

 

Agri.Q represents an innovative UGV specifically engineered for PA applications within vineyards 

and orchards. This UGV demonstrates adaptability to unstructured environments and uneven terrain 

thanks to its unique architecture. As depicted in Fig. 2, the UGV consists of two skid-steering modules, 

each equipped with two locomotion units that drive two tires each via a chain drive system. This 

architectural design ensures efficiency comparable to traditional wheeled systems while effectively 
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distributing pressure on the ground, akin to tracked vehicles. Consequently, this design feature, coupled 

with the UGV's relatively modest weight of approximately 110kg, reduces the tires sinkage and mitigates 

soil degradation in comparison to conventional agricultural machinery. 

 

 

Figure 2. The Agri.Q UGV has four skid-steer modules, each characterised by a single drive 

motor that transmits power to two off-road wheels via a chain transmission. The passive joint 

allows Agri.Q to adapt to uneven and complex terrain. 

  

Agri.Q can be equipped with an array of instruments and sensors tailored to specific tasks such 

as field mapping and crop monitoring. Notably, it can feature a redundant 7 degrees of freedom (DOF) 

collaborative robot arm, facilitating interactions with the environment, including soil, leaf, and fruit 

sample collection (Quaglia et al., 2024). Moreover, it incorporates a 2 DOF photovoltaic (PV) panel 

capable of self-orientation to optimise solar energy collection for battery recharge, but, also, to 

provide an always level landing platform for drones to seamlessly collaborate with UAVs when 

required (Visconte et al., 2021; Botta and Cavallone, 2022). Additionally, the robotic arm and the 

sensor unit are mounted on the frame of the orientable platform, enabling dynamic adaptation of the 

robot's manipulation workspace (or the sensors’ field of view) to various tasks and scenarios (Colucci 

et al., 2023), as showed in Fig. 3. Regarding the specific application in apple orchards, Agri.Q has 

been equipped with a sensor support plate positioned on the rear module of the UGV so that its pitch 

adjustment mechanism can raise the sensors from a height of 700 mm to 1600 mm. It's worth noting 

that a hinge joint has been incorporated to keep the plate parallel to the ground, even when the Agri.Q 

panel is tilted. 

 

Figure 3. The sensors carried on the rear plate can be raised by means of the pitch mechanism 

adjustment, which imposes to the Agri.Q panel a rigid rotation around point F. The hinge joint 

between the plate and the panel allows to keep the plate parallel to the ground. 
 

Three optical sensors were used, in addition to a dual frequency GNSS receiver used to georeference 

the DT (Table 1). The Kaarta Stencil 2 is a HLS that uses Velodyne LiDAR and advanced simultaneous 

localisation and mapping (SLAM) algorithms that integrate visual odometry (Velodyne Lidar, 2023). 

The Stencil 2 was integrated with an Emlid Reach 2 GNSS receiver in Network Real Time Kinematic 

(NRTK) acquisition to georeference the trajectory estimated by Stencil 2. The ZED 2 is a stereo camera 

produced by StereoLabs. It collected images with a resolution of 1920 x 1080 at a rate of 30 frames per 

second (fps). The Mapir 3N collects images in the red (R), green (G) and near-infrared (NIR) bands with 

1 Hz frequency and it has a field of view of 41°. 
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Table 1. Sensors used to collect orchard data. CRS= Coordinate Reference System 

 

All sensors were affixed to Agri.Q’s sensor support plate using screws. The HLS, stereo camera, and 

multispectral camera were oriented such that the image plane was parallel to the row of trees (Fig. 4). 

Horizontal and vertical offsets between the centres of the sensors were recorded. The GNSS receiver was 

connected to the HLS via USB. All sensors were activated before the UGV began to move and they 

collected data continuously throughout the acquisition. During the test, the UGV was commanded to 

navigate between three rows at a constant speed (0.2m·s-1).  

 

 
Figure 4. (a) The arrangement of the sensors on Agri.Q platform. (b) Agri.Q while navigating the 

apple orchard. 

 

Phase 2: Data processing and information extraction 

The HLS was initially optimized using the Adaptive Data Replay tool provided by Stencil 2, which 

allows for the re-processing of the point cloud by adjusting parameters that control feature matching (Di 

Pietra et al., 2020) and the Loop Closure algorithm. The communication between the SLAM and GNSS 

systems enabled the time synchronization of the data acquisition, allowing for the association of SLAM 

and GNSS trajectories; the offsets between their centres of phase were considered when roto-translating 

the SLAM cloud in the global projected reference system (EPSG: 32632). The point cloud was then 

filtered and clipped to the area of interest.  

The HLS point cloud was used to generate the 3D geometric model for data visualization and storage. 

We decided to use the single tree as the reference unit for our DT and associate measurements to each 

one. A local maxima individual tree detection (ITD) technique was used to identify individual trees. This 

approach was chosen because height and treetop-based models have proven effective so far, given the 

structure of the orchard, where all the plants have a distinct treetop and small heights that fall into Kaarta 

HLS range capabilities. Using the Cloth Simulation Filter (CSF) algorithm implemented in Cloud 

Compare software, the Digital Terrain Model (DTM) was extracted (Zhang et al., 2016), which was then 

Sensor 

Name 
Sensor Type Data Collected Information CRS 

Kaarta 

Stencil 

2 

Handheld 

Laser Scanner 

(HLS) 

Point cloud of 

orchard 

Point cloud of HLS 

trajectory 

X, Y, Z 

Intensity values 

Time 

Confidence value (trajectory 

only) 

 

Local 

Emlid 

Reach 

2 

GNSS 

Receiver 
HLS position 

East, North, elevation above 

the Ellipsoid 

Root Mean Squared Errors 

Global, 

EPSG: 

32632 

ZED 2 Stereo Camera 

RGB images 

Depth images 

Colourised point 

cloud of orchard 

Left RGB (stereo pairs) 

Right RGB (stereo pairs) 

Depth images 

Local 

Mapir 

3N 

Multispectral 

Camera 

Multispectral 

images (R, G, NIR) 

3-bands images: 

Near Infrared 850nm, Red 

660nm, and Green 550nm 

Local 
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used to calculate the normalized DTM (nDTM), as the difference between the Digital Surface Model 

(DSM) and the DTM. To reduce the computation time of the algorithm, the CHM was scaled to 

25cm/pixel. The stems were detected using “local minima and maxima” algorithm in SAGA; outliers 

were removed successively according to maxima distribution. Finally, Voronoi polygons were computed 

upon the treetops to define the canopy geometry and then projected on the point cloud. The goodness of 

the ITD method was assessed by comparing the treetop detection with the ones manually identified and 

computing precision, recall, F1-score and accuracy metrics (Belcore et al., 2021). 

The data gathered by the ZED 2 stereo camera was stored in StereoLabs’ proprietary .svo format. 

Point clouds were extracted in .ply format using the ZEDFu software. 35,122 image pairs were captured 

by the stereo camera and used to automatically generate depth maps. 32,196 RGB image and depth map 

pairs were exported .png format with a resolution of 1920 x 1080. Only RGB images taken by the left 

camera were exported. 

To examine the quality of the stereo camera point clouds and to test their correspondence with the 

HLS data, point cloud registration was performed on a test section of the orchard. This section was 

located at the end of the second row, contained 12 trees, and had a length of 33m and an area of 341m2. 

This test section was selected based on the presence of red, highly visible apples on the trees. This 

allowed for easier visual assessment of apple representation in the stereo camera point cloud, using the 

corresponding RGB images as a reference.  

Point cloud registration was carried out using Cloud Compare software. The HLS point cloud was 

used as the reference cloud. The HLS point cloud was clipped to the area of interest, and the stereo 

camera cloud was registered first manually, then using the ICP algorithm (Theoretical overlap = 70%) 

before being merged. The root of the mean square (RMS) error was calculated to assess the quality of 

the ICP registration. 

Phase 3: Apple detection and segmentation 

An Ultralytics YOLOv8 (Jocher et al., 2023) segmentation model was trained to detect and segment 

apples. A training dataset was prepared using the RGB images previously exported from the stereo 

camera. Images were subsampled and filtered to include only images of apple-bearing trees with minimal 

overlap, resulting in 65 images. To supplement the dataset, 670 images from the MinneApple dataset 

(Häni et al., 2020) were added. All images were sliced into smaller images of the optimal YOLOv8 input 

size (640 x 640), labelled, then split into training (1963), validation (379), and testing (405) datasets.  

Training was conducted using a medium pre-weighted segmentation model (YOLOv8m-seg.pt) with 

default parameters (epochs = 100, batch size = 16, image size = 640, data augmentation = enabled) and 

validation was automatically conducted. At the conclusion of training, the best model was saved. 

3. Results 

Phase 1: Data acquisition 

Agri.Q travelled a total of 580m in 30 minutes. All sensors remained securely fixed to the platform 

and gathered data for the duration of the journey.  

Phase 2: Data processing and information extraction 

The raw HLS point cloud consisted of 30,000,000 points and covered an area of approximately 6,000 

m2. The final cloud had 20,749,929 points and the RTK acquisition had an error of 4 centimetres. 

The local maxima algorithm detected 243 treetops. Through the analysis if the heights distribution, 

the outlier threshold was selected (inflection point). 40 points were identified filtered out as outliers.  

The goodness of the detection was then validated through comparison with the Voronoi polygons 

built on the treetop identified through visual interpretation. This resulted in 113 matched elements (the 

treetop falls within the reference polygon, true positive), 24 missed (no treetop within the reference 

polygon, false negative), 31 oversampled (more than one treetop within the reference polygon, false 

positive), and 35 (treetop outside the reference polygons, false positive). 

The calculated precision, recall, F1 score, and accuracy metrics are listed in Table 3. 

 

Metric Precision Recall F1 Accuracy 

Value 0.63 0.85 0.72 0.69 

Table 3. Treetop detection accuracy metrics. 

 

The stereo camera point cloud representing the registration test section consisted of 1,971,919 points 

while the HLS cloud clipped on the test rows consisted of 2,011,972 points. The RMS error of the ICP 
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alignment was 0.064 m.   

Phase 3: Apple detection and segmentation 

The trained segmentation model was able to detect and segment apples in our images with high 

accuracy (F1 = 0.89), detecting nearly all the apples (recall = 0.91) with a high degree of precision (0.87) 

(Fig. 5).  

 

Figure 5. (a) The original image and (b) the same image with YOLOv8-generated segmentation 

masks (red) 

4. Discussion 

Agri.Q proved to be a suitable UGV for orchard use. It easily navigated the terrain and the sensor-

mounting platform allowed for the simple, secure installation of four sensors and auxiliary tools, 

including a battery and a laptop. While Agri.Q is currently controlled remotely by an onsite operator, 

automation would increase its utility, allowing farmers to concentrate on other tasks while Agri.Q 

performs data collection missions independently. 

The HLS and GNSS receiver performed as expected and provided a high-quality, georeferenced 

point cloud. The ZED 2 stereo camera did not perform as well as expected, generating sparse, low-quality 

point clouds. Other studies using ZED and ZED 2 stereo cameras in orchards have encountered similar 

problems (Wang et al., 2017; Chen et al., 2021; Neupane et al., 2021). Still, stereo cameras have the 

advantage of (a) being significantly less expensive than LiDAR sensors and (b) integrating RGB data 

directly with depth data. Further testing of the ZED 2 under different lighting conditions and orientations, 

as well as comparisons with other available RGB-D sensors, is advisable. While images from the Mapir 

3N were ultimately not included in our workflow, they could eventually be integrated to add information 

about photosynthetic activity and plant health. 

The ITD method tends to overestimate the number of trees. This can be attributed to the tendency of 

lateral branches to grow upwards. The result is acceptable and consistent with the performance of 

automated treetop extraction algorithms from LiDAR (Ozdarici-ok and Ok, 2023). The advantage lies in 

the speed of the method, with the total processing time being 26 seconds to extract the maxima and 1 

second to generate the Voronoi polygons, significantly faster than point cloud segmentation methods. 

Upon visual inspection of the stereo camera point clouds, apples were identifiable by colour, 

however the sparseness of the point cloud resulted in somewhat undefined shapes and difficulty 

distinguishing individual apples where several were growing in close proximity. Tree branches and 

leaves were also often indistinct, while tree trunks were slightly better. Vertical wooden posts installed 

along the rows at roughly 9m intervals were often the most recognizable features. Due to their sparseness 

and lack of structural details, the stereo camera point clouds would not be suitable for the construction 

of a DT if used independently.  

Therefore, it was necessary to register the stereo camera point cloud with the HLS point cloud. The 

accuracy of the alignment was poorer than expected, with an RMS error of 6.4cm and several persistent 

visual artifacts. Given that one of the potential uses of the DT is fruit-picking, which requires precise and 

accurate measurements, this is not acceptable. 

Apple detection and segmentation was highly satisfactory, with excellent recall and precision. Visual 

analysis of results showed that the model was successful at detecting all or nearly all apples in clear, 

well-lit images, but struggled to detect all apples in blurry, poorly lit images, resulting in some false 

negatives.  The abundance of high-quality, accurately labelled images from the MinneApple benchmark 

dataset (Häni et al., 2020) likely helped to compensate for the relatively small size of our own dataset. 

The variety of trees, apples, colours, and lighting conditions represented in the MinneApple dataset 

served to prevent overfitting and make the model more generalisable.  
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The final goal of this workflow is to generate a 3D model of the orchard structure using the LiDAR 

system so that the information collected by the YOLO algorithm can be associated with each tree and 

georeferenced. By knowing the depth camera pose coordinates and their relation to the depth camera 

point cloud, it is possible to transform them into the global reference system. The YOLO model can be 

uploaded to the depth camera and run during the acquisition, enabling instantaneous detection. 

In our case study, we did not load the detection model into the camera because it was developed after 

the acquisitions. The depth camera's point cloud was aligned with that of the HLS, also thanks to the 

markers on the poles. This procedure can be further automated if the markers are encoded. 

The major limitations and difficulties encountered in the work are related to the data acquisition 

methods. While the terrestrial laser scanner, being an active sensor, did not encounter particular 

problems, the depth camera was mainly affected by light exposure and camera orientation. The rows 

oriented north were in the shade, and the images taken were underexposed. We believe this limiting 

factor can be overcome with better scheduling of the surveys avoiding hours when the sun is low on the 

horizon. 

The second limiting aspect was the difficulty of reconstructing the depth camera's point cloud. The 

repetitive geometries and the serpentine trajectory caused inaccuracies in the visual odometry algorithm, 

resulting in the data only being exportable and processable in different segments. To reduce these errors, 

we intend to orient the camera not perpendicular to the row but rotated by about 10° so that the entire 

row is visible and more points are available for the visual odometry algorithm. We are currently 

researching these aspects to improve and automate the prototype further. Having successfully prepared 

the 3D and 2D components of a DT, the next steps will focus on their unification via the projection of 

the 2D colour data and apple detections onto the segmented 3D model.  Then, fruit-count data and other 

metrics can be assigned to each tree, and the full DT will be stored in a queryable webGIS. 

5. Conclusions 

Here we present a comprehensive workflow for the creation of a DT of an apple orchard. We 

demonstrate the suitability of an agricultural UGV, Agri.Q, as a mobile sensor carrier in an apple orchard. 

We also obtained a detailed 3D model and successfully performed ITD, allowing for the eventual 

association of crop measurements to individual trees. While we did not gather measurements such as 

fruit count and size, these can be derived from the results of apple detection and segmentation. Using a 

refined AI model, we performed apple detection and segmentation on RGB images with excellent results. 

The next phase of this work will focus on the automatization of the data collection and the projection of 

the 2D detections and RGB data onto the 3D model in order to realize the final georeferenced, segmented, 

colourised DT.  

As the Agriculture 4.0 revolution ushers in the age of smart farming, agricultural DTs will move 

rapidly from the conceptual to the real world. To facilitate this transition and ensure the readiness of the 

technology, the development and testing of DT generation methods must begin now. Our proposed 

methodology represents one of the first start-to-finish workflows for the creation of a DT of an apple 

orchard and provides a foundation on which future DTs of complex, living agricultural systems can be 

built.  
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Abstract 

Smart farming practices provide decision-making support for farmers facing economic, social, and 

environmental challenges. However, the adoption of smart farming remains low in many areas due to the 

perceived costs, required skills, and hesitancies about sharing agricultural data. While many studies have 

examined the factors influencing smart farming adoption in different agricultural contexts, none have 

specifically reviewed the motivators and obstacles of agri-data sharing within smart farming. This research 

aimed to identify and classify the primary drivers and barriers for agri-data sharing among stakeholders by 

examining existing literature. A Systematic Literature Review was conducted using the PRISMA 2020 

methodology, initially identifying 491 papers from Scopus and Web of Science and narrowing down to 34 

empirical and 25 non-empirical papers for final assessment. This paper presents the main findings from the 

34 empirical studies. Factors affecting the willingness and ability to engage in agricultural data sharing were 

categorized into socio-economic, systemic, technical, and legal categories. The most prominent drivers for 

agri-data sharing were socio-economic and systemic, mentioned in 65% and 59% of the empirical papers, 

respectively. Technical factors were the most common barriers, discussed in 68% of the literature. Key 

enablers for data sharing included perceived knowledge gain for better decision-making, trust and 

collaboration across the agri-value chain, practical usage, and clear data sovereignty. Major concerns 

included a lack of understanding of the purpose and benefits of data sharing, mistrust about who benefits 

from the data, data privacy and security issues, and unclear data ownership and right of uses. The findings 

from this study will inform research efforts across the EU to promote the benefits of agri-data sharing and 

increase the adoption of smart farming technologies. 

Keywords: agri-data sharing, smart farming, drivers, barriers, trust 

1. Introduction 

Farmers worldwide are in a challenging situation: to produce enough for a growing population, decrease 

their environmental impact, meet consumer and political demands for responsible practices, navigate 

increasingly adverse and volatile weather, and ensure the survival of their farming operations. Despite these 

overwhelming challenges, new technologies providing high-quality information can assist farmers in making 

critical decisions and increasing efficiencies. Over the past three decades, smart farming practices have been 

developed to address many economic, social, and environmental challenges in agriculture (Fragomeli et al., 

2024). Smart farming practices can help reduce inputs and maximise outputs (Wolfert et al., 2017), streamline 

on-farm processes and redistribute labour needs (Jerhamre et al., 2022), and use resources more sustainably, 

such as through precision irrigation and targeted pesticide application (Jakku et al., 2019; van Evert et al., 

2017). 

Data are central to all smart farming processes and management decisions. These data are collected from 

farms via sensors, machines, drones, or satellites, and from the value chain tracking consumption, prices, 

input supplies, and energy use (Klerkx et al., 2019). By processing and interpreting these data, farmers can 

make better decisions at both the farm and value-chain levels (van der Burg et al., 2020). To fully realise the 

benefits of optimized production, enhanced sustainability, and risk mitigation, these data must be shared. 

This involves farmers sharing their data with stakeholders such as farm advisory services, ag-tech companies, 

research institutions, and government agencies. However, data sharing is a complex socio-technical process  

that is hampered by stakeholder concerns over data privacy, interoperability, unclear governance, and 

mistrust about who benefits from the shared data (Wiseman et al., 2019). 

Whereas trust in smart farming adoption studies is centred on trust in the technology, such as whether the 

equipment gathers accurate data, trust is discussed very differently in agri-data sharing research. Issues with 
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trust in data sharing stem from stakeholders’ (primarily farmers’) perceptions of what will happen to their 

data once shared, including who will use it for what purpose, and potential repercussions. Some believe trust 

can be ensured through policies, codes of conduct, and regulation; however, van der Burg et al. (2021) argue 

that such measures can only help maintain trust previously built through relationships. This review highlights 

that socio-economic, systemic, technical, and legal factors intersect to influence trust in data sharing. 

Numerous studies have identified agri-data sharing as a factor affecting smart farming adoption (Drewry 

et al., 2019; Jerhamre et al., 2022), but few have focused on it specifically. Previous reviews have examined 

the technical or privacy aspects of big data in agriculture (Amiri-Zarandi et al., 2022; Kamilaris et al., 2017), 

only the barriers to data sharing in digital agriculture (Eastwood et al., 2023; Šestak & Copot, 2023), or 

specific technologies like blockchain (Akella et al., 2023). However, to the best of our knowledge, no reviews 

have comprehensively explored the motivations and obstacles of agri-data sharing. This research aims to 

identify and classify the key drivers and barriers for agri-data sharing across stakeholders by reviewing 

existing literature. Our paper fills the gap with a review of the most prominent factors influencing data sharing 

in the agri-value chain identified in 34 empirical studies. 

2. Materials and Methods  

This article forms part of a comprehensive Systematic Literature Review (SLR) recently conducted by 

Sullivan et al. (2024) using the PRISMA 2020 methodology. This review presents the main findings from 

the empirical papers identified in the original systematic review. Empirical studies gather and analyse data 

as evidence, and include both qualitative (e.g., interview) and quantitative (e.g., survey) measurements. 

2.1. Identification criteria and screening process 

The original search was conducted on February 15, 2024, and utilised Scopus and Web of Science. The 

search query employed a combination of keywords and their synonyms based on previous reviews (Da 

Silveira et al., 2021; Gemtou et al., 2024) and was selected after testing several combinations of search terms. 

The final query used was: 

("smart farm*" OR "smart agricult*" OR "precision agricult*" OR "precision farm*" OR "digital agricult*" 

OR "digital farm*" OR "data-driven agricult*" OR "agriculture 4.0") AND ( "data shar*" OR "agri-data" OR 

"agricult* data" OR "farm* data" OR "sharing data" OR "data exchange" OR "data access" OR "data 

governance" OR "data privacy" OR "data ownership" OR "data sovereignty" OR trust OR "information 

sharing") AND (factor* OR barrier* OR deter* OR obstacle* OR limit* OR prevent* OR discourag* OR 

driver OR motivat* OR encourag* OR attitud* OR perspective OR adopt*) 

The keywords were searched within titles, abstracts, and keyword lists. The search was limited to journal 

articles and conference papers written in English. The search resulted in 491 studies eligible for screening. 

After removing duplicates, the number of articles was reduced from 489 to 353. The initial screening was 

conducted by reading titles and abstracts of the 353 papers to make sure the papers fell within the scope of 

the review. This step removed 227 records. The remaining 126 papers were then screened by reading the full 

text to determine if they met the following inclusion criteria: (i) Original research (not a review paper); (ii) 

Study related to digital agriculture; (iii) Discussed a driver or barrier for agricultural data sharing; and (iv) 

Available for download as full text. This second screening resulted in 32 empirical and 24 non-empirical 

papers. Two additional empirical papers were added from outside of the query because they were commonly 

referenced. This resulted in a final number of 34 empirical studies to be analysed for this review. 

2.2. Data extraction and analysis 

Driver and barrier categories were established based on existing literature (Gemtou et al., 2024; 

Rozenstein et al., 2024) to analyse results and identify the most prominent factors affecting agricultural data 

sharing. The four main categories used were: (i) socio-economic factors; (ii) systemic factors; (iii) technical 

factors; and (iv) legal factors. Data were extracted manually and recorded in a spreadsheet after reading each 

article. When discussed in the main body of a paper, details of the driver or barrier were recorded in the 

appropriate category. In this way, the number of papers that addressed the four main drivers or barriers was 

calculated. Factors discussed were further analysed by assigning them into four or five sub-categories per 

main category. The frequency of a sub-category was determined by summing the number of times the sub-

category was marked across the set of papers. This review presents the two most prominent drivers and 

barriers per category, while all the sub-categories recorded are discussed in Sullivan et al. (2024). 
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3. Results and Discussion 

3.1. General overview of selected articles 

A total of 34 empirical studies published from 2011 to 2024 were analysed for this review. Data sharing 

is a recent area of research, with 90% of the articles published since 2019. Other reviews have noted a recent 

surge in social and behavioural science studies related to smart farming, particularly from 2018 onwards 

(Klerkx et al., 2019; McGrath et al., 2023). The high number of publications in 2019 is attributed to a special 

issue of Wageningen Journal of Life Sciences focused on social science within smart farming. Agri-data 

sharing was found to be only a component of the research or discussion in many of the papers (e.g., data 

sharing as a factor influencing the adoption of smart farming). However, twelve of the papers (35%) focused 

specifically on agri-data sharing and in this review are referred to as “the main data sharing studies”.  

The published studies included: 10 papers from North America; 9 from Europe; 8 from Oceania; 3 from 

Africa; 2 from Asia; 1 from South America, and 1 conducted world-wide. Australia and the Unites States of 

America were the countries with the largest number of articles (24% and 21% of articles, respectively). Five 

of the twelve main data sharing studies (42%) examined perspectives on agricultural data sharing in Australia. 

Nearly 90% of the papers were journal articles, with only four conference papers included.  

The studies included the perspective of farmers (~80% of studies), agronomists, technology providers, 

government, and researchers. All the main data sharing studies included the perspective of farmers. The two 

most common methodologies used for gathering stakeholder insights were interviews (32% of studies) and 

surveys (29%). The main data sharing studies centred on farmers’ perspectives of the benefits and risks of 

data sharing, data governance, and willingness to engage in data sharing.  

3.2. Overview of factors affecting agricultural data sharing 

Factors influencing the willingness and ability to participate in agricultural data sharing were identified 

across socio-economic, systemic, technical, and legal categories. Socio-economic factors encompass the 

social and economic realities that influence stakeholders’ decisions to engage in activities (Chisenga, 2015). 

Systemic factors, operating at the agri-chain level, create feedback loops that impact stakeholders’ decisions 

(Gemtou et al., 2024). Technical factors are related to technological challenges or solutions, and legal factors 

are shaped by regulations and policies. The most prominent drivers for agri-data sharing discussed were the 

socio-economic (65% of papers) and systemic factors (59% of papers; Figure 1). This result was emphasised 

in the main data sharing papers: 100% of the twelve papers discussed socio-economic enablers and 67% 

discussed systemic ones. Technical factors were the most frequently referenced barriers to data sharing, 

discussed in 68% of the studies (Figure 1). In the subset of main data sharing studies, systemic and legal 

barriers were the most prevalent, both in 75% of the studies.  

 

 

Figure 1. Prominence of factors identified as influencing agri-data sharing. Light blue denotes main data sharing studies. 
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3.3. Sub-categorisation of factors 

Within the four main categories, sub-categories were created based on findings from the literature. Table 

1 includes the two most prominent sub-categories identified under each main category and examples found 

in the literature. Data governance is a complex and overarching topic, and its different aspects were allocated 

to the technical and legal categories. Discussions around data privacy and security were recorded within 

technical; while discussions of data ownership and rights of use were grouped as ‘data sovereignty’ and 

included in the legal category. The papers were not restricted to only one categorisation, as they could include 

references to multiple main and sub-categories. The percentage of papers in which the sub-category was 

discussed are included in Table 1 in brackets. 

Table 1. Examples of the most prominent drivers and barriers of agri-data sharing identified in each category. 

The number in brackets is the percentage of articles (n=34) in which the factor was discussed. 

Driver category & sub-category examples Barrier category & sub-category examples 

Socio-economic drivers Socio-economic barriers 

Knowledge gain (38%) 

Informed decision-making; risk management; 

improved farm production  

Lack of knowledge about data sharing (26%) 

Unclear about data benefits, data use, value of 

data, return on investment 

Awareness of data sharing (26%) 

Clear understanding of value proposition 

Required investment (12%) 

Time, money, and training needed 

Systemic drivers Systemic barriers 

Trust and relationship building (29%) 

Use of existing trusting relationships  

Lack of trust between stakeholders (35%) 

Unknown fate of data and who will benefit; 

exposure to competition 

Collaboration across agri-value chain (29%) 

Sharing knowledge for the common good; supply 

chain efficiencies; enhanced marketability 

Power imbalance and data misuse (29%) 

Fear of data used to influence market; farmers at 

mercy of technology providers 

Technical drivers Technical barriers 

Practical usage (21%) 

Ease-of-use of interface; data collection linked to 

farm realities; data storage & access 

Privacy and security (53%) 

Lack of privacy and cybersecurity protection; 

complexity of personal/non-personal data 

Improved technologies (15%) 

New technologies; improved data analysis and 

modeling 

Interoperability (24%) 

Incompatibilities; restricted data exchange; lack 

of transferability; data ‘lock-in’ 

Legal drivers Legal barriers 

Data sovereignty (26%) 

Clarity and/or policy of data ownership and rights 

of use; transparency about data sharing licenses  

Lack of data sovereignty (41%) 

Lack of clarity for data ownership and rights of 

data use; lack of transparency in policies 

Beneficial policies and incentives (21%) 

Government incentives; CAP alignment; ease of 

administrative burden 

Harmful policies and regulations (15%) 

Compliance and regulations for data sharing; 

restrictive policies on data sharing 

3.4. Drivers of agri-data sharing 

Identification of the most prominent drivers found in research studies can help inform future strategies 

aimed at promoting the benefits of agri-data sharing. While socio-economic factors emerged as the most 

prominent overall category of drivers, we also identified specific drivers discussed in the literature. 

3.4.1. Socio-economic drivers 

The perceived knowledge gain when sharing agricultural data was the most prominent driver identified 

across all papers (Table 3). Benefits related to knowledge gain, such as improved decision-making and risk 

management (Jakku et al., 2019; Newton et al., 2020; Regan, 2019), were discussed in 38% of all papers and 
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50% of the main data sharing papers, highlighting its importance from the farmer perspective. Discussions 

highlighted how farmers valued access to individual and pooled data for better opportunities and risk 

mitigation. Aggregated data could help address climate and market uncertainties, reduce inputs, improve crop 

quality, and increase efficiency and economic gain (McCarthy et al., 2023; Thompson et al., 2021; Wang et 

al., 2024). Other agri-data sharing research projects have identified optimised production and risk 

management, tailored farming recommendations, and increased quality and quantity of products as key 

drivers for sharing data (van der Burg et al., 2020; Giesbers & Adema, 2021).  

For these perceived benefits to drive interest in data sharing, farmers must understand the value 

proposition of agri-data sharing. The second most frequent enabler was individual awareness of the risks and 

benefits of sharing agricultural data (Table 3). This clear understanding was highlighted in seven of the twelve 

main data sharing studies as a prerequisite for agri-data sharing (Brown et al., 2023; Charvát et al., 2021; 

Wiseman et al., 2019; Zhang et al., 2021).  

3.4.2. Systemic drivers 

Building trust in relationships and collaboration across the agri-value chain work hand-in-hand and were 

the two most frequently discussed systemic drivers for sharing agricultural data (Table 1). Aggregate data 

was viewed as beneficial for industry decision-making to optimise supply chain logistics and improve market 

projecions (Jakku et al., 2019). Stakeholders saw the potential of using larger datasets for the common good 

of the industry, either by exchanging knowledge and sharing insights, or enhancing marketability of a sector 

(Boisier et al., 2021; Charvát et al., 2021; Eastwood et al., 2012; McCarthy et al., 2023). Stakeholders in 

Australia envisioned product traceability creating niche markets to meet consumer demands (Jakku et al., 

2019), and data sharing in Ireland was viewed as a means of presenting a positive public image of the 

agricultural sector (Brown et al., 2023). 

For the collaborative benefits of data sharing to be realised, trust and relationship building is required. 

The importance of involving stakeholder groups in the data sharing process that were already trusted partners 

of farmers was emphasised in the research. Farmers were most willing to share their data with researchers or 

other farmers, and least likely to share with the government (McCarthy et al., 2023; Turland & Slade, 2020; 

Zhang et al., 2021). As found in the wider literature, farmers’ willingness to share data is influenced by who 

the data will be shared with, who they will be working with, and how much they trust this stakeholder group 

(Amiri-Zarandi et al., 2022; Eastwood et al., 2023). 

3.4.3. Technical drivers 

The technical drivers discussed most frequently in the papers were factors that improved the practicalities 

of data sharing, such as ease of use and increased data storage (Table 1). User-friendly interfaces were a 

significant enabler for data collection based on farmer surveys (Jerhamre et al., 2022; Wang et al., 2024). 

Incorporating data collection into farmers’ normal activities further enhanced their willingness, such as 

linking data collection to a regular farm activity (Eastwood et al., 2012) or using a data platform that was 

integrated into an existing farm management software (Schambow et al., 2022). 

The second most prominent technical driver were new technologies that spur innovation across the agri-

sector (Table 1). Examples included higher-quality weather and crop models coupled with data analysis 

(Newton et al., 2020) and the possibilities from new technologies like artificial intelligence (Alexander et al., 

2024). This optimistic outlook of innovative technologies is supported by other literature reviews related to 

big data and smart farming (Abbasi et al., 2022; Akella et al., 2023). 

3.4.4. Legal drivers 

In the legal category, it was widely reported that clarification of data ownership and transparent data use 

licenses were a critical incentive for agri-data sharing (Brown et al., 2023; Charvát et al., 2021; Idowu et al., 

2023; McCarthy et al., 2023; van der Burg et al., 2021; Zhang et al., 2021). This is supported by discussions 

in the wider literature of legal frameworks that tackle accountability and responsibility within the data-

sharing chain (Amiri-Zarandi et al., 2022; Eastwood et al., 2023). While codes of conduct have been 

developed to help protect farmers’ rights and make data sharing more transparent, these codes of conduct are 

voluntary, including the European Union Code of Conduct on Agricultural Data Sharing by Contractual 

Agreement (van der Burg et al., 2021).  

Beneficial governmental policies and incentives were discussed as encouragements of data sharing 

(Jerhamre et al., 2022), especially if data aggregation and analysis support was provided (Newton et al., 

AgEng 2024 Proceedings

286



2020). Sharing data digitally was also viewed as a way to decrease the administrative burden for 

demonstrating compliance with regulations or in applying for government subsidies (Kutter et al., 2011; 

Reissig et al., 2022).  

3.5.  Barriers of agri-data sharing 

The main barriers af agricultural data sharing identified in the papers were often the “lack” of the associated 

driver (Table 1). As a main category, technical factors were discussed in 68% of all papers and were the most 

prominent barriers to agri-data sharing.  

3.5.1. Socio-economic barriers 

Lack of knowledge about the benefits or use of shared data was by far the most significant socio-economic 

obstacle for sharing farm data (Table 1). Almost 60% of the main data sharing papers referenced lack of 

clarity about the value, applicability, or benefit of data to farmers as a serious deterrent for sharing agri-data 

(Jakku et al., 2019; Marshall et al., 2022). Although much less prevalent, the required investment of time and 

money to adopt a technology and learn new skills was referenced in 17% of the papers. When the benefits of 

data sharing are not clear, farmers are less likely to invest in a new practice. In these instances, the farmer 

may lose interest in data-gathering technologies that are not required because the risks outweigh the unclear 

benefits (Brown et al., 2023; Regan, 2019). In contrast to reviews on the adoption of smart farming practices 

(Fragomeli et al., 2024; Gemtou et al., 2024), farm and farmer characteristics such as farm size, age, and 

education were not identified as prominent barriers to agri-data sharing in our review. 

3.5.2. Systemic barriers 

Lack of trust between stakeholders was the most prominent systemic barrier, identified in 35% of the 

papers (Table 1). Uncertainty and fear about the fate of data generated once it left the farm was reported by 

farmers, resulting in mistrust towards data aggregators. The sense of mistrust was ascribed to not knowing 

how data would be used, who would benefit from their data, and the repercussions with competitors 

(Alexander et al., 2024; Brown et al., 2023; Charvát et al., 2021; Zhang et al., 2021). These concerns were 

further exacerbated by the complex power imbalance that exists across the agri-value chain and fear of data 

being misused. 

Trust in data sharing and fear of misuse was dependent on who the data was shared with. For example, 

growers were found to be least willing to share data with government for fear of selective data being used to 

misrepresent an industry or in the creation of unjust policies (Brown et al., 2023; Wiseman et al., 2019; Zhang 

et al., 2021). Farmers were also concerned that agriculture companies could adjust prices based on aggregated 

farm input or output data (Brown et al., 2023). The imbalance in operation size, bargaining power, data 

knowledge, and technology access between individual farmers and agricultural technology providers has left 

farmers at the mercy of large technology providers.(Boisier et al., 2021; Charvát et al., 2021). Unbalanced 

power relationships and lack of trust are barriers that have been identified in wider research related to data-

driven agriculture (Abbasi et al., 2022; Atik, 2023; Kamilaris et al., 2017; Klerkx et al., 2019). In exploring 

the creation of shared data spaces, Eastwood et al. (2023) and Šestak and Copot (2023) identified mistrust in 

the data-sharing process as a serious and complex obstacle.  

3.5.3. Technical barriers 

The challenge surrounding data privacy and cybersecurity was the most prominent barrier identified in 

the study, referenced in 53% of all papers and 58% of the main data sharing studies (Table 1). From the 

farmers’ perspective, there was a lack of confidence and trust that their privacy and cybersecurity would be 

maintained across the data-sharing chain (e.g., Bach et al., 2020; Drewry et al., 2019; Ibrahim et al., 2020; 

Jakku et al., 2019). The difficulty in separating ‘personal’ from ‘non-personal’ data within farm production 

data exacerbated this concern  (Brown et al., 2023). The prominence of security and data privacy as 

challenges is supported in technical reviews on the use of big data in agriculture and data sharing obstacles 

(Amiri-Zarandi et al., 2022; Kamilaris et al., 2017; Wolfert et al., 2017). 

The second most prominent technical challenge was data interoperability, although it was discussed less 

frequently in the main data sharing studies (17%). Because agricultural data is collected and stored in 

different formats, it is very difficult to integrate datasets. Farmers referred to both the incompatibility between 

systems on-farm (machinery) and between different service providers or databases as significant technical 

obstacles for sharing data (Bach et al., 2020; Jakku et al., 2019; Jerhamre et al., 2022; Wang et al., 2024). 
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The inability to transfer datasets between providers or equipment manufacturers is discussed in the wider 

literature as resulting in restricted data exchange and farmers being ‘locked-in’ with the first technology 

provider they sign on with (Atik, 2023; Kosior, 2020).  

3.5.4. Legal barriers 

The lack of clarity and assurance on data ownership, data use, and transfer rights (together termed ‘data 

sovereignty’) was the most significant legal barrier for engaging in data sharing (Table 1). Studies discussed 

farmers’ desires for data ownership rights and transparency in data use agreements but highlighted the 

complexity of ‘data ownership’ vs ‘data use’ (Atik, 2023; van der Burg et al., 2021). It is possible for farmers 

to own their data, but have very little control over its use, since data use is part of the license agreement that 

farmers need to sign to use smart farming technologies (Wiseman et al., 2019). The research indicates that 

farmers are often unaware of, or do not understand the contracts they sign and have limited trust in protection 

guidelines (Gabriel, 2023; Wiseman et al., 2019). Other studies from the wider literature highlight that the 

primary challenge in agri-data sharing is the lack of protection or regulations regarding data sovereignty 

(Giesbers & Adema, 2021; McGrath et al., 2023). 

Potential regulatory repercussions were discussed in 12% of the studies as a reason to now share data. 

These included concerns of harmful policies based on selective data (Brown et al., 2023) or restrictive data-

driven regulations (McCarthy et al., 2023; Regan, 2019; Schambow et al., 2022). 

3.6. Intersection of drivers and barriers 

The socio-technical complexity of data sharing makes it difficult to separate the factors impacting data-

sharing willingness (Eastwood et al., 2023). Promoting data sharing by highlighting knowledge benefits 

(socio-economic driver) requires trusted relationships and clear communication of risks and benefits 

(systemic drivers), privacy assurance (technical driver), and clarity on data usage rights (legal driver). Data 

privacy, a technical barrier, is tied to socio-economic concerns about data misuse (systemic barrier) and 

harmful regulations (legal barrier). Farmers worry about data privacy but often lack understanding of service 

agreements due to poor communication and policy transparency (systemic and legal barriers). 

3.7. Future work 

To enhance data sharing in agriculture, trust needs to be addressed from various perspectives. Literature 

suggests that clarifying data sharing benefits across stakeholder groups, leveraging existing trusted 

relationships, involving farmers in technology research and data governance, and transparent data sharing 

policies can foster trust (Raturi et al., 2022; van der Burg et al., 2021). However, concrete strategies to achieve 

these goals are lacking. Given that only twelve studies in this review specifically addressed agri-data sharing, 

there is a clear need for more stakeholder-centred research. The next step is to link the review’s findings with 

practical research in Europe that is context-specific. The aim should be to develop a framework and strategy 

that leverages the prominent data-sharing enablers to overcome significant barriers. The benefits of agri-data 

sharing must be promoted in a way that encourages the adoption of data-gathering technologies as a means 

of enhancing farm viability.   

4. Conclusions 

The factors influencing stakeholders’ motivation and capability to share agri-data into socio-economic, 

systemic, technical, and legal categories. Key enablers included perceived knowledge gain (socio-economic), 

collaborative benefits and building trust (systemic), clarity surrounding data sovereignty (legal), and 

improving the practicalities of data sharing (technical). The most significant barrier was the concern of 

maintaining data privacy and cybersecurity (technical), followed by unclear data ownership and rights of use 

(legal), trust issues (systemic), and a lack of understanding data sharing benefits and risks (socio-economic). 

This review stresses the complexity and interconnected nature of these factors and emphasises the need for 

balanced policies that encourage innovation while protecting farmers’ interests. The classification of factors 

conducted in this review will help guide future research in promoting feasible data-sharing practices.  
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Abstract 

Controlling the amount of nutrients needed in the spinach can reduce the consumption of chemical fertilizers, 

and also increase the production rate of this crop and preserve its quality. In fact, monitoring the growing 

conditions of products manually and traditionally has high costs and takes time, and sometimes lack of experience 

causes damage and quality reduction in products. Therefore, it is very important to provide a suitable and practical 

solution based on new and non-destructive technologies such as image processing that has the ability to recognize 

the needs of plants (including the need for different nutrients). These technologies have facilitated the monitoring 

of plant nutrient requirements, reducing reliance on human judgment and enhancing intuitive decision-making. 

The objective is to investigate deficiencies in three key nutrients - iron, zinc, and manganese - at five different 

levels of application of nutrients (ranging from none to 100% of the recommended amount). To achieve this, a 

comprehensive analysis was conducted, involving the extraction of color features (such as RGB, rgb, Lab, HSV, 

XYZ, I1I2I3, h*, and Chroma), morphological features (specifically Area), and various texture features obtained 

through the GLCM (Gray Level Co-occurrence Matrix) method (including Contrast, Energy, Entropy, 

Homogeneity, Correlation, and Prominence). After imaging of samples by a digital camera and data extraction, 

feature selection operation was carried out using five different algorithms (SFS (Sequential Forward Search), SBS 

(Sequential Backward Search), SFFS (Sequential Floating Forward Search), SFBS (Sequential Floating Backward 

Search), and ReliefF), with the SFBS method demonstrating superior performance. Subsequently, five 

classification methods (ANN (Artificial Neural Network), Naive Bayes, KNN (K-Nearest Neighbors), SVM 

(Support Vector Machine), and Random Forest) were evaluated using the selected features as input in a 

predetermined order based on the SFBS results. The classification accuracy rates were determined for varying 

numbers of input features through multiple iterations. In order to accurately compare the performance of these 

classification methods, several output classes including different levels of each of the nutrients iron, zinc and 

manganese were investigated. The study revealed that the classification methods achieved the highest average 

detection accuracy when operating with two output classes (0.813). Acceptable accuracy rates were also observed 

for three output classes (0.609), while performance significantly declined when handling four or five output 

classes. Notably, the performance decreased substantially to less than 20% when considering all levels of iron, 

zinc, and manganese nutrient deficiencies as outputs. In conclusion, the artificial neural network algorithm was 

recognized as the most suitable classification method in order to identify micronutrient deficiencies such as iron, 

manganese and zinc. 

Keywords: Micronutrients, Image processing, Spinach, Sequential feature selection, Classification 

1. Introduction 

Measuring nutrients in plants through destructive methods in the laboratory is usually time-consuming and 

expensive. Therefore, a non-destructive and low-cost method is needed to scrupulously monitor the condition of 

plants (Polder et al., 2024). Based on this, researchers, knowing the advantages of plant monitoring systems, have 

paved the way for the commercialization of intelligent systems in greenhouse conditions. Also, the high demand 
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for producing more products per unit area, and the need to save costs and energy, have made the use of new 

technologies in agriculture inevitable. 

High amounts of nitrogen fertilizers are usually used in the production of leafy vegetables, especially spinach. 

This is while excessive use of nitrogen fertilizers causes environmental problems, and decreases the amount of 

some nutrients such as iron and manganese in spinach (Dhillon et al., 1987). In addition, the unbalanced amount 

of elements in the soil, high pH of the soil and its calcareousness, excessive irrigation and eroded soil, low soil 

temperature, as well as weak air flow in the soil are among the factors that cause the lack of some nutrients, 

especially iron, manganese and zinc in plants (Guo et al., 2016). 

Recently, various researches have been conducted in the field of stress detection in plants by using color, 

morphological and texture features (Nadafzadeh et al., 2024; Rahadiyan et al., 2022; Nadafzadeh and Abdanan 

Mehdizadeh, 2019; Igathinathane et al., 2006). 

In a study, a set of color, texture and shape parameters were used to detect the deficiencies of phosphorus, 

potassium and nitrogen nutrients in rice plants. According to the results of this study, samples lacking these three 

nutrients were identified by the learning vector quantization (LVQ) method with an accuracy of 87.5% (Sulastri 

et al., 2021). Another group of researchers used deep convolutional neural networks to monitor the status of 

several nutrients (potassium, phosphorus and nitrogen) in lettuce. The performance of this method was evaluated 

using KNN, SVM, K-means, decision tree and simple thresholding algorithms. Finally, the highest accuracy rate 

of the proposed model was 96.5% to separate four groups of lettuce plants under the stress of potassium deficiency, 

phosphorus deficiency, nitrogen deficiency, and also a group of plants with full nutrition from each other (Taha 

et al., 2022). 

Story et al. (2010) with the aim of detecting calcium deficiency in lettuce plants under greenhouse conditions, 

investigated a set of parameters of energy, entropy and uniformity as the most important features extracted from 

the images of the plant canopy. In this research, a method based on regression analysis was used to distinguish 

between stressed and controlled samples. The results showed that the designed machine vision system is able to 

identify calcium deficient lettuce plants with an R2 equal to 97%. In one research, Espejo-Garcia et al. (2022) 

scrutinized the symptoms caused by the deficiency of some macro and micro nutrients using RGB imaging. For 

this purpose, a set of images of sugar beet plants were considered to detect the lack of nitrogen, phosphorus and 

potassium nutrients, and a set of orange tree images were prepared to detect the lack of iron, potassium, 

magnesium and manganese nutrients. In order to identify the lack of nutrients in these two data sets, the accuracy 

of the algorithm based on deep neural networks was reported as 98.65% and 98.52%, respectively. 

By monitoring the growth process of crops, it is possible to take timely action to meet the needs of plants. In 

this study, a set of color, morphological and texture features were extracted from the images of the spinach samples 

that were under stress (deficiency of iron, zinc and manganese nutrients). These features were used as input data 

for several different classifiers (ANN, Naive Bayes, KNN, Random Forest, and SVM), and then, the performance 

of these classifiers was evaluated in terms of accuracy in separating the output classes, which were different levels 

of nutrient deficiency. 

2. Materials and methods 

2.1. Preparation of samples 

To investigate the independent effects of five different levels of iron, zinc and manganese nutrients on spinach 

plant (0%, 25%, 50%, 75% and 100% of the recommended amount), 78 samples of Baby spinach variety were 

grown under hydroponic cultivation conditions for 6 weeks (Figure 1). The imaging operation of the samples 

started when the true leaves of the plant were fully developed. 

Hoagland's formula was used to make the nutrient solution, which is a common solution for growing vegetables 

in the hydroponic system (Levine and Mattson, 2021). It should be noted that all experiments were conducted in 

the research greenhouse of the Agriculture and Natural Resources University of Khuzestan (Iran). 
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Figure 1. Cultivation of spinach plants under hydroponic conditions in the greenhouse. 

2.2. Image analysis 

In order to take pictures of spinach plants, a CASIO digital camera (model Exilim EX-ZR700, made in Japan) 

was placed above the canopy of the plants at a fixed distance of 75 cm from the samples. After transferring the 

images to the computer, the image processing operations was performed using Matlab 2018b software. 

In this study, image processing included three stages of preprocessing, segmentation, and feature extraction. 

First in the preprocessing part, the captured images were improved in terms of color by applying the histogram 

uniformity method, and then the noises were removed using the area opening method. By implementing the 

segmentation process, the images were divided into regions consisting of pixels with similar characteristics. In 

the last step, a set of color features (RGB, rgb, Lab, HSV, XYZ, I1I2I3 and h* and Chroma), morphological (Area) 

and several texture features obtained from the GLCM method (Contrast, Energy, Entropy, Homogeneity, 

Correlation and Prominence) were calculated through the final image (Nadafzadeh and Abdanan Mehdizadeh, 

2019). 

2.3. Feature selection and classification 

In this research, the feature selection operation was performed according to the study of Mallikarjuna and Guru 

(2022) by using the ReliefF algorithm, and the Sequential feature selection algorithm which had four different 

modes ((SFS) Sequential Forward Selection, (SBS) Sequential Backward Selection, (SFFS) Sequential Floating 

Forward Selection and (SFBS) Sequential Floating Backward Selection). 

Subsequently, a set of statistical and intelligent classification methods including ANN, Naive Bayes, KNN, 

Random Forest and SVM were used according to the studies of Nadafzadeh et al. (2024), Chou et al. (2007), 

Sohail et al. (2021), Ansori et al. (2024), and Yang et al. (2023) respectively, in order to determine the highest 

level of accuracy in detecting iron, zinc and manganese deficiency levels. The number of different classes of four 

levels of deficiency of each of the nutrients iron, zinc, and manganese were investigated by these classification 

methods (Table 1). 

Table 1. Output classes in classification operations. 

Description of the classes 
Number of 

output classes 

Comparison of the controlled group with each level of 0, 25%, 50% and 75% of iron, manganese and zinc elements Two 

 Comparison of the controlled group with two iron and manganese groups at zero level 

 Comparison of the controlled group with two groups of iron and zinc at zero level 

 Comparison of the controlled group with two groups of manganese and zinc at zero level 

Three 

Comparison of the controlled group with three groups of iron, zinc and manganese elements at zero level Four 

 Comparison of controlled group with four levels of iron deficiency 

 Comparison of the controlled group with four levels of manganese deficiency 

 Comparison of controlled group with four levels of zinc deficiency 

Five 

Comparison of the controlled group with three nutrients iron, zinc and manganese at four different levels Thirteen 
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3. Results and discussion 

3.1. The results of the feature selection 

The performance of the feature selection methods is shown in Table 2. According to Table 2, the SFBS method 

had the highest correct classification rate compared to other methods in the field of classification of output classes. 

After that, the order of superiority of feature selection algorithms was obtained as follows: SFFS, SFS, SBS and 

ReliefF. Therefore, in the following, the results of the SFBS method were used in the classification algorithms. 

Table 2. Results of feature selection using SFS, SBS, SFFS, SFBS and ReliefF algorithms. 

Method of feature 
selection Correct classification rate 

SFS 0.506 ± 0.005 

SFFS 0.543 ± 0.003 

SBS 0.501 ± 0.003 

SFBS 0.556 ± 0.002 

ReliefF 0.397 ± 0.006 

Figure 2 shows the number of occurrences of each feature after implementing the SFBS algorithm during 25 

iterations. These features were used as the input data of the classifiers according to the order seen in the diagram 

of Figure 2. 

 
Figure 2. The diagram resulting from the implementation of SFBS feature selection algorithm. 

3.2. Investigation of the classification results 

3.2.1. Classification with two output classes 

The comparison results of the controlled group with each of the four different levels of iron deficiency (0, 25, 

50 and 75%) can be seen in Figure 3. Pursuant to Figure 3, compared to other classification methods, the ANN 

method had the highest level of accuracy in detecting the controlled group with each of the four levels of iron 

deficiency, and the number of the most suitable input features in this algorithm for each of the levels of 0, 25, 50 

and 75% were obtained as 6, 10, 6 and 18 features, respectively. After the ANN algorithm, the best classifiers in 

detecting iron deficiency at zero level compared to the controlled group were: KNN, SVM, Naive Bayes and 

Random Forest, respectively. The priority order of the classifiers for separating the control group and the plants 

under iron stress of 25% was also similar to the iron group of 0%, but with the difference that the Naive Bayes 

method was in the third place and the SVM method was in the fourth place. When the iron levels were 50% and 

75% of one of the two classification groups, the SVM method had the highest classification accuracy after the 

ANN method. Then, the best classification methods for detecting the level of 50% iron element were Naive Bayes, 

KNN and Random Forest methods respectively, but in the case of 75% iron level, the Random Forest method was 

in the third place and the Naive Bayes was in the last place. As can be seen in Figure 3, the best methods in 

detecting each of the four different levels of iron deficiency (0, 25, 50 and 75%) compared to the controlled group 

are ANN (0.927), SVM (0.862), KNN (0.840), Naive Bayes (0.805) and Random Forest (0.801). 
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Figure 3. Comparison of the performance of several different algorithms for classifying the controlled group 

and each of the four different levels of iron deficiency 

According to the diagram shown in Figure 4, the priority order of the classification methods for each stress 

level of manganese deficiency are: ANN, Random Forest, KNN, Naive Bayes and SVM at the 0% level; ANN, 

Random Forest, Naive Bayes, SVM and KNN at the 25% level; ANN, Random Forest, KNN, SVM and Naive 

Bayes at 50% level; and ANN, Random Forest, SVM, KNN and Naive Bayes at the 75% level. As shown in 

Figure 4, the ANN algorithm is also highly accurate in detecting each of the four levels of manganese nutrient 

deficiency compared to the controlled group, and the number of input features of this method for each level of 0, 

25, 50 and 75% was 13, 11, 6 and 3, respectively. 

 
Figure 4. Comparison of the performance of several different algorithms for the classification of the controlled 

group and each of the four different levels of manganese deficiency 

It can be seen in Figure 4 that the Random Forest method has the highest detection accuracy (0.833) after 

ANN, then KNN (0.786), SVM (0.753) and Naive Bayes (0.716) algorithms were the best classification methods, 

respectively. 

According to Figure 5 and considering the average values of recognition accuracy of the desired classifiers, 

ANN (0.883), KNN (0.827), SVM (0.784), Random Forest (0.781) and Naive Bayes (0.733) were reported as the 

most suitable classification methods in identifying each of the four levels of 0, 25, 50 and 75% of zinc nutrient 

deficiency compared to the controlled group. It is necessary to explain that the number of input features in the 

ANN algorithm for each of the 0, 25, 50 and 75% levels was equal to 6, 5, 6 and 10 features respectively. In 

addition, the order of preference of classification methods for each stress level of zinc deficiency are: ANN, SVM, 

KNN, Random Forest and Naive Bayes at 0% level; ANN, KNN, Naive Bayes SVM and Random Forest at 25% 

level; ANN, SVM, KNN, Random Forest and Naive Bayes at the 50% level; and ANN, KNN, Random Forest, 

SVM and Naive Bayes at the 75% level (Figure 5). 
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Figure 5. Comparison of the performance of several different algorithms for the classification of the controlled 

group and each of the four different levels of zinc deficiency 

In total, based on the results of comparing five different classification methods, it was determined that ANN 

(0.895), KNN (0.818), Random Forest (0.804), SVM (0.800) and Naive Bayes (0.751) methods are respectively 

the best classification methods with the number of two output classes (controlled group and each stress level of 

deficiency of three nutrients iron, zinc and manganese). 

3.2.2. Classification with the number of three and four output classes 

As seen in Figure 6, ANN with 13 input features and detection accuracy of 0.700 was recognized as the most 

appropriate method to separate plants under iron and manganese stress of 0% from the controlled samples, and 

then KNN (0.663), Naive Bayes (0.630), SVM (0.626) and Random Forest (0.561) were placed. When the output 

classes of the ANN algorithm were the controlled group and the samples under the stress of iron and zinc nutrient 

deficiencies at level 0%, it again had the highest recognition accuracy (0.712), but this time with 11 input features. 

After this, KNN (0.663), SVM (0.607), Random Forest (0.538) and Naive Bayes (0.533) methods had the best 

performance. To detect manganese and zinc elements at the level of 0% compared to the controlled group, the 

KNN with 2 input features and with an accuracy of 0.666 was recognized as the best method, and after that, ANN 

with an accuracy of 0.637 and SVM with an accuracy of 0.580 were in the second and third places, respectively. 

Then Naive Bayes was in the fourth place with an accuracy of 0.517 and Random Forest was in the last place with 

an accuracy of 0.504. Generally, it can be said that the order of preference of these classification methods with 

the number of three output classes is: ANN (0.683), KNN (0.664), SVM (0.604), Naive Bayes (0.560) and 

Random Forest (0.534). 

 
Figure 6. The results of several different classification methods with three output classes 

In classification with the output number of four classes (controlled group and groups under stress of iron, 

manganese and zinc elements at zero level), ANN with 24 input features and recognition accuracy of 0.611 was 

considered as the most suitable classification method, and then there were KNN (0.521), Naive Bayes (0.426), 

SVM (0.417) and Random Forest (0.400), respectively (Figure 7). 
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Figure 7. The results of several different classification methods with four output classes 

3.2.3. Classification with five output classes 

Figure 8 shows the results of several different classification methods with five output classes (controlled group 

and four levels of deficiency of a nutrient element) for three groups of iron, zinc and manganese elements. As can 

be seen in Figure 8, in all these groups, the best classification method is the ANN algorithm with an average 

detection accuracy of 0.478. The number of input features of this classifier in the groups under the stress of iron, 

manganese and zinc deficiency was 7, 24 and 28, respectively. After this method, the ranking of classification 

methods was: KNN (0.401), Random Forest (0.304), Naive Bayes (0.300) and SVM (0.293). 

 
Figure 8. The results of several different classification methods with five output classes 

3.2.4. Classification with thirteen output classes 

After examining the desired classification methods with the number of thirteen output classes (controlled group 

and all levels of iron, zinc and manganese nutrient deficiencies), it was found that the ANN with the recognition 

accuracy of 0.170 and the number of 8 input features has the highest performance in the classification operation, 

and then there were KNN (0.160), Random Forest (0.114), SVM (0.112) and Naive Bayes (0.110) (Figure 9). 

 
Figure 9. The results of several different classification methods with thirteen output classes 
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Based on the obtained results, it can be generally said that the order of superiority of the desired methods in 

carrying out classification operations of different levels under the stress of nutrients iron, zinc and manganese are: 

ANN (0.567), KNN (0.513), SVM (0.445), Random Forest (0.431) and Naive Bayes (0.429). 

It is worth mentioning that these five different classification algorithms showed the highest performance (the 

average detection accuracy = 0.813) when the number of their output classes was equal to two. Also, the 

classification operation by the desired methods with three output classes had an acceptable accuracy (0.609). The 

performance of all these methods in correctly detecting the status of samples with four classes and five output 

classes reached less than 50%, so that the average detection accuracy for these two modes was 0.475 and 0.355, 

respectively. When all the levels of iron, zinc and manganese nutrients were considered as the output of these 

classifiers, the performance of all methods significantly decreased to less than 20% (0.133). 

In another study, in order to classify the six conditions of the plant (healthy, lacking elements of calcium, 

magnesium, sulfur, magnesium-sulfur, as well as multiple deficiencies), artificial neural network algorithms with 

Multilayer Perceptron (MLP) architecture, Random forest, SVM, Naive Bayes and Convolutional Neural Network 

(CNN) were compared with each other. The most suitable algorithms in this field were CNN, SVM and MLP 

algorithms with accuracy of 97.76, 90.55 and 89.70% respectively (Rahadiyan et al., 2023). In a research with the 

aim of monitoring plant nutrients in the greenhouse, the task of diagnosing and providing iron nutrient deficiency 

in spinach plants was studied. The most suitable features (G, Area, Energy, Entropy, R and L) were selected from 

the set of parameters extracted from the images of the samples. Further, the detection of iron deficiency in plants 

was conducted with an accuracy of 96% by artificial neural network (Nadafzadeh et al., 2024). Kavitha (2024) 

also used digital image processing technique to identify nitrogen, phosphorus and potassium nutrient deficiencies 

in rice plants. According to the results, the accuracy of detecting the deficiency of three nutrients nitrogen, 

phosphorus and potassium by random forest was 94.66, 89.63 and 89.71% respectively. Meanwhile, the Naive 

Bayes algorithm had relatively weaker performance to identify the nitrogen deficiency (87.83%), phosphorus 

deficiency (78.58%) and potassium deficiency (79.45%). 

4. Conclusion 

In this study, identifying the deficiency of three nutrients iron, zinc and manganese in spinach plant was 

considered. To reach this goal, a set of statistical and intelligent classification methods were examined and 

compared. Based on the obtained results, it can be said that the order of superiority of the desired methods in the 

classification of different levels of iron, zinc and manganese nutrient deficiencies are: ANN, KNN, SVM, Random 

Forest, and Naive Bayes. 
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Abstract 

In this paper, we introduce a novel method for online identification of the nonlinear dynamic input/output 

behavior of a combine harvester's separation process. This nonlinear dynamic process is highly influenced 

by crop properties of the harvested fruit. Current model approaches, based on previously gathered data, can 

only partially capture the actual process behavior. As consequence of changes in the crop properties, the 

models fail to approximate the process. This necessitates adaptive modelling techniques to incorporate the 

current conditions. We address this by using an initial dynamic nonlinear model, based on the local-model-

network (LMN) architecture, trained with data from a previous wheat harvest. For adaptation we propose to 

employ the recursive least squares (RLS) algorithm for computational efficient model updates. Our approach 

also considers the variability in crop types across different fields, by introducing a variable forgetting factor. 

Hence, the model adaptation is responsive to these variations through situation-dependent adjustments in the 

adaptation algorithm. This ensures robust and rapid model updates. Field trials have validated the 

effectiveness of our adaptation algorithm across various fields and crops. Focused on the threshing and 

separation section, we demonstrated the ability of the model adaptation to accurately predict separation 

efficiency in wheat. Decreasing error rates on test data indicate both the adaptation speed and robustness. 

Therefore, this novel approach using dynamic nonlinear model adaptation significantly increases the 

resulting process information in comparison to state-of-the-art methods.  In summary, a fast and robust 

adaptation to incorporate the current harvesting conditions into a dynamic nonlinear model is developed. 

Keywords: Online-Identification, Nonlinear Dynamic Model, Combine Harvester, Machine-Learning 

1. Introduction 

The combine harvester is a crucial part of modern crop harvest. It can seamlessly integrate various tasks. 

These tasks range from cutting and collecting the crop from the field as well as the separation of the crop into 

its valuable parts, e.g. grains, and non-valuable parts. The most important task is the separation that takes 

place inside the machine. Historically, the main development enhanced the throughput capacity while 

ensuring high quality harvest results. Exemplary investigations can be found in the work by Nguyen (2008) 

or Schwarz (2018) and the references in there.  

Over the last two decades research and development have also encountered the field of automation and 

operator support (Böttinger, 2023). This is a result of the wide application field a combine harvester is 

deployed to. On the one hand, different crop types are harvested. On the other hand, the harvest takes place 

under environmental conditions that can change dramatically, caused by weather, time of harvest or field 

conditions. To enable the combine harvester to react on these various conditions, the separation process is 

equipped with several adjustment options. Up to ten possible adjustments can be performed by the operator 

strongly influencing the process in an interconnecting manner. Consequently, precise alignments of the 

process to the current conditions can be made. However, finding the optimal adjustment setup, results in a 

complex task for the operator. Hence, methods to automatically find the best adjustments aligned with the 

current conditions have been developed to support the operator in this demanding task (Eggerl, 2017; 

Hermann, 2018; Vöcking et al., 2017). 

A major part of all automation systems is played by process models. In general, the process comprises a 

nonlinear dynamic behavior, e.g. (Hermann et al. 2016; Maertens et al., 2001). Different approaches have 

been employed to derive models of the process. This ranges from physical-based models, e.g. (Miu and 

Kutzbach, 2000) to data-driven models, e.g. (Craessaerts et al., 2007; Kösters and Nelles, 2023). However, 

these models are not suited for general application. This is caused due to very specific conditions, e.g., how 

data were collected or due to models only describing general process properties which are too inaccurate for 

automation purpose.  
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To tackle this problem Neu et al. (2012) and Maertens et al. (2004) propose adaptive model approaches. 

They incorporate information of the current process operation into the models to keep up with the present 

conditions. However, none of these approaches can incorporate both the nonlinearity and the dynamics of 

the process into their adaptive models.  Consequently, in this contribution we propose a method able to fill 

this research gap. 

Adaptive modeling utilized in automation methods requires low computational demand to be able to be 

incorporated into embedded hardware. One methodology capable of modeling nonlinear dynamic processes 

and ensure low computational demand during adaptation are local model networks (LMNs), e.g. (Skrjanc et 

al., 2019). Additionally, Kösters and Nelles (2023) showed their suitability for modeling the combine 

harvester separation processes. Hence, in this contribution we propose an adaptation algorithm based on this 

model structure. 

This contribution is structured as follows. First, Sect. 2 introduces the combine harvester separation 

process in detail. Additionally, the LMN framework and its corresponding adaptation algorithm is presented. 

With these methods harvest experiments are conducted and the results are discussed in Sect. 3. Finally, the 

work is concluded in Sect. 4. 

2. Materials and Methods  

The following section is divided into two parts. First, we introduce the combine harvester process under 

investigation. Second, the adaptive LMN framework is presented. Additionally, novel extensions made to 

this framework aligned with the specific combine excitation are introduced. 

2.1. Combine Harvester Separation Process   

In this contribution, a hybrid combine harvester is investigated. Furthermore, the investigation is focused 

on the threshing and secondary separation section of the combine. In Fig.1 this part of the combine harvester 

separation process is shown.  

 

Figure 1. Combine harvester separation process and adjustment options. 

The harvested crop first enters the threshing section. Its amount (𝑢1) is measured right before entering the 

threshing section. It is well known that the amount of crop processed inside the combine harvester is one of 

the most influencing factors of the whole process. Consequently, it is considered as the first input to the 

process model, which is used for the adaptation. Inside the threshing section, two adjustment options are 

available. The first option is the rotational speed (𝑢2) of the threshing drum. Together with the concave 

clearance (𝑢3) it influences the threshing aggressiveness. This in turn has influence on the composition and 

distribution of the material flows leaving the threshing section. The more aggressive the threshing is 

performed the better the grains are separated. Thus, these options are also utilized as inputs to the model.  

Two departing material flows are produced by the threshing section. The first material flow exits the 

threshing section through the concave. The second material flow is conveyed to the secondary separation. 

For this study only the second material flow is of importance. It is further processed in the secondary 

separation. Here, the rotational speed of the rotor (𝑢4) can be set. On the one hand, it influences the grain 

separation of the remaining grains in the secondary separation. On the other hand, also the separation of short 

straw and chaff is influenced. To avoid unnecessary separation of materials other than grain (MOG), rotor 

flaps (𝑢5) can be closed to cover the rotor concave. This stops material form leaving the secondary separation 
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on this way. Finally, the grain losses (𝑦) are measured at the end of the secondary separation. It is the number 

of grains in the material flow leaving the rotor to the field. 

2.2. Local Model Network – LMN 

Local Model Networks (LMNs) are structured by dividing the model space into subspaces, each defined 

by one function linearly dependent on its parameters. This division is achieved through the activation 

functions Φ𝑖, which determine the local activity based on the position within the model space. The combined 

local model outputs and activation functions produce the output value of the approximator, calculated as 

 �̂� = ∑ LM𝑖(𝑥, 𝜃𝑖)Φ𝑖(𝑧, 𝑐𝑖 , σ𝑖)
𝑛LM
𝑖=1  (1) 

The inputs to the local models 𝑥, and activation functions 𝑧, are selected based on the required features. 

Two parameter groups can be distinguished. Each local model is defined by its local parameters θ𝑖. The 

partitioning of the model space is realized through activation functions. Here, normalized Gaussians are 

deployed, where each Gaussian 𝜇𝑖(𝑧) is defined by its mean 𝑐𝑖 and standard deviation σ𝑖 as shown in the 

following formulas: 

 𝜇𝑖(𝑧) = exp (−
1

2
(𝑧 − 𝑐𝑖)

𝑇
diag(σ𝑖)

−1
(𝑧 − 𝑐𝑖)) (2) 

 Φ𝑖(𝑧) =
𝜇𝑖(𝑧)

∑ 𝜇𝑗(𝑧)
𝑛LM
𝑗=1

 (3) 

The normalization ensures partition of unity across the input space, meaning the sum of all activation 

functions equals one at every point in the input space 𝑧. 

Training of the LMN involves two aspects. On the one hand, the model structure has to be defined through 

the parameters 𝑐𝑖 and 𝜎𝑖. Various methods from heuristic-based to data-driven approaches exist (Nelles, 

2020). In this study, we deploy the data-driven local-linear-model-tree (LOLIMOT) algorithm, to establish 

the LMN structure (Nelles, 2020). On the other hand, the local model parameters 𝜃𝑖 must be identified. The 

utilized structure allows to deploy the least squares (LS) algorithm for their identification. To incorporate the 

locally different activity of each local model, the weighted LS algorithm is used. Hence, the local model 

parameters can be identified by 

 θ̂𝑖 = (𝑋𝑇𝑄𝑖𝑋)
−1

𝑋𝑇𝑄𝑖𝑦 (4) 

Here, 𝑋 is defined as regressor matrix and 𝑄𝑖 = diag ([Φ𝑖 (𝑧(1)) ⋯ Φ𝑖 (𝑧(𝑁))]) is used to realize the 

local weighting for each local model. 

With this framework a combine separation model is build. It is trained from data collected during field 

tests, see (Kösters and Nelles, 2023). For the adaptation algorithm it serves as initial model that is updated to 

fit the current conditions. 

2.3. Adaptation Algorithm 

Similar to the training of the LMN explained in the previous section, the adaptation can be performed in 

two ways. The first update possibility involves the structure of the LMN (𝑐𝑖 , σ𝑖). The other option is to update 

the local model parameters (θ𝑖). Both possibilities have been investigated with the result of different 

algorithms (Skrjanc et al., 2019). Additionally, it is stated that a structure update is much more complex than 

updating the local model parameters. Hence, structure updates are only advisable if the underlying process 

nonlinearity changes significantly or no data are available to train an initial model to start the adaptation from 

(Lughofer, 2011; Nelles 2020).  

For the combine separation model, we assume that significant changes in the underlying nonlinearity are 

not to be expected. Furthermore, data are available to start the adaptation with a good initial model. 

Consequently, in this contribution we propose to only update the local model parameters (θ𝑖). 

Similar to the initial training, the structure of the LMN allows to utilize the computationally effective 

recursive least squares (RLS) algorithm to update these parameters. To incorporate the local activity 

introduced through the LMN, the weighted RLS is utilized here (Lughofer, 2011). It allows for a recursive 

update rule, which is given by  

 𝜃𝑖(𝑘) = 𝜃𝑖(𝑘 − 1) + 𝛾𝑖(𝑘) (𝑦(𝑘) − 𝑥𝑇(𝑘)𝜃𝑖(𝑘 − 1)), (5) 
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 γ𝑖(𝑘) =
1

ρ(k)/Φ𝑖(𝑧(𝑘))+𝑥(𝑘)𝑇𝑃𝑖(𝑘−1)𝑥(𝑘)
𝑃𝑖(𝑘 − 1)𝑥(𝑘), (6) 

 𝑃𝑖(𝑘) =
1

𝜌
(𝐼 − 𝛾𝑖(𝑘)𝑥𝑇(𝑘)) 𝑃𝑖(𝑘 − 1). (7) 

This adaptation rule is applied separately for each local model. This allows to only update regions of the 

model that have been excited during the adaptation. Furthermore, it prevents the model from unlearning the 

initial model behavior in unexcited regions. This property is advantageous for the combine separation model, 

since during standard operation, usually no complete excitation of the operating region is performed. 

To be able to keep up with time variant processes a forgetting factor (ρ(𝑘)) is utilized. It allows to place 

more importance on recently collected data in comparison to data collected a long time ago. Keeping the 

forgetting factor constant would result in the same forgetting in every situation. However, when the process 

operates under well excited conditions, e.g. dynamical changes in the process inputs, the resulting data are 

more informative than in situation with low excitation. To avoid information loss in low excitation situations 

and allow greater changes in well excited situations, a time variant forgetting factor is proposed. It is based 

on the method proposed by Fortesque et al. (1981). With the incorporation of the local model activity the 

algorithm is defined by 

 ρ(𝑘) = 1 − (1 − 𝑥(𝑘)𝑇γ𝑖(𝑘)) Φ𝑖(𝑘)𝑒(𝑘)2/Σ0, (8) 

with 𝑒(𝑘)2 being the squared model error and Σ0 being a tuning factor to adjust the adaptation speed. Low 

values for Σ0 result in faster adaptation, whereas high values for Σ0 reduce the adaptation speed. 

2.4. Experimental Setup 

To test the stated adaptation algorithm, we developed an experimental setup which was conducted during 

several harvest periods. The experiment is subdivided into two parts. The first phase is called adaptation 

phase. Here, data are collected that are used for adaptation of the combine harvester separation model. The 

second phase comprises the collection of test data that are utilized to test the model during the adaptation 

phase. Figure 2 shows the path at which the combine is operated on an exemplary field.  

 

Figure 2. Experimental setup for harvest test. 

To reduce the effect of crop changes that arise only locally on the field, both phases operate at every 

second row during harvest. Because of that, the maximum similarity for both phases can be ensured. Beside 

the path of operation also the excitation of the inputs to the process must be chosen. 

For the test phase, an OMNIPUS (Kösters et al. 2022) excitation is chosen. Its design is desired to excite 

the dynamics of the process on the one hand. On the other hand, it comprises an equally distributed excitation 

of the input amplitudes. Due to these properties, it ensures that the model can be tested for the whole operating 

range of the process. 

For the adaptation phase an excitation signal is derived from typical combine operation. It is much less 

informative, since typically once a well performing operating point is found, the combine settings are only 

marginally changed. 

To evaluate the model performance, the updated model is saved at several time instances during the 

adaptation phase. These saved models are than tested on the collected data from the test phase. Hence the 

progress of the model quality can be investigated. The root-mean-squared error 

Adaptation Phase

Test Phase
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 RMSE = √
1

𝑁
∑ (𝑦(𝑖) − �̂�(𝑖))

2𝑁
𝑖=1  (9) 

is utilized as quality criteria. 

3. Results and Discussion 

This section shows and discusses the results of the experiment introduced in Section 2.4. Three different 

investigations are conducted. First, the estimated output of the updated model is compared to the measured 

process output. The second investigation shows the progress of the model error on test data. Finally, the 

model prediction on test data is presented. 

3.1. Prediction during Adaptation Phase 

Figure 3 shows the comparison of the predicted model output and the measured grain losses during the 

beginning of the adaptation. 

 

Figure 3. Comparison of predicted and measured grain losses during adaptation phase. 

At the very beginning, it can be seen, that the estimated output and the measured output deviate from each 

other. From here onwards, the approximation starts approaches to the measured grain losses. After 

approximately 150 seconds of operation, the prediction accurately follows the measured value. This behavior 

can also be seen for the following operation. Therefore, it can be reasoned that after an initialization phase 

the adapted model is able to accurately predict the nonlinear dynamic process behavior. However, the 

prediction only allows to reason about the prediction of the model at the current operating point. 

3.2. Model Performance during Adaptation Phase 

To evaluate the model performance not only for the current operating point, but for the whole input space 

of the process, the second investigation evaluates the updated model during the adaption phase on the data 

from the test phase. This is done several times during the adaptation to gather information on the progress of 

the model performance. Figure 4 shows this progress for different choices on the tuning-parameter Σ0. 

AgEng 2024 Proceedings

305



 

Figure 4. Model performance during adaptation on test data for different Σ0. 

In general, all choices on the adaptation speed Σ0 result in a decreasing progress of the model error. 

Hence, the adaptation fulfills its desired goal to incorporate the current conditions into the updated model. 

The different choices of the adaptation speed result in different behavior of the model error. The progress of 

the fast adaptation speed drops the fastest in comparison to the other adaptation speed choices. However, 

especially in the time period 𝑡 = [500 s … 1400 s] the model error does not increase monotonically but 

increases and decreases several times. This behavior shows that this choice on the adaptation speed reduces 

the robustness of the algorithm.  

The model errors for the medium and slow choice behave very similar. However, the medium adaptation 

speed algorithm outperforms the slow adaptation speed throughout the whole experiment. Additionally, at 

the end of the adaptation phase the medium adaptation speed shows the best model performance. In 

consequence, the medium adaptation speed is chosen as robust and well performing parameterization for the 

adaptation algorithm. 

Figure 5 shows the prediction of the updated model at the end of the adaptation phase for the medium 

adaptation speed choice. 

 

Figure 5. Prediction of updated model at the end of the adaptation phase on test data. 

In comparison to the measured grain losses, the updated model accurately predicts the process behavior. 

The model adaptation thus enables the model to accurately predict the process even if the conditions are 

unknown in advance. 

4. Conclusions 

In this contribution we propose a novel adaptation algorithm to update a nonlinear dynamic model for the 

combine harvester separation process. The investigations conducted show, that the proposed adaptation 

algorithm is able to incorporate the current conditions into the model. The proposed algorithm can also cope 
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with different excitation situations that could be present during the combine operation. Additionally, the 

parameter study on the adaptation speed reveals a robust and well performing parameterization for the 

adaptation algorithm. This choice comprises a compromise between speed of adaptation and adaptation 

robustness. The model performance achieved with this choice is considered as satisfactory. Thus, the model 

adaptation enables the model to accurately predict the process even if the conditions are unknown in advance. 

The accurate nonlinear dynamic model therefore delivers process information that are not available with the 

state-of-the-art methodology. 

Consequently, in future work the model adaptation is utilized as basis to optimize the combine settings. 

Based on the continuously updated model, it is intended to develop an optimization algorithm that 

automatically finds to optimal operating point for the combine harvester under the present conditions.  
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Abstract 
In the face of scarce resources and an increasingly challenging environment, resource-efficient 

management strategies driven by drone services can shape a more resilient society by implementing precision 
livestock farming. Livestock causes different pressures with different effects on the ecosystem depending on 
its numbers. Excessive numbers lead to overgrazing, resulting in a reported decline in biodiversity. A better 
counting livestock method contributes to a stronger monitoring system to ensure long-term sustainability in 
ecosystem services. In this paper, two foundation models are compared across different livestock imagery 
taken by UAV to determine what factors lead to a better counting performance. GroundingDINO and T-Rex 
were the two state-of-the-art detection-based models. These pre-trained models do not require any supervised 
training with annotated images. The dataset tested included heterogeneous scenarios at different altitudes of 
cattle and goat species. Its metadata defines the different operation conditions. Previous works evaluated the 
performance and limitations of foundation models on different objects, from small items to dense or 
camouflaged entities. However, this paper aims to identify operational limits that facilitate safe counting 
accuracy for cattle farmers when current limitations and risks of these foundation models apply. UAV 
imagery taken between 15 meters of sparse herd scored the best performance using the foundation models T-
Rex and Grounding-DINO by offering the lowest Normalised Absolute Error (NAE). However, as the 
complexity of the scenarios increased with smaller sizes of animals observed from an altitude of 50m, only 
T-Rex was able to count small livestock such as goats to some extent. Defining operational limits for aerial 
footage reduces the limitations of emerging foundation models' predictions, facilitating its immediate 
application in real-world scenarios. 
Keywords: Livestock management, UAV imagery, Object counting, Computer vision, Foundation models 

1. Introduction 
In the face of scarce resources and an increasingly challenging environment, drone services can shape a 

more resilient society by providing resource-efficient management strategies. In fact, remote sensing 
information obtained by UAV (Unmanned Aerial Vehicle) technology is becoming more relevant (Aquilani 
et al., 2022), where radio frequency tags along with global positioning systems, and accelerometers were 
frequently used in pasture-based systems. Too much livestock generates high-sheep grazing pressure on 
pasture systems such as the Scottish Highlands, reducing the biodiversity, a phenomena known as “wet 
desert”. (Marrs et al., 2020). For example, in the domain of computer vision, images obtained by UAV and 
processed by artificial intelligence have been used to count livestock, reducing labour costs and significant 
errors (Bárbulo Barrios et al., 2024; Sarwar et al., 2018) . 

However, the rapid development of these machine learning technologies is not only attributed to new-
state-of-the-art algorithms and architectures (such as YOLOv8), but also to the availability of big data for 
training the model.  The cost of these large, annotated datasets is high, as supervised learning requires manual 
feature labelling that increases labor costs and generalisation errors (Pu et al., 2022). To face this problem, 
new foundation models based on self-supervised learning do not require any human annotators as input (Xu 
et al., 2020). In this study, two pre-trained models regarded as foundation models are considered: Grounding 
DINO and T-Rex. 

GroundingDINO is a generic object detector with Referring Expression Comprehension (REC) that 
allows the user to add attributes to better describe the target object (Liu et al., 2023). GroundingDINO detects 
the object as an image and its class as a text, returning a pair of object boxes and noun phrases. T-Rex is a 
detection-based counting model that detects all objects with similar patterns given an initial detection drawn 
by the user (Jiang et al., 2023).  Unlike other models limited by categories, T-Rex perspective focuses on 
providing an open-set counting system that does not require any categories. Additionally, it is interactive, 
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making it possible to correct errors, such as those caused when a model generalises across heterogeneous 
scenarios. This is achieved through intuitive visual feedback that facilitates the user’s interpretation and by 
using a visual promptable system. This foundation model can be used as an object counter or automatic-
annotation tool in domains such as livestock, but also transportation or biology, among others. 

Although previous works evaluate the performance and limitations of other foundation models  such as 
Segment Anything Model (SAM) on camouflaged objects (Tang et al., 2023) or small and dense objects (Ma 
et al., 2023), this paper aims to identify operational limits that facilitate a safe counting accuracy for livestock 
farmers when these limitations and risks of foundation models applies. To achieve this goal, the following 
research questions arise: 

• What metadata contained in the images describes the operational envelope of UAV footage? 
• How do the foundation models T-Rex and Grounding DINO count performance vary across a range 

of heterogenous operational parameters? 
• Which instructions could avoid the limitations of these foundation models to be applied in livestock 

management? 

2. Materials and Methods 
This section comprises four sub-sections. The study area indicated where the UAV aerial images were 

captured. The data section described what types of livestock, cattle, and goats, were included in this study. 
The ground truth section showed how to obtain the ground truth values required to test the foundation model’s 
count performance. Lastly, the section evaluation metrics explains how to quantify this counting 
performance.  

2.1. Study area 
The subset of the dataset used in this study included 108 aerial pictures of cattle and goats taken in two 

different locations. On the one hand, the cattle footage is taken at the Experimental Farm of Derval, located 
in France with the collaboration of L’Institute d’Elevage. This farm specializing in dairy herd management 
includes 80 Prim’Holstein dairy cows and 100 hectares of terrain1. On the other hand, the goat’s footage is 
taken in the Axarquía region (Spain) with the collaboration of a local goatherd, anonymized as “C.” The goat 
herd breeds are Malagueña, Florida, and Murciano Granadina2. Figure 1 shows both locations and their 
sampling locations. 

 
1 https://formation-pays-de-la-loire.chambres-agriculture.fr/efea/localiser-les-sites-de-formation/etablissements-en-
loire-atlantique-44/ferme-experimentale-de-derval/ 
2 https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo-razas/ 
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Figure 1. The Experimental Farm of Derval (A1) in France, and the Axarquía region (B1) in Spain. The 
blue bounding boxes revealed the sampling area, while the blue points showed the location of each aerial 

image.  

2.2. Data 
The relative heights of 15m, 30m and 50m defined the data collection establishing three groups. Each of 

these groups contained 18 UAV images for each type of livestock. The total amount was 54 pictures per 
specie. The image dimension for the goat herd was 4608x2592 (Potensic Atom), while the cattle’s footage 
was 4032x2268 (DJI Mini 3 Pro). Since previous studies used 80m to reduce disturbance to livestock (Sarwar 
et al., 2020), the drone's takeoff and landing area was far from the herd. Additionally, the drone was operated 
at a minimal speed at all times and descending from 50m to 30m and 15m slowly. Finally, to test the 
foundation models’ performance and to detect possible limitations, the pictures captured different sizes of 
herd and various degrees of clustering.  

2.3. Ground Truth 
The comparison between the foundation model T-Rex and Grounding DINO across heterogeneous 

operational parameters required the number of livestock in the scene to measure its model counting 
performance. The reason is that counting evaluation metrics needed the ground truth values to be 
computed.  For this purpose, a grid of 1000x1000 px created different areas for counting the livestock with 
the purpose of reducing systematic errors. This idea was based on grid-based sampling methods, which are 
used in fields such as Ecology to assess species richness (Mueller et al., 2021).  

Additionally, the foundation model T-Rex also required a bounding box of the target object, in this case, 
a goat or cattle. To improve the reproducibility of the experiment, the bounding box used as an input for T-
Rex is manually measured and stored. This first bounding box was the detected object with the highest 
accuracy level using Grounding DINO, if possible. This was not always the case, since on occasions the 
detected object did not correspond with the target object, even achieving the highest detection accuracy level. 
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2.4. Evaluation metrics 
The Mean Absolute Error (MAE) and the normalised relative error (NAE) assessed the counting 

performance of the models. Where (n), is the total number of images, and (y) and (𝑦") are respectively the real 
(ground-truth) and predicted counts. These metrics were applied individually and grouped by the three 
altitudes and clustering degree. As MAE increased, the counting performance decreased. On the contrary, a 
decrease in the NAE increased the counting performance. The Eq (1) and Eq (2) show both metrics used to 
evaluate counting performance. 
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Previous studies included these evaluation metrics in the field of object counting, and applied them to 
specialised datasets for this task, such as FSC147 and CARPK (Shi et al., 2023). 

2.5 Methods 
The software used to collect the metadata from the UAV footage was the Exiftool software using the R 

library Exiftoolr (O’Brien, 2024). One of the metadata used to define the operational envelope for the drone 
model DJI Mini3 Pro was the “RelativeAltitude”, creating the heights categories 15m, 30m and 50m to test 
the foundation counting performance. For the Potensic Atom drone model, only the “GPS Altitude” was 
available. The GPS Latitude and Longitude revealed where the flight operation was conducted.  Lastly, the 
date of the image’s capture allowed us to add auxiliary information such as hourly weather conditions. 

 The Open-meteo API3 in R used the date to retrieve their weather conditions with the library 
Opennmeteo (Pisel, 2023). The metadata provided the data required to query the weather history, offering a 
location and a point in time. The cloud coverage was selected  as a relevant variable, since previous studies 
on counting livestock created different training datasets based on the cloud coverage highlighting its effect 
on detection performance (Sarwar et al., 2018). 

After gathering all the metadata and auxiliary information, the foundation models T-Rex and Grounding 
DINO assessed their counting performance by detecting the goats or cattle of this study-s dataset. For 
Grounding DINO, the category names “goat”, and “cattle” or “cow” with an accuracy threshold set at 0.25 
generated the detections without any need to train the model. The bounding box from the detection with the 
highest accuracy level from the Grounding DINO detection, or manually measured, provided the only input 
required by T-Rex, the first target object. For T-Rex, the API kindly facilitated by the International Digital 
Economy Academy (IDEA) team generated two outputs. The masks of all the detected objects and the object 
detections. These results contained the bounding box, score, and mask for each detection. The centroids 
calculated from these objects allowed to quantify the clustering degree of the UAV images. 

An analysis of the spatial patterns of these centroids used the Clark-Evans test to detect how sparse or 
clustered the herd was. This was in line with studies that employed similar strategies (Ramage et al., 2013). 
The R package “spatstat” (Baddeley et al., 2016) performed the Clark-Evans test.  

3. Results  
The location and weather conditions of a subset of UAV images shown in Table 1 defined the operational 

envelop based on the metadata. The cloud coverage during the month of May was higher in the Cattle UAV 
dataset than the goat UAV footage located in southern latitudes. In both cases, both footage contained images 
taken at the altitudes of 15m, 30m and 50 min. 

 
 

 

 
3 https://open-meteo.com/en/docs/historical-weather-api 
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Table 1. UAV Information obtained from the metadata to define operational envelope. 

 Location Weather Conditions 

UAV imagery lat lon Altitude 
(m) 

Date 
(yyyy-mm-dd 

hh:mm:ss) 

Cloud 
Coverage 

Cattle      
DJI_0274.JPG 47.682 -1.648 50 2024-05-07 10:02:38 33 

DJI_0321.JPG 47.690 -1.686 30 2024-05-07 11:11:4 48 
DJI_0302.JPG 47.682 -1.648 15 2024-05-07 10:10:06 33 

Goat      
SING0033.JPG 36.749 -4.270 15 2024-04-24 12:35:02 4 

SING0170.JPG 36.752 -4.269 50 2024-05-25 20:36:52 19 
SING0062.JPG 36.752 -4.272 30 2024-05-25 12:42:25 0 

 
The counting performance of T-Rex and Grounding DINO across these relative altitudes varied based on 

the specific type of livestock.  
For the goat herd (A), as the altitude increased, the number of errors also grew (please, refer to Table 2). 

When comparing both foundation models, Grounding DINO effectiveness was limited to 15 meters, having 
a sudden increase in errors at 30m. Conversely, T-Rex was more stable, suffering less variation in the 
counting performance across the range of altitudes. In general, both models’ performance was similar at 15m 
of altitude. However, at 15m only T-Rex was able to count livestock to some extent. 

For the cattle herd (B), the increase in altitude did not lead to an increment in errors (please, refer to Table 
2). In fact, Grounding DINO scored better counting performance at 30m altitude than at 15 m. Regarding T-
Rex, the variance in the NAE and MAE metrics across the altitude was less, offering a more stable counting 
performance. However, in overall, the NAE values were higher than Grounding DINO indicating a worse 
counting performance. 

Apart from the type of livestock, its number and background context greatly differed between both 
datasets. The number of goats ranged from 18 to 226, while the number of cattle varied from 7 to 19. In terms 
of background, the cattle dataset took place in green pastures, while the goat dataset displayed a more 
challenging scenario with livestock hidden in bushes and trees.   

Table 2. The foundation model Grounding DINO and T-Rex counting performance applied to two types of 
livestock across different relative altitudes. 

 
 Counting model performance 

 NAE MAE 

UAV imagery T-Rex Grounding 
DINO T-Rex Grounding 

DINO 
Cow     

15m 0.0556 0.126 0.667 1.89 

30m 0.0944 0.089 1.39 1.33 

50m 0.0694 0.25 1.06 3.89 

Goat     

15m 0.188 0.178 9.56 11 

30m 0.449 0.737 61.3 105 

50m 0.586 
 

0.974 103 164 
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Despite these differences, both datasets contained aerial images of livestock that had different clustering 
patterns. As the Clark Evans-test index increased, indicating a sparse distribution of the herd, the NAE values 
decreased, obtaining a better counting performance. On the opposite hand, clustered herds offered a more 
challenging task for both foundation models, increasing their errors. This poor performance was consistent 
with previous studies on dense objects aggregated in clusters that used models based on supervised learning 
(X. Wang et al., 2023). The degree of clustering especially limited the counting performance on the goat 
dataset, obtaining a higher difference in the NAE mean for both foundation models as shown in Table 3. 

 

Table 3. Avoiding clustered herds reduces the limitation of the counting model performance of the 
foundation models Grounding DINO and T-Rex. 

 
 Model performance 

 NAE MAE 

UAV imagery T-Rex Grounding 
DINO T-Rex Grounding 

DINO 
Cow     

Clustered 0.106 0.222 1.590 3.31 

Intermediate 0.063 0.163 0.778 2.56 

Sparse 0.0194 0.029 0.188 0.56 

Goat     

Clustered 0.699 0.963 124 167 

Intermediate 0.441 0.724 65.3 112 

Sparse 0.228 
 

0.326 18.1 30.5 

 
Additionally, A qualitative analysis of a selection of the dataset shown in the Figure 4 revealed strengths 

and weakness of the foundation models T-Rex and Grounding DINO. 

 
Figure 2. The first row shows the strength of these foundation models by showing an outstanding counting 
performance. The second row indicates some of the weaknesses. In the bottom left corner, the Grounding 
DINO detection with the highest accuracy level groups the whole cattle herd in only one detection. In the 

bottom right corner, T-Rex mistakenly identified the goatherd “C.” generating a false positive. 
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False positives, where other objects were mistakenly identified as target object, were frequent for both 

models. Although those false positive detections had a low accuracy level on many occasions, this was not 
always the case. It was possible to find the detection with the highest accuracy level by identifying the herd 
as a single animal, which the second row of the Grounding DINO column shown in Figure 4 shown.  Even 
so, some predictions were a perfect match of the ground truth, mostly in sparse herds, for both models,  

Regarding the count performance across a range of heterogeneous parameters, an intermediate relative 
altitude of 30m improves the counting performance of Grounding DINO for the cattle dataset. After analysing 
some images at a closer elevation of 15m, it was observed how false positives were more frequent than at 
intermediate or high altitudes for the cattle herd.  For the goat herd, 50m altitudes were shown to be away 
from the operational envelope when using Grounding DINO. However, T-Rex was able to count livestock to 
some degree at those heights. One downside between the comparison of both herds is the vast difference in 
the number of livestock in the two types of herds, as well as the different number of livestock for the same 
species across all the UAV images of the dataset. 

4. Discussion 
The metadata contained in the aerial images describes one of the limitations for safe counting accuracy, 

the altitude of the drone. Counting small objects from high altitude is one of the most challenging computer 
vision tasks, with a specific detection framework specifically designed for this task (Koyun et al., 2022; G. 
Wang & Jin, 2023). Additionally, metadata such as the date and location of the image allows us to obtain 
auxiliary information such as the weather conditions, that affects the object detection and counting 
performance (Sarwar et al., 2018). One limitation of this study was using drones that provide the altitude 
from different metadata, while the DJI Mini 3 Pro distinguishes between absolute and relative altitude using 
the variables “GPSAltitude” and “RelativeAltitude”, the Potensic Atom dron only showed the 
“GPSAltitude”. 

Another important aspect that plays a key role in the counting performance for the foundation models T-
Rex and Grounding DINO in this study is the degree of clustering. In fact, dense objects are claimed as the 
main challenge to detecting objects in aerial images (X. Wang et al., 2023). Similarly, the supervised 
algorithm TPH-YOLOv5 is built to address dense scenarios such as those seen in sheep barns (Pu et al., 
2022). The findings of this study, sparse herds obtaining lower NAE values, also support this limitation for 
the foundation models tested. Nevertheless, a disadvantage of the method used in this study was relying on 
the centroids obtained from T-Rex to quantify the degree of clustering rather than the centroids from the 
ground truth.  

In all cases, one limitation of these foundation models applied in livestock management are the generation 
of false positives. Objects in the background such as humans, trees, bushes, or stores are considered target 
objects for the model. This is not exclusive for foundation models. For example, it is claimed that one-stage 
detectors such as SSD or YOLO give more false positive detections than two-stage detectors (Sarwar et al., 
2020). 

5. Conclusions 
The importance of this study is to bring awareness of the importance of setting operational limits to use 

foundation models in real-world scenarios. In these conditions, T-Rex and Grounding DINO can be used to 
detect and count scarce and valuable resources, not only in the field of precision livestock farming, but also 
in a broad range of fields. Counting and monitoring these resources could allow us to better respond to 
challenging environments by detecting an increase in the population or adjusting allotted grazing rights 
depending on the ecosystem service’s status. 

Further studies could address the problem of generating false positives by processing the detections or 
setting different accuracy thresholds. Similarly, pre/processing activities such as removing the background 
could reduce these false positives and facilitate more detections. Applying the operational limits, obtaining 
aerial images between 15m-30m and on scenarios such as pasture, where the livestock tend to be more sparse 
than in barns, could be used to test the capacity of these foundation models to count different objects, from 
livestock to flora, helping to create drone services that offer a better resource-efficient management by 
monitoring different ecosystem resources with more accurate inventories. . 
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Abstract 

Pesticide applications are economical and effective ways to protect tree crops from pests and diseases for 

preserving crop quality and quantity although they accompany with the potential risks of environmental 

contamination and unintended exposure. Common approaches to minimize the risks have been variable rate 

pesticide applications which characterize crop canopies by various advanced sensing technologies and apply 

tailored pesticide volume. Although these approaches are effective in reducing pesticide uses substantially, their 

focus is to modulate spray outputs to match targeted crop canopy characteristics without adjusting other 

application parameters such as air to assist droplet penetration. Since air assist systems of conventional sprayers 

are mainly designed to discharge vigorous air assistance for matured tree crops, they tend to create large amount 

of spray drift. Therefore, variable-rate sprayers could reduce the amount of pesticide use but the adverse effects 

of pesticide applications such as spray drifts still exist, which are similar to conventional sprayers when they 

discharge sprays without adjusting intensities of air assist. An electric variable air assist system (EVAAS) was 

developed to address such issues by applying variable air assist along with spray applications while enhancing 

penetration and deposition of tree crop spray applications. The EVAAS was built with an air channel, a battery, 

pulse width modulated controller, and a microcontroller which were integrated to variable rate sprayer guided by 

a stereo vision system to control air assist outputs based on the presence of the tree crop canopy. The performance 

of variable rate sprayer with EVAAS was evaluated in an apple orchard for its performance in spray deposition 

and coverage compared to a conventional sprayer. The results showed that variable rate sprayer with EVAAS had 

more spray deposition by 50.2% and coverages by 2.6% compared to the conventional sprayer. In addition, 

variable rate sprayer with EVAAS had more than 64.2% reduction in spray drift compared to the conventional 

sprayer. The variable rate sprayer with EVAAS provides an effective solution to improve spray penetration, 

deposition and coverage while minimizing spray drift. 

Keywords: Variable rate application, Computer vision, Variable air assist, Automation, Precision agriculture 

1. Introduction 

Pesticide contamination is one of consumer’s main concerns when they buy produces and fruits. Although 

they are concerned about the contamination, they understand pesticide applications are necessary. They are more 

likely to accept the applications when the applications are made with targeted manner (Croplife America, 2022). 

Automated variable rate sprayers that apply sprays on crops or weeds only have been researched a quite while 

with various sensors e.g., ultrasonic sensors, lidar, stereo vision system and other sensors (Gil et al., 2007; Jeon 

and Zhu, 2012; Shen et al., 2017; Román et al., 2023). Research on these technologies has been made substantial 

progress and are capable of substantially reducing pesticide uses compared to conventional applications (Jeon and 

Zhu, 2012; Chen et al., 2013; Shen et al., 2017; Román et al., 2023). General approaches for these systems have 

been retrofitted variable rate systems on conventional sprayers to simple and wide adaptability. However, there is 

still a problem associated with spray drift caused by droplets passing through target plants despite the sprayers do 

not spray empty space between target plants or above the plants. This is particularly concerned for specialty crop 

applications that typically use vigorous air assist with spray to penetrate spray into crop canopies. 

Typically, air assist for specialty crop applications is provided by an axial fan mechanically driven by power 

takeoff of a tractor which generates exit air velocity as high as 46 m s-1 (Salcedo et al., 2021). Since there is a 

wide variability of air assist systems, most research efforts to improve the system have been focused on changing 

airflow of conventional air assist systems by changing inlets (Gu et al., 2014; Mahmud et al., 2021) or outlets 

(Khot et al., 2012) of air assist systems. However, most developments were retrofitted systems that used 

conventional air assist systems which potentially generate too much airflow. Lately, Jeon and Zhu (2024a) 

developed an electronic air assist system (EAAS) for tower sprayers. Their system consisted of a 2.1-m high 

vertical duct with five electric fans coupled with motor drivers, a 400-Ah battery and a microcontroller. The 

maximum air velocity of the system was approximately 18.8%–24.5% of a conventional air assisted sprayer 

(Salcedo et al., 2021, Gu et al., 2014), and airflow outputs of their system can be controlled with a pulse width 

modulation (PWM) driver, and a microcontroller. Their system was integrated with a conventional sprayer in 

apple orchard for its impacts on spray depositions and coverages of conventional spray applications with 0, 30, 

50 and 100% airflow of the system (Jeon and Zhu, 2024b). Their results showed that spray application with the 

100% airflow from EAAS actually decreased spray deposition on apple tree canopies, and increased spray 
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depositions on off-target trees. In terms of spray canopy deposition on tree canopies, spray application would not 

need more than 50% airflow from the system for the apple trees in the orchard they tested.  

However, current EAAS provided as a constant air assist regardless of absence or presence of tree canopies 

although they could electrically modulate its outputs to reduce spray droplets drifting beyond tree canopies to 

minimize spray drift. Therefore, the objectives of this research were to integrate electric variable air assist system 

to stereo vision guided variable-rate sprayer and evaluate its on- and off-target tree canopy deposits in apple 

orchard.  

2. Materials and Methods  

2.1. Stereo vision guided variable rate sprayer 

Details of the controller and stereo vision guide variable rate sprayer are well described in Jeon and Zhu (2022) 

and Román et al. (2023). A brief description of the sprayer is given here as informative purpose. Stereo vision 

guided variable rate sprayer (fig. 1) was equipped with a custom-made vertical boom with five flat fan nozzles 

(XR8006, TeeJet Technologies, Glendale Heights, IL, USA) to apply sprays to trees. The lowest nozzle was 

approximately 55 cm above the ground, and the space between nozzles were 0.41 m. A solenoid valve (115880-

1-12, Teejet Technologies, Glendale Heights, IL, USA) was attached to each nozzle to turn on and off its outputs. 

The controls of on and off the valves were possible with solid state relays, a microcontroller, and duty cycle (DC) 

modulation of PWM cycles. A gas engine driven diaphragm pump generated water flow to nozzles, and a pressure 

regulator adjusted its flow to achieve a pressure of 276 kPa when they were discharging their spray. Most 

components for spraying system were in a steel frame with a 3 point hitch while all electrical components were 

in an enclosure. A narrow tractor (John Deere 5100GN, Deere and Co., Moline, IL, USA) carried the sprayer by 

its 3-point hitch to travel the field. Detecting tree canopies was possible with a stereo vision system (D455, Intel 

Co., Santa Clara, CA, USA) which has horizontal and vertical viewing angles of 87° and 58°, respectively. The 

system was streamed its RGB (Red-Green-Blue), infrared (IR) and depth images to the host computer, and 

streamed data were processed by algorithms embedded in a graphical user interface (GUI) developed with Visual 

Studio Professional 2017 (Microsoft Co., Redmond, Washington, USA) and RealSenseTM software development 

kit (Intel Co. Ltd, Santa Clara, CA, USA). The stereo vision system was ahead of the nozzles by 0.9 m for ample 

image processing time. 

 

 

Figure 1. Stereo vision guided variable rate sprayer 

2.2. Stereo vision guided variable rate sprayer with electric variable air assist system 

Details of electric variable air assist system (EVAAS) is given in Jeon and Zhu (2024a) (fig. 2). Therefore, a 

brief description of EVAAS is provided herein. Five fans (VA18-AP71/LL-59A, Spal Automotive Srl, Correggio, 

Italy) were mounted on the opposite end of the opening of a 2.1-m high custom designed air ducts. Each fan 

generated the maximum airflow of 0.95 m3 s-1. The opening width of the duct was approximately 152 mm. The 
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EVAAS discharged the maximum air approximately 13.3 m s-1 at the opening. A microcontroller modulated DCs 

of PWM signal cycles, and these signals were fed to stepper motor drivers to control speeds of the fans. The power 

for EVAAS was supplied by a LiFePO4 Battery (Redodo LiFePO4 Battery, 400 Ah, Shenzhen Maicheng 

Technology Innovation Co., Ltd, Shenzhen, China). 

EVAAS was integrated to stereo vision guided variable rate sprayer. However, increasing airflow of EVAAS 

for variable air assist applications to above 30% of the maximum from a complete stop was not feasible due to 

the time that it requires to obtain the speeds, and short distance between the stereo vision system and EVAAS (0.9 

m). To overcome these limitations, EVAAS was automatically started at 30% DC (an approximate exit air speed 

of 4 m s-1), and increased its airflow as needed (less than 70% of the maximum) to enable automatic variable air 

assist since achieving higher canopy deposition with air assist of EVAAS with DCs less 50% (Jeon and Zhu, 

2024b). As variable air assists were achieved by changing DCs, GUI for the sprayer was undated to include a 

multivariable linear model to determine DCs based on leaf area index and canopy pass through spray coverage to 

modulate airflows of EVAAS based on tree canopy presence. A C++ program to direct the operation of EVAAS 

and communicate with the host computer was developed and flashed to the microcontroller. More details of 

EVAAS performance to the sprayer are given in Jeon and Zhu (2024b). 

 

 

Figure 2. Stereo vision guided variable rate sprayer equipped with electric variable air assist system 

2.3. Performance of the sprayer in depositing spray on- and off-target tree canopies 

The sprayer was tested for its performance in spray depositions on and off target apple tree canopies in Horticultural 

Research Unit 2 of The Ohio State University in Franklin township, Wayne County, OH. Two application conditions were 

tested: conventional application with constant air assist at the maximum EVAAS fan speed (treatment 1) and variable rate 

spray application with variable air assist (treatment 2). The tractor with the sprayer was travelled at 3.2 km h-1 while applying 

the tank mix of BSF (Brilliant Sulfaflavine, MP Biochemicals Inc., Aurora, OH, USA, Concentration: 1.6 g L-1) at the pressure 

of 275 kPa. For the conventional application, spray nozzles were continuously modulated with a DC of 50% to deliver the 

spray volume of approximately 385 L ha-1. Functions of variable rate spray and variable air assist were enabled for the other 

treatment. For variable rate spray application, the sprayer applied a spray volume of 80 ml for every 1 m3 of apple tree canopy. 

Airflow intensities of variable air assist system, controlled by the fan’s power DCs, were determined by the embedded 

multivariable linear model with leaf area index of 2.2 and canopy pass through spray coverage of 5%. For both treatments, the 

sprayer centre was approximately 2.7 m away from the trunk of the trees.  

Before the treatments, three representative sizes of apple trees, considering each tree as a replication, were selected to have 

7 spray targets, 60-mesh stainless steel disks (SSD) and water sensitive papers (WSP), in the row being sprayed. Four SSDs 

and WSPs were on leading and following edges, and top and bottom of the canopy. The other three targets were outer edge, 

middle and inner edge of the canopies on approximately vertical and horizontal centre. In addition, additional three trees, 

aligned with trees with SSDs and WSPs in the spray direction, were selected from the row next to the one being sprayed to 

have five SSDs and WSPs to capture spray being drifted approximately 5.5 m away from the application site. After the 

application of each treatment, SSDs and WSPs were dried and collected in glass bottles and letter paper templates for 

processing in the lab to obtain BSF deposition in µL cm-2 and coverage percentage. Detailed sample processing procedures 

and other were described in Jeon and Zhu (2024b). In addition, the sprayer stored DC data for spray nozzles and fans, RGB, 

IR and depth images, and other data in local hard drive of the computer to analyze data for its air assist changes, spray outputs, 

canopy detection and spray volume. 
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During the tests, weather conditions were monitored by local weather station which reported average wind speed of 1.26 

m s-1 (0.4 to 2.5 m s-1) from south-southeast (159°) to south-southwest (202°). The temperatures and relative humidities during 

the tests were 18.9–29.4 °C and 50.0%–80.0%, respectively, during the tests. 

3. Results and Discussion 

3.1 Spray deposit on- and off-target tree canopy 

Fig. 3 shows spray and air assist outputs for three apple trees from the conventional sprayer (treatment 1) and the variable 

rate sprayer with EVAAS (treatment 2). The sprayer with EVAAS detected canopy volumes of 2.9, 2.0 and 3.4 m3 for apple 

tree 1, 2 and 3, respectively. The general trend was that the conventional sprayer applied a constant volume of spray and air 

assist to trees regardless of their canopy sizes. However, the variable rate sprayer with EVAAS started increasing its spray and 

air assist outputs when it started detecting tree canopies (tree canopy started at the tree width of 0 m). The sprayer with EVAAS 

occasionally discharged more spray volume than the conventional sprayer did to compensate for the large volume of the canopy 

section detected. The sprayer with EVAAS started to reduce its spray and air assist outputs when the sprayer passed the biggest 

canopy section of each tree. Also, the spray volume became to zero and airflow reached its initial flow when the sprayer did 

not the tree canopies (fig. 3).  

For those three trees, the variable rate sprayer with EVAAS applied 223.9, 155.0 and 269.5 ml of BSF solution for tree 1, 

2 and 3, respectively while the conventional sprayer applied 331.2, 283.9 and 388.0 ml of BSF solution to tree 1, 2 and 3, 

respectively. In addition, treatment 2 applied air assist volume approximately 35.7 % of air assist volume of treatment 1 while 

increasing its airflow with presence of the trees.  

 

 

(a) Tree 1 

,  

(b) Tree 2 
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(c) Tree 3 

Figure 3. Outputs of sprays and air assists for three apple trees from the conventional sprayer and the variable rate 

sprayer with EVAAS 

 

Table 1 shows the spray depositions and coverages of treatment 1 and 2 on targeted apple tree canopies. The conventional 

sprayer (treatment 1) and the variable rate sprayer with EVAAS (treatment 2) delivered average spray depositions of 4.5–5.7 

µL cm-2 and 7.3–8.2 µL cm-2, respectively, to three trees. Treatment 2 consistently had 44.0%-61.6% more depositions on 

each tree compared to treatment 1, and treatment 2 deposited approximately 50.2% more spray depositions compared to 

treatment 1 in overall deposition averages. The spray coverages had a similar trend as well although the coverage differences 

between two treatments for each tree were much smaller (11.1% to 21.3%). The difference of overall coverage averages 

between of two treatments was 2.6%. This shows encouraging preliminary spray deposition and coverage data, and the results 

suggest that variable rate sprayer with EVAAS (treatment 2) was more effective to deliver more spray depositions on targeted 

trees compared to the conventional sprayer. This also suggests that vigorous air assist from conventional sprayers might have 

negative influences in spray depositions although further in-depth studies must carry out to acquire more data to confirm the 

differences. 

 

Table 1. Average spray depositions and coverages of treatment 1 and 2 on on-target apple tree canopies 

 

Treatment 1 Treatment 2 

Avg. spray deposition 

(µL cm-2) 

Avg. spray coverage 

(%) 

Avg. spray deposition 

(µL cm-2) 

Avg. spray coverage 

(%) 

Tree 1 
5.7 

(46.7)* 

50.9 

(57.5) 

8.2 

(66.8) 

53.0 

(51.1) 

Tree 2 
4.5 

(73.3) 

45.5 

(54.9) 

7.3 

(74.8) 

50.9 

(65.5) 

Tree 3 
5.1 

(45.4) 

43.0 

(48.7) 

7.4 

(56.7) 

41.0 

(41.0) 

Overall Avg. 
5.1 

(52.9) 

47.0 

(52.5) 

7.7 

(63.4) 

48.3 

(57.0) 

*Coefficient of variation (%) of the data. 

 

Fig. 4 shows spray depositions and coverages on off-target apple canopies which were approximately 5.5 m away from 

the application sites. Treatment 1 and 2 had average spray depositions of 2.9 and 1.0 µL cm-2, respectively, which suggest that 

the conventional sprayer drifted its spray approximately 3 times more than the variable rate sprayer with EVAAS under this 

test conditions. In addition, the spray coverage average of treatment 1 (16.2%) was approximately 20.5 times higher than the 

coverage average of treatment 2 (0.8%). These substantially less spray coverage and deposition averages from treatment 2 

were likely because the sprayer with EVAAS only provided spray with increased air assist when the tree canopies were 

presence. Therefore, sprays from treatment 2 were only discharged to the tree canopies with increased air assist to penetrate 

to targeted tree canopies. In addition, even if some droplets were undeposited, their fate would be driven by gravity or ambient 

wind instead of being drifted a far distance by vigorous air assist from a conventional sprayer. Thus, spray deposition and 

coverage from off-target apple trees show that variable rate sprayer with EVAAS could be a potential solution to substantially 

minimize spray drift although further tests are necessary to have more comprehensive understanding of EVAAS.  
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(a) Spray depositions on off-target tree canopies (b) Spray coverages on off-target tree canopies  

Figure 4. Spray depositions and coverages of treatment 1 and 2 on off- target apple tree canopy 

4. Conclusions 

EVAAS was integrated to variable rate sprayer to adjust it airflows for the outputs of the sprayer, and the GUI to harmonize 

the operations of the sprayer and EVAAS was developed. The performance of the variable rate sprayer with EVAAS was 

evaluated against the conventional sprayer. The test data show that the variable rate sprayer with EVAAS applied 54.6% to 

60.5% of spray volumes compared to the conventional sprayer. However, the variable rate sprayer with EVAAS had 44.0%-

61.6% more depositions on each tree compared to the conventional sprayer. Furthermore, the variable rate sprayer with 

EVAAS had approximately 35.8% of spray drifts, considerably less spray drift, compared to the conventional sprayer.  

Although the variable rate sprayer with EVAAS showed great potential of increasing spray deposition on targeted tree 

canopies and reducing spray drift on off-target tree canopies, further experiments should be carried out to validate the outcomes 

from this study. Furthermore, EVAAS should also be tested with different crops with more dense canopies particularly to 

broaden its use with various crops. The design of the fan can be optimized as well for spray applications.  
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Abstract 

Increased public awareness along with the rising new technologies are key driving forces towards 

sustainable productivity. Precision agriculture -based on data-driven decisions- is a valuable asset, the 

utilization of which might contribute to achieving this goal. The scope of this study was to evaluate the 

efficiency of Variable Rate Applications (VRA) in cotton when utilizing proximal sensing technologies 

compared to conventional farming techniques. Large scale pilots have been set up, where split-plot 

applications have been performed. The different treatments include VRA’s of inputs typically applied in-

season including insecticides, plant growth regulators and harvest aids, along with the respective flat rate 

applications per agrochemical. The VRA treatments were realised using a multispectral, camera-based 

system (Augmenta ™). This system gathers data regarding the field’s condition and generates a Vegetation 

Index (NDVI based) upon which proprietary, agronomic algorithms are utilized enabling VRAs in real-

time without further need for additional calibration. For the evaluation of the VRA’s efficiency the yield of 

each plot was determined gravimetrically. In VRA treatments an average of 3% and 7.2% of savings were 

realized in PGR and HA respectively. Despite the positive outcome, several challenging points are to be 

considered, if high adoption of such an approach is to be expected including the farm size and the 

subsequent time for the Return On Investment (ROI), the farmers' demographic profile, the existing 

farming techniques, and machinery along with the available infrastructure. Plug and Play solutions are to be 

considered as an affordable solution towards that end.  

Keywords: precision agriculture, variable rate applications, proximal sensing, vegetation indices 

1. Introduction 

Global trends and regulations appoint sustainable productivity as an inevitable one-way (Heyl et al., 

2022), where optimized input applications will mitigate unsolicited environmental ramifications without 

imposing compromises in farmers’ income. Precision Agriculture, as a farming management approach, can 

positively contribute towards that end utilizing rising technologies such as high precision GPS’s and remote 

sensing to ensure that the crops receive exactly what they need (Shafi et al., 2019). Implementations of 

these technologies enable a wide range improved cultivations techniques such as Variable Rate 

Applications (VRA) of seeds, fertilizers and other agrochemicals, variable irrigation and others (Nowak, 

2021).  

The scope of this study was to determine the impact of Variable Rate Applications of multiple inputs 

including fertilizers, plant growth regulators and harvests aids on sustainable productivity of cotton, using a 

commercial proximal sensing system (Augmenta ™) as a plug and play solution. During the setting up and 

the execution of the pilots several factors that might impose a challenge were identified and accounted for 

to ensure -to the extent possible- a wide adoption rate of the solution offered.   

2. Materials and Methods  

2.1. Pilot setup  

A pilot with split applications has been set in three cotton fields in the Prefecture of Thessaly (Greece) 

covering a total area of 15,7ha. Each field was split into two equivalent parts in terms of soil properties and 

productivity potential (Fig 1.). The inputs tested during this years’ pilot were insecticides for preventative 

applications, Plant Growth regulators and Boll openers as Harvest Aids. The outline of the pilot setup is 

shown on Table 1.  In both parts of the field the standard cultivating techniques were performed to ensure 
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the unimpeded productivity. In one part of the field, the input of interest was added at a Fixed-Rate 

recommended by the collaborating agronomist. On the other half, the same recommended rate of input was 

applied at a Variable Rate utilizing a proximal sensing, passive, multispectral camera system (Augmenta 

™) mounted on top of a tractor at 3.15m height.  

 

 

Figure 1. Design of Experiment in a cotton field in Thessaly Prefecture, Greece (2022). Plot 1 is the 

Control Plot treated with Fixed Rate applications, while in Plot 2 all treatments were VRA.   

2.2. Data gathering and analysis 

During all operations the proximal sensing, multispectral camera system logs data regarding the 

Vegetation Index and the inputs’ consumption (15 fps) covering a Field of View of 16m and the full 

working width. The Vegetation Index is a proprietary NDVI-based index [0.1, where lower values 

correspond to low vegetation while higher values correspond to dense vegetation. For the evaluation of the 

impact of the VRA treatments, data gathered during the applications (Vegetation Index maps, Application 

maps, etc.) have been compared to yield data gravimetrically gathered at the end of the growing season 

(Figure 2).  

 

  (a) (b)  

Figure 2.  (a) Vegetation Index (AUG index) map and Field Application Map (FAM) of Harvest Aid VRA 

in a cotton field in Magnesia Prefecture, Greece (2022).  
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3. Results and Discussion 

The key principle of the proprietary algorithms utilized is that savings can be realized in certain 

regions of the field which are proportional to the overall condition of the field and the variability 

encountered. For example, reduced volume of PGR compared to the recommended rate is required when 

lower biomass is detected. The reduction of the rate is proportional to the reduction of biomass detected. 

Likewise, the volume of Harvest aids applied might be reduced in parts of the field where senescence has 

started. The average savings per hectare of PGR realized were 3% and of Harvest Aids were 7,2%. Despite 

the savings imposed –or possibly because of them- a yield increase was achieved averaging 4.1%.  

The reduction of the dose in PGR allowed smaller plants to develop further and generate more production 

units or possibly allowed them to reach the minimum desirable height for harvesting as suggested in other 

studies carried out in Brazil (Trevisan et al., 2018;  Baio et al., 2018) and in the States (Vaz et al.,2023).  

 

Table 1. Pilot setup along with savings (%) achieved during the VRA operations per treatment, the 

respective yields achieved and the respective yield increased observed between the VRA and the respective 

Fixed rate treatments, Magnesia Prefecture (GR), 2022.  

 

Field Operation Treatment Area (ha) Savings (%) Yield (kg/ha) Yield Increase (%) 

Field 1 Insecticide 
VRA 2,7 9,6% 6168 

0,28% 

Fixed Rate 2,9 - 6151 

Field 2 
PGR + HA (Ball 

Opener) 

PGR VRA 

2,9 

4,1% 

3415 
3,6% 

HA VRA 6,2% 

Fixed Rate 3,0 - 3296 

Field 3 
PGR + HA (Ball 

Opener) 

PGR VRA 
2,3 

1,6% 
2377 

4,7% HA VRA 8,4% 

Fixed Rate 2,0 - 2271 

    Total 15,7  Average 4,1% 

 

 

Significant savings (9,6%) were realised in the field where VRA of insecticides were performed 

preventatively. Despite the reduction of the tested input imposed the yield of the respective part of the field 

remained unaffected. Similar results were obtained in a study carried out in vineyards (D’Ambrosio, 2023). 

The tested approach is considered a plug and play solution that will automatically decide, adjust and 

apply each input, in accordance with the dose recommended by the collaborating agronomist, making 

agricultural technology accessible to the majority of farmers.  

The profile of the end-user is a detrimental factor upon which the adoption rate is highly dependent. 

Previous research (Daskalopoulou and Petrou, 2002) carried out in 14 prefectures in Greece has shown that 

approximately 17% of the local farms have a size <1ha and consequently the mechanisation level for these 

farms is low. More than two thirds of the farms have a farm size <20 ha, and only 6,6% of the farms have a 

size of >2ha that will allow a return of investment within a year. Daskalopoulou and Petrou (2002) are of 

the opinion that average-sized farms are more prone to consciously adjust their production practices since it 

will enable their sustainability. On the other hand, according to Barlas et al. (2000) larger agroholdings are 

more likely to have the resources that will allow them to pursue strategies that will decrease their 

production cost and/or improve their productivity. This suggestion is concise with the findings of Damianos 

and Giannakopoulos (2002), who also suggested that age and educational level seem to have a positive 

influence towards the adoption of new practices that will result in sustainable productivity. However, since 

agricultural technologies and management practices become mainstream it is likely that this correlation will 

eventually become less significant (O’Donoghue and Heanue, 2018). 
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The Greek agricultural sector was mechanised during the second half of the previous century. 

Socioeconomic factors such as the austerity measures and the adjustment policy in the process of the EMU 

of the EU that were imposed from the early 2000s and on resulted in reduces investment in agricultural 

machinery (Papageorgiou, 2015). Consequently, the existing equipment is mostly outdated and any 

solutions suggested should be able to retrofit and adjust to the existing infrastructure. 

The use of fog computing and Wi-Fi-based long-distance network in Internet of Things might improve 

efficiency of farm management provided that specific requirements met that will ensure that any solution 

proposed is scalable (Ahmed et al., 2018) and applicable given rural areas in Greece are often under-served 

Micholia et al., 2018).  

4. Conclusions 

Rising technologies are the upcoming driving force in the agricultural sector. Preliminary results 

suggest that precision Agriculture tools such as proximal sensing might enable effective production 

management via reducing inputs whenever possible without compromising productivity. However, if such 

solutions are to become widely available, they need to comply with the existing infrastructure and the 

limitations it might impose including the outdated machinery, the lack of Wi-Fi coverage in rural areas etc. 

Likewise, any solution recommended should comply with the existing agricultural practices given the 

profile of the end users. 
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Abstract 

The economic impact of cotton extends far beyond its production and cultivation. As a crucial natural fiber 

and oil crop, it is widely grown in the US, China, and India. The global cotton industry generates over $600 

billion and employs over 4 billion people. However, cotton faces significant challenges, such as increased 

pest resistance, labor shortages, high labor costs, and the labor-intensive nature of its harvesting. While some 

farmers use mechanical harvesting machines, many still rely on manual harvesting, particularly in China and 

India. These mechanical harvesters are large, expensive to operate and maintain and contribute to soil 

compaction issues. Additionally, they can only be used for 2-3 months each year. This study focuses on 

developing a proof-of-concept cotton harvester that addresses cost and soil compaction concerns. A finger 

roller concept harvester was designed to pull and extract cotton bolls. The harvesting module was mounted 

on a mobile platform with adjustable width and height. Two eductors and blowers were used to transport the 

harvested cotton bolls to storage bins on both sides, and a secondary finger roller at the back provided the 

final detachment of the bolls. The platform was tested for four days in 2023 (October 30, November 4, 8, and 

9) in a field with rows spaced 96.5 cm apart and plants spaced 10 cm apart within rows. The field experiment 

used a completely randomized block design with three replicates, adjusting the front roller’s rotation at three 

different duty cycles: 25%, 50%, and 100%. Nine initial subplots measuring 3 m long with a 1 m buffer zone 

on each side were selected to mitigate the bolls collected from adjacent rows. After modifying the front 

mechanism, 10 additional subplots were added to test the rotation direction of the front roller (forward and 

backward). Results showed that the backward rotation (with a duty cycle higher than 25%) of the front roller 

had influenced the amount of harvested cotton bolls in the bin compared to the forward rotation. Meanwhile, 

the forward rotation influences the number of bolls on the ground, the header, and the amount of trash 

regardless of the duty cycle used. Although the efficiency results in pulling cotton from the plants were high, 

calculating efficiency via the bin was very small. This could be attributed to many factors, e.g., clogging at 

the educator entrance or the speed of the second finger roll. Based on the lessons learned, a discussion on the 

new design addressing this problem is presented. 

Keywords: cotton industry, labor shortage, mechanical harvesting, mobile platform 

1. Introduction 

The cotton industry in the United States is a significant economic driver, with cotton being one of the 

country's most crucial cash crops (Chen & Burke, 2015). Cotton production contributes substantially to the 

agricultural sector and plays a vital role in the economy due to its widespread applications in textiles and 

various industries. The sustainability and growth of the cotton industry depend on improved cotton varieties, 

efficient management of soil and water resources, and effective control of pests, diseases, and weeds (Dadd-

Daigle et al., 2021). These aspects are essential for ensuring the continued success and profitability of cotton 

farming in the US. 

Historically, the US cotton industry has undergone significant transformations, particularly in labor 

practices and harvesting methods. Following World War II, there was a notable shift in labor dynamics, with 

millions of cotton workers, particularly African Americans, leaving the fields permanently as farmers began 

to mechanize the cotton harvest (Grove & Heinicke, 2003). This transition from manual labor to 
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mechanization revolutionized the industry and profoundly impacted the workforce and agricultural practices. 

Mechanization in the cotton industry brought both benefits and challenges. It increased efficiency and 

productivity by reducing reliance on manual labor and improving overall output. However, it also raised 

concerns about labor displacement and the impact on traditional harvesting practices (Peterson & Kislev, 

1986). The adoption of machine harvesting was driven by increased nonfarm wages and the decreased cost 

of mechanized harvesting, highlighting the complex interplay between economic incentives and 

technological advancements (Peterson & Kislev, 1986). This shift led to a restructuring of the labor market 

in cotton-producing regions, with many traditional cotton pickers moving into other sectors, such as 

manufacturing (Jung, 2018). 

Moreover, mechanization has improved efficiency but also raised environmental and sustainability 

concerns. Cotton cultivation exerts significant pressure on natural resources such as land and water, leading 

to environmental issues and the overuse of pesticides (Natálio & Maria, 2018). The extensive use of 

pesticides, insecticides, and irrigation with fresh water poses environmental risks and contributes to 

ecological imbalances, necessitating sustainable practices and resource management in cotton farming 

(Tausif et al., 2018). 

The economic impact of the cotton industry extends beyond the agricultural sector, influencing various 

aspects of the economy and society. Cotton cultivation and processing support millions globally, including 

farmers, production workers, and individuals in the textile and garment industries (Witjaksono et al., 2014). 

The industry's economic significance is underscored by its estimated global impact of around US$500 billion 

annually, emphasizing its substantial contribution to the world economy (Makhmadjanov et al., 2023). 

The US cotton industry is prominent in the agricultural and economic landscape, with its production and 

processing activities influencing various sectors and livelihoods. While the industry's economic significance 

is undeniable, challenges related to sustainability, environmental impact, and labor practices underscore the 

need for continuous innovation, responsible resource management, and equitable labor practices to ensure 

the industry's long-term viability and contribution to the economy. 

Integrating advanced robotics into cotton farming can revolutionize various aspects of the cultivation and 

harvesting processes. Autonomous robots equipped with precision agriculture technologies can perform tasks 

such as planting, weeding, and pest control more accurately and efficiently than traditional methods. These 

robots can use sensors and machine learning algorithms to monitor soil health, detect pests, and apply the 

appropriate treatments, reducing the need for chemical inputs and enhancing sustainability. Robotic systems 

can improve the harvesting process, which is traditionally labor-intensive and costly. Robots designed for 

cotton picking can operate continuously and with precision, reducing the reliance on seasonal labor and 

minimizing the physical strain on workers. These robots can be programmed to selectively harvest only 

mature bolls, ensuring higher quality yields and reducing waste. Additionally, robotics can help address the 

issue of soil compaction by using lightweight, agile machines that cause less disruption to the soil structure 

than heavy machinery. 

Adopting robotic systems in cotton production presents numerous opportunities to enhance efficiency, 

reduce costs, and promote sustainable farming practices. As technology advances, the potential for robotics 

to transform the cotton industry and address its longstanding challenges will only grow, offering a promising 

future for cotton farmers worldwide. 

The overall objective of this work is to develop multiple cotton production operations using robotics. The 

specific objectives of the study were to design and test the Finger Roller Harvester to pull and extract cotton 

bolls efficiently, attach to a mobile platform with adjustable dimensions, and evaluate the developed 

harvester's efficiency through field experiments focusing on different rotation duty cycles and rotation 

directions.  

2. Materials and Methods  

The study is focused on developing and testing a proof-of-concept cotton harvester (Figure 1a) designed 

to address cost and soil compaction issues. The primary component of the harvester was a mobile platform, 

a 4 x 4 electric skid steer vehicle (Amiga, Farm-NG, Watsonville, CA, USA) and a harvesting module with 

a finger roller system engineered to pull and extract cotton bolls efficiently (Figure 1b). This harvesting 

module was integrated into a mobile platform with adjustable width and height to accommodate various field 

conditions. An eductor (Figure 1c) and blower system were installed to facilitate the transport of harvested 

cotton bolls to storage bins on either side of the platform. A secondary finger roller at the back of the platform 
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was included to ensure the final detachment of the bolls for transport to the bins. 

 

   
(a) (b) (c) 

Figure 1. (a) The mobile platform used for this work, (b) the finger rollers used to pull the cotton bolls, and 

(c) the eductors for moving the harvested bolls to the bin. 

Field testing was conducted at Edisto Research and Education Center’s Cotton Plot (33.346009, -

81.315102) on four days: October 30, November 4, 8, and 9, 2023. in a field with rows spaced 96.5 cm apart 

and plants spaced 10 cm apart within rows. A total of 19 small rows were selected for this field test. The field 

was planted with Deltapine 2038B3XF and managed according to South Carolina Cotton growers' guidelines. 

The experimental design followed a completely randomized block format with three replicates. The front 

roller’s rotation varied at three different duty cycles: 25%, 50%, and 100%, and the direction of the rotation. 

Initial testing involved nine subplots, each measuring 3 m long with a 1 m buffer zone on each side to mitigate 

the collection of bolls from adjacent rows. 

 

 
Figure 2. Plot location for the field test. 

Subsequent modifications to the front mechanism to direct the plant stem (Figure 3) in the middle led to 

adding 10 more subplots to evaluate the impact of the front roller's rotation direction (forward and backward).  

   
(a) (b) (c) 

Figure 3. (a) The previous design on the front roller, (b) additional guide rails to direct plants to move in 

the middle, and (c) these guide rails were installed in the front rollers. 
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The forward rotation of the front roller means the right roller rotates counterclockwise while the left roller 

rotates clockwise. Conversely, the right roller rotates clockwise for backward rotation, and the left rotates 

counterclockwise, as shown in Figure 4. 

 

The efficiency of the harvester, as shown in Eqn (1), was measured by calculating the number of bolls 

collected in the storage bins. Cotton bolls were counted before and after harvesting for each of the 19 small 

rows. Data collection included recording the number of bolls, weighing the collected bolls in the collecting 

bin, weighing trash limbs in the header and bolls on the ground, and other relevant operational metrics that 

will be used for further analysis related to yield and quality. Multivariate analysis (MVA) was also used to 

determine which of the rotations and duty cycles had more influence on the cotton bolls on the bin, the 

ground, and the trash in the header. The variables used for the MVA were bolls left on the plants, bolls on 

the ground after harvest, bolls on the header, trash in the header, and bolls on the bin. Similarly, the same 

data on weights for bolls on the plants, ground, and header were included, although they showed similar 

results.  

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
𝑥100%    (1) 

where Output is the bolls collected at the harvest bin, and Input is the number of bolls on the plants before 

the harvest.  

3. Results and Discussion 

Field tests revealed that the backward rotation direction of the front roller, when operated at 50% and 

100% duty cycles, achieved the highest efficiency in harvesting cotton bolls at 15% and 27%, respectively. 

This configuration resulted in lower losses and minimal trash in the header, indicating a better effective 

extraction and collection process than forward direction with all three duty cycles. However, despite these 

promising results, the total number of bolls collected in the storage bins remained relatively low due to 

clogging issues at the bottom of the eductor system. 

The randomized block design employed in the field experiments provided robust data, highlighting the 

impact of varying duty cycles and rotation directions on harvesting performance. The initial nine subplots 

indicated a significant improvement in boll collection efficiency with higher duty cycles. In comparison, the 

subsequent 10 subplots confirmed that the backward rotation direction was more effective than the forward 

direction. These findings suggest that optimizing the rotation speed and direction of the finger roller is crucial 

for maximizing harvesting efficiency.  

The results for the MVA showed that the backward rotation has a more positive influence on the amount 

of harvested cotton bolls in the bin and the number of remaining cotton bolls on the plants, as shown on the 

scores and correlation loading plots in Figures 5a and 5b.  

forward 

backward 

Figure 4. The rotation of the front roller under study. 
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(a) 

 
(b) 

Figure 5. (a) Score plot for the direction of the front rollers, and (b) Correlation Loading plot for the 

variables used for this field test. 

For the duty cycles, both 50% and 100% on the backward rotation positively influenced the number of 

cotton bolls in the bin, as shown on the score plot in Figure 6. 

 

Figure 6. The score plot using direction and duty cycles (B50 means, backward with 50% duty 

cycle). 
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The results of this study demonstrated that the developed proof-of-concept cotton harvester showed 

promising potential in addressing the issues of cost and soil compaction associated with traditional 

mechanical harvesters. 

Despite the overall success in improving efficiency and reducing trash, the study identified a critical area 

for further development: the clogging of bolls at the bottom of the eductor. This issue limited the amount of 

cotton that could be effectively transported to the storage bins, thus impacting the overall yield. Addressing 

this challenge will be essential for the practical implementation of the harvester. 

3.1. Field Test Observations 

The trial proceeded well, with several bolls collected in the harvesting bin. However, an issue was 

identified at the end of the sub-row trial when some trees were uprooted due to their stems tangled in the rear 

roller shafts. This created resistance to the rollers' rotation. In the subsequent sub-row, the same problem 

caused the motor to rotate on its mount due to the enormous resistance on the shaft, stretching and eventually 

fraying the wires. Replacing the motor temporarily resolved this issue. In the following sub-rows, tangled 

cotton stems caused the internal fuse of one motor driver on the first motor controller board to blow. 

Eventually, the field trials were terminated when the other motor controller shut down and would not turn 

on, also due to blown internal fuses caused by the increased load from the resistance to the roller shaft. 

Additionally, this problem resulted in debris being caught inside the header chamber. 

Initial observations suggested that branches entered directly into the rear roller, caught on the fingers, and 

wound around the shaft. The force of the rotating shaft uprooted entire cotton plants, and the tangled stems 

and branches prevented the shaft from rotating. On the electrical side, the load surge damaged only the motor 

controller, preventing a catastrophic failure of the control system. The electronic complications were 

primarily caused by stems getting caught in the rear rollers and stopping their rotation. 

To solve this problem, modifications were made to the header to prevent branches or stems from entering 

the rear rollers directly. A bottom plate was added to each header to force the branches upright. A curved 

stainless-steel rod was mounted over the header opening to prevent stems or branches from entering the rear 

rollers directly. To protect the motor controller from damage, a fuse was added to the positive side of the 

power supply. Despite these modifications, some branches with cotton bolls were prevented from reaching the 

rear rollers. The smooth surface of the fingers in the rollers allowed the branches with cotton bolls to glide 

freely and bypass the rollers. The cotton bolls flicked by the rear rollers should be sucked into the bin by the 

negative pressure generated by the eductor. However, due to the inherent property of cotton, it tends to stick 

to rough surfaces, causing a buildup near the entry to the eductor. 

Another prevailing issue with the robot's construction was the weight distribution. The heaviest parts of 

the harvester assembly are the two headers located at the front, causing a weight imbalance that contributes 

to structural and mechanical stress on the chassis and front wheels. The robot struggles with grip at the rear 

due to the differential nature of its wheels. Although both generators and 94 lbs of counterweight are placed 

at the rear, this does not solve the balance issue and adds more load. The robot's gross weight far exceeded 

the rated load of the mobile platform. Consequently, the fuses of the Amiga platform's batteries blew due to 

spikes in motor load, particularly on the front wheels. The motor also frequently overheated and required 

significant cooldown time, further delaying the field trials. 

Based on observations from all field trials, the problems can be summarized as follows: 

1. The front rollers were inadequate at directing the branches to the rear rollers, which was exacerbated 

by the modifications. 

2. The inlet to the eductors caused a buildup of cotton bolls and debris, blocking the suction. 

3. Uneven weight distribution led to mobility problems, especially on uneven farm grounds with loose 

soil. 

4. The motors overheated due to overloading the Amiga platform, compounded by its uneven weight 

distribution. 

3.2. Addressing the issues 

Revising the cotton harvester robot aims to increase harvesting efficiency by addressing the identified 

problems. The strategy is to focus first on the most critical part: the header assembly and the harvesting 
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mechanism. Once these are improved, the rest of the design will evolve around them. 

Based on the analysis of the harvester's mechanical action from both animated simulations and actual 

field trials, the following revisions or additions are needed: 

1. Adjust the position of the front and rear rollers relative to each other to capture more cotton bolls from 

the branches. 

2. Optimize the proximity of the headers to each other to maximize branch exposure to the front rollers. 

3. Redesign the fingers in the rollers to better grab the branches and effectively feed them to the rear 

rollers. 

4. Add an additional blower to clear the inlet of the eductor, ensuring a smooth flow of cotton bolls 

through the system. 

Figure 7 compares the header assembly design between the original design (left) and the updated version 

(right). The first major change in the design is the elimination of pulleys and belts to drive the finger rollers 

(A). These have been replaced with a 90-degree angled gearbox featuring 1:1 and 1:2 gear ratios for the front 

and rear rollers. The system retains the same planetary gear motors, but the rear roller now uses a 320-rpm 

motor. This allows the rear roller to achieve a maximum rotation speed of 620 rpm, three times higher. With 

the gearbox, an additional motor for the rear roller is no longer needed. The second significant modification 

involves the front finger rollers (B). The new design features an angled finger at approximately 15 degrees, 

constructed from cut aluminum instead of a steel tube. This angled finger can grab branches more effectively 

than the previous straight, round design. The rear roller has a 3/4” round steel tube shaft, which maintains 

the original design but uses a round steel tube instead of a square one. 

Another major change is the positioning of the rollers relative to each other. Figure 8 illustrates this 

difference. In the original design, the front and rear rollers were offset at an angle of about 54 degrees (Figure 

8a). In the revised design, the rollers are aligned side-by-side (Figure 8b). The offset in the original design 

aimed to narrow the header but reduced the rear roller's effectiveness, as it only hit cotton bolls pulled deep 

enough by the front roller. By aligning the rollers side-by-side, even cotton bolls that are not pulled deeply 

can still be reached by the fingers on the rear roller. With the faster rotation of the rear roller, cotton bolls, 

whether pulled shallow or deep, have a greater chance of being picked. Additionally, an air blower has been 

installed inside the eductor to reduce the buildup of cotton bolls and debris at the inlet. This blower is powered 

by a third blower that provides a constant air stream. 

Figure 7. The front roller original (left) and updated (right) design. 
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(a) (b) 

Figure 8. Finger roller positions: (a) original and (b) updated version. 

Most of the robot's weight is concentrated at the front, causing balance issues even with counterweights 

and placing tremendous stress on the support structure. To address these problems, several considerations 

must be made in revising the chassis: 

1. Relocate the header to improve support and minimize balance issues. 

2. Enable on-field adjustment of the header's ground clearance. 

3. Allow for load adjustments to improve overall balance and weight distribution. 

4. Weld the chassis structure instead of using tube clamps. 

Figure 9 shows the entire cotton harvester robot assembly. The header, bin, blowers, and generators are 

mounted on a ladder frame (B). This frame can be moved forward or backward to adjust balance and weight 

distribution and is not welded to the chassis. A sub-frame on the ladder frame holds the header assemblies 

(C), allowing the header height to be adjusted by jacking up the sub-frame and inserting 10 mm spacers until 

the correct height is achieved. The Amiga chassis, where the ladder frame will be mounted (D), will be 

welded rather than using tube clamps. Welding eliminates the need for tube clamps, allowing the ladder frame 

to be mounted lower. By addressing the balance issue, the robot no longer requires a counterbalance, resulting 

in less weight and reduced stress on the platform. 

 

4. Conclusions 

In conclusion, this project successfully developed and tested a proof-of-concept cotton harvester robot to 

increase harvesting efficiency and address critical issues related to weight distribution, mechanical stress, 

and cotton boll collection. The revisions, including eliminating pulleys and belts in favor of a 90-degree 

angled gearbox, realignment of front and rear rollers, and adding an air blower in the educator, significantly 

improved the harvester's performance. These changes enhanced the harvester's ability to capture cotton bolls 

Figure 9. Cotton Harvester v2.0 Full Assembly. 
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more effectively while reducing debris buildup and minimizing the strain on the support structure. 

The adjustments to the chassis, such as relocating the header for better support, enabling on-field ground 

clearance adjustments, and welding the chassis structure, further contributed to a balanced and robust design. 

These modifications improved the overall balance and weight distribution and reduced the need for 

counterweights, thereby decreasing the stress on the Amiga platform. 

Despite encountering challenges during the field trials, such as motor overheating and structural 

imbalances, the iterative improvements made throughout the project demonstrated the potential for a viable, 

efficient, and sustainable cotton harvesting solution. 

Future work will focus on refining these design elements, addressing any remaining mechanical and 

electronic issues, and optimizing the autonomous navigation capabilities of the robot. Additional efforts will 

include improving the robustness of the harvesting mechanism to prevent clogging and enhancing the 

durability of the motor and electronic systems to withstand field conditions. Furthermore, integrating 

advanced sensors and machine learning algorithms for better decision-making and precision harvesting will 

be explored. These enhancements aim to transition the proof-of-concept harvester into a commercially viable 

product, ultimately benefiting the cotton industry by increasing efficiency, reducing labor costs, and 

promoting sustainability. 

This project lays a solid foundation for developing advanced agricultural robotics, promising significant 

benefits for the cotton industry through increased efficiency, reduced labor costs, and improved 

sustainability.  
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Abstract 

       Real-time assessment of within-field soil fertility variation is crucial for making informed and 

sustainable decisions, like crop nitrogen (N) fertilisation. Two commonly used soil sensors i.e.,  visible-near-

infrared (vis-NIR) spectroscopy and ion-selective electrodes (ISE) have been reported to successfully 

estimate various soil macronutrients and nitrate-N, respectively, however, their integrated use for mapping a 

full-scale soil fertility variation has not been taken into consideration to date. The aim of this study is to use 

an integrated on-line dual-sensor system of vis-NIRS and ISE to estimate and map within-field variation in 

soil pH, organic carbon (OC), extractable- phosphorus (P), potassium (K), calcium (Ca) and moisture content 

(MC) and nitrate-N. The sensing system was mounted to the three-point linkage of a tractor and surveyed 

two arable fields in Belgium. Partial least squares regression models for vis-NIRS sensor were calibrated and 

validated, while a linear regression model was established to validate the ISE sensor. Geostatistical surface 

maps for on-line measured soil attributes were generated using the inverse distance weighting and ordinary 

kriging methods for ISE data and vis NIR, respectively. The linear correlation confirms a very high similarity 

between ISE-measured nitrate-N and laboratory-analysed nitrate-N (coefficient of determination (R2) = 

0.93). Besides, the vis-NIRS demonstrates very good prediction accuracies for all the fertility attributes with 

R2 = 0.70-0.78, root mean square error (RMSE) =0.52-2.46 %, residual of prediction deviation (RPD) = 1.89 

– 2.13 and the ratio of the performance to interquartile distance (RPIQ) = 1.72  – 6.56. Validation between 

laboratory and on-line measured soil maps also shows quite comparable spatial distribution patterns. 

Therefore, the proposed dual on-line sensor system has a high potential to estimate and map within-field 

spatial fertility distributions including nitrate-N, offering a basis for sustainable management decisions for 

precision soil and crop production. 

 

Keywords: Near-infrared spectroscopy, Ion selective electrodes, Soil fertility, On-line sensing. 

1. Introduction 

Over the years, on-line soil nutrient mapping has gained significant attention as a valuable procedure for 

precision agriculture and sustainable soil management. This approach allows for real-time monitoring of soil 

nutrient levels, enabling farmers to make informed decisions regarding fertiliser application and crop 

management. Among the various sensing technologies employed, electrochemical sensors (Adamchuk et al., 

2005) specifically the ion-selective electrode (ISE) and visible and near-infrared spectroscopy (vis-NIRS) 

(Gurrero et al., 2021, Kuang et al., 2012, Mouazen et al., 2011) have emerged as promising methods for on-

site and non-destructive soil nutrient analysis. The vis-NIRS has shown promising results in predicting 

various soil properties, including organic matter (OM), phosphorus (P), total nitrogen (TN), potassium (K), 

clay content, moisture content (MC), cation exchange capacity (CEC)  (Mouazen et al., 2007, Nawar and 

Mouazen, 2017, Gurrero et al., 2021). Apart from those properties, vis-NIRS was earlier reported as an 

efficient sensor for mineral N estimation (Ehsani et al., 1999), however, only a very limited number of studies 

was found in the literature to substantiate the claim. Therefore, it can be inferred that vis-NIRS demonstrates 

limited success in predicting mineral nitrogen levels, a conclusion supported by existing literature (Guererro 

et al., 2021, Kuang et al., 2012).  

The ISE has been reported to measure soil nitrate-N although most have focused on measurements in 

laboratory modes (Adamchuk et al., 2002, Kim et al., 2007, Sibley et al., 2009, Shaw et al., 2013) and in-situ  

(Li et al., 2019, Sibley et al., 2010, Bendikov et al., 2005). However, these two measurement modes do not 

effectively capture in-field variabilities as the on-line mode, hence, not meeting the requirement of high-

resolution data to reveal the spatial variability for accurate and robust precision management decisions 

(Guerrero et al., 2021). Only a limited number of studies on the on-line measurement of soil nitrate-N can be 
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found in the literature, which can be mostly attributed to the sampling complexities (Li et al., 2019, 

Adamchuk et al., 2005, Adsett et al., 1999, Sibley et al., 2009). Over the years, efforts have been made to 

optimise ISE on-line measuring systems (Adamchuk et al., 2002, 2004, 2005, Adamchuk and Rossel, 2010,   

Sethuramasamyraja et al., 2008) yet, no robust system has found its way into practice or research.  

Examining the literature about these two sensors indicates that each has the potential to complement the 

other for assessing and mapping within-field fertility variation accurately. The fusion of both sensor 

technologies will enable the on-line measurement of macro soil fertility attributes and soil nitrate N. 

However, this has not been reported so far, although many studies have proposed the use of multi-sensors 

data fusion approach for mapping soil nutrients (Adamchuk et al., 2004, Sethuramasamyraja et al., 2008, 

Adamchuk et al., 2011, Gurrero et al 2021). To the best of our knowledge, there is no previous study focusing 

on the integrated use of ISE and vis-NIRS sensors for rapid on-line soil fertility mapping. Therefore, the aim 

of this study was to evaluate the performance of the proposed dual-sensor system consisting of ISE and vis-

NIRS sensors for on-line estimation and mapping of soil nitrate-N along with key soil macronutrients i.e., P, 

K, OC, MC, pH, and Ca, respectively. This study hypothesises that the ISE estimated nitrate-N can add 

additional values to the vis-NIRS spectra-based information of K, P, OC, MC, pH, and Ca thus, an integration 

of these two sensors is assumed to provide a holistic understanding of within-field variability in soil fertility. 

This dual-sensor approach is expected to provide rapid and valuable soil information immediately before the 

design of soil and crop management decisions, like seeding and fertilisation.  

2. Materials and Methods  

The research work followed four methodological steps which began with field scanning using the dual 

sensor system. While the vis-NIRS sensor recorded soil spectra in the 350-1750 nm spectral range, the ISE 

sensor measured nitrate-N directly based on a previously developed calibration function. At the same time, 

soil samples were collected and used for laboratory measurements of key soil properties i.e., K, P, MC, Ph, 

OC and Ca. The partial least squares regression (PLSR) analysis was employed to develop calibration models 

for the vis-NIRS sensor to predict the listed properties using the on-line collected spectra. Geo-statistical 

interpolation was used to map and compare all soil properties. The following subsections will discuss these 

steps in detail. 

2.1. Dual on-line sensing system 

The dual-sensing system used in this study integrates both an ISE and a vis-NIRS sensor installed on a 

versatile mobile platform. This platform also has provision to mount an electronic control box, a water tank, 

a differential global positioning system (DGPS) receiver, a semi-rugged laptop, and a subsoiler. This platform 

is a single unit, easily attachable to a tractor through a three-point linkage. The ISE sensing system consists 

of three units of mechanisms, namely, sampling unit, measurement unit and control unit. The sampling unit 

comprises a conveyor and a sampling auger designated to pick soil samples, convey, and deliver them to the 

measurement unit. The sampler is a 50 cm^3 metal cup attached to a conveyor chain powered by a hydraulic 

motor. The conveyor consists of a 12.5 mm pitch roller chain and 2 sprockets. As the conveyor rotates, the 

sampler collects soil samples as it approaches the soil surface. As the conveyor proceeds in its movement, 

the soil sampler dispenses its contents into a measuring cup situated along its path just above the input 

sprocket. The measuring cup is a component within the measurement unit which encompasses a sensor 

housing, a mixing mechanism, a filter and a stirrer. In the cup, a soil solution is prepared by adding water 

from the water tank in which an ISE sensor  (SENTEK_Nitrate 3021 combination ISE) measures nitrate-N 

concentration. Once the measurement is completed, the cups will be cleaned, to be ready for the next 

measurement cycle. An electronic control unit uses a C++ computer program language to automate the entire 

system for soil sampling, conveying, measuring, and restoring the system in iterative patterns while the data 

is recorded using dedicated LabVIEW software. 

Besides, the on-line vis-NIRS sensing system designed and developed by Mouazen (2006), consists of a 

subsoiler, which makes trenches in the soil, the bottom of which is smoothened by the subsoiler due to 

downward vertical forces. An optical probe hosted in a mild steel lens holder is appended to the back of the 

subsoiler chisel to measure soil spectra in diffuse reflectance mode from the smoothed bottom of the trench. 

A fibre-type, vis–NIRS  sensor (CompactSpec from Tec5 Technology, Germany), with a measurement range 

of 305–1750 nm and spectral resolution of 1 nm is mounted on the platform to collect soil reflectance spectra.  
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2.2. In-field soil sensing and sampling 

Two arable fields in the Flanders region of Belgium (Figure 3) (Field 1 = 1.3 ha and Field 2 = 0.7 ha) 

were chosen for this study. Both fields have a similar texture of sandy loam as determined by Robinson-Kohn 

pipette method (ISO 11277).  

For the field measurement, the on-line dual-sensing system was driven across the field by a tractor at a 

speed of 2.3 km/hr. The sampling unit of the ISE sensor collected soil samples through a sampler and 

auguring mechanism, and samples were subsequently conveyed to the mixing cup where the soil was mixed 

with deionised water to extract the nitrate ions. A water pump was utilised to facilitate the infusion of water 

into the measuring cup, thereby enabling the creation of a soil solution (soil: water, 1: 5). Subsequently, the 

stirrer was activated ensuring a homogeneous soil solution. The soil nitrate-N concentration was then 

measured using the ISE sensor, which is positioned in the mixing cup and connected to a computer through 

a universal serial bus cable, where the measurements were stored once every second until an equilibrium 

measurement was achieved after about 10 seconds. Afterward, the measuring cup discharged its material 

contents and a cleaning cycle was promptly initiated to prepare it for the subsequent sample. This operational 

process enabled the continuous acquisition of data, with the measuring cup ready to receive a new sample 

after each cleaning cycle. 

Similarly, the vis-NIRS sensor utilized an optical probe, for the collection of soil spectra within the trench 

created by the subsoiler. A PTFE disc, serving as a 99.99% white reference, was routinely scanned at 30-

minute intervals to calibrate the vis-NIRS sensor to standardise measurement intensity. The spectra were 

equally recorded in a computer connected to the sensor via an ethernet local area network cable. A differential 

global positioning system (DGPS) (Trimble AG., Trimble Navigation Ltd., Sunnyvale, Canada) recorded the 

position of each measurement. Soil spectra and nitrate-N values together with GPS location data were logged 

at a frequency of 1 Hz by a custom-made LabVIEW software using a semi-rugged laptop computer 

(Toughbook, Panasonic UK Ltd., Bracknell, UK). 

Field measurements were conducted on well-harrowed and ploughed soil, which was beneficial for 

smooth and effectively collecting the right amount of grounded soil necessary for homogenous soil solution 

making for ISE measurement, although not essential for vis-NIRS measurement. During the on-line field 

survey, a total of 18 soil samples (10 from field 1 and 8 from field 2) were collected randomly from the 

bottom of trenches created by the subsoiler. These were required for subsequent laboratory analysis for 

calibrating the vis-NIRS sensor and validating the ISE measurements. Additionally, a second batch of 20 soil 

samples was randomly collected for additional validation and calibration of the ISE sensor. The intention 

was to investigate how long the ISE-measured nitrate-N can be valid for management decisions.    

2.3. Laboratory chemical and optical measurements 
 

A day after the field sensing, each of the collected 18 soil samples was divided into three sub-samples. 

The first part was sent to the Soil services of Belgium (BDB, Heverlee, Belgium) for the analyses of nitrate-

N, available P, K, Ca, OC and pH using standard laboratory methodologies. The second portion was used for 

moisture content (MC) determination using the oven method after 24 hr drying at 105 0C. The third portion 

was passed for both vis-NIRS scanning as well as ISE measurement. These laboratory ISE measurements 

were used to validate the  ISE on-line measurements and the vis-NIRS measurements were added to the vis-

NIRS model calibration dataset to enhance the prediction accuracy. 

Similar to the ISE field measurement, the same calibration standard solutions were used to calibrate the 

ISE sensor for the same soil-to-water ratio (1:5). 50g of each sample was measured and placed in a beaker to 

which 250 ml of distilled water was added. This was mixed thoroughly 10seconds and filtered using a 10-

micron filter paper. The sensor was immersed into the filtered solution and the potentiometric values were 

logged in millivolts (mV) at 1-second intervals through the LabVIEW software. After 10 seconds of 

measurement, the logged Mv values were averaged to a single value.  

For laboratory vis-NIRS scanning, about 150 g of each sample from the third portion was used to prepare 

three Petri dishes, each measuring 4 cm in diameter and 1 cm in depth. To optimize the signal-to-noise ratio, 

the soil surface was compacted using a spatula. Spectral measurements were conducted under dark chambers 

to eliminate the influences of external lights. Each Petri dish underwent ten consecutive scans (resulting in a 

total of 30 soil spectra per sample), which were then averaged to derive a single spectrum. Like the field 

measurement, vis-NIRS sensor was calibrated using the same PTFE standard reflectance once every 30 
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minutes.  

Furthermore, the second batch of 20 samples were passed for the in-lab ISE sensing and in-lab nitrate-N 

measurements using the same procedure i.e., ISE sensor and continuous flow method, respectively, as the 

method used by BDB for the first batch of samples. This time, nitrate-N was measured using the same 

continuous flow auto-analyser but in the soil fertility laboratory of Ghent University. This step was intended 

to check the error due to a time gap of 15 days between the first laboratory and ISE measurements, which 

could introduce biases. This gap occurred as a result of logistical delays in transporting and processing of 

samples. 

2.4. Sensors data analysis and modelling 

The in-field observations of potentiometric readings of the ISE sensor were transformed from millivolts 

(mV) to Parts Per Million (ppm) using a calibration model. This model was developed by correlating the mV 

values from the sensor with known concentrations of five standard nitrate solutions (ranging from 0.25 to 40 

ppm). The sensor was placed in each solution, logging mV readings at 1 Hz, and the data were fitted to a 

semi-log scale to create the calibration curve. The potentiometric readings obtained in field measurement 

were subsequently projected to ppm using this fitted curve. These measured ppm values were compared with 

standard laboratory measurements to validate the sensor and to confirm its reliability for on-line 

measurement. 

Besides, modelling vis-NIRS spectra for predicting on-line collected spectra requires a multivariable 

calibration method. The collected  18 soil samples were merged with additional samples from a locally 

available spectral library hence, a total of 154 soil samples were used to develop the models for both fields. 

Firstly, soil spectra were cleaned by removing the non-soil and noisy spectra, followed by jump corrections 

at 1045 nm where the two detectors of the vis-NIR spectrometer joined each other. Subsequently, a Savitzky-

Golay filter was applied to smoothen the spectra, and the noisy regions were trimmed, resulting in spectral 

ranges of 400 to 1680 nm. The standard normal variate (SNV) technique was employed as it is a suggested 

technique for effectively normalising spectra and minimising variations (Syvilay, et al., 2015) After spectra 

pre-processing, PLSR analysis was chosen to establish the calibration models, given its suitability over other 

linear regression algorithms in dealing with multicollinearity, which usually exists in the spectral dataset.  

The dataset was divided into train and test sets at 70 over 30 %, respectively, splits using the Kennard-Stone 

algorithm (Kennard & Stone 1969). The PLSR modelling involved iterating training over up to 10 

components using the training set, using leave-one-out cross-validation. Models were then validated using 

the independent test dataset. The prediction performance was assessed relying on root mean square error 

(RMSE), ratio of prediction deviation (RPD), ratio of the performance to interquartile distance (RPIQ)  and 

coefficient of determination (R2).  The modelling process was executed in Python 3.3 using libraries such as 

NumPy and Pandas for data manipulation, Matplotlib for visualisation, and Scipy's savgol_filter for signal 

smoothing. Ultimately, the final models were used to predict the target variables (pH, OC, P, K, Ca and MC) 

using the large on-line collected spectral set over the entire field area.   
 

2.5. Mapping 

Maps of various soil properties (measured and predicted), including nitrate-N, K, MC, P, pH, OC, and 

Ca, were generated for laboratory observations and on-line predictions. The inverse distance weighting 

(IDW) interpolation with a power of 2  was utilised for the laboratory data and on-line ISE data, given the 

relatively smaller sample sizes of 10 and 8 (laboratory samples) and 56 and 32 (on-line ISE data points)  for 

the fields 1 and 2, respectively.  On the other hand, ordinary kriging with a stable semi-variogram model was 

employed for the predicted soil data, being a large dataset with over 1588 and 722 (vis-NIRS) data points for 

fields 1 and 2, respectively. Both maps were categorised into five classes to ensure a meaningful visual 

comparison between the laboratory-measured and predicted property maps using the Kappa value. 
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3. Results and Discussion 

3.1. Evaluation of ISE sensor 

3.1.1. Measurement accuracy 

Figure 1 presents the similarity plot of nitrate data obtained from the ISE sensor under (a) on-line (ISE_On-

line), lab measurements (ISE_lAB), and standard laboratory measurement (SLM) conducted by BDB (SLM-

BDB) (b) Laboratory measurement (ISE_lAB2) and Standard laboratory measurement conducted at Ghent 

(SLM_UGENT) revealing a striking convergence between ISE-Online and ISE_lAB with substantial overlap. This 

signifies a notably high degree of correlation between the on-line ISE measurements obtained in the field and 

those conducted within the laboratory setting with R2 of 0.99 for field 1 and 0.98 for field 2. However, there 

was an evident disparity between the SLM_BDB and ISE values, despite the high R2 of 0.84 with ISE_LAB and 

0.78 with ISE_On-line (Figure 2(a) and (b)).   

These observations align with prior studies by Adamchuk et al. (2005) and Li et al. (2019), who reported 

disparities between ISE measurements and SLM measurements. These observed deviations can be attributed 

to potential biases introduced through soil mineralisation processes, likely occurring during the time laps (15 

days) between ISE measurements and SLM_BDB. SLM_BDB observed mostly higher nitrate concentration than 

ISE measurements except for an observation, where the SLM-BDB showed slightly lower concentration than 

ISE_LAB and ISE_On-line. This is in agreement with Bailey et al. (2021), who observed an increase in soil nitrate 

levels immediately after sampling, with a continuation of this increase during storage at refrigeration. Despite 

the observed disparities, the ISE measured nitrate quite satisfactorily.  

A comparison of ISE Laboratory measurement (ISE_LAB2) with the SLM conducted at a second laboratory 

at Ghent (SLM_UGENT) for the second batch of samples (i.e. 20 samples), employing the same methodology 

as BDB, revealed a strong coefficient of determination (R2) (Figure 2(c)). This confirms the effect of time 

laps on measurement accuracy due to soil N mineralisation, which was observed for the first batch of samples 

left in the refrigerator at -4 0C for  15 days before being measured in the laboratory. When the second batch 

of samples was immediately analysed after soil sampling at the UGent laboratory, the correlation between 

the SLM_UGENT and ISE_LAB2 was high (R2 = 0.93), proving the ISE sensor used in this study provided accurate 

readings for nitrate both under laboratory and on-line measurement conditions. The similarity plot in Figure 

(1(b)) further shows the similarity between the SLM_UGENT and ISE_LAB2  with over 70% of the points closely 

located. This observation further confirms the accuracy and reliability of the ISE measurements. With this 

observation, it is evident that the time-lap induced a discrepancy between ISE_On-line and  SLM_BDB and later 

it was possible to neutralise such discrepancy by fitting a linear function (ISE = 1.2636 ISE_On-line - 0.4607) 

before producing the on-line soil nitrate maps. 
 

 

Figure 1: Similarity plots comparing: (a) measurement with ion selective electrode in the laboratory 

(ISE_LAB), ISE on-line (ISE_On-line) and standard laboratory measurement by the soil service of Belgium 

(SLM_BDB) and (b) measurements of the second batch of samples done with ion selective electrode in the 

laboratory (ISE_LAB2) and standard laboratory measurement conducted at Ghent (SLM_UGENT) 

 

AgEng 2024 Proceedings

341



 
 

Figure 2. Scatter plots between (a) ion selective electrode (ISE) laboratory measurement (ISE_LAB)  and 

standard laboratory measurement conducted by the soil service of Belgium (BDB) (SLM_BDB), (b) on-line 

ISE measurement (ISE_On-line) and standard laboratory measurement conducted by BDB (SLM-BDB) and (c) 

ISE laboratory measurement for the second batch of samples (ISE_LAB2) and standard laboratory 

measurement conducted at Ghent University (SLM_ UGENT). 

3.2. Assessment of on-line vis-NIRS sensor 

3.2.1 Accuracy of vis-NIRS prediction models 

The vis-NIRS models demonstrate favourable performance in both the training and testing sets for MC, 

K, pH, and  P (R2= 0.70 to 0.78, RMSE = 0.52 to 2.46%) ). These indicate that the models can effectively 

explain a substantial portion of the variability in the respective soil properties with relatively small errors 

compared to the observed values, signifying reasonable accuracy. However, the model performance for OC 

and Ca were relatively low (R2 0.63 and 0.68), suggesting a moderate level of explained variability. This 

might be attributed to the low range of OC and high range of prediction for Ca compared to other properties. 

This is in agreement with the findings of Kuang and Mouazen (2011) who noted that a small range of sample 

concentration might result in poor model calibration.  Moreover, the RMSE values for Ca are noticeably 

high, at 17.85% in the test set and 16.59% in the training set. This implies that the model predictions for Ca 

may have larger errors compared to the actual values.  In addition, the RPD from all models remained within 

the range of 1.64 to 2.13. Categorizing the RPD values based on the criteria proposed by  Rossel et al., (2006), 

the model can be considered as very good for K, good for P, pH and MC, while fair for Ca and OC. 

Additionally, evaluating the model performance using the criteria proposed by Nawar and Mouazen (2017) 

using the RPIQ, as defined by Bellon-Maurel et al. (2010) as; 

 

      𝑅𝑃𝐼𝑄 = 𝐼𝑄 𝑅𝑀𝑆𝐸⁄                                                                                (1)

   

where IQ is the difference between the third and first quartiles (IQR = Q3 − Q1) and RMSE is the root mean 

square error, MC, K, P and Ca models performed excellently while the pH model was very good and OC can 
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be classified as a good model. 

Table 1. Result of soil property prediction performance for the visible and near-infrared spectroscopy (vis-

NIRS) sensor on training and test sets. 

  Training set Test set    

Soil property R2 RMSE R2 RMSE LV RPD RPIQ 

MC (%) 0.75 1.69 0.74 1.69 9 2.00 4.68 

K (mg/100g) 0.78 2.34 0.77 2.46 10 2.13 2.87 

PH 0.74 0.61 0.7 0.67 10 1.96 2.24 

P (mg/100g) 0.72 2.35 0.71 2.36 9 1.89 6.56 

OC (%) 0.63 0.52 0.61 0.54 8 1.64 1.72 

Ca (mg/100g) 0.68 16.59 0.65 17.85 8 1.77 5.8 

R2: coefficient of determination, RMSE: root mean square error, LV: latent variable, RPD: residual 

prediction deviation, RPIQ: ratio of the performance to interquartile distance, MC: moisture content, K: 

potassium, P: phosphorus, OC: organic carbon, and  Ca: calcium. 

3.2.2. Maps of Soil Fertility Attributes  
  

The vis-NIRS-based spatial distribution maps (Figure 3) for all properties emerge with a consistent 

pattern for those measured in the laboratory condition while the on-line predicted values emerged with maps 

with moderate similarities with the reference laboratory distribution maps. Field 1 shows higher nutrient 

constituents along the north-east edge of the field which was consistent across all the properties. The peak 

fertility in Field 2 was observed mostly around the west edges of the field. Particularly, the on-line-measured 

OC exhibits a moderate level of congruence with the reference laboratory measurements across the study 

area, with pronounced agreement observed around the peak regions for both fields with considerable variation 

of OC (Field 1 : 1.2-2.5%, Field 2 :  1.2-2.8%) observed over the entire area of the field irrespective of the 

size of the field (0.7 and 1.3 ha). In general, such high organic carbon (OC) content usually enhances the soil 

quality, structure and physical stability (Munnaf and Mouazen, 2021). Furthermore, comparative range of 

OC measurements obtained through these two methods demonstrates a considerable level of agreement with 

the laboratory measurement mostly in field 2 with a kappa value of 0.56 while a moderate level of 

congruencies is observed in field 1 with kappa value of 0.44.  

Similar to OC, the spatial distribution of on-line measured MC shows a moderate level of agreement with 

the laboratory measurement for both fields, with kappa values of 0.59 and 0.56 for field 1 and field 2 

respectively. The utility of the vis-NIRS sensor for MC assessment has been well-documented in previous 

studies by Mouazen et al. (2007), and the modest average mean errors of 0.24% for field 1 and 0.15% for 

field 2  further validates its dependability for MC measurements. The MC peaks were concentrated along the 

edges of field 1, which can be attributed to the presence of trees in these regions, thereby limiting evaporation 

around these areas. As expected, high OC content was also observed in these regions since OC is usually 

positively associated with soil water holding capacity, and hence soil MC.  

The soil pH maps reveal a conspicuous similarity between the on-line and laboratory measurement 

approaches for both Fields despite relatively narrow measurement ranges of 5.3-6.8 and 6.0-7.4 and the 

relatively low kappa values of 0.3 and 0.4 observed in field 1 and field 2, respectively. The peak pH values 

were found mostly around the corners of the field which are equally the regions with observed high moisture 

content.  According to Zhang and Wienhold (2002), an increase in pH values is likely to occur at high 

moisture content due to the anaerobic condition resulting from water-filled pore spaces. Soil P presents a 

moderate level of consistency for both on-line and reference laboratory measurements, with average values 

of 42mg/100g for field 1 for both on-line and laboratory and 40 and 42mg/100g for field 2 for on-line and 

laboratory measurements, respectively. This indicates a high P content in both soils according to the soil 

nutrient criteria of  BDB analysis. A relatively moderate kappa value of 0.58 is observed in field 1 and 0.67 

in field 2 confirming the high similarity between the maps. The high P values may be attributed to the 

application of organic manure, which was a regular practice in the fields used in this study.   

The variability of K maps for both on-line and laboratory-measured values exhibit a noteworthy degree 
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of resemblance, with the peak K value observed around the Northeastern edges of field 1 for both maps. For 

field 2, the peak K values were mostly concentrated on the northwest corner, while the lower values 

converged around the far southeastern part of the field. The values of K for both fields can be classified as 

average to high according to BDB with values ranging between 19.6 and 53.8mg/100g. Both fields exhibit 

moderate similarity between laboratory and on-line maps with kappa value of 0.58.  Ca reveals a substantial 

degree of congruence between the reference laboratory method and the on-line approach with the peak values 

converging around the same regions for both maps. The high kappa values of 0.71 and 0.63 computed for 

field 1 and field 2, respectively, further showed the high degree of similarity between the maps.  

Based on fertility ratings, pH of soils was acidic with field 1 slightly more acidic than field 2 but mostly 

within the range suitable for optimum availability of other soil macronutrients and uptake of P and K (Munnaf 

and Mouazen 2021, Jensen and Thomas, 2010). OC and P contents were high for both fields while Ca and K 

were high in field 2 but within the normal range for crop growth as suggested by BDB. Overall, soil maps 

indicate that the soil fertility attributes in field 2 were slightly better predicted and mapped than those in field 

1 with clear and distinctly similar regions between on-line and laboratory-measured maps. Nonetheless, the 

maps of both fields adequately captured the distinct variation across the field. Notably, both laboratory-

measured and on-line predicted maps had their peak and low values located at similar positions for all 

properties measured within both fields thereby adequately classifying the field into different fertility classes. 
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Figure 3. Maps for laboratory-measured and on-line visible and near infrared spectroscopy (vis-NIRS) 

spectra predicted soil pH, organic carbon (OC), moisture content (MC), extractable phosphorous (P), 

potassium (K), and calcium (Ca). 

3.3. Spatial association between on-line vis-NIRS and ISE measurements   

Figure 4 shows maps of nitrate-N obtained from on-line ISE and other fertility attributed measured with 

vis-NIRS for field 1 and field 2. The distribution pattern of the nitrate-N exhibited striking similarity with 

other soil properties, with similar peaks and valleys observed for all properties except MC, which exhibited 

a slightly different pattern in field 2. This resemblance is attributed to established correlations among these 

properties, as reported in prior research. For example, Wibowo and Kasno (2021) showed a strong positive 

correlation (0.8 to 0.9) between soil nitrate levels and OC content. Similarly,  Kuśmierz et al. (2023) observed 

a driving contribution of OC to the availability of mineral N. Carbon and nitrogen mineralisation have been 

reported to increase with an increase in soil organic matter (Marzi et al., 2020), hence, a positive correlation 

exists between OC and nitrate N. Conversely, the correlation of nitrate-N with pH level has been reported to 

be relatively weak (0.3%), (Wibowo and Kasno, 2021). Some studies have reported a negative correlation 

between pH with nitrate content for highly alkaline soil (pH>7.5) with most of the soil macronutrients tending 

to be available within a pH range of 6.0 to 7.5 (Jensen and Thomas, 2010), which aligned with pH levels 

observed in this study. Furthermore, the similar distribution of nitrate-N and K aligned with findings reported 

by Ramazanoglu (2019) with a strong positive correlation (0.78). Additionally, Franzen et al. (1996)  reported 

a strong positive correlation between soil P and nitrate levels. Likewise, soil MC exhibits a strong positive 

correlation with soil nitrate which gradually declines as the soil becomes oversaturated (Zhang and Wienhold, 

2002). It is important to note that due to leaching, higher concentrations of soil nitrate are typically found in 

the lower soil layer (Gao et al., 2013) Therefore, it is challenging to establish a direct relationship between 

soil nitrate and MC given that this study was conducted on well-drained soils and at 30 cm depth layer. Low 

nitrate concentrations can be observed in relatively dry soil (Ramazanoglu, 2019), explaining the low nitrate 

values observed in the present study.  

Evidently, the maps demonstrate distinct variations in different sections of the fields. The similarity 

between the nitrate-N map and on-line predicted soil properties predominantly aligned around the peak fertile 

areas. The low fertility regions did not exhibit a distinct pattern on the maps. Consequently, these could only 

effectively delineate a management zone into low and high fertility classes, thereby lacking the granularity 

required for an efficient variable rate application. Therefore, the fusion of data from both ISE sensor and vis-

NIRS would provide a better insight into the field fertility classes thereby offering crucial requirements for 

delineating the management zone, which would be more efficient for variable rate fertilization application 

than the current practice (Guerrero et., 2021) that lacks information about soil nitrate. 
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Figure 4. Comparison between maps of nitrate-N with maps of corresponding soil properties measured 

with on-line visible and near-infrared spectroscopy (vis-NIRS) spectra predicted phosphorus (P), calcium 

(Ca), potassium (K), moisture content (MC), organic carbon (OC), and pH for field 1 and field 2. 

4. Conclusions 

A novel dual-sensor platform combining the ion-selective electrode (ISE) and visible and near-infrared 

spectroscopy (vis-NIRS) techniques was used for soil nitrate-N and extractable K, P, Ca, total OC, MC and 

pH. The combination of both sensors offered a comprehensive understanding of spatial variability in soil 

fertility and soil nutrient dynamics, addressing the limitations faced by each technique separately. The 

validation showed a strong correlation of 0.93 between on-line ISE and laboratory measurements. Notably, 

the spatial distribution of nitrate-N measured on-line with ISE exhibited profound similarities with laboratory 

ISE measurements. However, the time lag between measurement conditions may affect nitrate assessment.  

The use of the vis-NIR spectroscopy in the dual-sensor setup showed favourable results for predicting 

several soil properties of interest with a reasonable RPD ranging from 1.64 to 2.13 and RPIQ between 1.72  

and 6.56. Strong spatial similarities were also observed between the laboratory-measured and on-line-

predicted properties, enhancing our understanding of within-field soil nutrient levels.   

The synergy between ISE and vis-NIR techniques thus offers a powerful and comprehensive approach 

for on-line soil nutrient prediction and mapping. By combining the real-time measurements of nitrate-N with 

the extensive spectral information obtained from vis-NIR spectroscopy, farmers and agronomists can make 

informed fertilisation decisions. Future research can explore and refine this approach to maximise its benefits 

and applicability in diverse agricultural contexts. 
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Abstract 

Citrus Huanglongbing (HLB) is the most significant threat to the citrus industry worldwide, resulting in 

substantial economic losses in global citrus production. Currently, no cure exists for HLB-affected trees. The 

fastidious HLB-causing bacteria (CLas) resides in the phloem of the plant tissue. Although several control 

methods have been applied, the most effective method currently to control CLas is the trunk injection of 

oxytetracycline (OTC), which has shown remarkable success in improving tree health, yield, and fruit quality. 

However, existing trunk injection methods are labor-intensive and time-consuming and, hence, have a high 

application cost, posing implementation challenges. For example, the most commonly used devices for the 

injection of OTC in citrus trees in Florida are drill-based and pressurized. OTC injection via these devices is 

very labor-intensive and requires that the device remain attached to the tree for a prolonged period (from 20 

min to 24 hours). Another major concern with these drill-based systems is the possibility of tree injury 

because they make relatively large holes, which serve as entry points for pathogens or insects. The estimated 

cost for OTC injection using these devices is $1.34 to $2.70 per tree, not including labor and injection devices. 

The cost of each device is ~$17, and growers in Florida usually buy 2,000 to 3,000 devices each. In response, 

we have developed a drill-free, non-passive, automated trunk injection device that can be mounted on existing 

farm vehicles to control HLB and potentially other tree diseases. In field experiments, it was found that 100 

ml OTC can be applied by the automated trunk injection system in less than 1 minute. To the best of our 

knowledge, this is the first automated trunk injection system developed for tree crops. 

Keywords: Automated needle-based injection, Huanglongbing, Oxytetracycline, Plant diseases. 

1. Introduction 

Citrus production has been declining since the Huanglongbing (HLB) disease was discovered. Florida's 

orange production is expected to be 3.4 million tons, which is comparable to harvest records from before 

World War II (USDA citrus April prediction, 2022). A phloem-limiting bacterium carried by the Asian citrus 

psyllid is the source of the deadly HLB disease. According to Wang et al. (2016), infection by the fungus 

that causes HLB impairs vascular mobility weakens the tree root system, rapidly deteriorates tree health, and 

eventually lowers production.  

Due to foliar spray off-target losses, on-target evaporation or degradation of active ingredients, and 

inadequate penetration into the tree vasculature where the bacteria resides, attempts to increase the yield of 

citrus trees affected by HLB have failed (Hu et al., 2018; McCollum and Baldwin, 2016). In addition to being 

ineffective against HLB disease, soil drenching has demonstrated better results than foliar spray for citrus 

canker (Francis et al., 2009). This is because the bactericide binds easily to soil particles, potentially harming 

the soil ecosystem and raising the risk of runoff and groundwater pollution. HLB-affected trees have also 

been treated with thermotherapy techniques; however, this method primarily addresses the tree canopy rather 

than the roots (Ghatrehsamani et al., 2021; Ghatrehsamani et al., 2019a; Ghatrehsamani et al., 2019b). 

A currently confirmed successful strategy for controlling HLB is chemotherapy by trunk injection of 

antibacterial chemicals or plant defense activators (Berger and Laurent, 2019; Wang et al., 2016). By 

delivering medications directly to the target area, trunk injection essentially boosts treatment efficacy by 

removing both on-target and off-target losses. Trunk injection's lower danger of environmental pollution 

makes it possible to use it in cities (Ferracini and Alma, 2008). There are three types of trunk injection 

techniques: drill-based, needle-based, and cut-based. Because numerous drill bit sizes are available, drill-

based injection offers a wide range of hole sizes; nevertheless, the shearing action of drilling might damage 

the xylem vessels and limit injectate uptake (Montecchio, 2013; Ojo et al., 2022; Ojo et al., 2024a).  
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Drill-free methods reduce tree wounding and promote quicker recovery but rely on natural sap flow for 

solution uptake, which is time-consuming and infeasible for commercial orchard systems. However, existing 

trunk injection methods are labor-intensive, time-consuming, and hence, have a high application cost, making 

trunk injection impractical for commercial citrus production (Li and Nangong, 2022; Wang et al., 2016). 

Additionally, an irregular distribution of the injectate within the tree upon injection has also been observed 

(Roach, 1939) Although a uniform spatial distribution of injected compounds can be obtained via a multi-

puncture approach, this would only increase labor, time, and cost of application and hence the need to 

automate the process of chemotherapy by trunk injection. For these reasons, an automated drill-free trunk 

injection system was developed and evaluated to treat HLB-affected citrus trees. To the best of our 

knowledge, this is the first automated trunk injection system developed for tree crops. 

2. Materials and Methods  

2.1. Automated injection system 

The automated trunk injection system (Figures 1 and 2) features (i) an end effector consisting of the 

injection needles, (ii) a positioning arm mountable to a utility-type vehicle (UTV), and (iii) a flow system 

(Ojo et al., 2024b). The 3D modeling and finite element package in Solid Edge (Siemens PLM Software, 

Plano, TX) was used to create a computer-aided design (CAD) model of the trunk injection device (Figure 

1) and perform structural analysis of the needle, end effector, and positioning arm using the Von Mises Stress 

test and total translation displacement test. The automated trunk injection system is mounted on UTV via the 

positioning arm. The extension and retraction of the frame to position the end effector such that the opposite-

facing needles are positioned radially across the stem are manually controlled. Needle penetration is achieved 

by the end effector clamp mechanism driven by a hydraulic actuator (maximum push and pull forces; 7.8 kN 

and 5.34 kN, respectively). The needles are inserted radially to a depth of 25.4 mm. The injectate is then 

forced into the stem by a metering pump selected to supply injected fluid at a flow rate of 3.6 ml/s and a 

pressure of 6 Mpa. 

The flat-tip needles (Figure 1C), 25.4 mm in length and 3.937 mm in diameter, had four outlet holes 

placed radially along the circumference of the needle, each 1.27 mm in diameter and was radially inserted on 

opposite sides of the tree to dispense the solution. The end effector consists of two needles, an injection 

manifold, and a gripper mechanism (Figure 1A). The end effector is powered by a hydraulic actuator 

(Midway, DA SERIES, KS, USA) connected to a battery-powered hydraulic pump (Vevor 15QDAMHP, 

CA, USA). The trunk injection system was designed to operate attached to a utility-type vehicle (UTV) via 

a positioning arm (Figure. 1C) consisting mainly of three telescoping tubes (1.52 m long) and 127-mm-

threaded rods. The design considered an extension length of 3.7 m to be covered by the telescoping tubes 

away from the UTV. The positioning arm provides for the extension and retraction of the end effector and 

supports its weight (~30 kg.) at a maximum distance (center of the bed to tree; 1.13 m) without bending and 

retracting to a compact structure behind the UTV.  

Preliminary experiments informed the selection of a metering pump (Neptune 525-E-N3-CORD-PUMP, 

CA, USA). The pump supplies the injected material from a receptacle via flexible hoses and fittings. Two 

check valves (Stratflo 3695RB-038, IN, USA) attached to each side of the end effector were used to ensure 

unidirectional flow, while a flow meter (Vision Turbine Meter BV1000TRN025B WI, USA) attached to a 

datalogger (OM-CP-PULSE101A, CT, USA) and a pressure gauge (Monarch Instrument, 2000 PSIG, NH, 

USA) records the flow and pressure respectively.  
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Figure 1. CAD model for the (A). End effector showing injection manifold, needle and track rollers, and 

extension springs. (B). Positioning arm showing telescoping tubes, UTV, and end effector mounts. (C). Flat 

tip needle showing radially positioned holes at the tip and lock screw hole at the base to connect with the 

end effector jaw. 

 

Figure 2. Top and proximate views of the automated injection system. 

3. Results 

In the Fall of 2023, water injection experiments were conducted on 24 Valencia orange trees in a 

commercial citrus grove, with varying trunk diameters, to assess flow and pressure rates on trees at different 

times of the day. Measurements were taken between 9:45 am and 4:12 pm, with pressure and flow rate 
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recorded every second during injection at a fixed height of 0.2 m above the ground. Before injection, the flow 

system was primed with water, and injection was performed.  

Furthermore, in the Spring of 2024, HLB-affected Navel orange trees were injected using the automated 

trunk injection system with deionized water, and 11,000 ppm oxytetracycline (OTC) within 7 hours of mixing 

the solution. 

3.1. Fall injection with water 

Water injections were performed for each tree until the flow stopped while recording the injection flow 

rate and pressure. The minimum volume of water injected was 53.9 mL, and the maximum was 243.6 mL at 

a duration of 44 s and 68 s, respectively. Injection duration ranged from 30 s to 72 s for all trees. The total 

volume injected for morning injections was not statistically different from afternoon injections, with an 

average total volume of 103.8 mL and 106.3 mL in the morning and afternoon, respectively. The volume per 

time decreased for the afternoon injection compared to the morning injection (Figure 3). The average total 

volume injected was 101.6 mL, 94.7 mL, 95 mL, and 129 mL for group mean trunk diameter of 73.96 mm, 

83.7 mm, 87.79 mm, and 94.79 mm, respectively. 

 
Figure 3. Cumulative volume as a function of time. Solid dotted lines are the average linear function of 

data from each tree injected in the morning (blue) and afternoon (red). 

3.2. Comparison of spring injection with water and OTC 

In the spring of 2024, a comparison between injection with water and OTC was made based on a fixed 

injected volume of 100 ml. By using the automated injection system, the minimum and maximum injection 

duration, recorded when the injected volume was 100 ml, was 9 s and 42 s, 12 s and 40 s, for 11,000 ppm 

OTC and water injection, respectively. The average injection duration was not statistically different (p<0.05) 

between morning and afternoon injections and between 11,000 ppm OTC and water injections. On average, 

injection duration was 17.8 s and 23.1 s for 11,000 ppm OTC and water injection, respectively (Figure 4). 

Variability in total volume injected and injection time was observed, similar to findings from Himelick 

(1972). The cumulative volume injected was notably influenced by soil moisture, increasing by 55.2% during 

irrigation. Although sap flow was not measured, studies suggest a positive correlation between soil moisture 

and sap flow. Daily irrigation significantly enhances sap flow in citrus trees, potentially accelerating the 

translocation of the injected solution. Contrary to expectations, morning injection did not exhibit a substantial 

increase in total volume, suggesting that injection time may have a less significant impact on material intake. 

Water injection showed a higher injection duration compared to OTC, likely due to the lower pH of the 

OTC solution. Research on xenobiotic mobility indicates that a lower pH accelerates the movement and 

dispersion of a compound throughout a tree and into the canopy (Archer and Albrecht, 2023) since the 
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translocation of xenobiotics heavily relies on factors such as pKa, charge, and molecular characteristics. 

 

Figure 4. Injection duration for 11,000 ppm OTC, and water injection. 

4. Conclusions 

Tree trunk injection of therapeutic compounds is an environmentally responsible method of tree 

chemotherapy that is especially effective for treating HLB disease. Conventional (and manual) trunk 

injection, however, has its drawbacks. It is labor-intensive and time-consuming and has a high application 

cost, making it impractical for commercial citrus production. This highlights the need to develop an 

automated system that is optimized for commercial orchard production. Our results showed that the 

automated injection system successfully injected trees both with water and OTC and was much faster than 

manual injection systems which typically are left attached to the tree for up to 24 hours. Further investigation 

comparing the duration of injection, pressure, and flow rate of manual trunk injection systems and the 

employed injection system is required based on the findings from this study. Finally, artificial intelligence 

enabled sensing systems could be used to estimate in real-time tree canopy volume (Ampatzidis et al., 2020; 

Partel et al., 2020) and trunk diameter in order to select the optimal amount of therapeutic materials for 

individual trees. 
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Abstract 

Deep learning-based object detection algorithms are increasingly finding their way into agricultural 

technology. These promise high recognition rates under real-time conditions. However, a large data set is 

required to train the appropriate model. This is no problem for everyday objects, where large datasets are 

available. The situation is different in agriculture and, in particular, in special crops. Datasets are rare here 

and manual generation is very time-consuming and therefore costly. In this paper we present a system for the 

automatic annotation of tree and shrub crops in RGBD data recorded by vehicle-mounted cameras. 

Based on the depth data, the plants are localized and segmented using classical computer vision methods. 

The 3D bounding box of each detected plant are then projected into the RGB image and the congruent pixels 

are assigned to a plant label. The image including the plant labels is added to the dataset. 

We tested the system on plantations for Christmas trees. The data was recorded with Intel’s Realsense D455 

and D435i cameras. Over 50.000 trees were automatically annotated on a total of 7.000 images.  

For testing, a pre-trained model (YOLOV8) was trained with the dataset. While training YOLOV8 on the 

generated dataset saturates with a Mean Average Precision (mAP) of 0.69, qualitative results suggest that the 

resulting model outperforms the noisy model-based process for generating training data. The model was able 

to deliver significantly better results than the detection system used to generate the training data, particularly 

at the edge of the field. 

Compared to manual annotation, our system makes work much more efficient while at the same time offering 

a high recognition rate. It can be used to quickly generate a recognition model even for less common special 

crops.  

Keywords: plant detection, automated data labeling 

1. Introduction 

In precision farming, the focus of cultivation is increasingly shifting to the individual plant. Individual plant 

cultivation is often based on GNSS systems. The position of the plant is known and can be easily localized 

during processing. It is more difficult if no position data of the plant is available or if localization using GNSS 

systems is not possible due to a lack of signal. In this case, systems are used that detect and localize the plant 

based on sensor data and then provide position and plant information for the subsequent processing step. 
 

 

Figure 1. Trees from a vehicle perspective (left) and from a bird's eye view (right). 
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In today's systems, deep-learning-based convolutional neural networks are often used to detect plants in 

image data. To train the system, large amounts of labeled data are required, which are hardly available, 

especially for special crops. Researchers are often forced to label large amounts of images manually 

(Ramcharan et al., 2017, Ozguven and Adem, 2019).  

In their survey Lu and Young (2020) presented different datasets for precision agriculture. They come to the 

conclusion that there are still too few public datasets in this field of research which hinders the advancement 

of neural network-based systems. This problem was also pointed out in the surveys of Wu et al. (2021) and 

Attri et al. (2023). In Attri et al. (2023) survey about the use of deep learning techniques in agriculture, it was 

necessary in many of the reviewed research papers to create a dataset due to the lack of public data. 

To deal with lack of public data sets and the high effort for manually labeling data, different approaches have 

been proposed. Li and Yang (2021) see the problem of small datasets as a few-shot classification problem.  

They identify the three main solutions for this problem, which are data augmentation, transfer learning and 

meta-learning. Ragu and Teo (2023) list in their review about few shot learning in agriculture multiple 

studies, that used this method with success. They come to the conclusion that few shot learning can greatly 

improve the detection performance on small datasets. Lu and Young (2020) recommend Data Augmentation 

to increase the size of small labeled datasets. Transfer Learning was used by Bosilj et al. (2020) to improve 

the training time a semantic segmentation of crops and weed by 80% with fully labeled data. They also show 

that with transfer learning you can take a pretrained crop segmentation classifier to train a new CNN classifier 

for a different crop type using only partially labeled data. 

In order to reduce the workload and speed up the labeling process Desmond et al. (2021) used AI assisted 

pre-labeling of datasets to reduce the decision space for human annotation. 

(Wu et al., 2021) see semi- and unsupervised learning as one of the major development trends in weed 

detection for the future because of the lack of public datasets and to avoid the manual labeling of large 

amounts of data. Bah et al. (2018) presented a new method for Weed Detection with unsupervised Data 

Labeling. They created lines for crops (bean and spinach) growing in lines from UAV images. They used 

these lines to detect inter-row weeds and thus created an unsupervised training set for a neural network which 

could perform close to the same neural network trained with supervised data. 

This paper presents a system for the automatic generation of datasets for agricultural tree and shrub crops. 

Similar to Bah et al. (2018), the structure of the plantation is used to segment trees and shrubs within point 

clouds and use this information to annotate RGB images. Unlike Bah et al. no aerial images are used here, 

but images from a vehicle-guided camera are processed. This has the advantage that the trained model can 

later be used directly on field machines. However, this also has disadvantages: the plants in a row occlude 

each other, which makes labeling more difficult (see Figure 1).   

2. Materials and Methods  

The method used here is based on the fact that the objects to be labeled are geometrically separated from 

each other and only one type of plant grows on the plantation. In addition, there should be no other objects 

on the plantation that are geometrically similar to the plant being searched for. 

2.1. Image acquisition 

The system is based on the assumption that a depth image exists for every RGB image, in which geometric 

shapes, in this case bushes and trees, can be found using traditional methods of point cloud analysis. In 

principle, any type of 3D data is suitable for processing, whereby the depth data must be referenced with 

the RGB data. This condition is fulfilled by RGBD cameras, which generate depth data based on 

stereography or time-of-flight and combine it with the RGB data both temporally and spatially, usually 

without additional calibration. These sensors are also more cost-effective than lidar systems and are now 

also available as water and dust-protected versions that can be mounted on agricultural vehicles.  

In the case described here, two different RGBD cameras (Intel Realsense D455 and D435) were used, 

which have an RGB resolution of 1280x800 (D455) or 1920x1080 (D435) pixels and a depth resolution of 

1280x720 pixels. The depth sensor has a range of 6 m. The cameras were mounted on the front of a tracked 

vehicle in the direction of travel at a height of 80 cm or 130 cm (see Figure 2). The cameras are connected to 

the vehicle computer. The vehicle computer is also used to control the vehicle and uses the robotics 

middleware ROS (Quigley et al., 2009). The RGBD video stream from the cameras is stored on the 

computer's hard disk during the crossing at a frame rate of 30 frames per second (fps). The ROS component 
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rosbag, which stores the RGB data and the depth data (as a point cloud) time-stamped, is used for this 

purpose.   
The vehicle was used on various Caucasian fir (Abies nordmanniana) plantations. The trees had an age of 

four to seven years and a height of 50 cm to 150 cm. The vehicle was navigated through the rows by both 

remote control and GNSS navigation. Recording began as soon as the vehicle started driving across the 

plantation and ended when the last row was completed. The speed of the vehicle was 5 km/h. 

 

 
Figure 2. Robot equipped with various sensors, including two RGBD (red frame) cameras. 

2.2. Plant detection in point cloud  

Once the recordings have been completed, the saved data stream is analyzed frame by frame in the following steps. To 

detect the tree, the depth data is processed in the form of a point cloud as follows. For the calculation the open source 

library Point Cloud Library was used. (Point Cloud Library, 2024). The result is shown in Figure 3. 

 

1. Crop point cloud 

The point cloud is cropped to the area in front of the vehicle (4m x 6m [width x length]). Data outside this 

area is undefined or inaccurate due to the limited range of the camera. 

2. Filtering outliers 

Outliers are recognized and eliminated with the help of a statistical analysis. Points that are significantly 

outside their neighborhood are removed (see Rusu, 2008). 

3. Search for local maxima 

The local maxima are searched for in the point cloud. These represent the tips of the trees or bushes. A radius 

is defined in which a maximum of one local maximum may occur. In this way, false detections (e.g. double 

peaks) can be reduced and the structure of the plantation can be taken into account. The radius can be 

manually adapted to the conditions. 

4. Cluster the point cloud of each tree  

To cluster the point cloud, a min-cut algorithm (see Golovinskiy, 2009) is used, which divides point clouds 

into different areas based on the theory of graph cuts. In this case, the tree cluster is separated from the 

subsurface. Since the point of the tip of the potential tree cluster has already been found by determining the 

local maximum, this is defined as the foreground point and used as the starting point. 

5. Cluster validation and discarding based on size criteria 

After successful clustering, the cluster is validated based on its size. If these are not within the expected value 

(width and height), the cluster is discarded.    
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2.3. Dataset creation 

The previously determined clusters serve as a starting point for labeling the trees in the RGB space. In the work presented 

here, the trees are labeled using a bounding box. The first step is to calculate the bounding box of the tree cluster in 3D 

space. This is then projected into the 2D RGB image. The projection matrices required for this are attached to the images 

as metadata in the case of the Realsense cameras. The result is one 2D bounding box per recognized 3D point cloud 

cluster. The RGB image is saved together with the pixel coordinates of the bounding boxes.  

2.4. Test setup 

To test the overall system, a total of 7,000 images were recorded and analyzed in several passes over 

different crops. A total of 50,000 trees were detected on these images. The data set was divided into 

training data, validation data and test data in a ratio of 70% - 20% - 10%.  

The CNN-based object recognition algorithm Yolov8 (You only look Once, see Terven, 2023) was used for 

testing. To improve the performance of the model, we used a pre-trained model (Yolov8s) which was 

trained on the Coco dataset (COCO Consortium, 2023). This provides a solid basis and is real-time capable 

on edge-devices, which would allow later use on agricultural machinery. The model was trained with a 

batch size of 8 in 50 epochs. The training took place on an Ubuntu 20.04 computer with an Intel i9-9900 

CPU and an Nvidia Quadro RTX3000 (6 GB memory) GPU. 

3. Results and Discussion 

3.1. Dataset creation 

For validation, 100 randomly selected images from the test dataset were annotated manually using the 

anylabeling tool (The Anylabeling Project, 2024). It became apparent that the row structure and the resulting 

occlusion made manual annotation very difficult. Trees further away were particularly difficult to distinguish 

from neighboring trees. For this reason, the label was limited to the first three rows in front of the camera. 

Nevertheless, the time required for labeling was high.  

In the automatically annotated data set, an average of 8.0 trees per frame (minimum 3, maximum 15) were 

found. In the manual annotated comparison group, an average of 7.4 trees (minimum 3, maximum 13) were 

found. On average, 71% of the manually annotated boxes were found (e. g. Figure 4).  

In addition, a random qualitative analysis of the data set was carried out. The following points stood out: 

• Due to the camera-related range restriction of 6 meters, only trees within this radius were added to 

the data set.  

• As a result of the row-related shading, trees in the back rows are partially provided with cut-off 

bounding boxes. 

Figure 3: On the left you can see the point cloud clusters found in different colors from a bird's eye view. The image on 

the right shows the bounding boxes resulting from the clusters from a vehicle perspective. 
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• As the point cloud analysis only uses the geometric properties of the tree, plants and objects with 

similar proportions to the trees were incorrectly detected, especially in the peripheral areas. 

 

Tree detection using point cloud analysis took approx. 40 ms per frame on the system mentioned in 2.4. 

3.2. Training with Yolov8  

As described in 2.4, a YOLOV8 model was trained on the basis of the automatically generated data set. The 

training takes 2.16 hours on the hardware mentioned. An mAP50 (mean average precision) of 0.69 was 

achieved.  

A visual analysis of the results showed that the trained model significantly outperformed the original training 

dataset in some critical areas. This was particularly evident in the edge areas of the plantation, where the 

point cloud analysis sometimes recognized incorrect objects (e.g. bushes at the edge of the field) as trees (see 

Figure 5 - bottom-left). This could be due to the fact that only a very small amount of data in the training 

dataset contains these false detections and is therefore not very relevant during training. However, this should 

be investigated in more detail in future research. Furthermore, on average more trees were found with the 

trained CNN-model than with the point cloud analysis, which is probably due to the limited range of the 3D 

camera on which the point cloud analysis is based. 

The inference per image took an average of 10 ms, which is four times faster than the point cloud analysis. 
 

4. Conclusions 

The system presented was used to quickly generate training data for recognizing Christmas trees from the vehicle's 

perspective. For this purpose, an algorithm was developed that detects trees in RGBD-data and label the trees in the 

corresponding RGB image. In a test, the method was able to find 71% of the ground truth bounding boxes fully automated. 

The time-consuming labeling process can thus be reduced to a minimum. 

The data set created in this way was then used to train a CNN model (YOLOV8). Despite inaccuracies of the dataset 

(30% of the ground truth bounding boxes were not found by the algorithm), the Yolo model converged quickly during 

training and was convincing in the test.  

The resulting model was even able to outperform the method used to create the data set: it detected more trees and was 

able to reduce false detections in the peripheral areas. In addition, only a quarter of runtime was needed per frame. 

Thus, the presented method offers a good possibility to quickly create a labeled data set of tree and shrub crops, which 

can be successfully used to train a CNN model. 

Figure 4: The manually (green) and automatically (red) generated labels in comparison. 
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Abstract 

The impact of livestock in the emission of environmental (aerial) contaminants is increasingly gaining 

scientific attention, especially the last decades where intensive livestock is more prevalent. This study aimed 

to monitor in real-time the environmental and climate conditions of a large-scale poultry facility and to 

identify potential correlations among the recorded variables. Two different sensor systems, uradmonitorA3 

and Cynomys, were placed in-house a large-scale (~ 17.000 broilers), closed-type, forced-ventilated poultry 

house in Greece. Sensor installation was performed at a representative spot of the facility, approximately 30 

– 40 cm above the ground. Monitoring was performed during the broilers’ growing period, from March to 

May 2022 (54 days). Monitored parameters included air temperature and humidity, carbon dioxide (CO2), 

volatile organic compounds (VOCs), particulate matter of 1.0, 2.5 and 10 μm (PM1.0, PM2.5, PM10), noise 

levels, ammonia and luminosity. The measurements were recorded every 5 (CO2, VOCs, PM1.0, PM2.5, PM10, 

noise levels) or 15 minutes (ammonia, luminosity), based on the technical characteristics of each sensor. Air 

temperature and humidity were recorded in both sensor systems. Data were remotely collected from the cloud 

platforms and were used to calculate the daily mean values of each variable. The correlation between the 

variables was determined using the Pearson linear correlation coefficient. A gradual increase (p < 0.05) in 

the ammonia daily mean concentration levels from 0.1 up to ~ 3.0 – 3.5 ppm was observed during the first 

30 – 31 days of growth. This increase was followed by an approximately 2 units reduction (p < 0.0.5) until 

the end of growth period. The final ammonia concentrations were between 1.2 – 1.5 ppm. On the contrary, 

the daily VOCs and CO2 concentrations fluctuated during the first 30 -31 days of growth, followed by a 

gradual increase (p< 0.05) and decrease (p < 0.05), respectively, to their final levels. Pearson statistical 

analysis showed a strong positive correlation between CO2 and temperature, whereas VOCs levels had a 

strong negative correlation with both temperature and CO2. Particulate matters (PM1.0, PM2.5, PM10) were 

strongly correlated to each other. In conclusion, during intensive livestock farming, air quality is changing 

as a result of animal – related emitted compounds. Given the multiple adverse effects of these aerial 

contaminants both on animal health and the environment, monitoring their concentration levels is essential 

for establishing farm-specific control and mitigation practices. 

Keywords: environmental contaminants, sensors, real – time monitoring, broiler’s house 

1. Introduction 

The last decades have seen an increasing demand of food followed by a dramatic growth population. This 

has put great pressure on both the livestock as well as the agricultural sector, which struggle to meet the 

current demands in a world severely affected by the climate change. Indeed, the earth temperature is rising. 

Temperature rise is an ongoing crisis and one of the major challenges of the 21st century. This increase in 

the Earth’s average surface temperature, widely known as the global warming effect, can be attributed to the 

increase in the greenhouse gases (GHG) emissions (main GHG are water vapor, carbon dioxide, methane, 

nitrous oxide and ozone) (Jose et al., 2016; Seijan et al., 2016). Although the global warming effect is 

generally considered to be necessary for the living organisms, the continuously growing accumulation of the 

greenhouse gas emissions in the atmosphere due to the intensification of man-made activities over the last 

decades has resulted in the magnification of the greenhouse effect. The industrial and agricultural sectors are 

main emitters of GHG (Seijan et al., 2016). 

The livestock sector is the leading source of greenhouse gas (GHG) emissions for the broad agricultural 

sector, contributing directly and indirectly to their production, e.g. through animal physiology, animal 

housing, manure storage, manure treatments, and land application of manure and chemical fertilizers (Rojas-

Downing et al., 2017). In addition to the GHG emissions that highly impact the Earth’s climate, concentrated 

animal feeding operations can also emit other polluting compounds, such as ammonia, volatile compounds 

and particulate matter of different sizes (PM1.0, PM2.5 and P10). The emission of these compounds although 

not contributing to the GHG effect, can drastically alter the air quality of the farm facilities. This effect 
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severely compromises human and animal health due to the serious side effects they have. Thus, livestock-

related air pollutants can adversely affect the climate and the ecosystem in multiple ways: they contribute to 

climate change, contaminate the environment, threaten the safety of animals and farmers, ultimately 

rendering food safety questionable. 

Appropriate monitoring of livestock-related air pollutant concentrations is challenging and requires a lot 

of effort. Generally, classical analytical techniques are used for measuring the in-house air pollutants 

concentrations. Analysis based on this approach includes air sampling from specific spots of the housing 

facility, with air samples being subsequently analysed. These techniques, however, although considered to 

be more precise and accurate, have several limitations. They are time consuming, labour intensive, require 

skilled personnel and provide retrospective, off-site information (Khizar et al., 2022). Due to these 

limitations, analytical techniques allow only for a small number of samples to be analysed. On the other hand, 

monitoring with appropriate sensors provides an overall and more representative overview of the air 

concentration dynamics, allowing to continuously control the air quality conditions in the animal housing 

facility in real time and with lower price in comparison to classical, analytical methods (Khizar et al., 2022). 

This is especially valuable for the large-scale facilities, that need to provide an appropriate and healthy 

environment for animal’s rearing. Regarding the requirements of the Green Deal for a sustainable farm-to-

fork continuum, the need for controlling the air conditions within the farms is becoming even more urgent.  

Despite the interest of the last decades regarding these pollutants and their key role in the air quality of 

farm facilities, there is still little progress in Greece. Therefore, the aim of this study was to imprint the 

dynamic conditions that prevailed in a large – scale, forced ventilated closed type broilers house in Greece 

and to identify possible interactions among the monitored variables.  

2. Materials and Methods  

Two real time sensor systems, uRADMonitorA3 (Magnasci SRL, Timisoara, Romania) and cynomys 

(Cynomys S.r.l., Genova, Italy) (Figure 1) were installed in a large-scale, closed-type poultry house located 

in Evoia, Greece. The building was 125 m in length and 10 m in width (Figure 2) and was forced-ventilated 

using a tunnel ventilation system that consisted of 12 fans equally split in one side of the building. The batch 

consisted of approximately 17.000 broilers.  

The uRADMonitorA3 system was used to measure carbon dioxide (CO2), volatile organic compounds 

(VOCs), particulate matter of 1.0, 2.5 and 10 μm (PM1.0, PM2.5, PM10) and noise levels, whereas ammonia 

and luminosity levels were monitored using the cynomys system. Air temperature and humidity were 

measured in both systems. Measurements were taken every 5 minutes or 15- 20 minutes for the 

uRADMonitorA3 and cynomys sensors, respectively.  

 

Figure 1. uRADMonitorA3 (right) and cynomys sensor systems (left) placed in the broiler house. 
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The sensors were placed in a representative spot of the facility (30 x 5m), approximately 30 – 40 cm 

above the ground (Figure 1). Since the room inside the building was gradually released based on the broilers 

age, the sensors were installed in a spot where broilers were present throughout their growth period.  

 

 

Figure 2. Overview of the poultry facility where the sensors were installed. 

 

Following installation, data collection was performed continuously during the entire broilers’ growth 

period (1-day-old chicks to 54 days-old, finished broilers), from March to May 2022. Data were collected 

remotely from the corresponding cloud platform in csv files. In the case of uradmonitorA3, data were 

transformed into measurements using the equation provided by the sensor supplier (uRADMonitor, 2024). 

Mean daily values were calculated and statistically compared using Pearson linear corelation to identify 

possible correlations between the collected variables. Comparisons were performed for each pair of 

monitored variables. All the combinations between the measured variables were taken into consideration. 

Results were assessed as follows: variables were thought to have a strong correlation for r values above 0.7 

or below -0.7, whereas for r values between 0.5 to 0.7 or -0.5 to-0.7 the variables were thought to have a 

moderate correlation. For r values below 0.5 or -0.5, variables were considered to have a weak correlation, 

whereas for r values below 0.3 or -0.3, variables were not correlated at all. Where necessary, t-test statistical 

analysis was performed using the collected (raw) data of each variable measured in different time intervals 

(days) to identify significant differences between the mean daily concentrations of the targeted air pollutants 

in different days of the broilers’ growth period.  

3. Results and Discussion 

The daily mean levels of the air quality pollutants throughout the broilers’ growth period are presented in 

Figure 3. Among the collected variables, ammonia was identified as the one with the highest changes. 

Indeed, ammonia concentrations showed a gradual increase (p < 0.05), from 0.1 ppm to approximately ~ 3.0 

– 3.5 ppm during the first 30 – 31 days of growth. This increase was followed by a reduction to the final 

levels at the end of the growth period (1.2 – 1.5 ppm). Ammonia in livestock is formed due to the biological 

and chemical breakdown of manure protein, uric acid and urea during manure storage and decomposition. 

As degradation begins due to microbial activity, ammonia is released and volatilized in the atmosphere, 

making manure and urine a primary source of ammonia. According to the Pearson statistical analysis, 

ammonia had moderate positive and negative correlations with temperature and humidity, respectively 

(Table 1). 
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Figure 3. Mean daily concentration dynamics of the targeted air pollutants during the broilers’ growing period (54 

days). 

 

On the contrary, the daily VOCs and CO2 concentrations fluctuated during the first 30-31 days of growth, 

followed by a gradual increase (p < 0.05) and decrease (p < 0.05), respectively, to their levels at day 54. The 

final concentration levels of VOCs and CO2 were 699955.3 and 527.6 ppm, respectively. The production of 

livestock -VOCs is attributed to multiple sources, such as feces, urine and feed (Aizawa et al., 2010). 

Among the climate parameters, temperature was identified as the one with the highest impact on the 

concentrations of the pollutants, affecting both the levels of VOCs and CO2, though in different ways. Pearson 

statistical analysis showed a strong positive correlation between CO2 and temperature, whereas VOCs levels 

had a strong negative correlation with both temperature and CO2. Particulate matters (PM1.0, PM2.5, PM10) 

were strongly correlated to each other, with Pearson values being above 0.9 in all cases (Table 1). 

 

Table 1. Pearson linear correlation results. Red and yellow cells indicate values with moderate and strong negative 

correlation, respectively; green and blue cells indicate values with moderate and strong positive correlation, 

respectively.  

 

4. Conclusions 

In intensive poultry farms, air quality is subjected to changes mostly due to animal – related emitted 

compounds. Given the multiple adverse effects of these aerial contaminants both on animal health and the 

environment, monitoring their concentration levels is essential for establishing farm-specific control and 

mitigation practices. 

Temperature Humidity Carbon dioxide VOCs PM1.0 PM2.5 PM10 Noise Ammonia

Humidity -0.2382

Carbon dioxide 0.8371 0.0411

VOCs -0.9163 0.0019 -0.8911

PM1.0 -0.1222 0.4528 -0.0985 0.0003

PM2.5 -0.1023 0.4480 -0.0876 -0.0149 0.9990

PM10 -0.1055 0.4503 -0.0954 -0.0084 0.9977 0.9990

Noise -0.5472 -0.0765 -0.6030 0.6683 -0.2059 -0.2145 -0.1986

Ammonia -0.5389 0.5800 -0.0973 0.1971 0.0229 0.0026 -0.0074 0.1078

Luminosity -0.5944 0.1320 -0.5741 0.7439 0.0212 0.0010 0.0035 0.5597 0.2605
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Abstract  

This paper presents a methodical approach for measuring the process quality of the agricultural task 

soil tillage. This is a crucial step towards the development of automation in the context of autonomous 

agricultural field work. Therefore, the relevant parameters that define the process quality for autonomous 

tillage must be identified. These parameters depend on the agricultural task, such as primary tillage, 

stubble cultivation, or seedbed preparation, and are based on the farmer’s expertise and focus. The quality 

parameters are the identified set of parameters for each task that indicate the quality of the process. For 

each individual parameter, the proposed measurement method can be applied. The method involves three 

basic steps. (1) Different algorithms are implemented to characterize the quality parameter based on, e.g., 

3D point cloud data or image data. The algorithms are verified in a deterministic environment, such as a 

simulation environment or a test bench. (2) Afterwards, the Spearman correlation coefficient of the var-

ious parameter metrics is analyzed to cluster the metrics into groups with similar physical properties. 

Based on the clustering, parameters can be chosen considering defined criteria (low resource-intensive, 

sensor-setup specific, etc.). (3) Finally, the selection of the parameter metric is validated by testing the 

implementation infield, considering challenging cases, anomalies, and influencing factors such as work-

ing speed or soil dependencies. The measurement method for the quality parameter could be used to 

derive a model that describes the variation of the parameters concerning the degrees of freedom of the 

agricultural task, e.g. the working speed or working depth for the tillage process.  

Keywords: Tillage, Agricultural Process Quality, Measurement Method, Process Sensor Technology 

1. Introduction 

Soil tillage in agriculture aims to create an optimal soil structure for the crop, including the processes 

of germination and growth. Tillage tasks vary throughout the year, depending on the crop rotation. Farm-

ers perform primary tillage before seedbed preparation and sowing to mix and loosen the soil. This is 

typically accomplished using implements such as plows or heavy cultivators. During seedbed prepara-

tion, the uppermost layer of soil is loosened, finely crumbled, and reconsolidated, typically with imple-

ments like a seedbed combination or rotary harrow. Stubble cultivation after harvest in summer and the 

incorporation of cover crops in spring are carried out only as deep as necessary to break the soil's capil-

larity and protect the water content in the soil. A fine cultivator or disk harrow can be used here. 

Despite the diversity of the tasks, objectives, and implements, tillage is often a research focus regard-

ing automation in agriculture. A potential explanation is its greater tolerance to error than other tasks, 

such as sowing. The interest in tillage automation is also underlined by the scarcity of skilled labor in 

agriculture, especially for tasks with low area performance (ha/h). In addition to these benefits, there are 

also sustainability aspects in the automation of tillage. Automation of the tillage process can improve 

energy efficiency or help protect the soil through minimized soil intervention, enhancing biological ac-

tivity and forming a more resilient soil structure with higher resistance to erosion.  

Features such as guidance systems and telemetry solutions are already established in the market. 

Streitberger et al. (2018) state that these features are classified within automation levels 1 and 2. Moving 

on to automation level 3, the automated vehicles must monitor the process and environment. Verband 

Deutscher Maschinen- und Anlagenbau (VDMA) Landtechnik & Bayerischer Bauernverband (2020) 

specifies autonomy level 2 concerning soil tillage as manual adjustment and guidance of the implement 

with an assistance system. In contrast, level 3 describes the automatic control and documentation of 

subtasks according to the farmer's specifications. A measurement system is required to assist during the 

process and assess and document the process’s output, which is here defined as process quality. 

Surface roughness, crop residue cover, and aggregate size distribution are potential process quality 

parameters that could be considered for measurement in the context of tillage. Most metrics and algo-

rithms for the description of surface roughness are based on height profiles. These height profiles can be 

derived from contact-measurement devices like relief meters (Kuipers, 1957) or non-contact-measure-

ment devices like laser scanners or stereo vision systems (Boysen et al., 2023; Martinez-Agirre et al., 

2016; Riegler-Nurscher et al., 2017; Taconet & Ciarletti, 2007; Thomsen et al., 2015). The evaluated 
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metrics range exemplary from the prediction of the surface storage capacity (Hansen et al., 1999) over 

to the standard deviation of individual elevation points, respectively, the index of Currence and Lovely 

(1970) to the Peak Frequency (Römkens & Wang, 1986).  

Sieve analysis is widely applied to determine the aggregate size distribution. However, it can be in-

fluenced by changes in aggregate structure resulting from frictional effects caused by transport, filling 

the sieve, and oscillation motion of the sieve (Anisch et al., 2016). Sensor-based evaluations may be 

based on 3D data, as exemplified by the method presented by Steinhaus and Frerichs (2020), or on the 

evaluation of image data. The various image-based algorithms can be classified into computer vision 

(e.g. Bosilj et al., 2020; Itoh et al., 2008) or machine learning approaches (e.g. Ajdadi et al., 2016; Ali-

rezazadeh et al., 2021; Azizi et al., 2020). The aggregate size distribution can be described over the 

working width or summarized as the mean weighted diameter. Furthermore, it is possible to describe 

aggregates' spatial distribution. 

There are several methods for determining crop residue cover. The so-called meter stick or line 

method determines the degree of cover based on the overlap of organic material with a placed stick. 

Another method is to compare images indicating a specified crop residue cover level. Measurement 

methods can also be based on image data (e.g. Pforte, 2010; Riegler-Nurscher et al., 2018; Schmidt, 

2022). Potential metrics for describing the parameter include crop residue cover based on individual 

detected pixels/grid points, the area with a defined percentage of crop residue cover, or the distribution 

of the crop residue cover. In addition, it could be possible to determine the orientation of the crop in 3D 

data and verify if the organic matter has been effectively pulled out/separated from the soil. 

Measurement methods based on non-contact measurement devices like laser scanners or camera sys-

tems provide higher accuracy for these exemplary process quality parameters. However, they need man-

ually labeled data as a reference. Regarding crop residue cover, Riegler-Nurscher et al. (2018) demon-

strated that these human-labeled data also underlay uncertainty. They examined the standard deviation 

of ten evaluators and showed that the deviations for soil, living biomass, and remains in the classes to be 

labeled were 5.5 %, 4.2 %, and 3.5 %, respectively. Analyses of aggregates are similarly subject to un-

certainty. The intricate fracture patterns observed in soil mechanics can impede the clear identification 

of aggregate boundaries. 

Despite the large variety of potential metrics and algorithms for the various process quality parame-

ters, there is still no commonly applied framework for comparing measured and evaluated parameters in 

the field. Therefore, this paper presents a methodical approach to identify the most relevant metric to 

describe the individual process quality parameter to monitor and measure the quality of the tillage pro-

cess. The method ensures that the measured parameters are verified in controlled, reproducible conditions 

to derive reference values. The validation is then conducted by field trials. 

2. Methodical Approach for Tillage Process Quality Measurement 

Before the measurement, it is necessary to identify the process quality parameters to be measured. 

The process quality parameters are selected after literature research and interviews with experts (farmers, 

agronomists, etc.). This parameter identification step, exemplary for the tillage process with a cultivator, 

is visualized in the bottom line in Figure 1. For the tillage process with a plow, process quality parame-

ters candidates are crop residue cover (target value 0...5 % (Bernacki et al., 1972)), furrow width, depth, 

and evenness or shape of cut soil bar.  

After identifying the process quality parameters, the measurement method for each parameter itself 

can be applied. The first step involves the implementation of various metrics to characterize process 

quality parameters related to the tillage process. Different metrics can evaluate varying data fundamen-

tals, such as 3D point clouds for spatial metrics and 2D images for texture analysis. Testing the algorithms 

for the different parameter metrics under various conditions in a deterministic environment is necessary 

to verify the algorithms. In this verification step, it is possible to ascertain whether the metric accurately 

reflects the intended process quality parameter and its behavior, as well as to derive reference values 

from simulations. Simulation techniques or controlled experiments conducted in laboratory settings (e.g., 

soil bin) can be utilized for this purpose. The validation of the simulation or the test bench setup is not 

part of the proposed measurement method. 
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Figure 1. Proposed Methodical Approach to measure process quality in tillage processes. 

 

In the second step, the evaluated metrics undergo statistical evaluation using Spearman's rank corre-

lation coefficient. Spearman rank correlation coefficient is relatively robust against outliers and therefore 

preferred to the Pearson correlation coefficient (Bortz & Schuster, 2010). The reason for this is the use 

of the ranks of the analyzed values instead of their actual value. The Spearman’s rank correlation coeffi-

cient 𝑟𝑆 is calculated  

𝑟𝑆 = ρ𝑅(𝑋),𝑅(𝑌) =
cov(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)

 (1) 

where 𝜌𝑅(𝑋),𝑅(𝑌) is the Pearson correlation coefficient of the ranked variables 𝑅(𝑋), 𝑅(𝑌), 

cov(𝑅(𝑋), 𝑅(𝑌)) is the covariance matrix, and 𝜎𝑅(𝑋), 𝜎𝑅(𝑌) are the standard deviations of the ranked 

variables 𝑅(𝑋), 𝑅(𝑌) (Bortz & Schuster, 2010). This analysis enables the identification of parameter 

metrics that share similar physical properties. The correlation of metrics with 𝑟𝑆 values close to 1 or -1 

suggest similar physical properties. By identifying clusters among the parameters, we can efficiently 

select those from the cluster that describe a process quality parameter, for example, with minimal com-

putation time or the best fit with the existing sensor setup. Parameters that do not fit into any cluster 

require special consideration as they could indicate a distinct property or be suited only for specific cir-

cumstances.  

In the third step, the chosen process quality parameter metrics must be validated using data from field 

trials. The investigations under determinate environmental conditions ensured the metrics' correctness. 

So, for infield data, the process quality parameter values classified on an ordinal scale must correspond 

to the subjective classifications of a sample of farmers and agronomists. Anomaly cases should be con-

sidered. In addition, Spearman correlation coefficients can again be calculated. In addition to the param-

eters’ sensitivity to e.g. anomaly cases, the agreement of the results with those of the deterministic envi-

ronment should also be analyzed. Any unexpected differences must then be investigated in more detail. 

The following chapter outlines the methodological approach for the tillage task with a cultivator as 

an example. The cultivator, characterized by its limited adjustment options and wide range of applica-

tions, facilitates data generation across various scenarios with differing quality requirements and long 

operating times throughout the year. This design supports a focus on data collection rather than attach-

ment settings, thereby focusing on the methodological approach. 

3. Methodical Process Quality Measurement of the Cultivator 

In textbooks by authors such as Köller (1981), Köller and Hensel (2019), Soucek & Pippig (1990), 

or Estler & Knittel (1996), the primary objectives of tillage are to maintain or enhance the soil's charac-

teristics to create favorable germination and growth conditions for crops and to minimize the growth of 

undesirable vegetation. Surface roughness, residue crop cover, and aggregate size distribution are possi-

ble parameters to determine the quality of tillage using a cultivator. The optimal parameter values and 

their relative importance vary from case to case and are, therefore, at the process planner's discretion, 

namely the farmer. 

To extract suitable metrics to describe the process quality parameters, the method presented in Chap-

ter 2 is used. A simulation environment represents the deterministic environment. Since the widely used 

sieve analysis, for instance, only measures static diameters, modeling the soil aggregates with hemi-

spheres is proposed in the initial step. Based on this, deformed spheres (modified in size and shape) can 
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…
Process quality 
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identification
Surface 

Roughness

Crop Residue

Cover

1. Verification of algorithms in a deterministic environment

2. Correlation analysis of parameter metrics

3. Validation and testing on data from field trials
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also be used. These spheres are distributed on a ground plate based on the Rosin-Rammler-Sperling-

Bennett distribution (Hillig, 1986; Soucek, 1986). The ground plate can imitate the landscape with 

heights and depths and thus, for example, represent an uneven terrain. In addition to the soil aggregates, 

organic material can be simulated in various distribution densities on the ground. It is recognized that the 

simulation approach offers the potential to investigate a range of sensors and their suitability efficiently. 

Nevertheless, it is crucial to acknowledge that this simplified simulation approach does not fully reflect 

the complexities of reality. As an alternative to the simulation, a test bench scenario, such as a soil bin, 

also provides a deterministic environment.  

The Spearman correlation coefficient is then calculated for the various metrics described in Chapter 2 

and analyzed in correlation matrices. Correlating parameters form a cluster. Metrics are selected based 

on the clusters and the decision criteria, e.g., low resource-intensive, sensor-setup specific. 

The selection of the parameter metrics must then be validated. An experimental setup is suitable for 

this purpose. Figure 2 shows three field sections (peat soil). Section 1 is not processed, while sections 2 

and 3 are processed at different working speeds with the same cultivator and cage roller. If, for example, 

the selected roughness metric is to be validated, the metric for section 2 should give the smallest values. 

Larger values should result for section 3 and 1. An alternative value system that is entirely at odds with 

the aforementioned one would also be acceptable. 

 

 

Figure 2. Soil surface after the tillage process with a cultivator with cage roller. 

4. Discussion 

This paper's measurement method could help identify suitable metrics for measuring the tillage pro-

cess quality. Such a measurement system would be necessary for the next tillage autonomy level 2 and 

3, as outlined by VDMA Landtechnik & Bayerischer Bauernverband (2020). The assistance system 

(level 2) and the automatic control and documentation of subtasks according to the farmer’s specifica-

tions (level 3) require a control loop, as exemplified in Figure 3. The farmer is still responsible for the 

process planning and specifying the agronomical boundary conditions and process parameters (working 

depth, implement, objectives, …). Furthermore, the farmer defines the process quality parameters as 

reference variables for the automated system. The proposed measurement method supports the selection 

of the measured input values for the controller. Influences on the soil fracture behavior, like non-homo-

geneous soil type, moisture, or density, must be considered in the modeling (Bögel, 2022; Elijah, D. L. 

& Weber, 1971). The control idea can be expanded by the efficiency aspect, as suggested by Kazenwadel 

et al. (2023), so that it results in a multicriterial optimization problem. It should be considered that it is 

not easy to model all the influences cleanly, as the implement itself (roller, type of tines/blades) also 

strongly impacts the process quality. Therefore, modeling will probably first run out for separate imple-

ment configurations. By adopting this modeling approach, the necessity for continuous measurement in 

the control loop could eventually be significantly reduced.  

The methodology primarily focused on process quality parameters, assuming optimal implementation 

functionality. However, process parameter monitoring is imperative for the automated system. This in-

cludes, for example, the material flow in the implement (detection of blockages) or the condition of the 

tines or blades.  

Additionally, the proposed method omits the validation of the simulation itself, noting that the simu-

lation environment serves as a means to an end. Nonetheless, given the method's requirement for valida-

tion on real data for each parameter, the authors find this approach acceptable. 
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Figure 3. Exemplary Closed Control Loop of an automated tillage process. 

5. Conclusion 

The literature introduces various parameters with many metrics to describe the quality of the tillage 

process. This paper presented a methodological approach to evaluate the different metrics to find the 

most relevant ones. Therefore, the method consists of three steps: In the first step verifying the parame-

ter’s metric in a deterministic environment (simulation, test bench) is done. In the second step, the avail-

able metrics are clustered based on similar physical properties identified using the Spearman correlation 

coefficient. In the last step, the most significant metrics are validated on infield data. The idea of model-

ing the parameters over the possible degrees of freedom (manipulated variable and disturbances) needs 

further investigation but could be one possible use case for the method.  
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Abstract 

Pruning is one of the most important and at the same time most labour-intensive processes in viticulture. 

With mechanical pre-pruners, this task can be significantly facilitated. Operating these machines, however, 

is still challenging and tiring. Systems for automated avoidance of piles in the supporting material are 

commercially available but have different limitations based on the used sensor technology. Light detection 

and ranging (LiDAR) sensors are a robust technology that has proven its suitability for digital reconstructions 

of vineyards. Therefore, this work aimed at developing and validating an algorithm for automated detection 

of metal piles by means of LiDAR based 3D reconstruction. 

A multi-sensor setup including a LiDAR, an inertial measurement unit (IMU), as well as RTK-GNSS was 

employed to make scans in an experimental vineyard during dormancy. The simultaneously recorded data 

were fused in order to generate a georeferenced 3D reconstruction. A novel algorithm was developed to 

segment the point cloud, detect the metal piles based on reflectivity values from the LiDAR and reconstruct 

the piles. The validation comprised further independent datasets, as well as ground-truth positions measured 

manually with RTK-GNSS. 

The validation results have shown a high reliability of the developed algorithm with 100% true-true 

detections among the grapevine canopy datasets comprising 163 metal piles. Further, the statistical analysis 

has shown a high absolute and relative accuracy in the prediction of the piles’ upper and lower ends, with 

root mean square (RMS) values in the range of approx. 5 cm, as well as mean absolute errors (MAE) and 

mean bias errors (MBE) below 5 cm for the x-y plane. This was considered sufficient for use in systems for 

automated pile avoidance. Further, the results have implied also a high potential of the method not only for 

detection of piles but also trunk inventory. 

Keywords: viticulture, pruning, pre-pruner, LiDAR, 3D reconstruction. 

1. Introduction 

Due to the lack of personnel and growing economic pressure, mechanisation alternatives for particularly 

labour-intensive tasks in viticulture are becoming relevant for more and more practitioners. Pruning is of 

great importance for grapevine growing but at the same time one of the most time-consuming tasks 

(Fernandes et al., 2021). Especially in regions, where grapevines are grown in trellis training with supporting 

wire frames, digging up the pruned vine wood is physically demanding and accounts for the majority of the 

time required. With pre-pruners, the upper part of vines can be removed mechanically by cutting and 

mulching it. These machines make the subsequent lifting process much easier and are also considered as an 

important component to facilitate autonomous pruning in the future (Silwal et al., 2022). Their operation, 

however, is relatively complex and requires operators to continuously check and readjust the various setting 

parameters, which leads to fatigue over time and an increased safety risk. Specifically, the bypassing of piles 

in the wire frame requires a high level of attention to avoid damage. There are commercial systems using 

optical, inductive or mechanical sensors to detect the piles and automatically open and close the cutting tools 

accordingly (e.g. Rinieri Sensing-CPL, ERO AOS 2.0, Pellenc Visio). However, these systems are only 

suitable for certain pile materials and diameters, or have only limited reliability and precision, respectively. 

Recent camera-based systems (e.g. ERO VITIassist, Clemens C.VISION) still need to prove their 

functionality in practice, especially under varying environmental conditions. 

There has been significant technical progress in sensor systems based on the ‘light detection and ranging’ 

(LiDAR) principle in recent years and such sensors have been successfully used in various studies for the 3D 

reconstruction of fruit trees (Tsoulias et al., 2020) and to quantify different phenotypic variables in viticulture 

(Arnó et al., 2012; Siebers et al., 2018). They are a promising approach for recognising different structures 

in the vine rows, even in dormancy. Main advantages of this sensor technology are a high resolution and 
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accuracy combined with a low susceptibility by environmental influences. For the present paper, a project 

was set up to develop a methodology to identify metal piles in vineyard rows from georeferenced 3D 

reconstructions. Main objectives to achieve this aim were the fusion of LiDAR data with RTK-GNSS and 

inertial measurement unit (IMU) data, as well as the development of a pile detection algorithm including its 

validation with data acquired in a vineyard.  

2. Materials and Methods  

2.1. Instrumentation  

For data acquisition, a sensor frame was designed and attached to a standard narrow-width tractor for 

vineyards. A VLP-16 Puck Lite LiDAR (Velodyne Lidar Inc., San Jose, CA, USA), a VN-100 inertial 

measurement unit (IMU) (VectorNav, Dallas, TX, USA), as well as an R10 RTK-GNSS receiver (Trimble, 

Sunnyvale, CA, USA) were mounted on the frame as illustrated in Figure 1a. In Figure 1b, the orientation of 

the LiDAR’s and IMU’s coordinate systems are shown, where the IMU coordinate system corresponds to the 

body frame. The spatial offsets xoff and zoff between LiDAR and GNSS equalled to 0.272 m and 1.09 m, 

respectively (Figure 1c). The LiDAR acquired distance values in 16 layers of 360° around the zL-axis, where 

the layers were arranged in a field of view from -15° to 15°. It worked with a laser firing frequency of 18.08 

kHz in single return mode, where the firings alternated continuously between the 16 layers. The rotation 

speed around the zL-axis was set to 300 rpm and the range accuracy was indicated with ± 3 cm by the 

manufacturer. Further, the LiDAR outputted reflectivity values between 0 and 100, indicating the percentage 

of light reflected by diffuse reflector surfaces. The IMU’s static accuracy was indicated with 2° RMS for the 

magnetic heading and 0.5° RMS for roll and pitch. The RTK-GNSS’s horizontal accuracy was given as ± 8 

mm + 1 ppm RMS and its vertical accuracy with ± 15 mm + 1 ppm RMS. To acquire the different sensor 

streams simultaneously, a C# software with a multi-thread architecture was used (Paraforos et al., 2016).  

 
Figure 1. (a) Sensor frame with (b) indications of coordinate systems and (c) spatial offsets. 

2.2. Field experiments 

Measurements were carried out on 29th March 2023 prior to pruning in a vineyard of Geisenheim 

University (49.986 N, 7.948 E Geisenheim, Hesse, Germany). The training system was a flat cane guyot with 

an average canopy height of approx. 2 m. Row width and distance between the plants were approx. 2 m and 

0.5 m, respectively, while the overall length of the rows was approx. 100 m. All rows were planted with 

different varieties of Vitis berlandieri with very similar phenotypes. The greening had been mulched in 

autumn. Hence, there were no weeds longer than approx. 15 cm on the ground. Data were collected from 

four rows, i.e. five canopies at a speed of 0.5 km h-1. Figure 2 gives an overview of the experimental vineyard 

with Figure 2a showing an aerial photo and the measured rows indicated in white, Figure 2b showing a view 

into an exemplary row and Figure 2c showing schematically the setup of the measured rows. Each pass 

collected data from two canopies, left and right of the tractor. Rows 1 and 3 were taken together as a dataset 

for the southbound direction, and rows 2 and 4 were taken together for the northbound direction. The first 

two piles in rows 2, 3 and 4 were removed due to incomplete data acquisitions at the beginning. Consequently, 

there were 83 and 80 piles examined in rows 1&3 and rows 2&4, respectively. The data set with rows 1&3 
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was used to develop the algorithm for pile detection, while rows 2&4 were used to validate, if the algorithm 

worked without adjustment. For the assessment of the developed algorithm, ground truth data were taken 

manually on 13th November and 13th December 2023 as point data from the bottom and top of the piles using 

the R10 RTK-GNSS with a survey rod. Further, pile heights were measured manually from the ground to the 

top for later determination of the optimum search radius for the pile reconstruction. 

 
Figure 2. (a) Vineyard for field experiments with measured rows indicated in white, (b) view into an 

exemplary row and (c) setup of measured rows (aerial image source: Google LLC). 

2.3. Pile detection algorithm development  

Data processing was mainly conducted in Python programming language. The development of the pile 

detection algorithm followed a sequence, which is illustrated schematically in Figure 3. In a first step, the 

LiDAR raw data, which were recorded in polar coordinates and associated reflectivity values, were 

transformed to cartesian point coordinates (Pcart,i) within the LiDAR coordinate system indicated in Figure 

1b. Further, points were filtered according to the measured distance, where all points with a distance of more 

than two meters to the LiDAR were excluded from the further analysis because they were considered as not 

belonging to adjacent canopies within a row. As the GNSS and IMU data streams had a much lower 

frequency, the recorded data were interpolated linearly to the LiDAR timestamps.  

 
Figure 3. Schematic flow of the single processing steps for the pile detection algorithm. 

The first necessary step to generate a georeferenced LiDAR point cloud was the transformation of the 

GNSS data, which had been recorded as WGS84 coordinates in latitude, longitude and altitude. Using the 

AgEng 2024 Proceedings

376



Python library pyproj, they were first transformed to the Earth-Centered-Earth-Fixed (ECEF) frame. Then, 

the ECEF coordinates were transformed to a local cartesian North-East-Down (NED) frame in three 

subsequent steps, where the ECEF position of the reference point (Preference) was first subtracted from each 

recorded position Pi in ECEF frame. The resulting Pantenna,i  was used to calculate the final NED position Pned,i 

as follows: 

 𝑃𝑛𝑒𝑑,𝑖 = 𝑃𝑎𝑛𝑡𝑒𝑛𝑛𝑎,𝑖 × 𝑅𝑛𝑒𝑑   (1) 

where Rned was defined according to: 

 𝑅𝑛𝑒𝑑 = (

−sin(𝜑) × cos(𝜆) −sin(𝜑) × sin(𝜆) cos(𝜑)

−sin(𝜆) cos(𝜆) 0

−cos(𝜑) × cos(𝜆) −cos(𝜑) × sin(𝜆) −sin(𝜑)
)  (2) 

with φ and λ representing the latitude and longitude, respectively, of the reference point. The reference point 

was a nearby position close to the examined rows and it was used for all of them. As the IMU was not capable 

of outputting an accurate heading relative to true north, a heading ψi was derived from GNSS data for each 

point recorded by the LiDAR. For this, a vector was constructed from the GNSS position of 800.000 

detections prior to the point of interest. This corresponded to approx. 3 s time difference and a distance of 

approx. 5.4 m. The heading ψi was then derived with basic trigonometric calculations. 

In order to rotate the LiDAR to the body frame, hence aligning it with the IMU’s coordinate frame, and 

consider the orientation of the body frame in terms of roll, pitch and yaw relative to the NED frame, the 

following procedure was conducted:  

 𝑃𝑐𝑎𝑟𝑡𝑟𝑜𝑡,𝑖 = 𝑃𝑐𝑎𝑟𝑡,𝑖 × 𝑅𝑦𝑎𝑤(180°) × 𝑅𝑟𝑜𝑙𝑙(90°) × 𝑅𝑦𝑎𝑤(𝜓𝑖) × 𝑅𝑝𝑖𝑡𝑐ℎ(𝜒𝑖) × 𝑅𝑟𝑜𝑙𝑙(𝜔𝑖)  (3) 

where Pcartrot,i corresponds to the cartesian LiDAR point coordinates after rotations, and χi, ωi and ψi designate 

the interpolated pitch and roll angles as recorded by the IMU, as well as the heading derived from GNSS 

coordinates, respectively. The rotation matrices Ryaw(ψ), Rpitch(χ) and Rroll(ω) were defined as follows: 

 𝑅𝑦𝑎𝑤(𝜓) = (
cos(𝜓) sin(𝜓) 0

−sin(𝜓) cos(𝜓) 0
0 0 1

)  (4) 

 

 𝑅𝑝𝑖𝑡𝑐ℎ(𝜒) = (
cos(𝜒) 0 −sin(𝜒)

0 1 0
sin(𝜒) 0 cos(𝜒)

)  (5) 

 

 𝑅𝑟𝑜𝑙𝑙(𝜔) = (

1 0 0
0 cos(𝜔) sin(𝜔)

0 −sin(𝜔) cos(𝜔)
) (6) 

In order to eventually transform the Pcartrot,i to NED coordinates, they were added to the individual NED 

coordinates of the GNSS antenna Pned,i (xned,i, yned,i, zned,i) and the spatial offsets xoff and zoff between GNSS 

antenna and LiDAR as indicated in Figure 1c were compensated. Both was done by applying the following 

formula: 

 𝑃𝑝𝑐,𝑖 = 𝑃𝑐𝑎𝑟𝑡𝑟𝑜𝑡,𝑖 × 𝑇𝑥(𝑥𝑜𝑓𝑓) × 𝑇𝑧(𝑧𝑜𝑓𝑓) × 𝑇𝑥(𝑥𝑛𝑒𝑑,𝑖) × 𝑇𝑦(𝑦𝑛𝑒𝑑,𝑖) × 𝑇𝑧(𝑧𝑛𝑒𝑑,𝑖)  (7) 

where Ppc,i are the final points of the georeferenced point cloud in NED coordinates and the translation 

matrices Tx(x), Ty(y) and Tz(z) are defined as: 

 𝑇𝑥(𝑥) = (

1 0 0 𝑥
0 1 0 0
0 0 1 0
0 0 0 1

)  (8) 

 

 𝑇𝑦(𝑦) = (

1 0 0 0
0 1 0 𝑦
0 0 1 0
0 0 0 1

)  (9) 
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 𝑇𝑧(𝑧) = (

1 0 0 0
0 1 0 0
0 0 1 𝑧
0 0 0 1

)  (10) 

The point cloud data were differentiated into left and right canopy for each measured row. As a first step 

for the pile identification, for each canopy row, the lower part between ground and first wire was selected. 

For this, the initial cartesian point coordinates of every streamed package, which contained data from one 

full rotation of the LiDAR, were filtered for this lower area of the canopy. This was done by assuming the 

centreline of the canopy 1 m left and right of the LiDAR and considering the lowest detections above ground. 

By doing so, virtual tube with a height of 0.55 m above ground and a width of 0.4 m in the canopy’s centreline 

was generated, where there were then mainly grapevine trunks and lower parts of the piles. By looking up 

the corresponding georeferenced points Ppc,i in this area, the lower part of each canopy was selected under 

consideration of the topographical course of each examined row.  

In order to discriminate the pile and trunk sections within this lower canopy area as individual objects, a 

novel clustering method was developed because preliminary examinations with existing techniques like k-

means and DBSCAN had not resulted in a satisfactory performance. The lower canopy area was virtually 

sliced into segments of 0.01 m length all along the direction of travel. The points inside these segments were 

counted and any segment with a point density below a set threshold was discarded. Due to a lower point 

density, this threshold was set to 100 points for the first and last 1.5 m of each canopy. For the rest, the 

threshold was set at 130 points per segment. Since most materials have a specific reflectivity, this was used 

as a criterion to further differentiate between the wooden trunks and metal piles. Manual histogram analyses 

have revealed that metal piles had mostly low reflectivity values. Eventually, all segments containing less 

than 200 points with a reflectivity below 18 were discarded. As final step to cluster the pile segments, the 

maximum distance between two segments was calculated and all segments with a maximum distance of 0.7 

m were combined. Clusters that contained less than three segments were dropped. 

In order to reconstruct the entire piles from their segmented lower parts between ground and first wire, a 

trendline was constructed through each pile segment by calculating its first eigenvector via Principal 

Component Analysis, which corresponds to the general orientation of the cluster. After the trendline was 

constructed, all points Ppc,i of the initial georeferenced point cloud within a radius of 0.02 m around the 

trendline were added to the pile segment. This search radius had been determined manually in an iterative 

process, where the resulting height of the reconstructed pile was compared to the manually measured height 

and eventually a radius with a low discrepancy in terms of the root mean squared error (RMSE) was chosen. 

Its calculation followed the following formula: 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑛
  (111) 

where ei and pi are the estimated and measured value, respectively, an n corresponds to the total number of 

considered observations. Beyond that, a diameter of 0.04 m matches well with the diameter of a real metal 

pile. After that, every selected structure with less than 1000 points was discarded to remove any other 

remaining structures such as e.g. grape stems that fell off the grid of this analysis step. 

1.1. Pile detection algorithm validation  

The ground truth data for the validation of the absolute positioning of the piles were taken at the centre 

of the piles’ upper and lower end. Therefore, the highest and lowest point of each segmented pile point cloud 

were projected onto the trendline and chosen as the points to be validated. As neighbouring rows share a 

common canopy, the predicted piles of row 1 and 3, and row 2 and 4, respectively, were combined for 

evaluation. Upper and lower points were assessed separately. For each point the differences between 

predictions and ground truth values were calculated in terms of easting, northing, height and the x-y plane 

defined by easting and northing. To evaluate the average deviation, the RMSE was calculated following 

equation (11). For evaluating the absolute accuracy of the estimated (ei) and measured values (pi), the mean 

absolute error (MAE) and mean bias error (MBE) were calculated as follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑ √(𝑒𝑖 − 𝑝𝑖)2𝑛

𝑖=1   (12) 

 𝑀𝐵𝐸 =
1

𝑛
∑ (𝑒𝑖 − 𝑝𝑖)

𝑛
𝑖=1   (23) 

To assess the distribution of absolute differences di, they were used together with their mean value dmean in 
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order to calculate the standard deviation σ as follows: 

 𝜎 = √
∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛−1
  (34) 

Finally, the distance RMSE (dRMSE) was calculated to evaluate the combined relative accuracy in the x-y 

plane of distances between measured and predicted point (dpe,i), where xp,i and xe,i correspond to the predicted 

and measured easing values, and yp,i and ye,i correspond to the predicted and measured northing values: 

 𝑑𝑝𝑒,𝑖 = √(𝑥𝑝,𝑖 − 𝑥𝑒,𝑖)
2

+ (𝑦𝑝,𝑖 − 𝑦𝑒,𝑖)
2

  (45) 

 𝑑𝑅𝑀𝑆𝐸 = √∑ (𝑑𝑝𝑒,𝑖)
2𝑛

𝑖=1

𝑛
   (56) 

2. Results and Discussion 

The results of the main steps during the development of the pile detection algorithm are presented in 

visually in Figure 4 for an exemplary section of the examined row 1. The aggregated, georeferenced point 

cloud is illustrated in Figure 4a, where the grapevine canopies and the different structures within are clearly 

differentiated. Figure 4b shows the same row, filtered for the lower canopy parts from the ground to the first 

supporting wire. The clustering has resulted in a removal of ground, wires and thin canes in the upper part of 

the canopy, whereas single grapevine trunks and sections of metal piles are clearly distinguishable. Beyond 

that, it is striking that trunk and pile sections clearly differ in their reflectivity values. Figure 4c shows the 

remaining metal piles, after any trunk parts within the point cloud had been removed and the piles had been 

fully reconstructed with the aid of the generated trendline. These results already allow a qualitative 

assessment of the developed algorithm’s functionality. 

The quantitative analysis of the developed algorithms validity has revealed in a first step that for both, 

the identification dataset with row 1&3, as well as the validation dataset with row 2&4, a 100% true-true 

detection of real piles was achieved. So, no real pile was missed and no pile was recognized mistakenly. This 

indicates already that the developed LiDAR-based method is capable of detecting metal piles in a vineyard 

row and to differentiate these piles from other structures such as grapevines. Concerning the accuracy of the 

detections, the upper and lower end points of the piles were of interest. The spatial discrepancy between the 

ground-truth positions and the ones estimated by the pile detection algorithm was examined by means of 

various statistical parameters and the numerical results are presented in Table 1, where the MAE is a measure 

for the mean absolute deviation, the MBE indicates the average bias, the standard deviation σ allows an 

assessment of the variance within the deviations and the dRMSE indicates the 2-dimensional relative 

accuracy.  

Table 1. Numerical results of the pile detection algorithm’s validation. 

  MAE MAB σ dRMSE 

northing row 1&3 lower 0.028 0.002 0.040  
 row 1&3 upper 0.048 -0.038 0.052  

easting row 1&3 lower 0.023 -0.016 0.029  

 row 1&3 upper 0.037 0.030 0.076  

height row 1&3 lower 0.163 0.159 0.172  

 row 1&3 upper 0.215 0.214 0.263  

x-y plane row 1&3 lower    0.049 

 row 1&3 upper    0.078 

northing row 2&4 lower 0.028 0.016 0.035  

 row 2&4 upper 0.035 0.024 0.036  

easting row 2&4 lower 0.019 0.002 0.027  

 row 2&4 upper 0.029 -0.025 0.055  

height row 2&4 lower 0.019 0.002 0.027  

 row 2&4 upper 0.029 -0.025 0.055  

x-y plane row 2&4 lower    0.045 

 row 2&4 upper    0.060 
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Figure 4. Point cloud of a section of row 1 (a), segmented lower part (b) and reconstructed piles (c). 

Concerning northing and easting, as well as the x-y plane, all statistical parameters were in a comparable 

range for the identification, as well as the validation dataset. Further, the results for the lower points were 

slightly better, which can be explained by the fact that the trendline for the pile reconstruction was based on 

their lower section until the first wire. In general, with the statistical parameters ranging largely below 5 cm, 
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a high relative and absolute accuracy was achieved, which can be considered sufficient for the pre-pruning 

process. For the latter’s control, even larger safety distances for pile avoidance would presumably be 

necessary to compensate technical latencies within the machine.  

When it comes about the assessment of the accuracy in terms of the height, it is noticeable that there are 

significant discrepancies in the accuracy between the identification dataset row 1&3 and the validation 

dataset row 2&4, respectively. While, for row 2&4 they have values that are comparable to the ones for 

northing, easting and the x-y plane, the σ values for the height in row 1&3 indicate a high variation in the 

height differences and a low relative accuracy. Also, the values for the absolute accuracy, i.e. MAE and MAB 

were in similar ranges. The most obvious reason for the lower accuracy in row 1&3 are two extra end piles 

at the beginning of row 1. Because of the attached anchor wires in the lower part of the outer piles, the 

selected clusters were slightly distorted, which lead to tilts in the trendline affecting the position of the higher 

and the lower end point. Nevertheless, again, the accuracy can be regarded as sufficient because for pre-

pruning, mainly the accuracy in the x-y plane is of interest, when it comes about the avoidance of piles. 

3. Conclusion 

With the developed methodology, a fusion of LiDAR data with data from inertial and GNSS sensor was 

successfully performed to achieve a valid 3D reconstruction of vineyard rows. With the aid of a newly 

developed pile detection algorithm including a novel clustering approach, metal piles were reliably detected 

and successfully reconstructed. The relative accuracy in the prediction of the upper and lower pile ends can 

be considered high because the calculated RMS values were in the range of approx. 5 cm for the x-y plane 

in terms of northing and easting. This was also confirmed by the MAE and MBE values, which were below 

5 cm for this dimension, hence implying a high absolute accuracy and sufficiency for pre-pruning. The entire 

approach was validated by examining different datasets for identification and validation of the algorithm. 

The results show also a high potential not only for detection of piles but also trunk inventory. 

Further research needs to be done to test the method for piles of different materials such as wood, plastic, or 

concrete due to their presumably differing reflectivity values. Beyond that, the methodology should be 

developed further to real-time capability to make its application for pre-pruning more realistic.  
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Abstract 

Non-destructive monitoring of physicochemical changes in fruits during cold storage is one of the most 

significant challenges in postharvest technology. Spectral sensors are a promising technology that can 

enhance and automate the monitoring operations. This study assessed the potential of Vis/NIR spectroscopy 

for monitoring physicochemical changes in loquats during cold storage. A total of 1080 loquats from two 

cultivars (‘Algerie’ and ‘Xirlero’) were harvested at commercial maturity. Initial characterisation of 120 

fruits (60 per cultivar) was conducted upon arrival at the laboratory. The remaining fruit was equally stored 

at 1 °C and 3 °C. Each week for four weeks, 60 fruits of each cultivar were taken from the cold chamber. 30 

fruits were immediately analysed, and the remaining 30 were analysed after five days at 20 °C, simulating 

commercial conditions. The analyses consisted of the non-destructive measurement reflectance spectra of 

each fruit, acquired by a multi-channel spectrometer covering the visible and near-infrared range (450-1700 

nm). Destructive analyses were later performed to obtain soluble solid content (SSC) and titratable acidity 

(TA) used as reference values. Predictive models were developed using partial least squares (PLSR) to set 

correlations between the measured spectra and the reference values. Spectral pre-processing was performed 

using standard normal variate (SNV) and first derivative (1D). Storage at 1 °C resulted in lower acidity loss 

compared to storage at 3 °C in ‘Algerie’. For ‘Xirlero’ no differences were observed under cold storage, but 

after 5 days at 20 °C, more acidity loss was observed in the fruit stored at 3 °C. These results show the 

importance of monitoring changes during the evolution of loquats under cold and commercialisation storage 

conditions. Preliminary results for predictive models showed correlations between NIR spectra for both 

cultivars in predicting SSC and TA. This work points out the potential of this technology as a tool for 

monitoring the postharvest quality of the loquat during storage, offering a non-destructive alternative to 

conventional analyses. 

Keywords: Chemometrics, Near-infrared (NIR) spectroscopy, Postharvest, Storage temperatures 

1. Introduction 

Non-destructive monitoring of physicochemical changes in fruits during cold storage is a major challenge 

in postharvest technology. Loquat fruit (Eriobotrya japonica Lindl.), is highly susceptible to mechanical 

damage during harvesting and handling, leading to browning spots on the surface and in the pulp (Lin et al., 

1999). This research focuses particularly 'Algerie' and 'Xirlero' varieties, which present specific storage 

challenges. 'Algerie' is known for its high sugar content and balanced acidity, while 'Xirlero' is valued for its 

firm texture and storage stability (Gil et al., 2018). Precise monitoring is essential to optimize postharvest 

conditions and preserve the quality of loquat, as improper storage can lead to significant losses in weight, 

acidity, and sugar content (Munera et al., 2021). Visible and Near-infrared (Vis-NIR) spectroscopy has 

emerged as a promising non-destructive tool to enhance and automate internal quality in fruit (Walsh et al., 

2020). This technology has been successfully used in predicting quality parameters like soluble solids content 

and firmness, offers detailed chemical composition insights non-destructively (Arana et al., 2005; Morales 

et al., 2013; Shimizu et al., 2011). This study aims to explore the application of Vis/NIR spectroscopy in 

monitoring physicochemical changes in loquats during postharvest handling. 

2. Materials and Methods  

2.1. Plant material and experimental design 

Loquat fruit cultivars 'Algerie' and 'Xirlero' at commercial maturity stage were selected, as they are two 

commonly cultivated varieties in the Mediterranean region. A total of 1080 loquats (540 samples per cultivar) 

were analysed. Fruits 120 fruits (60 per cultivar) were initially characterised upon arrival at the laboratory. 

AgEng 2024 Proceedings

382



The remaining fruit was split and equally stored at 1 °C and 3 °C. Weekly evaluations were conducted for 

four weeks, with 60 fruits of each cultivar taken from cold storage each week. 30 fruits were analysed 

immediately, while the other 30 were evaluated after 5 days at 20 °C to simulate commercial conditions. 

Fruit was individually numbered, and spectra collection and reference analysis were performed on the same 

day. 

2.2.  Spectral data acquisition 

The spectral data was collected in reflectance mode using a UV-Vis spectrometer (AvaSpec-ULS2048L-

USB2 StarLine) and a multi-channel platform (AVS-DESKTOP-USB2, Avantes BV, The Netherlands) 

equipped with a VNIR spectrometer (AvaSpec-ULS2048 StarLine, Avantes BV, The Netherlands) and a NIR 

spectrometer (AvaSpec-NIR256-1.7 NIRLine, Avantes BV, The Netherlands). The UV-Vis spectrometer 

covered a range of 200-750 nm with a 0.7 nm resolution, the VNIR covered 600-1100 nm with a 1.2 nm 

resolution, and the NIR covered 900-1750 nm with a 12 nm resolution. Lighting was provided by a stabilized 

10 W tungsten halogen light source (AvaLight-HAL-S, Avantes BV, The Netherlands). 

A reflectance fiber-optic probe with a 45o angle tip minimized specular reflectance and bifurcated optical 

fibers carry the signal to each detector. Calibration involved dark and white reference spectra using a 99 % 

reflective reference tile. Measurements were acquired at four equatorial locations on each loquat, and mean 

spectra were used for analysis. The mean reflectance of each sample was converted to relative reflectance 

using dark and white references. 

2.3. Reference parameters 

Standard destructive quality measurements were conducted after the acquisition of spectral data to 

determine quality properties for use as reference values. Juice was manually extracted from each sample with 

a cloth to estimate the Soluble Solid Content (SSC) and titratable acidity (TA). SSC were determined with a 

digital refractometer (Atago PR1, Tokyo, Japan) and results were expressed as ºBrix. TA was determined by 

titration with sodium hydroxide 0,1 M with an automatic titrator (model T50, Mettler-Toledo, Switzerland) 

to equivalent point and was expressed as equivalent of malic acid/100 mL of juice (% malic acid). 

2.4. Data processing and analysis 

2.4.1. Spectral pre-processing 

The spectral pre-processing was performed using Python (Rossum & Drake, 2009). Three separate 

spectral windows identified as VIS (450-750 nm), VNIR (600-960 nm) and NIR (980-1695 nm), were 

analysed. Techniques used were Standard Normal Variate (SNV) transformation for correcting multiplicative 

scatter and particle size interferences (Barnes et al., 1989) and the first derivative (1D) of the spectral data 

was computed using the Savitzky-Golay filter, which smooths the data and reduces noise while retaining 

important spectral features (Savitzky & Golay, 1964). Python libraries used for these preprocessing steps 

included NumPy for numerical operations, pandas for data manipulation, SciPy for applying the Savitzky-

Golay filter, and scikit-learn for additional preprocessing functions.  

2.4.2. Chemometric data treatment 

Chemometric data treatment involved conducting a one-way analysis of variance (ANOVA) and 

developing regression models to analyse the physicochemical properties of the loquats. Python was used for 

this purpose. A one-way ANOVA was performed to determine significant differences in the physicochemical 

properties among the different storage conditions. For predictive modelling, Partial Least Squares Regression 

(PLSR) models were developed for each analysed compound and variety. Each dataset was divided into 

training and cross-validation (80 %) and external validation (20 %). Python libraries such as NumPy, pandas, 

SciPy, and scikit-learn were employed to perform these analyses. The performance of the PLSR models was 

assessed using the Root Mean Square Error (RMSE), the Residual Predictive Deviation (RPD), and the 

coefficient of determination (R²). RMSE indicates the average prediction error, RPD evaluates the predictive 

quality relative to the standard deviation of the reference data while R² measures the proportion of variance 

explained by the model. 
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3. Results and Discussion 

3.1. Evolution of TA and SSC during storage 

The study investigated the effects of storage temperatures (1 °C and 3 °C) on the changes in SSC and TA 

in loquat fruits harvested at commercial maturity. Fruits were cold stored for up to four weeks and after each 

week, they were analysed after cold storage and commercial conditions. Figure 1 illustrates the evolution of 

TA in both conditions at both temperatures for each variety.   

 

Figure 1. Evolution of TA during cold storage (close box) and after commercialization simulation (open 

box). a) Algerie at 1 ºC; b) Algerie at 3 ºC; c) Xirlero at 1 ºC; d) Xirlero at 3 ºC. 

A significant decrease in fruit acidity was observed, particularly during the commercialization simulation, 

for both cultivars and at the two studied temperatures. Fruit stored at 1 ºC  exhibited less acidity loss (Figure 

1a and 1c) compared to those stored at 3 °C (Figure 1b and 1d). Storage at 1 ºC keep fruit acidity better that 

3 ºC for this period. Commercialization conditions produced a more marked reduction in TA, decreasing in 

some cases from 0.8 % to 0.3 % of malic acid content. Moreover, difference between varieties were found 

after 1 month of cold storage and 5 days at 20 ºC. ‘Xirlero’, after 28 days in cold storage and 5 days at 

commercial conditions, showed a higher loss of acidity at both temperatures (0.7 and 0.5 %) than ‘Algerie’ 

(0.9 and 0.6 %), with a greater loss when it was stored at 3 ºC. As Besada et al. (2013) reported, acidity is an 

important parameter of loquat sensorial quality, due to that the right ratio between sweetness and acidity is 

greatly appreciated by loquat consumers. Special care is needed during long-term storage, as decreased 

acidity affects general perception of loquat fruit (González et al. 2003). 

Results of SSC during storage can be seen in Figure 2. In contrast with acidity, SSC did not suffer 

significant changes under both temperatures of cold storage and shelf-life condition. SSC ranged between 10 

and 12 ºBrix during the four weeks of storage. González et al. (2003) obtained the same results when studying 

‘Algerie’ cold storage and shelf-life conditions for 10 weeks. 
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Figure 2. Evolution of SSC during cold storage (close box) and after commercialization simulation (open 

box). a) Algerie at 1 ºC; b) Algerie at 3 ºC; c) Xirlero at 1 ºC; d) Xirlero at 3 ºC. 

3.2. Reference values and spectra 

Destructive analyses obtained a mean SSC of 10.9  1.3 ºBrix and TA of 1.0  0.3 % of malic acid for 

‘Algerie’ and a mean SSC of 10.9  1.2 ºBrix and TA of 0.7  0.3 % of malic acid for ‘Xirlero’. The statistical 

values of the SSC and TA in the datasets for both varieties are shown in Table 1. 

 

Table 1. Statistical values of SSC (ºBrix) and TA (% malic acid) of the studied loquats per cultivar. 

Dataset 
SCC (ºBrix) 

 
TA (% malic acid) 

Min Max Mean STD 
 

Min Max Mean STD 

‘Algerie’ 8.0 14.8 10.9 1.3 
 

0.3 2.0 1.0 0.3 

‘Xirlero’ 7.9 14.3 10.9 1.2 
 

0.1 1.3 0.7 0.3 

 

Preprocessing steps were performed: SNV and SNV with first derivative (SNV+1D). In addition, raw 

data was also analysed (Figure 3). The optimal number of factors for the PLSR models was determined using 

a criterion used by Davey et al. (2009), selecting the minimum number of factors corresponding to the first 

lowest value of the RMSE.  
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Figure 3. Raw reflectance spectra of loquat fruit dataset of both varieties. 

a) ‘Algerie’ for the Vis region; b) ‘Algerie’ for the VNIR region; c) ‘Algerie’ for the NIR region;  

d) ‘Xirlero’ for the Vis region; e) ‘Xirlero’ for the VNIR region; f) ‘Xirlero’ for the NIR region 

3.3. SSC predictions 

Figure 4 presents the results for the calibration and prediction models for SSC. 

 
Figure 4. Results of the PLSR for the prediction of SSC (ºBrix) for a) ‘Algerie’ and b) ‘Xirlero’. 

 

The models showed noticeable differences for the different spectral regions. Specifically, models 

constructed with the visible (450-750 nm) and VNIR (590-960 nm) ranges exhibited inferior results. This 

trend was particularly evident for 'Algerie' (Figure 4a), where lower R², higher RMSE, and lower RPD values 

were observed in these regions. In case of 'Xirlero' (Figure 4b), models developed with the Vis and NIR 

regions yielded similar results, with RPD values of 1.7 and 1.8, respectively, when using SNV+1D 

pretreatments. 

Regarding RMSE for the cross-validation (RMSECV) and prediction (RMSEP), Fu et al. (2009) obtained 

similar, or even higher, values in their study of four Chinese varieties of loquat fruit with FT-NIR. By creating 

models with the full wavelength range (800-2500 nm), RMSE values obtained vary between 0.9 and 1.2 for 

both cross-validation and prediction. In this study, working with NIR range (980-1695 nm) resulted in lower 

values, 0.9 for 'Algerie' and 0.8 for 'Xirlero'.  

Magwaza et al. (2014) observed comparable results when predicting sugar content in mandarins, 
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obtaining higher regression coefficients using the NIR range. This was attributed to the fact that NIR region 

corresponds to the second overtone of the H-O-H stretching overtone of water (980 nm), the second overtone 

of C–H and C–H2 stretching related to sugar molecules (1200 nm), as well as the first overtone of O-H 

stretching (1450 nm) vibrations of water hydrogen bonds with sugar molecules (Kawano et al., 1993). For 

all cases studied, better results were obtained for 'Xirlero' compared to 'Algerie'. For 'Algerie', the models 

built using the raw data resulted in a better RPD of 1.5. However, for 'Xirlero', using spectra pretreated with 

SNV+1D, an RPD = 1.8 was achieved.  

3.4. Acidity predictions 

Figure 5 presents the results for the calibration and prediction models for TA. In this case, no differences 

were found between models developed for the different spectral regions. In the case of ‘Algerie’ (Figure 5a) 

similar results for all regions were achieves without differences between pretreatments. Best performance 

was obtained for the spectra from the visible region with SNV pretreatment, achieving an RMSEP of 1.2 and 

an RPD of 1.4. For ‘Xirlero’ (Figure 5b), best model was obtained using raw spectra from the visible region 

(RMSEP = 0.2 and RPD = 1.9). Comparing models developed for SSC (Figure 4) and for TA (Figure 5), for 

both cultivars, R2 and RMSECV and RMSEP where higher and lower respectively for prediction of TA. 

Meanwhile, RPD was similar for both cultivars. The opposite case was observed by Fu et al. (2009) in their 

study with four Chinese loquat varieties to predict TA, where the results for acidity prediction were worse 

than those for SSC. 

 

 

Figure 5. Results of the PLSR for the prediction of TA (% malic acid) for a) ‘Algerie’ and b) ‘Xirlero’. 

A model is considered commonly poor-performing when the RPD is below 1.5, whereas an RPD ranging 

from 1.5 to 2 indicates moderate performance. An RPD between 2 and 2.5 suggests good performance, while 

an RPD exceeding 2.5 indicates excellent performance (Askari et al., 2015). Using this categorization, best 

models developed in this study indicate moderate performance. Fan et al. (2020) reported similar predictions 

when evaluating SSC of apples using a portable Vis/NIR device. In their work, they highlighted that the high 

variability in the physical and chemical properties of fruits affected the optical properties and their interaction 

with light, thus lowering the performance of prediction models.  

Figure 6 shows measured versus predicted data for the best PLSR models obtained for ‘Xirlero’ variety 

for both parameters as an example of data obtained. 
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Figure 6.  Best performance PLSR cross-validation results for a) SSC and b) TA for ‘Xirlero’. 

de Santana et al (2021) reported, in a comparative study of PLSR and SVM models for soil organic matter 

using vis-NIR spectral libraries, that PLSR usually offers the advantage of dealing with irrelevant and noisy 

variable issues. However, the predictive capacity of PLSR can be lower in situations where the number of 

samples is far smaller than the number of variables, as in the case of spectral data. Moreover, relationship 

between NIR spectra and targeted constituents to be modelled is not always linear. In this case, as can be 

seen in Figure 6, for SSC and TA there could be appreciated some tendence in data, but it cannot be described 

as linear. Low values of measured SSC were predicted as high. On the contrary, the high SSC values 

measured were predicted to be lower. The same applies to TA measurements and predictions. As Munawar 

et al (2022) pointed out in their study comparing regression approaches, the source of nonlinearity may vary 

widely, and is difficult to identify. This means that classical linear regression like PLSR methods cannot 

always be the most suitable option. The intrinsic non-linearity in NIR spectral data and chemical components 

cannot be corrected by using only spectral pre-treatments and require the use of specialised nonlinear 

adjustment approaches. 

4. Conclusions 

Based on the results achieved, the feasibility of employing Vis/NIR technology for postharvest quality 

control in loquats is evident, offering a non-destructive method ideally suited to loquat’s characteristics and 

sensitivity to physical damage. Correlations between measured and predicted TA values were observed using 

NIR spectroscopy, particularly when employing PLSR models within the NIR range (980-1695 nm). 

Additionally, good correlations were noted between spectral information and SSC analysed using PLSR 

models. Spectral pre-treatments are promising in enhancing model parameters, depending on the desired 

range and parameter to be determined. Moving forward, further studies employing non-linear approaches are 

warranted to develop more robust models for predicting SSC and TA in loquats. These findings highlight the 

potential of NIR spectroscopy for rapid, non-destructive assessments of fruit quality, offering a practical tool 

for monitoring physicochemical changes in loquats during cold storage.  
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Abstract 

Orchard growers are moving towards mechanization due to ongoing labor shortages, leading to a 

resurgence of research into mechanized fruit harvesting. Our research focuses on increasing fruit picking 

throughput (FPT, the average number of fruits picked per unit of time) using harvesters with many linear 

arms while achieving a high fruit picking efficiency (FPE, the percent of harvestable fruits harvested). This 

paper studied two strategies to improve the combined FPT and FPE of multi-arm harvesters, which travel at 

a constant speed as they harvest. The first strategy tested the effects of partitioning arms in rows of equal 

height versus rows containing the same number of fruits. The second strategy compared using fixed travel 

speeds versus computing a speed that maximizes FPT while achieving a minimum FPE. All schedules were 

computed using a First-Come-First-Served policy on 3.5 m segments of digitized, real fruit distributions. 

Both partitioning methods achieved a user-defined minimum required FPE of 95%; however, partitioning by 

fruit allowed the harvester to move faster, leading to higher FPT. As the number of arms increased, the 

difference in FPT between the partitioning methods increased; for the same number of arms, results were 

better when the arms were divided into more rows rather than more columns. For the second strategy, low 

fixed speeds resulted in high FPE but low FPT, whereas fast fixed speeds had the opposite effect. Choosing 

the best speed resulted in the best combined FPE and FPT. It led to high FPT, only lower than the two highest 

FPT values while keeping FPE at or above 95%. The insights gained in this paper provide two simple 

strategies that could be implemented on multi-armed harvesters to improve the combined FPE and FPT. 

Keywords: apples, orchards, precision agriculture, multi-armed robots. 

1. Introduction 

Fresh fruit harvesting is a labour-intensive operation, and growers are challenged by increasing farm 

labour cost and shortages (Christiaensen et al., 2021). Harvesting robots are a promising technology that 

could significantly reduce the labour needed to harvest. Robot prototypes have been built over the years by 

academic groups and start-up companies with varying levels of success (Bac et al., 2014; Koostra et al., 

2021). Cost-effective robots that can be commercialized must aim to maximize two major performance 

metrics (Harrell, 1987): Fruit Picking Efficiency (FPE) and Fruit Picking Throughput (FPT). The first, FPE, 

measures the percent of harvestable fruits the system harvests. The second metric, FPT, measures the harvest 

speed in fruits per second.  

One way to increase FPT is to harvest with several robot arms coordinated in some fashion (Zion et al., 

2014; Mann et al., 2016; Williams et al., 2019; Li et al., 2023). One challenge when considering multi-armed 

harvesters is selecting the machine’s travel speed as it harvests and the arm-fruit assignments and pick 

schedules that maximize performance. Some researchers consider static harvesting, where the machine stands 

still, harvests the fruits in the segment of the row inside its workspace, and then proceeds to its next position. 

Since fruit distributions in tree canopies are typically non-uniform (Arikapudi et al., 2016), such an approach 

will typically result in some arms being idle (no fruits in their workspace) while other arms are still 

harvesting. Also, the time to move from one position to the next is non-productive, as the machine travels 

along the harvested segment; hence, FPT will be negatively impacted. The other approach is continuous 

harvesting, where the machine moves along the orchard row while it harvests (the arms compensate for this 

motion). This approach can result in increased FPT if the speed is selected properly (Edan et al., 1993). A 

high travel speed results in shorter time windows when fruits can be picked, hence lower FPE. A low speed 

allows enough time to pick but increases the time to finish the row, reducing the overall FPT. So, FPT and 

FPE are conflicting metrics when selecting the travel speed, which must be selected carefully. Furthermore, 

harvest scheduling depends on the travel speed because the available time window for each arm to pick a 

fruit depends on the speed.  

AgEng 2024 Proceedings

390



This paper considers a multi-arm harvester design that consists of C rectangular frames (also referred to 

as work cells, cells, or columns) placed side-by-side, and R low-cost linear arms inside each column (Fig. 1). 

We study two strategies to improve the combined FPT and FPE of the multi-arm harvester, which travels at 

a constant speed as it harvests. The first strategy tests the effects of partitioning arms in rows of equal height 

versus rows containing the same number of fruits. The second strategy compares fixed travel speeds versus 

a speed that maximizes FPT while achieving a minimum FPE.  

2. Materials and Methods  

2.1. Harvest Modelling 

The harvester design under study (Fig. 1) features arms that are are identical, with three linear axes that 

move independently based on trapezoidal velocity profiles. The vertical positioning of an arm inside a column 

is physically constrained only by the arm(s) above or below it or the frame. The flexibility in vertical motion 

is advantageous in the presence of non-uniform fruit distributions (Arikapudi & Vougioukas, 2023) because 

it results in potentially better load balancing (for example, arms in a cell can ‘cluster’ to harvest regions of 

the canopy with high fruit density). However, workspace sharing introduces the possibility of collisions and 

requires solving simultaneously the arm-fruit assignment and scheduling and the arm motion planning.  

To simplify the problem, we restrict the arms across columns to move vertically within virtual rows. Each 

row is defined – in software - by the lower and upper z coordinates inside which the arms in all columns are 

allowed to move. This approach guarantees collision avoidance but may result in sub-optimal performance.  

 

Figure 1. The CAD rendition of the robotic harvester comprises four work cells and three arms per cell. Each column 

has its frame of reference centered at its bottom left corner. The x-axis points to the tree canopies, the y-axis points 

along the orchard row in the direction of travel, and the z-axis points upwards. 

 

We consider a scenario where the machine harvests fruits inside a segment of length D of the orchard 

row, moving at a constant travel speed, V. For scheduling purposes, all fruit locations inside the segment are 

assumed to be known (estimated via a computer vision system) and static. An arm starts at a retracted position 

(the gripper is away from the canopy) and takes the following steps to harvest a fruit:  

• “approach”: the arm moves inside the column frame (Y − Z plane) from its current position to the target 

fruit location (Tyz seconds) 

• “extension”: the arm extends out from the Y − Z plane to the target fruit location (Tx seconds)   

• “detachment”: the arm grasps and detaches the fruit (Tg seconds – assumed constant)  

• “retraction”: the arm retracts to the column frame, mirroring the extension step (Tx seconds).  

After retracting, the arm does not need to travel to another location to deposit the fruit into a conveyance 

system. Hence, the single-arm pick cycle to harvest a fruit is  

 

𝑇𝑝 = 𝑇𝑦𝑧 + 2𝑇𝑥 + 𝑇𝑔                            (1) 
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Next, a harvesting schedule must be generated for each arm. We assign a unique index, i, to each fruit in 

the segment. If fruit i is the kth fruit to be harvested by the arm in row r and column c, let σ(k) = [i, ti, c, r], 

where ti is the time the arm must reach fruit i. The picking schedule for arm r, c that is assigned to harvest 

Fc,r fruits is Σc,r = {σ(1), σ(2), ..., σ(Fc,r) }. The set of the individual arm picking sequences Σc,r is the multi-

arm harvester picking sequence Σ.  

First Come First Served (FCFS) is the scheduling algorithm that computes Σ. Fruits are sorted by their y-

coordinate, and the time window available to reach each fruit is calculated based on the travel speed, V, the 

work cell geometries and configuration, pick cycle, 𝑇𝑝, and the locations and states (‘idle’ or ‘busy’) of the 

arms. An arm that is “idle,” i.e., not already assigned to a fruit, is assigned to the first (closest) fruit within 

the arm's row and has not been harvested nor assigned to another arm in the same row. Once an arm is 

assigned to a fruit, it is set as “busy” until it has finished harvesting it and retracted. For scheduling purposes, 

we assume that every fruit assigned to an arm will be harvested.  

For a given travel speed and a harvest schedule, the total number of harvested fruits is calculated as the 

sum of fruits harvested by each arm. This number is a function of the harvest schedule and the travel speed. 

 

𝑃(𝛴, 𝑉) = ∑ ⬚

𝐶−1

𝑐=0

∑ ⬚

𝑅−1

𝑟=0

𝑃𝑐,𝑟              (2) 

 

The FPE for P harvested fruits in a segment with N fruits is, by definition  

 

𝐹𝑃𝐸 = 𝑃/𝑁                                  (3) 

 

FPT is calculated by dividing the number of picked fruits by the overall travel time, T, to traverse the segment 

( 𝑇 = 𝐷/𝑉) 

 

𝐹𝑃𝑇 = 𝑃/𝑇                                 (4) 

 

The computed harvest schedule, Σ, depends on the travel speed, V, because the speed determines the 

time window available to pick each fruit.  A high travel speed results in shorter time windows, fewer picked 

fruits (smaller P), and hence lower FPE. A low speed allows enough time to pick but increases the time to 

traverse the segment (larger T), reducing the overall FPT. Since FPT and FPE are conflicting metrics with 

respect to the travel speed, we define the “best” speed as the one that maximizes FPT but results in an FPE 

value higher than a grower/user-defined minimum acceptable threshold, which in our case is set to 95%. The 

best speed is computed using Exhaustive Speed Search (ESS), a grid-search algorithm that loops through 

discrete speed values in ascending order, calculates Σ and terminates when FPE drops below 95% (it stores 

the previous solution). This strategy works because as the harvester’s speed increases, FPE is a monotonically 

non-increasing function, and FPT is a monotonically non-decreasing function (Fei & Vougioukas, 2024). 

3. Experimental Design 

Two sets of simulation experiments were performed using real, digitized fruit coordinates from a V-

trellised Pink Lady apple orchard in Lodi, CA, USA (38.075018, -121.182455) on October 14, 2022. A total 

of 111 segments were used, each 3.5 m long. Each work cell was 1 m long and 3.5 m tall, with 0.15 m of 

space between cells. Each arm’s linear DOF - the corresponding motor -  was characterized by a maximum 

acceleration, velocity, and deceleration. For the x-axis,  𝑣𝑚𝑎𝑥 = 4 m/s, and 𝑎𝑚𝑎𝑥 = 2 m/s2, for the y-axis 

𝑣𝑚𝑎𝑥 = 2.8 m/s, and 𝑎𝑚𝑎𝑥 = 1.4 m/s2, and for the z-axis, 𝑣𝑚𝑎𝑥 = 2.8 m/s, and 𝑎𝑚𝑎𝑥 = 1.4 m/s2. The 

maximum motor acceleration and deceleration were always equal in magnitude.  

3.1. Workspace partitioning  

The first set of experiments compared two methods that partition the cells into rows. The first method 

divides the workspace so all rows are equal in height (partitioned “by height”). The second method divides 
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the workspace so that all rows contain an equal number of fruits (partitioned “by fruits”) and, thus, more 
equal workloads across rows. Because fruit distributions are non-uniform, partitioning the columns of arms by 

height and by fruits would intuitively produce different results. Partitioning by fruits should react to the non-

uniformity while by height does not. Thus, we hypothesize that partition by fruit will produce better FPT 

results for configurations with multiple rows of arms. FPE should be similar for both partition methods 

because ESS chooses speeds that lead to schedules that harvest at least 95% of fruits in a segment. We test 

these methods on nine harvester configurations ranging from one arm in one column to nine total arms in three 

columns. 

To evaluate if there is a difference between partitioning the columns based on fruits and partitioning based on 

height, we tested the changes to FPE and FPT of the two methods and different harvester configurations. We 

use Welch’s t-test to compare the mean FPE and FPT obtained in each experiment, with the null hypothesis being 

that the mean of both partitioning methods does not differ for any one harvester configuration. A 95% confidence 

level is used for all t-tests. To determine the direction of possible differences in mean, the spread of the FPE and 

FPT are plotted in a box plot and analyzed visually. 

3.2. Harvester travel speed  

The second set of experiments compared the harvest performance when each segment is harvested using 

the ‘best’ speed calculated by ESS versus traversing all segments with the same fixed speed. Six fixed speeds, 

V = 1, 5, 10, 15, 20, 100 cm/s, were used as baseline speeds, while the discrete speed values were VESS  ∈ {1, 

2, 3, ..., 100} cm/s. Once a speed is chosen, that value is constant throughout the segment. The five baseline and 

best speeds are tested on the same nine C/R/C ∗ R configurations. All runs have the arm workspaces 

partitioned by fruits. The mean FPE and mean FPT of each harvester speed and configuration are plotted to 

help visualize the effects of the speeds on the means. 

4. Simulation results and discussion  

4.1. Workspace partitioning  

As the number of arms increased, we saw that the mean FPT generally rose while the mean FPE remained 

stable above 95%. For all configurations with more than one row of arms, the means of the two partition 

methods were likely not the same (confidence level of 95%). Visually, both plots in Fig. 2 show that partition 

by fruit obtained a higher mean FPT. The largest difference was for configuration 3/3/9, where partition by 

fruit achieved a mean FPT of 1.374 fruits/s while partition by height achieved 1.049 fruits/s. Compared to 

the FPT obtained by both partition methods for configuration 1/1/1, at 0.247 fruits/s, partition by fruit has a 

gain of 0.618 fruits/s per arm, while partition by height gets a gain of 0.472 fruits/s per arm. For 

configurations with the same number of arms, more rows performed better than more columns, as shown by 

dips in the mean FPT in Fig. 2a. The columns are 3.5 m high, and it takes the arms a long time to move up 

and down that length. Furthermore, the left-to-right movement of the arms within the column is aided by the 

harvester’s forward speed. 
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Figure 2. Plots compare the results of partitioning workspaces by fruit vs. by height for 111, 3.5 m segments of 

digitized apples. The plots show the FPE, FPT, and the chosen ‘best ’harvester speed for nine harvester column and 

row configurations. In the box plots, the means are indicated by green triangles. 

 

For the 1/2/2 and 1/3/3 harvester configurations, a small drop in FPE can be observed. The reason is that 

these are single-column harvester configurations, and fruits whose height is inside a zone centered at the row 

line and equal to the height of the arm’s height cannot be harvested. On the other hand, harvester 

configurations 2/1/2 and 3/1/3 saw a drop in FPT. As single-row configurations, the arms had to harvest fruits 

along the whole column, potentially moving 3.5 m up and down between fruits. This led to schedules with 

slower harvester speeds to ensure the 95% FPE threshold was met. 

The relationships between the number of fruits in each segment and the FPT and harvester speed, when 

the workspaces are partitioned by fruits, can be visualized in Fig. 3. These plots showed that the harvester 

speeds trended down. At the same time, FPT trended up as the number of fruits increased until reaching a 

steady state when there are too many fruits for the arms to handle. The harvester speed’s maximum value 

was limited by its relationship to the number of arms, the distance traveled, the number of fruits, and the 

handling time of fruits defined by the following equation  

 

𝑉𝑇ℎ
=

𝐷∗𝐶∗𝑅

𝑁∗𝑇𝑝
     (5) 

 

where the bound for the harvesters  ’speed is computed based on the mean fruit handling time, 𝑇𝑝, the distance 

traveled, the number of arms, and the number of available fruits. In the plots in Fig. 3, these were constant 

parameters, except for the number of fruits. Because of this, the harvester speed followed a curve related to 

1/N as N increased. This affected FPT, which has a relationship with FPE defined by the equation  

 

𝐹𝑃𝑇 =
𝑁∗𝑉∗𝐹𝑃𝐸

𝐷
   (6) 

 

The limits on the speed meant that FPT remained low when there were few fruits. As the number of fruits 

increased, FPT increased, though very slowly, as described in the equation  

 

𝐹𝑃𝑇𝑚𝑎𝑥 =
𝐶∗𝑅

𝑇𝑝,𝑚𝑖𝑛
    (7) 

 

which describes a maximum theoretical FPT, given the number of arms and the minimum observed handling 

time Th,min. This indicated that FPT followed a logarithmic curve with the form A ∗ ln(N) + B. Using the Index 

of Agreement error metric (Willmott, 1981), we saw that the fit for the logarithmic curve was a bit low, 

perhaps due to the discrete nature of the number of fruits and the harvester speeds. The curve for the harvester 

speed was found by setting Equation 7 equal to FPT’s logarithmic equation and solving for the harvester 

speed. Thus,  

 

𝑉 = 𝐷
𝐸𝑙𝑛(𝑁)+𝐹

𝑁
    (8) 

 

where 𝐸 = (𝐷 ∗ 𝐴)/𝐹𝑃𝐸 and 𝐹 = (𝐷 ∗ 𝐵)/𝐹𝑃𝐸 . It is important to note that the fruit localization data was 

obtained after the first harvest had already taken place. This means the tests are based on lower densities than 

the harvester would be expected to work on. 
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Figure 3. The scatter plots show the relationship between the number of fruits in a segment and the best harvester speed 

and FPT when the rows are partitioned by fruits. Each point represents the results from running the scheduler on 111 

segments, each 3.5 m long. Harvester speed is chosen with ESS to maximize FPT while achieving a minimum FPE of 

95%. 

4.2. Harvester travel speed  

Fig. 4 shows that low baseline speeds had high mean FPE and low mean FPT. Higher speeds had the 

opposite effect. The highest fixed speed, 100 cm/s, had the lowest FPE and a lower FPT than the best speed, 

as well as 5, 10, and 20 cm/s. This indicated that at speeds higher than a threshold, the harvester picked too 

few fruits to cancel out the gains in FPT because the speed was too high. In contrast, choosing the best speed 

led to a mean FPE above 95%, while the mean FPT remained high. The best speed matched or exceeded the 

mean FPT of the following fixed speeds: 1, 5, 10, and 100 cm/s. This meant that, although finding the best 

speed never resulted in the highest FPE or FPT, it led to the best combined FPE and FPT. 
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Figure 4. The plot compares the mean FPE and mean FPT using fixed speeds vs. the best speed for each segment. 

Scheduling is performed with FCFS with ESS. Results are shown for five baseline speeds, V = 1, 5, 10, 15, 20, 100 

cm/s, and the best speed for all nine harvester configurations. 

5. Conclusion  

In the first experiment, two-row partitioning strategies were compared, dividing the columns so rows had 

equal heights or an equal number of fruits. The best speed was found for each segment. Both partitioning 

methods achieved the minimum 95% FPE; however, partitioning by fruit allowed the harvester to move 

faster, leading to higher FPT. As the number of arms increased, the difference in FPT between the partitioning 

methods increased. With that said, results were better for the same number of arms when more arms were 

configured in more rows rather than more columns. This was because there was a maximum horizontal 

distance of 1 m compared to a maximum vertical distance of 3.5 m. The more arms in a column, the less they 

would have to move up and down to harvest all fruits while the horizontal travel stayed the same. 

Results also showed that FPT followed a logarithmic curve with respect to the number of fruits in a 

segment. Few fruits limited the speed such that FPT remained low. FPT increased as the number of fruits 

increased, though the rate of increase became slower. On the other hand, speed followed a curve related to 

ln (N)/N with respect to the number of fruits. Few fruits in a segment allow the system to choose faster speeds. 

As the number of fruits in a segment increased, a slower speed would be chosen to reach the required 95% 

FPE. This shows that the number of arms greatly affects the chosen speed and resulting FPT. More arms 

allow for faster speeds and, thus, faster FPT.  

In the second experiment, we compared scheduling 3.5 m segments with six fixed speeds versus choosing 

the best speed for each segment for both partitioning methods. Low fixed speeds resulted in high FPE but 

low FPT, while fast fixed speeds had the opposite effect. Choosing the best speed resulted in the best 

combined FPE and FPT. It led to high FPT values while keeping FPE at or above 95%, unlike the fixed 

speeds, which traded one for the other. This indicates that speed selection is very important when maximizing 

FPE and FPT simultaneously. FCFS with ESS could be made faster by switching ESS to binomial search, 

speeding up results. Although FCFS ’s speed is not a bottleneck, per se, Binomial Search could be useful if 

the number of speeds is increased by adding fractional values, such as having the step between speeds be 

0.25 cm/s. However, more informed optimization algorithms can lead to better combined FPT and FPE. For 

example, minimizing makespan would provide near-optimal schedule and speed combinations, though its 

generally slow computation times need to be assessed. 
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Abstract 

Agricultural workers, operating both in open fields and in greenhouses, are exposed to several risks, 

including exposure to severe hot microclimates. The study, carried out in an open field and in a greenhouse 

in central Italy, allowed the detection of the main microclimatic parameters to be used for risk assessment 

according to the technical standard EN ISO 7933 (Predict Heat Strain model). The aim of this work was to 

identify, by implementing the P.H.S. model, any achievement of the critical threshold of rectal temperature 

(tre) and the maximum sweat rate (Swmax), which, if exceeded, would compromise the worker's safety. This 

study is the basis for the development of a tool to provide, in real time and with the use of modern 

technologies (e.g. smartphone or smartwatch), a warning signal to the worker before he or she reaches the 

critical threshold of heat exposure and is subject to immediate safety risks. 

Keywords: work safety, prevention, hot environment, P.H.S., real time risk assessment. 

1. Introduction 

"Microclimate" refers to the physical parameters characterizing living and working environments that 

influence thermal comfort and worker productivity. Key factors include temperature, relative humidity, 

ventilation, mean radiant temperature, and air quality. Extreme climatic events like heat waves also play a 

crucial role. Maintaining an optimal microclimate is essential for worker safety and productivity (Schulte and 

Chun, 2009). 

Microclimatic conditions in work environments vary based on several elements: production cycle 

requirements; environmental characteristics (e.g., underground or high-altitude work); structural 

characteristics of workplaces (construction materials and thermal properties); equipment used to control 

climatic conditions (fans, air conditioners, etc.). 

Microclimatic environments are classified as "moderate" or "severe." Moderate environments offer 

thermal comfort, while severe environments (hot or cold) can strain the body's thermoregulation, 

compromising health. Extreme conditions often arise from production needs or outdoor climatic conditions. 

In severe hot environments, heavy work stresses the cardiovascular system, risking heatstroke. Factors 

such as direct sun exposure, water loss, heavy physical work, insufficient recovery periods, and protective 

clothing contribute to health risks. Common heat-related illnesses include heat cramps, sweat dermatitis, 

hydromineral imbalances, heat syncope, heat exhaustion, and heatstroke. 

The growing interest in climate change has highlighted its impact on workplace safety. Studies show a 

link between extreme temperatures and increased workplace accidents (Gariazzo et al., 2023). High-risk 

sectors include agriculture, construction, utilities, and transportation (Bonafede et al., 2016). Common 

accidents due to high temperatures involve transportation incidents, slips, falls, and contact with objects or 

equipment (Adam-Poupart et al., 2015). 

Di Blasi et al. (2023) confirmed that heat impacts workplace injuries, correlating accidents in the Italian 

agricultural sector with daily average air temperatures. The study estimated 2,050 heat-attributable accidents 

from 2014 to 2018. The World Health Organization predicts that climate change could cause up to 250,000 

deaths per year between 2030 and 2050. Vulnerable groups, including outdoor workers, face significant 

health risks (Gariazzo et al., 2023; Binazzi et al., 2019). Binazzi et al. (2019) identified males and younger 

workers as high-risk categories due to their occupations and physical demands. 

Currently, no methodology quantifies accidents due to high-temperature exposure in agriculture, as the 

mechanisms increasing injury risk are complex. Interventions include regulations, training, and developing 

heat stress prediction systems, such as the "Worklimate" project (INAIL, 2022). 

Factors influencing susceptibility to temperature-related occupational risks include age, mass, physical 

fitness, acclimatization, metabolism, substance use, health status, and clothing. Heat-induced occupational 
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diseases and injuries occur when total heat load exceeds the body's capacity to maintain normal functions 

without excessive strain (Schulte and Chun, 2009). 

This work aims to detect key microclimatic parameters (ambient temperature, relative humidity, air 

velocity, mean radiant temperature) indoors and outdoors, monitor their daily trends, and identify critical 

threshold exceedances that compromise worker health and safety. Following a measurement campaign in 

greenhouses (indoor) and open fields (outdoor), specific software (GidasTEA - LSI-LASTEM) will process 

microclimatic indices to verify limit value exceedances. This study will help develop a tool for real-time 

worker alerts, preventing immediate safety risks like dehydration or heatstroke. 

2. Materials and Methods  

The measurement campaign was conducted in an open field and a greenhouse at the Didactic-

Experimental Agricultural Farm "Nello Lupori" of the University of Tuscia, Viterbo, Italy, from July to 

September 2023, with measurements taken between 9:00 AM and 4:30 PM. Probes were positioned 

approximately 1 m above the ground to simulate worker exposure. 

The LSI-LASTEM sensors used (complying with ISO 7726 standards) include: hot-wire anemometer 

ESV306 (resolution: 0.01 m/s); dry bulb thermometer BSU102 PT100 (resolution: 0.01°C); wet bulb 

thermometer BSU102 PT100 (resolution: 0.01°C); natural ventilation wet bulb thermometer BSU121 PT100 

(resolution: 0.01°C); globe thermometer BST131 (resolution: 0.01°C). The data were recorded using the M-

Log (ELO009) data logger. 

2.1. Greenhouse description 

The greenhouse is oriented northeast with a gable roof, covered with 3 mm thick glass, and measures 30 

m x 14 m with a ridge height of 5.5 m and a side height of 2.75 m. 

2.2. P.H.S. model 

The Predicted Heat Strain (P.H.S.) model (EN ISO 7933) evaluates heat stress based on laboratory studies 

of physiological responses. It accounts for the time dependence of physiological variables, movement effects 

on clothing insulation, and metabolic energy effects on core temperature. The energy balance equation of the 

human body used in the model is: 

 𝐸𝑟𝑒𝑞  =  𝑀 –  𝑊 – 𝐶𝑟𝑒𝑠  –  𝐸𝑟𝑒𝑠  –  𝐶 –  𝑅 −  𝑑𝑆𝑒𝑞  (1) 

where: 

Ereq: required evaporative heat loss through sweating to maintain thermal neutrality (Wm-2); 

M: metabolic rate (ISO 8996) (Wm-2); 

W: effective mechanical power (Wm-2); 

Cres: respiratory convective heat flow (Wm-2); 

Eres: respiratory evaporative heat flow (Wm-2); 

C: convective heat flow (Wm-2); 

R: radiative heat flow (Wm-2); 

dSeq: body heat storage rate for increase of core temperature associated with the metabolic rate (Wm-2). 

The P.H.S. model calculates parameters such as: 

• wp: predicted skin wettedness (dimensionless); 

• SWtot: total water loss rate per minute (Wm-2); 

• human body temperatures: tsk: mean skin temperature (°C); tcr: core temperature (°C); tre: rectal 

temperature (°C). 

Going through the calculation of intermediate parameters (respiratory convective heat flow, respiratory 

evaporative heat flow, convective heat flow at the skin surface, radiative heat flow at the skin surface, skin 

temperature) the P.H.S. model allows you to determine the parameters that describe the expected heat strain: 

• tre: rectal temperature (°C): represents the worker's internal temperature; 

• Dmax: maximum water loss to maintain normal physiological parameters for the given work (g); 
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• Dmax50: maximum water loss to protect a mean subject (g); 

• Dmax95: maximum water loss to protect 95% of the working population (g); 

• Dlimloss50: maximum allowable exposure time for water loss to protect a mean subject (minutes); 

• Dlimloss95: maximum allowable exposure time for water loss to protect 95% of the working 

population (minutes); 

• Dlim tre: maximum allowable exposure time for heat storage (minutes). 

The limit values of the stress indices Swmax and wmax are calculated as shown in table 1, and those for total 

water loss (Dmax) as shown in table 2. 

Table 1. Limit values of the stress indices Swmax and wmax. 

 Non-acclimatized subject Acclimatized subject 

Swmax 2,6 × (𝑀 − 32) × 𝐴𝐷𝑢      (2) 3,25 × (𝑀 − 32) × 𝐴𝐷𝑢     (3) 

wmax 0,85 1 

where: 

𝐴𝐷𝑢 = 0.007184 × 𝐻𝑒𝑖𝑔ℎ𝑡0.725  × 𝑀𝑎𝑠𝑠0.425 (4) 

 

Table 2. Limit values for total water loss. 

 Subject free to drink Subject not free to drink 

Dmax50 7% of body mass 3% of body mass 

Dmax95 5% of body mass 3% of body mass 

 

The P.H.S. model inputs include the metabolic rate (M) and the thermal insulation of clothing (Icl) 

(estimated respectively according to EN ISO 8996 and EN ISO 9920 standards), activity duration, worker’s 

mass and height, water replacement ability, acclimatization, air temperature (ta), mean radiant temperature 

(tr), air velocity (va), and water vapor partial pressure (pa). Metabolic activity is measured in met (1 met = 

58.2 Wm-2), while clothing insulation is measured in clo (1 clo = 0.155 m²KW-1). The model helps evaluate 

the probability of thermal collapse for workers in severe hot environments, emphasizing the importance of 

accurate parameter estimation and timely measurements, especially in environments with variable conditions 

(Diano et al., 2015). 

2.3. Data analysis 

The collected data was processed using the "GidasTEA LSI" software. This software requires inputting 

specific parameters such as the type of work (for assigning a met value), the clothing worn (for assigning a 

clo value), and the worker’s position. These inputs are then associated with the microclimatic parameters of 

the workday. The software calculates the P.H.S. and checks whether the operator's exposure limit value has 

been exceeded. 

2.4. Implementation of a dynamic model for calculating the Predicted Heat Strain 

The standard computation method for the P.H.S. model in EN ISO 7933 assumes constant environmental 

conditions, which does not account for daily temperature variations and thermal accumulation. To address 

this, a dynamic model was developed to consider the integral of the environmental parameters recorded over 

time. This approach provides a more accurate assessment of the thermal accumulation experienced by the 

operator. 

A specialized software was developed, similar to "GidasTEA LSI", but with dynamic modeling 

capabilities. It requires inputting worker parameters such as mass, height, clo, met, and initial rectal 

temperature (tre). Additionally, it inputs ambient temperature (ta), globe thermometer temperature (tg), vapor 

pressure (pa), and air velocity (va) for each minute. 

The model considers the worker's posture, with "standing" being the appropriate choice for greenhouse 

work. Wind speed was deemed negligible in the greenhouse setting. 

Key inputs for the model include: 
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• metabolic rate (M): for greenhouse work, a value of 150 W/m² was chosen. 

• clothing thermal insulation (Icl): a value of 0.5 clo was selected for the clothing worn. 

• static moisture permeability index (imst): an average value of 0.38 was used. 

• body surface fraction covered by reflective clothing (Ap): set at 54% based on EN ISO 7933. 

• emissivity of clothing: set at 0.97, unless special materials are used. 

• operator’s mass and height (75 kg and 180 cm respectively). 

The software outputs rectal temperature (tre) and sweat rate (Swmax) for each minute. The rectal 

temperature over a specific interval is compared with the maximum tolerable rectal temperature of 38°C, as 

per EN ISO 7933. This allows predicting the remaining work time before the operator could suffer from heat 

stress. 

This dynamic model improves the accuracy of thermal load predictions by accounting for cumulative 

thermal exposure. By integrating environmental parameters over the sampling period, the model provides a 

comprehensive assessment of thermal conditions and their impact on the operator. This enhances the 

management and mitigation of heat stress risks in severe hot environments, ensuring worker safety and 

compliance with relevant standards. 

3. Results and Discussion 

For the analytical processing, the day with the highest climatic values was considered, which was 

recorded on 01/08/2023. The data related to the situation involving the highest thermal load for workers 

(greenhouse work) were taken into consideration. The data downloaded from the data logger had values 

acquired approximately every 3 seconds. Therefore, considering a typical seven-hour workday, about 8500 

measurements were collected throughout the day for each measured parameter. 

To streamline the data load and achieve a better graphical representation, it was decided to reduce the 

data to approximately 420 measurements. Instead of reporting 20 measurements per minute (as provided by 

the data logger), only one data point per minute was considered. This operation was done with a specific 

criterion: the average of the twenty values recorded within a minute was calculated to obtain a single, most 

representative value for that time interval. Subsequently, each measured parameter was individually 

processed and graphically represented to show the trend throughout the entire workday. This graphical 

representation helps in understanding the fluctuations and patterns in the environmental conditions over time, 

providing a clearer picture of the thermal load and its impact on the workers. 

By reducing the data and using averages, the analysis becomes more manageable and the visual 

representation more comprehensible, allowing for more accurate assessments and decision-making regarding 

worker safety and thermal stress management. 

3.1. Temperature and humidity 

The ambient temperature (ta) throughout the workday, shown in Fig. 1, peaked at 35°C at 12:15 PM and 

remained above 34°C until 2:54 PM. A comparison was made between the recorded ta and the simple moving 

average (sma) of these values to smooth out fluctuations and provide a consistent temperature trend, 

calculated as follows: 

𝑠𝑚𝑎 =  
sum of temperatures over n periods

𝑛
  (5) 

The sma trend shows a gradual increase throughout the day and a peak of 32.35°C at 3:30 PM. 

Comparing ta with wet-bulb temperature (tw) and globe thermometer temperature (tg), the trends of the 

three curves are nearly identical, though the specific temperatures differ (Fig. 1). tw, crucial for assessing 

temperature and humidity, ranged from 22°C in the morning to 27°C at 2:43 PM. Recent research indicates 

critical tw thresholds are 25-28°C in hot-dry environments and 30-31°C in hot-humid environments, such as 

greenhouses. Exceeding these values impairs the body's cooling ability through sweating. 

tg considers radiant heat, air temperature, and wind speed, showing higher values than ta, up to 44°C in 

our case. This is vital in greenhouses as it significantly affects heat sensation (Oliveira et al., 2019). 

Fig. 1 also shows the relative humidity (Wa) trend, remaining within the safe range of 40-60%, with a 

peak of 57% in the early morning. Wa is crucial for thermal comfort, representing the water vapor in the air, 

which increases with temperature, affecting perceived heat sensation. 
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Figure 1. Trends of: a) ambient temperature (ta), wet-bulb temperature (tw), and globe thermometer 

temperature (tg); b) ambient temperature simple moving average (ta sma); c) relative humidity (Wa) 

(01/08/2023). 

3.2. Rectal temperature (tre) and water loss (Swmax) 

Using the software with the P.H.S. model, rectal temperature (tre) and fluid loss (Swmax) trends were 

analyzed for 01/08/2023 (K0).  

Fig. 2a shows an exponential increase in tre during the first hour, stabilizing around 37.4-37.5°C 

throughout the day, and decreasing in the last hour. tre never reached the 38°C risk threshold set by EN ISO 

7933. Fig. 2b, using the simple moving average for ambient temperature, confirms a similar tre trend and 

maximum temperature. 

Fig. 3a illustrates fluid loss trends for a standard operator (75 kg, 180 cm) as per EN ISO 7933, with a 

metabolic rate (M) of 150 Wm-2 (moderate activity). 

Fluid loss gradually increases, with non-acclimatized subjects reaching the critical threshold around 

16:00; acclimatized subjects do not reach this threshold. Acclimatization enhances heat tolerance and reduces 

hyperthermia risks (Chong et al., 2020; Maughan, 1997). 

Fig. 3b, applying the moving average temperature, shows that threshold values for Swmax are not reached 

for either subject group. 

 

Figure 2. Trend of: a) tre; b) tresma (simple moving average) (01/08/2023). 
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Figure 3. Trend of: a) SWmax; b) SWmaxsma (simple moving average) (01/08/2023). 

3.3. Simulations of rectal temperature (tre) and water loss (Swmax) varying ta 

Climate change, marked by a 1°C rise in global temperatures in recent decades, poses significant health 

risks (Kenny et al., 2020). Evaluating its health impacts is crucial (Cecchini et al., 2010; Abdel-Ghany et al., 

2013). On 01/08/2023, P.H.S. calculations showed no critical tre or Swmax values, as temperatures did not 

reflect typical August conditions (Fig. 2 and 3). 

Simulations were conducted by adding 1°C increments to the ambient temperature (ta). The P.H.S. 

calculations for tre and Swmax trends are shown in Fig. 4. 

The graph indicates that tre rises faster with each 1°C increase. Starting from K0 (maximum 35°C), the 

critical 38°C threshold is not reached. However, by K4 (maximum 39°C), tre approaches 37.8°C. At K5 

(maximum 40°C), tre reaches the critical threshold around 15:00. From K6 to K9 (41-44°C), the critical 

threshold is reached before midday, sometimes after just 90 minutes of work. 

 

Figure 4. Trend of: a) tre; b) Swmax, with respective simulations (01/08/2023). 

 

Fig. 4b shows that fluid loss increases with starting of the activity, reaching critical levels faster as 

temperature increases. For K0, non-acclimatized subjects exceed the critical threshold by the end of the day. 

For K4, it occurs around 15:00, and for K9, it occurs before 14:00. Acclimatized subjects exceed the threshold 

only from K4 at the end of the day, and for K9, by 15:00. Acclimatization delays reaching critical thresholds, 

enhancing worker safety. 

3.4. Simulations of rectal temperature (tre) and water loss (Swmax) varying worker’s mass 

Simulations were conducted for two body types: robust (120 kg) and small (60 kg), keeping height 

constant (Fig. 5). Differences in ADu values and sweating thresholds were calculated. 

For tre, no significant differences were observed. For Swmax, robust subjects reached the critical threshold 

for non-acclimatized individuals about an hour earlier than standard-mass subjects. Small size individuals 

reached the threshold almost identically to standard-mass subjects. 

AgEng 2024 Proceedings

403



 

Figure 5. Trend of: a) tre ; b) Swmax (over size subject); c) tre ; d) Swmax (small size subject) (01/08/2023). 

4. Conclusions 

Despite the increasing frequency and intensity of heatwaves due to climate change, there are no dedicated 

heat monitoring and alert systems for the occupational sector in Europe or globally. Existing alert systems 

rely on weather and climate data from ground meteorological stations, which provide risk levels based on 

observed conditions or simulations and require interpretation by qualified personnel. 

The P.H.S. model, as described in Annex E of ISO 7933, has limitations due to its reliance on constant 

input of environmental parameters. This does not account for variations typical in agricultural work 

environments. The complex calculations and precise measurements required by the P.H.S. model make it 

unsuitable for a heat alert system. Additionally, most international alert systems do not provide forecasts 

beyond five days, except for the "Heat-Shield" platform (www.heat-shield.eu). Temperature and other 

environmental parameters constantly change during the workday. The developed software considers these 

continuous changes to provide a real-time prediction of the critical threshold based on collected data.  

An effective predictive system balances input data characteristics from the microclimate model with 

detailed heat risk information. Wearable sensors, common in sports and medicine, can provide real-time data 

on physiological parameters and climatic conditions to prevent heat-related risks. These sensors monitor heart 

rate and derive core temperature using algorithms like Buller's. In the U.S., a next-generation arm sensor for 

workplace heat stress prevention measures heart rate, body and ambient temperature, and relative humidity, 

and includes an accelerometer. This device alerts workers via an app during heat stress conditions but is not 

available in the E.U. due to safety requirements. Testing in the E.U. is needed for integration into the heat 

risk prevention system. 

Developing a smartwatch app to alert workers when approaching the critical core temperature threshold 

could enhance safety. Monitoring liquid loss by weighing workers is complex and does not offer real-time 

information. 

This study explored a real-time heat stress monitoring system for severe hot environments using the 

Predicted Heat Strain (ISO 7933) method. Results support further development of real-time data processing 

software for worker alerts, with validation essential before commercial or community use. 
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Abstract 

Determining the timing and quantity of irrigation in hydroponics is crucial for effective greenhouse 

management. Traditionally, for automated irrigation management in greenhouses, most farmers have used a 

timer to regularly drive irrigation or measure the substrate water content and air humidity neglecting to 

consider the plant physiological status. The development of Decision Support Systems (DSSs) that combine 

environmental and crop data can assist growers in making more precise and consistent decisions in irrigation 

management.  In the current research, a model that evaluates stomatal conductance (gws) and photosynthesis 

rate (Ps) as the plant-response key in the decision making process was developed.  The innovation of the 

current model lies in the integration of Ps values estimated by means of remote sensing using a photochemical 

reflectance index (PRI). Logarithmic regression was employed using independent variables like temperature 

(Tair), vapor pressure deficit (VPD), and leaf-air temperature difference, to predict gsw status. Next, the 

correlation between gsw and Ps was initially established to fit a logarithmic curve. The mean response of Ps 

at maximum gsw was considered as Psmax. Then the regression model was utilized to inversely predict gsw 

values corresponding to these percentages of Psmax, resulting in the determination of different gsw cutoff 

points. Statistical performance of the model was evaluated. The results indicate that the system achieved a 

significantly small error. 

Keywords: Decision support system, photosynthesis, photochemical reflectance index, stomatal 

conductance, calibration 

1. Introduction 

Hydroponic greenhouse systems have become increasingly popular in recent years as a method for 

growing crops with high yields and reduced land and water usage compared to traditional soil-based 

agriculture. According to the Markets and Markets (2025) report, the global commercial smart greenhouse 

market size is expected to grow from USD 29.6 billion in 2020 to USD 50.6 billion in 2025, expanding at a 

compound annual growth rate of 11.3% during the forecast period (Fang et al., 2022). Consequently, facility 

greenhouse has become an essential method of agricultural production globally. To further increase 

productivity within the existing greenhouse-covered areas, it is necessary to redesign operational control 

systems and establish more demonstrative greenhouses. 

A key limitation of many hydroponic greenhouses is their reliance on outdated or inefficient irrigation 

control systems. These systems often use timer-based watering schedules that fail to adequately account for 

changing plant needs, environmental conditions, or resource availability (Elvanidi and Katsoulas, 2022 (a)). 

This can lead to over-watering, waste of valuable water and nutrients, and suboptimal plant growth. 

Furthermore, the lack of real-time monitoring and automated adjustments in these systems undermines the 

potential efficiency benefits of hydroponics. 

Other systems utilize climate data to help growers make more precise and consistent decisions regarding 

irrigation management (Lu et al., 2015). Recent research has highlighted the effectiveness of vapor pressure 

deficit (VPD) control technology in tomato greenhouses, showing promising results (Zhang et al., 2017). 

While greenhouse controls based on atmospheric or root conditions can enhance plant growth and boost crop 

yields (Li et al., 2021), controlling greenhouses based on plant responses is more accurate and appropriate. 

This approach is preferable because plant physiological responses result from the interaction between the 

atmosphere, root, and the plant itself. 

Until recently, real-time monitoring of crop physiological parameters without physical contact or 

destructive sampling has been challenging. However, advancements in computational intelligence have 

enabled the development of hyperspectral optical systems that can provide insights into crop physiology and 

morphology. These systems leverage a series of reflectance indices, such as the Photochemical Reflectance 

Index (PRI), which have been shown to correlate strongly with crop green biomass and photosynthesis rates 
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(Garbulsky et al., 2011). The PRI, in particular, was originally interpreted as a reflectance parameter capable 

of detecting the spectral signature of xanthophyll cycle pigments involved in the dissipation of excess light 

through non-photochemical quenching (Kováč et al., 2018). 

Optical systems that measure canopy reflectance offer advantages over the traditional approach of using 

integrating spheres to measure leaf-scale reflectance factors (Lukeš et al., 2017). However, these high-cost 

sensors can be difficult to handle and lack the flexibility for deployment in multi-sensor platforms. The recent 

development of remote soft-sensors, which are mathematical models utilizing real-time sensor data, allows 

for the integration of plant-based indices and indicators (Elvanidi and Katsoulas, 2023 (b)). This more robust 

and user-friendly methodology enables the study of hourly variations in photosynthesis under different 

climatic and fertigation conditions, not just for a few days, but over an entire cultivation season. 

In the current research, remotely measured data on photosynthesis were used to define the crop physiology 

cutoff points, which were subsequently integrated into a decision support system (DSS). This DSS aims to 

combine both environmental and crop physiology parameters. The data were collected from a tomato crop 

grown under extreme irrigation and environmental conditions. Initially, a logarithmic curve was fitted to 

establish the correlation between gsw and photosynthesis (Ps). The mean response of Ps at maximum gsw was 

considered as the maximum photosynthesis rate (Psmax). Control standards were then defined as 70% of the 

Psmax. Using the regression model, the researchers inversely predicted the corresponding gsw values for these 

percentages of Psmax. This allowed them to determine different gsw cutoff points that could be used as 

thresholds in the DSS. 

2. Materials and Methods  

The measurements were carried out from May to December of 2019 in one of the five compartments of 

a multi-tunnel greenhouse with a total ground area of 1500 m2 (250 m2 each compartment). The 

establishments were located at the facilities of the University of Thessaly, Velestino, Volos (latitude 39° 

22, longitude 22° 44′, and altitude 85 m) in the continental area of eastern Greece. 

The tomato plants (Solanum lycopersicum cv. Elpida) were cultivated in slabs filled with perlite slabs 

(ISOCON Perloflor Hydro 1, ISOCON S.A., Athens, Greece). The plants were fertigated with a fresh nutrient 

solution with set points of electrical conductivity (EC) around 2 dS m−1 and pH 5.8. The nutrient solution 

supplied to the crop was a standard nutrient solution for tomatoes grown in open hydroponic systems adapted 

to Mediterranean climatic conditions. The nutrient solution was supplied via a drip system and con-trolled 

by a time program irrigation controller (8 irrigation events per day). 

In order to define the different gsw cutoff points, records of different physiological responses of the plants 

to their surrounding microclimate under extreme conditions were gathered. These conditions included low 

(LTS) and high air temperatures (HTS), low nitrogen concentration (LNS), and low water concentration in 

the root zone (LWS). Additionally, measurements of no stressed (NoS treatment) plants were recorded.  

The data were gathered by a multisensory tower consisting of an air temperature sensor (Thygro SDI-12, 

Symmetron, Gerakas, Greece), relative humidity sensor (Thygro SDI-12, Symmetron, Gerakas, Greece), 

solar radiation sensor (SP-SS, Apogee Instruments, Logan, UT, USA), leaf temperature sensor 

(Thermocouples, type T), and PRI sensor (type SRS-PRI, Meter group, Pullman, WA, USA). The 

multisensory tower was placed within the greenhouse, parallel to the vertical axis of the tomato’s main stem. 

The measurements started 10 days after each treatment was applied and lasted for 25 days. 

Totally, air temperature (Ta, °C), relative humidity (RH, %), solar radiation (SR, W m−2), leaf temperature 

(TL, °C) and photochemical reflectance index (PRI) were recorded.  

2.1. Calibration and statistics 

The Based on PRI values, the photosynthesis rate (Ps, μmol m−2 s−1) under extreme conditions were 

calculated: 

Ps = 324.37*PRI + 8.92                                                     (1) 

The calibration procedure of the remote PRI sensor and the Ps calculation was presented in Elvanidi & 

Katsoulas (2021).  

Additionally, based on environment and photosynthesis data, gws was calculated based on Penman-

Monteith equation (Katsoulas and Stanghelini, 2019): 
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gws = k*(1 - (RH%/100))*VPD                                                          (2) 

 

where k is a constant equal to 0.69 and VPD is vapor pressure deficiency calculated according to 

methodology described in Katsoulas and Kittas (2008). 

Then is to correlated gsw status model with Ps values as the most direct physiological indicator of crop 

production. Initially, the gsw is related to Ps by using gsw as the independent variable (X) and Ps as the 

dependent variable (Y) to fit a logarithmic curve (Equation (1)).  

Y = β0 + β1 ln (X) + εi                                                                                                            (3) 

where β0 and β1 are the model parameters and εi is the error term. 

After the relationships between Ps and gsw were established, the mean response of Ps corresponding to 

the maximum gsw in the data was considered the upper bound of Ps (Psmax). Considering the practical seedling 

cultivation, the values of maintained 70% of Psmax were used as the control standards. The regression model 

of gsw on Ps was used to inversely predict gsw values corresponding to 70% of Psmax and then to obtain 

the gsw cutoff points. 

3. Results and Discussion 

The physiological data of tomato under extreme conditions, were used to fit a logarithmic curve with gsw 

and Ps as the independent and dependent variables, respectively. In Figure 1 is illustrated the fitted 

logarithmic curve in LTS and HTS plants correlated with the values occurred in healthy plants (NS). The 

logarithmic curve is presented as Equation (4), (5) and (6) for NS, LTS and HTS respectively with R2 = 0.91, 

R2= 0.91 and R2=0.90. 

NS: Ps = 6.30In*(gws) + 24.61                                                   (4) 

 

LTS: Ps = 10.97*In(gws) + 33.4                                                   (5) 

 

HTS: Ps = 7.65*In(gws) + 15.09                                                 (6) 

 

Similar, in Figure 2 is illustrated the fitted logarithmic curve in LNS and LWS plants correlated with the 

values occurred in healthy plants (NS). The logarithmic curve of LNS and LWS is presented as Equation (7) 

and (8) with R2 = 0.91, R2= 0.90 and R2=0.91, respectively. 

 

LTS: Ps = 10.97*In(gws) + 33.4                                                   (8) 

 

HTS: Ps = 7.65*In(gws) + 15.09                                                 (9) 
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Figure 1. Logarithmic curve between the photosynthesis rate (Ps, μmol m-2 s-1) and stomatal conductance 

(gws, mmol H2O m-2 s-1) values performed in plants growth in low temperature stress (LTS) and high 

temperature stress (HTS) compared to the no stressed (NS) plants. 

 

Figure 2. Logarithmic curve between the photosynthesis rate (Ps, μmol m-2 s-1) and stomatal conductance 

(gws, mmol H2O  m-2 s-1) values performed in plants growth in low nitrogen stress (LNS) and low water 

stress (LWS) compared to the no stressed (NS) plants. 

The relationship between Ps and gws under different environmental conditions is crucial for understanding 

how plants respond to stress. According to the results, in no stress conditions, the photosynthesis rate 

increases moderately with an increase in stomatal conductance. The constant 𝑎 = 6.30 indicates the sensitivity 

of Ps to changes in gws, and 𝑏 = 24.61 represents the baseline Ps when ln(gws) is zero. This relationship 

suggests that under optimal conditions, plants maintain a relatively high baseline photosynthesis rate, with 

moderate increases as gws increase. Under low temperature stress, the photosynthesis rate shows a higher 

sensitivity to changes in stomatal conductance compared to no stress conditions, as indicated by the larger 

constant a = 10.97. The baseline photosynthesis rate is also higher (b = 33.4), suggesting that plants under 

low-temperature stress might increase their photosynthetic activity more sharply with increases in gws to 

compensate for the stress conditions. For high-temperature stress, the Ps is less sensitive to changes in gws 

compared to low temperature stress but more sensitive than in no stress conditions, with a = 7.65. The baseline 

photosynthesis rate is lower (b = 15.09), indicating that high temperatures might suppress the overall 

photosynthetic capacity of the plants. In summary, the baseline Ps is highest under low temperature stress, 

indicating an elevated photosynthetic capacity as a response to cold stress. In contrast, plants under high 
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temperature stress show a lower baseline photosynthesis rate, reflecting the suppressive effects of high 

temperatures on photosynthesis. The no stress condition maintains a moderate baseline photosynthesis rate 

and sensitivity, representing optimal growing conditions. Under low water stress, the baseline photosynthesis 

rate is lower than that of no stress conditions. This reduction reflects the significant impact of insufficient 

water availability on the plant's photosynthetic capacity. According to Fang et al. (2022), in plants under 

drought stress, gsw is reduced and the heat loss through leaf transpiration is also hindered, thereby increasing 

plant temperature. Similar findings were reported by Zhang et al. (2013). These fobservations highlight the 

importance of tailored greenhouse management practices to mitigate the effects of temperature stress and 

optimize plant growth and productivity. 

Understanding these relationships is essential for optimizing irrigation and climate control in 

greenhouses. When the logarithmic curves of gsw and Ps were obtained, the maximum gsw value of 1.00 mol 

H2O m−2 s−1 was incorporated into Equations (4-9) to achieve the corresponding value of Ps, which was 

different according to the treatment. Taking this value as the Psmax of tomato crop, the maintenance of 70% 

of Psmax was defined as the control standards of the system for each stress. In the Table 1 is presented the 

average and maximum Psmax value of the 70% Psmax sample. Additionally, the number of values (%) 

corresponding to each 70% Psmax of the logarithmic curve is also shown. 

The table provides a clear comparison of how different stress conditions affect the photosynthesis rate of 

tomato crops. HTS results in the highest average Psmax, suggesting that tomato plants may exhibit increased 

photosynthetic activity under such conditions, although the percentage of values corresponding to 70% of 

Psmax is the lowest at 30%. In contrast, LWS shows a lower average Psmax and the lowest percentage of values 

at 14%, indicating a more significant adverse effect on photosynthesis. The results highlight the importance 

of managing environmental and nutritional conditions to optimize the photosynthetic efficiency and overall 

health of tomato crops in greenhouse settings.  

Table 1. Average, maximum and value count in % of the 70% Psmax sample. 

Type stress in tomato crop Aver.  

70% Psmax (μmol m-2 s-1) 

Max. 7 

70% Psmax (μmol m-2 s-1) 

Value count in %, 70% 

Psmax (μmol m-2 s-1) 

No stress 17.34 20.4 50 

Low temperature Stress 15.23 17.97 49 

High temperature stress 27.48 27.48 30 

Low nitrogen stress 23.48 26.05 64 

Low water stress 16.83 20.08 14 

These values serve as critical cutoff points for defining the physiological status of the crop under different 

stress conditions. By establishing these thresholds and enabling climate data, a conceptual plant-response-

based strategy for a DSS it is performed to accurately the irrigation frequency and dosage of tomato crops 

cultivated under greenhouse conditions. 

4. Conclusions 

This research highlights the critical importance of integrating crop physiology data in the new strategies 

for optimizing irrigation management in greenhouse settings. By utilizing remotely measured photosynthesis 

data, precise crop physiology cutoff points were established and incorporated into a decision support system 

(DSS). hese cutoff points are pivotal in defining the irrigation strategy system. This innovative approach 

enables a more accurate and responsive irrigation strategy, tailored to the actual needs of the plants.  
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Abstract 

High reliance on labour and soil compaction are among the top challenges for European crop farmers. 

Given the high seasonality nature of field crop farming, the consequences of lack of access to affordable 

labour when needed would be devastating as was manifested during the COVID pandemic. The issue is 

alarming in view of aging of the farming population. Moreover, repetitive field crop operations such as 

spraying of crop protection chemicals expose farm workers to chemicals detrimental to their health and the 

environment. Autonomous systems may help tackle the labour challenge while providing opportunities to 

improve efficiency, curb emission, reduce soil compaction and improve biodiversity. However, autonomous 

systems involve high upfront investment cost and uncertainty regarding expected benefits, calling for 

context-relevant cost-benefit-analysis (CBA) studies. Retrofitting machinery which farmers are familiar with 

presents interesting aspects (e.g., possibility to function both as an autonomous and conventional platform, 

relatively known retrofitting cost compared to purpose-built robots). This study aims to provide farm level 

cost benefit analyses of autonomous systems being developed by a European project called ROBS4CROPS 

which combines smart implements, autonomous vehicles and high-level planning and scheduling software.  

This paper focuses on autonomous spraying using retrofitted tractors drawing on a case study of table grapes 

spraying in Corinth, Greece.   

Data for the CBA was gathered through interviews with project site managers, field visits, field 

experiment data, price quotes from technology providers, literature, and expert opinion. Cost of other 

operations, crop yield and quality are assumed the same between conventional and autonomous systems. 

Alternative scenarios were defined considering farm characteristics, market price of machinery and inputs, 

agronomic constraints and robotic system reliability and regulation. In the analysis, reference farm size of 10 

ha and average field size of 4 ha was used. The costs and benefits of the robotic retrofitted system were 

evaluated against existing practices using conventional tractors. Results show that the retrofit system is 

moderately cheaper than conventional system in many of the scenarios considered. Considerable labour 

saving appears to be feasible (32%). However, as pesticide costs account for the major share of total private 

cost of spraying, the robotic system does not pay off without sizable reduction in pesticide use. 

 

Keywords: Autonomous spraying, table grape, Greece. 

1. Introduction 

Critical challenges in contemporary European mechanized farming are soil compaction induced by heavy 

machinery (Lamandé et al., 2018; Piccoli et al., 2022; Tamirat et al., 2022), and scarcity and high cost of 

labour  (van Evert et al., 2024; Ørum et al., 2023). A survey of farmers from four European countries shows 

that farmers’ top challenges associated with conventional machinery are high reliance on labour and soil 

compaction (Pedersen et al., 2023).  

Given the high seasonality (sensitivity to timing) nature of field crop farming, the consequences of lack 

of access to affordable labour when needed would be devastating. This was clearly manifested during the 

COVID pandemic which restricted the flow of workforce because of which many crops perished in the field. 

The situation is alarming in view of aging of the farming population where the young generation is getting 

away from farming as a way of life and/or engaging in farming tasks that involve dirt and inconvenience 

(e.g., weeding).   

An equally pressing challenge is that repetitive field crop operations such as spraying of crop protection 

chemicals expose farm workers to chemicals detrimental to their health (let alone the environment). This is 

not to forget that climate change is already challenging European agriculture calling for management 
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practices and technological solutions to curb emission of greenhouse gases.  

Autonomous systems may help tackle the labour challenge while also providing opportunities to improve 

input use efficiency (Gonzalez-de-Santos et al., 2017; Gonzalez-de-Soto et al., 2015) and curb Green-House-

Gas emission (Ghalazman et al., 2022; Gorjian et al., 2020). Owing to their smaller size, robots also present 

opportunities to reduce soil compaction (Duckett et al., 2018; King, 2017). 

Practical adoption of commercial agricultural robots is low (Gil et al., 2022) partly because the costs and 

benefits associated with their use are not yet clear. Limited access to information about field robots and 

supplementary services are also important limiting factors (Pedersen et al., 2023). Earlier attempts to assess 

economic feasibility studies were done by Pedersen et al. (2006),  Pedersen et al. (2017) and Shockley et al. 

(2019). Pradel et al. (2022) presented comparative life cycle assessment of intra-row and inter-row weeding 

practices using autonomous robot systems in French vineyards.  

Literature on the economics of autonomous robots in field crop farming is still sparse. This is partly 

because most of the parameters to calculate costs and benefits associated with such technologies are not yet 

known. A guiding framework to estimate the costs associated with robotic systems is provided by (Lampridi 

et al., 2019). Following this framework, Vahdanjoo et al. (2023) assess the operational, economic and 

environmental performance of robotic seeding and weeding operations in arable farming context using Robotti 

of AgroIntelli.  The study concluded that the robotic system provides considerable operational and economic 

performance benefits even though it takes longer time to complete operation of a given farm area.  

Lowenberg-DeBoer et al. (2021) documented promising technical and economic feasibility of arable crop 

production with autonomous equipment which allows medium size farms to approach minimum per unit 

production cost levels.  According to Lowenberg-DeBour (2020), investment for conventional and robotics 

machinery are comparable for smaller farms but larger farm sizes have comparative advantage in terms of 

substantial saving in farm equipment through intensive use of robotic components. Possibilities to retrofit 

existing machinery appear to partly limit this divide. An added value of retrofitting is that most of the cost 

components are known compared to that of purpose-built robotic systems (Lowenberg-DeBour, 2020).   

There have been developments in techniques to retrofit conventional tractors for autonomous capability 

(Celenta and De Simone, 2020). Backman et al. (2022) provided an example of how to build a robot tractor 

integrating commercially available components and widely used standards. Baillie et al. (2017) provides and 

overview of developments in autonomous tractors. An integral component of agricultural automation is 

navigation. (Xu and Rai, 2024) presented an example for autonomous tractors operating in peach orchards 

which use vision-based autonomous navigation stack. As Shutske (2023) highlighted, safety and risk 

assessment should be at the forefront while designing agricultural automation and choosing the extent of 

machine autonomy.  

Costs and benefits of robotic solutions for field crop operations are not yet clear. Hence, there is a clear 

need for context-relevant estimates on costs and benefits associated with the technology. This paper 

contributes to this by presenting a cost-benefit analysis of autonomous spraying of crop protection chemicals 

using retrofitted tractors drawing on a case study in table grapes in Corinth, Greece.  

2. Materials and Methods  

2.1. Study context 

This study is a part of an European project called ROBS4CROPS which aims to develop reliable and fully 

autonomous robotic solutions for repetitive, labour demanding and tedious field operations primarily 

focusing on weeding and spraying of crop protection chemicals. To achieve this, the project combines smart 

implements, autonomous vehicles and high-level planning and scheduling software (referred to as ‘farming 

controller’) which orchestrates the planning and execution of the agricultural operations using digital twin 

technology (Paraforos et al., 2022; Van Evert et al., 2023). Testing and further development of the robotic 

solutions undertakes on real farm conditions in Large Scale Pilots (LSPs) situated in Greece, France, Spain 

and the Netherlands. This study focuses on spraying of table grapes in Greece using (semi)autonomous 

retrofitted tractor. The pilot farm in Greece is run by PEGASUS–a cooperative of farmers producing table 

grapes on 200 ha of land as of 2023. Operating under the brand name 7grapes, PEGASUS exports 95% of its 

fresh table grape production to several countries with Great Britain, Germany and Netherlands being the 

major destinations. 
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2.2. Overview of conventional practice 

Table grapes in Corinth, Greece receive many spray treatments of foliar nutrients, crop protection agents, 

and crop growth regulators (Anastasiou et al., 2023). Per season, about 11 spraying passes are needed but 

could be more depending on variety (by maturity), disease infestation and weather conditions (a brief 

summary of when operation starts and ends is provided in Table 1). To minimize health risks from chemical 

residues on fruits, spraying must stop two weeks before harvest.  

Table 1: Operation calendar for table grape spraying in Corinth, Greece 

Variety group  Example varieties Spray start Spray end Operations per 

season 

Early season Thompson seedless 2nd week of March 1st week of July 10 

Mid-season Crimson 2nd week of April 1st week of August 10 

Late season Pristine Last week of April End of September* 13 

* In North Greece (e.g., valley of Stimaga), spraying lasts until November (harvest until December) depending on weather 

condition. 

Grape farmers in Corinth are increasingly being challenged by unfavourable weather conditions limiting 

water availability. An unfavorable weather condition (rain, heatwave) just a week before harvest can destroy 

fruits of hard work thereby leaving farmers devastated (Mr. Thanos Dritsopoulos, Pegasus, 20 October 2023). 

The vehicle used as a reference is a 52 kW (=70 hp) conventional tractor from John Deere served by a sprayer 

of 600 L capacity (see Figure 1). 

 

 

Figure 1 Reference tractor for conventional practice 

Source: Photo taken during field visit on 15 June 2023. 

 

2.3. The retrofitted robotic system 

During 2023 season, the Robs4crops experiment was conducted on a small plot of 0.6 ha situated 3 km 

away from PEGASUS’ pack house. For the experiments, the retrofitted tractor was used with an ASM sprayer 

of 200 L capacity ( 

Figure 2). Detailed description of autonomous capabilities  the robotic systems being developed under 

the project is provided in Roure and Rascón (2021). 

 

   

Adjusting perception unit 

for field test 

Filling sprayer tank with water in the 

village 

Retrofit system during field 

experiment 

 

Figure 2 Robs4crops retrofit system 

Source: Photos taken during a field visit on 15 June 2023. 
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2.4. Data collection and validation process 

 

Data inputs needed for the economic analyses were identified through a combination of approaches 

including preparation of protocol for data collection, insights from farmer surveys in case study areas 

conducted in 2022/23 (as input to Pedersen et al. (2023)), case specific needs identified in consultation with 

LSP managers, review of literature, and expert opinion. The study involved an iterative process of data 

collection, scenario development, data validation, setting up economic model, evaluating relevance and 

adequacy of economic model in close collaboration with Robs4crops LSP managers.  

Most of the data used in this study was accessed through the LSP managers who gathered the data 

consulting relevant sources blending with their experiences as agronomists/advisors/dealers. Following 

consultation meetings, the UCPH team would share templates for the LSP managers to fill data in. In most 

cases, data updates were done interactively during discussion meetings. When doubts arise during 

discussions, the LSP managers would make a call to farmers and agronomists to verify/clarify those issues 

on the spot when possible. When the data inputs were believed to be completed, review sessions followed to 

check if results of the economic model reflect realities on the ground. Efforts have been made to incorporate 

the views of other partner partners. There were many instances which led to revision of assumptions, data 

inputs and estimation of intermediary parameters.     

 

2.5. Key concepts and terminology 

Key concepts and terminology are defined as below:  

Operation window: an agronomically reasonable duration (number of days) during which a spraying 

operation needs to be done to avoid crop damage. This surely depends on phenological stage, disease 

infestation and/or weather conditions. There are differences in acuteness depending on the type of disease 

targeted. A 7-day operation window was chosen for the BASE scenarios.  

 Workable hours per day: number of hours during which a target operation can be performed with 

potentially beneficial effect. This is conditioned by an interplay of soil/weather conditions, plant conditions, 

machinery capacity and labour availability. In the case study area (Corinth, Greece), table grape spraying is 

normally done early in the morning or late in the afternoon for best possible effect considering temperature, 

humidity and wind speed. After 11am, wind from the sea is often a challenge which sometimes subsides at 

about 6pm. Even when weather conditions allow spraying all night, absorption can be limited after 9pm in 

the evening by closure of plat stomata. In March and April, the temperature may allow spraying around noon 

but during June and July it would simply mean burning the leaves. Bringing the human factor into the 

equation, late evening spraying may entail high labour cost. However, in the case study area, as many of the 

farmers use own labour, this is not often considered binding constraint. As such, five hours is optimal 

workable hours per day but in practice farmers do extend the working hours.  

Effective field capacity: farm area that can be worked per unit of time which depends on working speed, 

working width and field efficiency (the later assumed to be 70% following Vahdanjoo et al. (2023)).  

Scaling farm size: farm area that can be served by one vehicle unit during operation window and beyond 

which investing in extra unit of machinery is needed.  

Extra machinery capacity: the difference between total available machinery hours per year (technically 

possible and adjusted by use norms in the case study area) and the total number of hours needed to complete 

spraying of the reference farm size for the respective cases. This extra capacity is assumed to be fully utilized 

during a year by use of machinery for other operations, other crops and/or sharing it out with other farmers. 

Irrespective of the mode of use, we applied a per hour contractual rate which was determined in consultation 

with the respective pilot case leaders for the respective use cases.  

Extra cost to society: an indicator for undesirable (negative) externalities to society because of actions 

of farmers. This is approximated by the sum of CO2 emission tax and pesticide tax. As no such regulations 

are in action in the case study area, these cost estimates are not included in cost estimates for farmers. Cost 

estimates presented in section Error! Reference source not found. can be regarded as private cost to f

armers. In the case of such regulations in future and if farmers are required to pay, then these extra costs 

should be incorporated into farm-level costs as well.  
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2.6. Scenario definition 

BASE scenario for the robotic and conventional systems is defined by the parameter inputs presented in 

section Error! Reference source not found..  An effort has been made to use parameter values that reflect t

he situation in the respective case study areas. However, even farmers in the same area growing the same 

crops often have different circumstances. Moreover, parameters of the model involve uncertainties especially 

those associated with the robotic system due to early stage of development (e.g., investment cost, supervision 

time, work capacity). To partly consider these concerns, relevant alternative scenarios have been set up and 

evaluated considering changes in values of input parameters related to:  

• Farm structure (farm size, field size, field-to-field and field-to-barn distance), 

• Market price (labour price, fuel price, machinery and implement price), 

• Agronomic constraints (window of operation, workable hours per day), and 

• Robotic system reliability and regulation (working speed, economic life, degree of human operation). 

 

Table 2: Scenario definition 

 

Scenario name Definition  
Parameter change 

applicable to  

Costly labour Labour price up by 35% 

C
o

n
v

en
ti

o
n

al
 &

 R
o
b

o
ti

c 
sy

st
em

 

Costly fuel Fuel price up by 25% 

Big farm with big fields 
Farm size up by 300% and Field size up by 60%. [Farm 

size= 30 ha; Field size= 6.4 ha] 

Big farm with average-sized fields Farm size up by 300% [Farm size= 30 ha] 

Adjacent fields F2F & F2B down by 99% 

Scattered fields F2F & F2B up by 50% 

Flexible operation Operation window=14 

Acute operation Operation window=4 

Cheap robot Vehicle and implement price down by 25% 

R
o

b
o
ti

c 
sy

st
em

 o
n

ly
 

Workaholic robot Workable hours up by 25% 

Fast robot Working speed up by 10% 

Short-life robot Economic life down by 25% 

Low autonomy robot Degree of human operation up by 50% 

High autonomy robot Degree of human operation down by 50% 

 

Performance indicators chosen to compare robotic system against conventional system under additional 

scenarios (defined in Table 2) are: labour time, fuel consumption, cost of other (non-machinery) inputs, 

machinery cost and total private cost (under full utilization of machinery capacity). 

 

2.7. Data for Base scenario 

Table 3 presents data about farm characteristics, agronomic constraints, operational parameters, and 

investment cost under BASE scenario.  

For farmers having table grapes as their main crop, below 8 ha is not economically justifiable (interview 

with Markos and Thanos, 14 June 2023). Hence, the reference farm size for the analysis was chosen 

considering this threshold. 
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Table 3: Farm, operation, and investment data for BASE scenario 

 

Feature Unit Conventional 

tractor (52 kW) 

Retrofitted 

(55 kW) 

Farm size ha 10 10 

Field size ha 4 4 

Field to field distance km 3 3 

Field to barn distance km 2 2 

Fuel use operation L/ha 5.5 5 

Fuel use transport L/h 10 10 

Transport speed km/h 25 40 

Working speed km/h 5 4 

Working width  m 2.7 2.7 

 Workable hours per day H 7 9 

Number of operations per season - 11 11 

Vehicle investment € 50000 85000 

Sprayer € 10000 10000 

Sensors* € - 11000 

Labour price €/h 20 20 

Fuel price €/L 1.5 1.5 

Water price €/100L 0.15 0.15 

Rent-out fee per hour of machinery €/h 15 15 

* Includes speed sensor, work-quality sensor, and perception unit. 

Labour time includes time to test and inspect equipment, fill spray tank, fill fuel tank, mount implements 

for operation, disassemble for transport, transport (from barn to field and between fields) and direct human 

operation of machinery. Labour time components specific to robotic systems are time to load robot on trailer 

and unload, start-up operation, intervention to restart and/or fix equipment malfunction during operation, and 

supervision.  Given the current state of technology, some degree of direct human operation of the 

robotic/retrofit systems is required. For base scenario, 65% autonomous operation is used. During 

autonomous operation, the robotic system is under supervision (be it from within the field or remotely). 

‘Effective’ time used for supervision is calculated under the assumption that the supervisor could use 75% 

of the supervision ‘duration’ to perform some other tasks alongside (e.g., field monitoring, planning, etc.).  

Human intervention to resume if robot operation gets interrupted is assumed to be 5% of field operation time. 

During transport, the retrofit system can be driven by tractor drivers the same way as conventional tractor. 

Due to difficulties in getting precise data on amount of pesticide and price by product type, it was decided 

to directly use pesticide cost (as it was relatively easier for LSP managers to provide). In Corinth area of 

Greece, pesticide cost for table grapes spraying is approximately €2150/ha with fungicides and insecticides 

accounting for the major share. As the project experiment was at an early stage, it was not possible to find 

reliable data on the amount of pesticide saving through improved precision using the robotic system. Average 

water use for conventional spraying was 800L/ha per operation.  As per LSP managers’ expectations, a 15% 

reduction of pesticide and water (compared to conventional practice) was used for the base scenario.   

Cost items are grouped into machinery cost and other input (non-machinery cost). Machinery cost 

includes investment as well as repair and maintenance cost for both vehicle and implements, and insurance 

for vehicle. In the case of contracting extra capacity, reported machinery cost is net of income from 

contracting.  Input (non-machinery) cost includes cost of labour, fuel, transport (fuel and labour time included 

in labour cost), water, pesticide (herbicide, fertilizer1, growth regulator, fungicide, insecticide, etc.). In the 

case of the robotic system, this also includes annual subscription fee for enabling features for automated 

operation (precision navigation, internet network, planning and scheduling software referred to as ‘Farming 

1 Cost of fertilizers included in the CBA is for only those crop nutrients applied to leaves and fruit through spraying (i.e., basic 

fertilization to the crop root is excluded).  
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Controller’). 

2.8. Working assumptions 

The following working assumptions were made for the basic scenario:  

1. No change in other management practices apart from the target operation in each use case. Hence, 

there is no systematic change in the cost of other operations.  

2. Same yield level and quality under robotic and conventional practices:  

3. Extra capacity beyond what is needed for the spraying operation on the reference farm is assumed to 

be fully utilized during a year by use of machinery for other operations, other crops and/or renting out 

to other farmers. In this paper, all these possible ways of machinery utilization are referred to as ‘rent-

out’. In situations where sharing and/or renting-out is not an option as such, bigger size farms (and/or 

farms growing a mix of crops possibly with differing operation calendars) would have comparative 

advantages through intensive use of machinery and robotic components. Machinery and total cost 

estimates are calculated for both cases (with and without rent-out).  

4. Mixed mode of acquisition: Farmer owns tractor, robot and implements whereas enabling features for 

the robotic system (Precision guidance, network, scheduling & planning software) are accessed 

through annual subscription. 

Given assumptions #1 and #2, the difference in economic performance between the robotic and 

conventional systems comes from differences in the cost of spraying.  

3. Results and Discussion 

3.1. Results under BASE scenario 

Per hour of operation, it is possible to spray 0.76 ha with the retrofit system whereas the conventional 

system can cover nearly a hectare (Table 4). Due to longer workable hours for the robotic system, daily area 

capacity of the two systems is comparable. In total, the spraying operations for the reference farm size of 10 

hectares use only 145 hours leaving 845 hours of extra machinery capacity.   

 

Table 4 Machinery utilization and use of labour and fuel  

 

Parameter Unit Conventional 

 (52 kW) 

Retrofit 

 (55 kW) Effective field 

capacity 

ha/H 0.95 0.76 

Farm area per day ha/day 6.62 6.80 

Scaling farm size ha 46 48 

Operation hours H/ha/year 11.64 14.55 

Extra machinery 

capacity 

H/year/farm 883.6 854.5 

Labour time H/ha/year 12.69 8.68 

Fuel consumption  L/ha/year 69 76 

 

Given the small size of the reference farm, there is a wide difference between costs with and with-out rent-out.  

 

Table 5 Cost estimates under BASE scenario 

 

Parameter Unit Trac_C 

 (52 kW) 

Retrofit  

(55 kW) Total investment  € 60000 108750 

Lifetime insurance cost € 9712 12512 

Lifetime R&M cost € 12626 17149 

Present value of income from renting-out 

machinery extra capacity  € 128726 157229 

Input (non-machinery) cost  €/ha/year 2520 2146 
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Machinery cost with rent-out € -478 -256 

Machinery cost without rent-out  €/ha/year 848 1881 

Total private cost with rent-out €/ha/year 2042 1890 

Total private cost without rent-out  €/ha/year 3368 4026 

 

The negative average machinery cost estimates in Table 5 reflect that when renting out extra machinery 

capacity is a possibility, small holder farmers could potentially more than offset initial investment cost.  

 

3.2. Results under alternative scenarios 

Results under alternative scenarios (as defined in Table 2) are presented in Table 6.  For the Greece case, 

when evaluated in terms of per hectare cost of spraying, the robotic (retrofitted) system is moderately cheaper 

than conventional system in many of the scenarios considered except in the case of ‘Flexible operation’ 

scenario and ‘Shortlife robot’ scenario.  

Table 6: Scenario analysis for table grape spraying (ratio of robotic to conventional) 

 

Scenario Labour 

time 

Fuel 

consumption  

Average 

machinery cost  

Input 

(non-

machinery) 

cost  

Total 

private cost  
BASE 0.68 1.1 0.54 0.85 0.93 

Costly labour 0.68 1.1 0.54 0.85 0.92 

Cheap robot 0.68 1.1 1.5 0.85 0.7 

Big farm with big fields 0.68 1.11 18.09 0.85 0.93 

Big farm with average sized fields 0.68 1.1 18.09 0.85 0.93 

Adjacent fields 0.69 1.14 0.54 0.85 0.93 

Scattered fields 0.68 1.09 0.54 0.85 0.92 

Flexible operation 0.68 1.1 8.27 0.85 1.09 

Acute operation 0.68 1.1 0.75 0.85 0.88 

Workaholic robot 0.63 1.1 0.54 0.85 0.92 

Fast robot 0.62 1 0.6 0.84 0.9 

Shortlife robot 0.68 1.1 -0.23 0.85 1.1 

Low autonomy robot 0.83 1.1 0.54 0.87 0.94 

High autonomy robot 0.53 1.1 0.54 0.84 0.91 

 

In Greece where suitable daytime work hours are very limited by weather (e.g., hot summer days), ability 

to work longer outside of those hours (e.g., work long late afternoon and at night) would mean a lot.  As most 

farmers in Corinth area use own (family) labour for spraying operations, labour cost is likely not a strong 

motivator to use autonomous systems. Rather, the potentials for pesticide saving and minimal human 

exposure to chemicals could be priority considerations. Given that farm sizes are very small in Corinth, 

farmer-acquisition of robotic solutions may not be economical unless full utilization of machinery capacity 

is possible.  Table grape farmers in the area also grow other crops such as olive, orange and apricot for which 

the robotic system could potentially be used. If the robotic system brings tangible results for early adopters, 

strong social capital of Greece farmers could be capitalized on to promote adoption.  

Indirect effects such as soil compaction and health risk could not be included in the current results due to 

lack of estimates. To partly reflect undesirable societal costs, estimates have been included for CO2 emission 

and pesticide using ‘regulation through tax’ approach. But these costs are not included in the cost estimates 

for farmers because no such regulations are in effect in the case study areas. In future, if such regulations 

come into play and farmers must pay those taxes, they potentially respond by changing their pesticide and 

fuel consumption thereby changing the entire cost-revenue structure as well as management practices. For 

example, reduced use of pesticide may compromise crop yield and quality. The intention in this study is to 

indicate that possible reduction in amount of pesticide and fuel consumption would bring about direct cost 

savings for farmers while at the same time minimizing unintended extra costs to society. 
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4. Conclusion 

Given the data and assumptions, a considerable reduction in labour hours is possible. Though the cost 

differentials are not so pronounced, estimates show moderate cost advantage with the robotic system. 

Admittedly, there are uncertainties on some parameters and/or estimated results given that some aspects of 

the robotic system are yet under development. Given the possibilities, we believe that the economic model 

has set a solid foundation which can be updated as we learn more in the remaining period of the project and 

beyond. Moreover, the reported results shed important light into understanding key features that influence 

relative economic performance of the envisioned robotic system. 

Further advances in sensor technologies, communication platforms, better internet connectivity on farms, 

etc., would create conducive environments for robotic solutions and bring about rewarding benefits for 

farmers and stakeholders.  Long-term success of robotic systems of course depends on accessibility of 

complimentary services (such as robot servicing, data analytics), clear regulations and compliance regarding 

data ownership, context-relevant market models, etc., all calling for quality collaboration among 

stakeholders.  

Future research about economics of robotic applications in field crop farming should consieder socio-

environmental impacts such as health risk, pesticide pollution, soil compaction; full-farm modelling 

considering multi-cropping and multiple operations; and data from several seasons and use cases 

substantiated with narratives learnt through direct engagement with farmers, robot service providers, etc.    

Implications for technology design, implementation and market models include a need for further work 

in ensuring ‘safe and reliable autonomy’ of robotic systems such that labour time can be kept to minimum. 

Given high investment cost added to the general observation that operation time with robotic systems is 

longer, they are least likely to pay off if need for human involvement is not minimal. With more established 

and reliable robotic systems and accompanying decision support platforms, one person would potentially 

monitor several robots at a time there by reducing monitoring cost. Considering that not all operations 

currently performed using a conventional tractor and a driver are achievable with a robot, the possibility of 

‘full utilization of machinery capacity’ may rather be limited. In the face of high investment cost, farmers 

will not reap the promised benefit of robotic system if they invest in it at all. One important implication is 

modular design of robots to enable versatile functionality. Especially in the case of small farm sizes, market 

models embracing the principles of ‘shared economy’ (e.g., ‘shared ownership’, accessible 

rental/leasing/contracting services, etc.) need to be explored. Existing communal schemes such as farming 

cooperatives could potentially play a critical role in facilitating sharing-based acquisition models which may 

otherwise be impractical due to challenges in coordination, issues of trust and high transaction cost, among 

others. Regulatory authorities could play a crucial role in moderating the technology transition by creating a 

level playground among actors through clear regulations and reliable enforcement as well as providing 

incentives. This study puts forward the below to be considered as integral parts of policy toolbox: 

• Financial incentives: tax deductions during defined trial periods, and ‘shared acquisition’ subsidies 

(e.g., subsidy to a cooperative which buys robots to offer affordable services to its members); 

• Conducive institutional environment that supports ‘sharing economy’ arrangements; 

• Socio-environmental stewardships based on credibly documented improvements (e.g., if a user 

considerably reduces pesticide use and human exposure to harmful chemicals from using smart robots); 

and  

• Monitoring and governance mechanisms to combat green washing and unfulfilled promises.  
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Abstract 

Digital agriculture encompasses the development of AI-supported machines and processes. The 

resulting intelligent agricultural technologies have the potential to increase process and resource 

efficiency and to simplify farmers’ workflow of crosschecking the validity of machinery adjustments. In 

this paper, the benefits of a digitised and AI-assisted sowing process of cereals are presented. This case 

study focuses on (i) the prediction of the remaining working time and (ii) the prediction and order 

placement of in-time delivery of seed refill. As farming processes are subject to variable weather 

conditions, the time windows for their application are narrow, which holds for the seeding process in 

particular. On the other hand, the integration of AI for digital support of the seeding process may lead to 

possible constraints due to vulnerable networks and unreliable internet connectivity. This raises the 

necessity of a high level of technical resilience for the investigated use case of AI-supported seeding. To 

counteract this connectivity issue, redundant fall-back options for scenarios (i) and (ii) have been 

developed. More precisely, for (i), we follow a graceful degradation approach. While not maintaining 

the predictive accuracy level of the cloud-based prediction using the full amount of telemetry data, it still 

enables a seamless process continuation based on cached data of the most recent calculations. For 

scenario (ii) another redundant fall-back solution was developed, where the prediction is computed on a 

farm server proactively caching a permanent status report, traced from the former cloud-based 

predictions. Thus, the principle behind is not a parallel calculation but a permanently occurring poll, sent 

to the corresponding digital service, assuring permanent access to the required data for on-edge 

computations during fieldwork. Within the context of food production as critical infrastructure, we 

consider the thoughtful incorporation of technical resilience in AI-enhanced agriculture as paramount to 

ensure a fail-safe food production system. 

Keywords: Seeding, AI, process prediction, graceful degradation, resilience 

1. Introduction 

The quality of the seeding process is decisive for the maximum germination rate and the final yield 

response (Li and Li, 2022; Pinheiro et al., 2018). Also, the adaption to spatial variability of soil quality 

has a positive effect on several yield parameters (Egidijus et al., 2023). (Romaneckas et al., 2022) verified 

several coherences between soil parameters and sowing depths, also highlighting the correlation between 

seedbed roughness, sowing depth, and consequently germination rate. Therefore, seedbed preparation 

plays a decisive role in the seeding process for a successful yielding crop. This shows, that the sowing 

process is a complex combination of interacting conditions, which normally farmers have to operate and 

control by themselves. While trying to find the best solution or compromise for the parameter 

combination, often constant and thus suboptimal adjustments are chosen. This situation offers a high 

potential for the implementation of artificial intelligence to find an optimal combination of all factors, 

constantly adapting to soil and other conditions reaching out for high-level efficiency and maximum 

yield.   
In regions dominated by small and middle scaled farms, like in the south of Germany, new (digital) 

technologies are in most cases hardly affordable for farmers (Rohleder et al., 2020; Schleicher and 

Gandorfer, 2018). Therefore contractors, machinery rings, or local farmer groups cooperate to share 

expensive investments. As time windows for several field works are narrow, due to the dependency on 

good weather conditions, an optimized organization of the shared machinery is necessary, for all 

participants getting their work done in time. These management tasks consist on the one hand of 

calculations of the remaining sowing process within the currently worked field and the just-in-time 
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organisation of seed refill. On the other hand of the overall calculation of the farmers who use the 

machinery in a row, where a seamless handover is targeted and inevitable for the collaboration of farmers 

in sowing, as one of the most important and time-critical processes of farming.  
Taking into account that agriculture and ultimately food production are part of the critical 

infrastructures of a society resilience and reliability must be considered and at least to a certain degree 

be guaranteed (Kuntke et al., 2022). That means for relevant processes backup solutions are needed, 

which can bridge possible supply gaps in connectivity or computing performance. For the investigated 

case study the calculation of the remaining working time in the field and the order of seedrefill is focused.  
The aim of this work is to demonstrate the integration of AI in processes of practical agriculture for 

increased efficiency under the consideration of resilience aspects due to the responsibility before the 

background of the critical infrastructure of food production. The first objective is to establish resilience 

for the calculation of the remaining working time in the field, ensuring the planning of the schedule of a 

working day with a fictitious number of farmers. This backup version is the approach of graceful 

degradation in case of missing connectivity as levelled system redundancy (Blackmore et al., 2001). The 

second objective is to order seed refill in time and to demonstrate the backup version based on a constant 

pol to the farm server as a redundant backup solution. 

2. Materials and Methods 

In (Bökle et al., 2022) resilience was scaled into levels from Level 1, with no measures to convey 

resilience for digital infrastructure on a farm, up to Level 5, which corresponds to complete redundancy 

of all digital applications and devices. The two developed round trips in this work cover Level 4 (Graceful 

Degradation) and Level 5.  

2.1 Graceful degradation 

The actual remaining working time within the current cultivated field, during undisturbed network 

conditions, is constantly predicted with actual machine data, sent via telemetry, by the connected cloud. 

Thus, the following users of the machinery always have actual schedule information of the ordered 

machinery. In this calculation, the latest results are sent to the farm server and cached. On the farm server 

known data about the machinery, algorithms and the following clients are additionally available and are 

the basis for the continuation of the prediction procedure for the remaining working time in case of lost 

connectivity to the cloud. Graceful degradation doesn’t cover the cloud-based calculation redundantly 

but continues the calculation and maintains planning security for the responsible person of the machinery 

and the next customer in the schedule. which compares to resilience level 4. 

2.2 Redundancy 

During sowing, seeds need to be refilled regularly. For maximized efficiency, the refill order comes 

just in time and needs to be reliable for a continuous sowing process. For task allocation and task 

monitoring, we rely on cloud technology as it provides a high level of redundancy in itself already, e.g. 

redundant power supply, redundant network access, and multiple redundant service instances that are 

running in parallel. All layers of the architecture are operated redundantly as well. Upstream load 

balancer ensures that the request load is routed to the system parts that are still running in case some 

system parts fail. The container virtualization used, including container automation with corresponding 

automated infrastructure and system monitoring, ensures additional reliability and resilience. In the 

unlikely event that the cloud is anyway unavailable, a decentral methodology is chosen in which 

predictions calculated in the cloud next to relevant data of the sowing process are copied to the farm 

server in a defined frequent poll. Thus, the farm server is sniffing the cloud predictions and in case no 

signal is received in a certain time, because of system failures, the farm server continues the predictions 

and executes orders. All necessary algorithms and data for this are available on the farm server. If a 

connection is back, the farm server hands over again predictions to the cloud. Here the farm server is an 

additional knot in the system, it is running the AI algorithms for task allocation and monitoring and 

therefore compares to Level 5 of resilience. 
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3. Results 

3.1 AI-assisted sowing 

The sowing process includes in this case study the seedbed preparation with a power harrow 

combined with the seeder. As seedbed quality is very important for optimal germination conditions this 

process is optimized by methods of AI. (Boysen et al., 2023) presented a promising approach to model 

the environment of the tractor-seeder combination in the field, predicting a soil-machine response for a 

constantly optimized combination of seedbed quality, fuel consumption, and area output. With further 

developments such methods bring significant relief to farmers in the operation of a complex machine. At 

the same time efficiency of tractor or seeder combination regulated adjustments and the use of operating 

materials such as fuel and seeds, increase. With AI-adjusted settings, farmers are enabled to focus mainly 

on the performance of the constantly AI-regulated settings of tractor-seeder combination. 

 

3.2 Graceful degradation 

The constantly calculated time for the remaining work (Figure 1 grey arrows) in the cultivated field 

is cached by the farm server. Moreover, all field data and data of the next customers are available on the 

farm server. In the event that the internet connection or cloud computing is interrupted, the farm server 

calculates the remaining working time based on the last average data and the available data. The accuracy 

of this fallback methodology is lower because the changes in the actual working speed can’t be updated. 

But it still allows the timely ordering of seed refill and the approximate arrival at the field of the next 

customer. The precise description of the software round trip is still in progress. 

 
Figure 1: The grey symbols represent the regular way of communication and prediction by AI. In 

case of interrupted communication, the farm server continues automatically the same prediction 

procedure with the latest machine data. (Translation of picture descriptions: Weed seeding; 

working time: 2h 6min, area output: 1.88 ha/h, field efficiency: 86%, fuel consumption: 12,25 l/ha) 

3.3 Redundancy of task allocation and monitoring 

An efficient sowing process requires an efficient supply of raw materials and supplies, such as seeds 

and fuel. The supply chains can be organized on an inter-company basis. This makes the coordination of 

various legally and economically independent entities particularly important. The supply process must 
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be efficiently coordinated with the sowing process across company boundaries.  

In the developed solution is determined who must have started or completed which task at what time so 

that the overall process can run without friction. If there are disruptions or delays at one farm affecting 

the overall process all entities involved get informed and coordination is carried out again.  

The invented procedure for the (inter-company) allocation of tasks takes resources into account that are 

used by several companies (shared resources). Once tasks are initially allocated to resources (task 

allocation), the execution, start, and completion of the tasks are monitored automatically. This is based 

on movement patterns that are determined using GNSS sensors. Every start, end, and task execution has 

its learnable movement pattern.  

If the algorithm detects deviations from the initial schedule, e.g. a delayed start of a task, the effects on 

the overall process are calculated and, if necessary, rescheduled, possibly with a new task allocation. The 

hereby achieved increase of efficiency in the AI-assisted inter-company applicated sowing process is 

assured by fallback methods (Figure 2 and Chapter 2.2.) to guarantee resilience as necessary for critical 

infrastructures. 

 
Figure 2: The regular procedures in grey are replaced by red arrowed communication ways in case of 

interruption of internet communication or cloud computations. (Translation of picture descriptions see 

Figure 1) 

 

4. Discussion 

From the perspective of small and middle-scaled farmers with an average farm size of 30ha like in 

southwest Germany, the presented approach of just-in-time delivery of seeds and fuel might appear 

exaggerated. The needed amounts of seeds often suffice for several fields and fuel possibly for a few 

days. Also, the purchase of seeds is often done in advance and bought in stock. This is also the case if 

the machinery is driven or provided by a contractor. However, as the contractor gets seed from each farm 

separately it is very efficient for farmers to be always updated about the schedule of the contractor 

knowing when their field gets sown. The described system assures timely information for all participants 

helping them to plan other tasks efficiently around the sowing. 

Also the volatile situation in international markets for agricultural products and operating materials 

(Landesanstalt für Landwirtschaft, Ernährung und Ländlichen Raum (LEL), 2024) in the last years 

illustrates the importance of the right time for purchasing seeds or fertilizer. Thus, the situation might 

occur that a short-term purchase of seeds, fertilizer, or fuel might bring significant financial savings, 

which benefits the described system for knowing the exact time when delivery of seeds or fuel is needed. 
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For time-critical planting of vegetable seedlings for example this applies even more also for small-scale 

farms as the condition of the seedling at planting date is decisive for its survival and yield performance 

also considering if irrigation is needed. The higher the input in general the more likely this approach 

proves itself as relevant. 

With the implementation of the resilient bypasses (Figures 1 and 2) over the farm servers, the effort 

for additional service and maintenance must be considered. For farmers in most cases, this is hardly to 

accomplish which makes it necessary to have an external service provider or a cooperative like 

Machinery Rings which can hire someone for this task. 
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Abstract 

One of the primary challenges in detecting crop germination in seedbeds using computer vision is the 

difficulty of accurately analysing cases of overlapping seedlings. This study investigates the effectiveness of 

Convolutional Neural Network (CNN) models and Long Short-Term Memory (LSTM) models in addressing 

this issue. Utilizing a substantial dataset comprising over 80,000 labelled images of Cannabis Sativa plants, 

our research aims to compare the performance of standalone CNN models with hybrid architectures 

(CSS+LSTM model). A noteworthy aspect of our experimental methodology is the deliberate omission of 

data augmentation techniques during dataset preparation. This decision enables us to evaluate the inherent 

quality and utility of our curated dataset without introducing artificial modifications. Furthermore, 

recognizing the significance of incorporating a temporal component in germination detection, we conduct a 

specific assessment of the hybrid model (CNN+LSTM) against the standalone CNN model. Through 

comprehensive experimentation and analysis, we evaluate the relative effectiveness of each model in 

accurately classifying germination status across different levels of seedling overlap. Preliminary results 

reflect a better performance of the hybrid model compared to the standalone CNN model. However, it is 

crucial to consider the computational resources, time, and effort required for training and testing the model. 

Thus, our study provides valuable insights into the intricate interplay among model architecture, dataset 

characteristics, and the complexity of the germination detection task. Moreover, this research contributes to 

the advancement of practical applications of deep learning methodologies in agricultural monitoring, 

emphasizing the necessity of tailored model designs to overcome the unique challenges encountered in 

greenhouse environments. 

Keywords: CNN, LSTM, Computer vision, Germination detection, Cannabis sativa. 

1. Introduction 

In contemporary agriculture, a thorough monitoring of germination processes holds critical significance, 

representing a crucial stage in crop cultivation that directly impacts subsequent growth and yield outcomes. 

Among the myriad challenges faced by farmers, the accurate detection of germination, particularly amidst 

the complexities of overlapping seedlings, emerges as an obstacle. The proliferation of dense vegetation 

within seedbeds presents a challenging scenario, where traditional manual inspection methods prove 

laborious, time-consuming, and prone to inaccuracies. Consequently, the adoption of advanced technological 

solutions becomes imperative to streamline this essential agricultural task. 

Real-time monitoring of germination processes heralds a paradigm shift in agricultural practices, offering 

unparalleled insights into crop development dynamics and enabling proactive interventions to optimize 

cultivation outcomes. The arrival of neural network approaches, particularly Convolutional Neural Networks 

(CNNs), Long Short-term Memory Networks (LSTMs), and their hybrid architectures, has revolutionized 

image analysis tasks, empowering researchers, and practitioners with sophisticated tools for pattern 

recognition and decision-making. 

CNNs excel at extracting complex spatial features from visual data, making them well-suited for tasks 

such as object detection and classification. LSTMs, on the other hand, are adept at modelling sequential data 

and capturing temporal dependencies, thus proving invaluable in analysing time-series information. The 

fusion of these two architectures in hybrid models combines the strengths of both approaches, offering 

enhanced capabilities for analysing complex spatio-temporal patterns in image datasets. 

Against this backdrop, our research endeavours to address the pressing need for effective germination 

detection in seedbeds, with a specific focus on supporting farmers in their cultivation practices. Our goal is 
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to analyse if a hybrid model of CNN and LSTM neural networks is able to detect effective germination, 

including scenarios with overlapping seedlings, against single models like CNN neural networks. By 

harnessing the power of neural network methodologies, we aim to develop a robust framework capable of 

accurately identifying germination events amidst the challenges posed by overlapping seedlings. Through 

experimentation and analysis, our objectives encompass not only the refinement of model architectures but 

also the validation of real-time monitoring capabilities to empower farmers with timely insights into crop 

development stages. 

Furthermore, our contribution addresses cannabis sativa cultivation concerns, where overlapping 

seedlings pose unique challenges due to the strict regulations on the number of plants allowed for cultivation. 

In this context, enabling real-time germination monitoring is essential for farmers. Thus, by focusing on 

cannabis sativa, we aim to provide tailored insights and solutions that meet the unique needs of cannabis 

growers, thereby advancing the practical applications of deep learning methodologies in agricultural 

monitoring. 

In the next section, we review several studies that focus on automatic germination detection using 

artificial intelligence techniques. 

2. Background 

In this section, we present an overview of the existing literature on the automatic detection of plant 

germination employing Artificial Intelligence (AI) techniques. To ensure a thorough and wide-ranging 

analysis, we conducted a literature review across three digital libraries: Scopus, IEEE Xplore, and Springer. 

Our objective was to identify and analyse studies that have employed AI for automatic germination detection. 

We performed a general query ("detection" AND "germination" AND "agriculture") on the databases' search 

tools to find relevant studies. We then filtered the results to include only those studies that specifically 

addressed automatic germination detection using AI techniques. The following analysis provides a concise 

summary of the principal findings and methodologies from the reviewed studies. 

Most of the found studies in literature are related to seed germination detecting the radicle in early stages 

of germination. Kim et al. (2010) introduced a detailed process for extracting seed characteristics crucial for 

germination detection through image processing techniques. The proposed methodology involves circle 

detection, noise filtering, image segmentation, thresholding, morphological operations, and object labelling, 

all tailored to optimize system performance. The proposed procedure automates seed analysis by detecting 

Petri dishes, segregating background from seeds, and computing essential seed parameters for subsequent 

analysis.  

Nguyen et al. (2018) presented a system for automating the evaluation of rice seed germination rates 

using computer vision and machine learning. The proposed method employed U-Net model for seed 

segmentation, followed by distance transform and thresholding for seed detection, and ResNet model for 

seed classification. Results demonstrated the superiority of Convolutional Neural Networks over traditional 

methods, with F1-scores of 93.38% and 95.66% for segmentation and classification tasks, respectively.  

Shadrin at al. (2019) integrated AI into a low-power sensing system for seed germination detection. By 

implementing a custom CNN model, researchers achieved significant accuracy, with an average Intersection 

over Union (IoU) score of 83% on the test dataset and 97% seed recognition accuracy on the validation 

dataset. The researchers demonstrated the potential benefit of seed germination automatic detection at 

industrial facilities thought Internet of Things (IoT) applications. 

Chaivivatrakul (2020) explored automated methods for determining seed germination rates using the top 

of paper germination method. This study encompassed four-time repetitions of chili and guinea seeds 

germination with two sets of germination groups, totalling 400 seeds each. Besides, two detection methods 

were proposed and compared: binary thresholding and maximum likelihood based on color analysis. Results 

indicated both methods achieved accuracy rates exceeding 93%, with binary thresholding being lightweight 

and suitable for resource-limited environments, while maximum likelihood demonstrated flexibility to 

varying light conditions.  

In addition, Grant et al. (2023) developed an AI system using CNNs and image processing techniques to 

detect corn seed germination. This study used a dataset of 400 images of corn seeds at various germination 

stages and used the CIELAB color model for radicle and seed segmentation detection. The employed AI 

technique was k-fold cross-validation, and the model achieved a detection accuracy of 98.14%.  
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Regarding the use of mobiles, Ahmad et al. (2023) employed smartphone cameras in combination to 

image processing to detect fungal infections in chickpea seeds. In this study, images of 15 seeds were 

collected every 24 hours for three days. Two spectral indexes combining different colour bands were used 

for detection. Combining both indexes achieved an average accuracy of 96.66% and precision of 93.33%, 

significantly outperforming individual indexes. In this case, the selected artificial intelligence technique was 

Discriminant Analysis. This method shows promise for early fungal infection detection and could be 

implemented as a mobile application for practical use. 

In another study, Donapati et al. (2023) introduced a novel fusion model for seed detection and 

germination analysis in precision agriculture. By combining U-Net for seed segmentation and CNN for 

classification, the model achieves effective seed germination analysis. The model was implemented on the 

NVIDIA Jetson Nano embedded GPU platform. Results showed notable performance metrics, including 0.91 

pixel accuracy, 0.84 intersection over union (IoU), and 0.90 precision, outperforming ResNet50, Inception, 

and LeNet. The implemented model also exhibited low latency of 0.26 ms, demonstrating its suitability for 

real-time applications in precision agriculture. 

In a more recent study, Chen et al. (2024) presented a novel techniques and methodology for seed vigor 

detection in maize cultivation. Advanced algorithms like HSI and 3DCNN were utilized, alongside RGB 

imaging, to develop robust models for classifying corn seed vitality. Also, researchers presented a new dataset 

comprising pictures of corn seeds taken under six contrasting conditions. This dataset enabled accurate 

prediction and grading of seed germination and vigor, enhancing the validity of non-destructive seed vigor 

identification in smart agriculture. 

Regarding the detection of leaves and plants, Ma et al. (2022) presented a rapid and accurate method for 

detecting peanut seed germination in large fields. The researchers combined deep learning-based object 

detection (OD) with unmanned aerial systems (UAS) to identify early germination. For the analysis, Faster 

RCNN and SSD object detection models were used to compare multispectral imagery from a MicaSense 

Rededge camera. The results showed Faster RCNN achieved higher accuracy, although with longer 

computation times. Notably, RGB-based detection performed comparably to multispectral imagery, 

indicating cost-effective alternatives. Resnet-34 was identified as the optimal backbone for Faster RCNN.  

As evidenced by numerous studies found in the literature, artificial intelligence techniques have been 

increasingly utilized to automate the detection of germination. However, most of these studies have primarily 

concentrated on radicle detection and have been conducted within laboratory settings. While only one study 

has ventured into field-based detection, it relied on costly UAV systems for image capture. In contrast, our 

study focuses on the detection of germinated plants, specifically targeting the identification of cotyledon and 

leaves within the seedbed. This approach aims to alleviate the burden on farmers by reducing manual effort. 

Additionally, we conducted our study within a greenhouse environment, offering a more accessible and 

controlled growing environment for farmers. 

Next, we outline the prerequisites and methodology employed in our proposal. 

3. Materials and Methods  

This section provides an overview of the image dataset employed in our study, the selected deep learning 

models considered in the analysis, and the entire methodology we followed to conduct the research. Frist, we 

present some details regarding the image dataset. 

3.1. Image dataset of Cannabis Sativa L. plants germination 

To conduct a comprehensive comparative analysis of neural network models for detecting Cannabis 

sativa germination in seedbeds, we curated an extensive dataset comprising over 80,000 images of seedbed 

cells. This dataset was meticulously assembled to capture various stages of germination, ensuring a robust 

input for training, and evaluating our models. 

The dataset was created in a controlled experimental setup established within a greenhouse to simulate 

typical growing conditions of Cannabis Sativa L. plants. The setup included a high-resolution camera in a 

zenithally position over the seedbeds. The camera was connected to an embedded system (Raspberry Pi). 

This configuration enabled automated image capture, ensuring consistent imaging conditions throughout the 

experiment. 

Germination experiments were conducted over various periods of 14 days each one. During each period, 
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the camera system captured images every hour to document the progression of germination. Since each image 

consisted of an entire seedbed, it was necessary to cut them into individual cells for detailed analysis. This 

process yielded a dataset that encompassed images with a diverse range of germination stages, including 

instances of overlapping seedlings from neighbouring cells. Figure 1 depicts a sample image captured by the 

camera, along with examples of extracted cell images. 

 

Figure 1. Seedbed image and samples of cells extracted from the seedbed image. 

Each seedbed image was processed to extract individual cells, resulting in a collection of cell-level 

images. Then, the images were carefully labelled based on their content in the following categories:  

• Germinated Plant: Cells containing a germinated Cannabis Sativa L. plant. 

• Overlapping Plant: Cells where the plant is overlapped with seedlings from neighbouring cells. 

• Non-germinated Cell: Cells without any visible germination. 

This labelling process was critical to ensure the accuracy of our dataset and to facilitate the training and 

evaluation of the selected neural network models. 

3.2. Models’ architectures 

We developed two distinct neural network models for the classification task: 

• Convolutional Neural Network (CNN): The CNN architecture was designed to extract 

spatial features from the cell images. It consisted of multiple convolutional layers followed by 

pooling layers, culminating in fully connected layers for classification. Figure 2 shows the 

architecture of the CNN model. The primary focus of this model was to identify germination and 

overlapping plants based on spatial patterns within the images. 

 

Figure 2. CNN model's architecture. 
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• Hybrid Model (CNN+LSTM): We created an hybrid model combining the spatial feature 

extraction capabilities of CNN with the temporal analysis capabilities of Long Short-Term 

Memory (LSTM) networks. The CNN component, identical to the standalone model, was 

responsible for extracting features from the images. These features were then fed into an LSTM 

layer, which captured temporal dependencies across the sequence of images. This architecture 

was designed to enhance the model’s ability to detect germination events by considering the 

temporal progression of the germination process. Figure 3 shows the architecture of the CNN 

model. 

 

Figure 3. Hybrid model's architecture 

Next, we outlined the experimental configuration employed to train, test, and validate the selected 

network models. 

3.3. Experimental setup 

Both models were trained using the created image dataset. The dataset was split into training, validation, 

and test sets to ensure a rigorous evaluation. The training process involved using standard backpropagation 

techniques with appropriate loss functions and optimisation algorithms. During training, key performance 

metrics such as accuracy, precision, recall, and F1 score were monitored to evaluate the models' effectiveness. 

Upon completion of the training phase, the performance of the two models was compared based on their 

ability to accurately classify germination status in the seedbed images. The evaluation was conducted using 

the test set, and the results were analysed to assess: 

• Accuracy: the overall correctness of the model’s predictions. This metric is calculated based on 

the Equation 1. 

Accuracy = Number of correct predictions / Total number of predictions           (1) 

 

• Precision: it can be defined as the ratio of correctly predicted positive observations to the total 

predicted positives. The precision reflects models' ability to correctly identify germinated and 

overlapping plants. Precision is calculated based on Equation 2. 

Precision = TP / (TP + FP) (2) 

Where TP is True Positive  

FP is a False Positive 

 

• Recall: also known as sensitivity or true positive rate. Recall measures the ability of a 

classification model to identify all relevant instances within a dataset. It is calculated based on 

Equation 3. 

Recall = TP / (TP + FN)                            (3) 

Where       TP is True Positive  

FN is a False Negative 

 

• F1 Score: is a metric used to evaluate the performance of a classification model, balancing both 

precision and recall. It is the harmonic mean of precision and recall, providing a single measure 

that captures both aspects of model performance. F1 score is calculated based on Equation 4. 

F1 Score = 2 × ( Precision + Recall ) / ( Precision × Recall )         (4) 
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Additionally, the computational resources, time, and effort required for training and testing each model 

were analysed to understand their practical feasibility for real-time monitoring applications. 

The training and testing of the models was conducted on a high-performance workstation equipped with 

the following hardware specifications: 

• Graphics Processing Unit (GPU): The training utilized CUDA for accelerated computation, 

specifically leveraging a Nvidia Quadro T2000 GPU with 4GB of dedicated GPU RAM. This 

setup facilitated efficient parallel processing and significant reductions in training time. 

• Central Processing Unit (CPU): An Intel Xeon W-10855M processor, operating at 2.8 GHz with 

6 cores, was used for general computation tasks. This processor ensured reliable performance 

and supported the GPU in tasks that required CPU intervention. 

• System Memory: The system was equipped with 32 GB of RAM, providing ample memory for 

handling large datasets and ensuring smooth operation during the training process. 

Besides, the training, testing and validation were conducted during 35 epochs with a batch size of 48. 

Our research specifically focuses on the challenges posed by overlapping seedlings in Cannabis sativa L. 

cultivation. Regarding cultivation regulations for this crop, we aim to provide custom-made insights and 

solutions that cater to the unique needs of cannabis growers. The detailed analysis and comparative evaluation 

of CNN and hybrid models seek to contribute to the advancement of deep learning methodologies in 

agricultural monitoring, highlighting the importance of model design in overcoming the specific challenges 

encountered in greenhouse environments. 

In the next section, we present the obtained results for this research. 

4. Results 

After conducting training, test and validation of the two analysed models, Figure  4 shows the 

performance comparison between the Convolutional Neural Network (CNN) model and the hybrid model 

over a span of 35 epochs. These charts highlight the improvements achieved by the hybrid model in terms of 

validation accuracy and validation loss. 

Regarding the models’ accuracy, section left of Figure  4 depicts the results for both the CNN and hybrid 

models across epochs. The blue line with circle markers indicates the validation accuracy of the CNN model, 

while the green line with circle markers represents the validation accuracy of the hybrid model. It can be seen 

from the chart that the hybrid model achieves higher accuracy at almost every epoch, demonstrating its better 

capability in correctly identifying the classes. Notably, the validation accuracy of the hybrid model remains 

above 0.97 throughout the training period, while the CNN model shows slightly lower performance, 

especially in the initial epochs. 

By other hand, the right section of Figure  4 presents the validation loss for both the CNN and hybrid 

models over the same epochs. As mentioned, validation loss measures the discrepancy between the predicted 

and actual class labels, with lower values indicating better model performance. The red line with circle 

markers represents the validation loss of the CNN model, and the magenta line with circle markers represents 

the validation loss of the hybrid model. 

The hybrid model achieved lower validation loss compared to the CNN model. This trend indicates that 

the hybrid model not only makes more accurate predictions but also has a better fit to the validation data. The 

reduction in validation loss is particularly significant in the early epochs, where the hybrid model quickly 

converges to lower loss values. This suggests that the hybrid model is more effective in learning from the 

training data and generalising to unseen samples. 

In terms of overall performance, the Figure  4  shows that the hybrid model, which integrates both 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM), provides substantial 

improvements over the CNN model alone. The hybrid model achieves higher validation accuracy and lower 

validation loss, indicating better performance in classifying samples as germinated or non-germinated. These 

results underscore the enhanced capability of the hybrid model to leverage both spatial and temporal features, 

leading to more accurate and reliable classification outcomes. 
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Figure  4. Accuracy and loss results for CNN and Hybrid model. 

Regarding resource and time consumption, it is important to note that the hybrid model incurs higher 

costs to achieve its enhanced performance. Its complex architecture, especially the recurrent layers, requires 

extensive computations, resulting in significantly longer training times. Moreover, the hybrid model demands 

more computational resources. For example, the CNN model took 5 hours, 38 minutes, and 23 seconds to 

complete training, testing, and validation over 35 epochs. In contrast, the hybrid model required 9 hours, 22 

minutes, and 45 seconds for the same process, highlighting the additional time and resource investment 

needed for the hybrid model. 

Optimizing the hybrid model also requires more effort and expertise. Extensive hyperparameter tuning 

and a deeper understanding of both CNN and LSTM functionalities are essential for effective optimization. 

During validation and testing, the hybrid model consumes more time as each sample undergoes both 

convolutional and sequential processing, affecting overall evaluation efficiency. While the hybrid model 

achieves better classification performance, these improvements must be weighed against the higher costs in 

time, computational resources, and optimization effort. These trade-offs are important considerations for 

implementing hybrid models in practical applications. 

5. Conclusions 

The results of this study show a better performance of the hybrid model in classifying the samples into 

germinated (G) and non-germinated (NG) classes compared to the CNN model. The validation accuracy of 

the hybrid model exceeded that of the CNN model across all epochs. This finding indicates the hybrid model's 

enhanced ability to correctly identify germinated and non-germinated samples, reflecting its robustness and 

effectiveness in handling the classification task. Nevertheless, hybrid model consumes more time and effort 

than the CNN model to achieve that performance.  

Furthermore, the validation loss for the hybrid model was significantly lower than that of the CNN model. 

Lower validation loss indicates that the hybrid model made fewer errors in its predictions, further confirming 

the usefulness of having series of images in the training dataset and memory capability in the model. The 

incorporation of temporal features such as the day and hour of image capture enabled the hybrid model to 

utilise additional context, leading to more informed and accurate predictions. This integration of temporal 

data proved to be a critical factor in enhancing the model's classification capacity. By leveraging both spatial 

and temporal features through the combination of convolutional neural networks (CNN) and recurrent neural 

networks (LSTM), the hybrid model was able to achieve superior classification results. 

Overall, the hybrid model's ability to integrate CNNs with LSTM networks to leverage both spatial and 

temporal features represents a significant advancement. The superior classification results achieved by the 

hybrid model underscore its potential for practical applications in seed germination analysis and similar 

domains requiring precise classification of time-sequenced visual data. These findings pave the way for 

further exploration and optimization of hybrid models, promising even greater improvements in performance 

and applicability across various fields of machine learning and artificial intelligence. 

For future work, we plan to compare the hybrid model with other alternative models and techniques to 

validate its utility in detecting effective germination of Cannabis sativa L. plants. This comparative analysis 

will help determine the robustness and generalizability of the hybrid model, ensuring its effectiveness and 
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reliability in practical applications. Additionally, exploring various optimization strategies and model 

enhancements will be crucial in further improving its performance and efficiency. 
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Abstract 

Verifying the authenticity of food and its ingredients is crucial in food supply chains (FSC), particularly 

for those facilitating fair trade. Roasted Arabica coffee, being one of the most extensively traded tropical 

commodities, demands stringent measures to trace its origin and prevent fraudulence. The variations in cup 

quality, aroma, and economic value tied to geographical origin pose challenges intensified by diverse species 

and roasting degrees. Using spectroscopic techniques with machine learning approaches can promote fair 

trade and ensure the reliability of these methods in real-world scenarios. In this scope, a gap remains in 

understanding how these models interpret redundant information within spectra. Employing only relevant 

spectral data via portable spectroscopy can reduce expenses, enhancing the practicality and adoption of these 

methods. In this study, we used near-infrared (NIR) spectra to identify the geographical origin of Arabica 

coffee from South America, Central America, and Africa, across varying roasting levels: light, medium, and 

dark. Beyond traditional machine learning methods such as Support Vector Machine (SVM) and Linear 

Discriminant Analysis (LDA), we integrated the eXplainable AI (XAI) approach with the cutting-edge Vision 

Transformer (ViT) architecture to discern relevant spectral features crucial for authenticating origin. Our 

method yields an outstanding accuracy of 99.8 % in our geographical origin determination dataset. The 

robustness of our method was demonstrated through standard dataset partitioning and 10-fold cross-

validation using 1823 coffee spectral samples. Moreover, the application of XAI method GradCAM++ 

provided insights into the decision-making process of the models, facilitating the elimination of less relevant 

features, thus enabling feature compression and pruning. Remarkably, reducing the feature space to 1.1 % 

(53 wavelengths) led to a varied performance among models, with ViT exhibiting the least drop in accuracy 

(86.4 %) compared to SVM (32.8 %) and LDA (65.7 %). Our study highlights the potential of advanced deep 

learning techniques and explainable AI in precise coffee authenticity determination, thereby ensuring fair 

value. Moreover, by illuminating feature redundancy within spectra, the findings offer practical solutions for 

real-time monitoring of coffee authenticity. 

Keywords: coffee authenticity determination, explainable AI, spectroscopic feature compression, 

transformer 

1. Introduction 

Ensuring food authenticity is essential for maintaining integrity within food supply chains (FSC), 

especially those committed to fair trade practices. It guarantees that food products are genuine and accurately 

labeled, which helps maintain consumer trust (Wu et al. 2021; Corallo et al. 2021). Adulteration and 

mislabeling can lead to fraud and deceive consumers, who rely on labeled information to make informed 

dietary choices (Kemsawasd et al. 2023). Geographically authentic food products often command higher 

prices and can therefore be targeted by fraudsters (Katerinopoulou et al. 2020; Cardin et al. 2022; Pamukcu 

et al. 2021). Disruptions within the FSC can affect the economic interests of both producers and consumers. 

Identifying the authenticity of food products is crucial to avoid counterfeiting and ensure that legitimate 

producers are fairly compensated, providing consumers with value for their money. Moreover, many food 

products are closely tied to specific regions and cultural identities. Authenticating these products helps 

preserve traditional methods and regional specialties, supporting local economies and cultural heritage 

Cvijanovic et al. 2020). However, maintaining such quality within FSC poses significant challenges. 

Differentiating the origin of food and its ingredients is complex, especially as fraudsters become increasingly 
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clever at blending cheaper alternatives for financial gain. This makes the authenticity detection process even 

more challenging. Traditional methods involve taking samples from food lots and conducting laboratory 

experiments, which is time-consuming and impractical for many batches of products from different regions 

(Hong et al. 2017; Hassoun et al. 2020). 

A more efficient approach is to implement real-time monitoring processes that can identify authenticity 

using sensor signals. This method leverages advanced technology to continuously monitor food products 

throughout the FSC, ensuring that any anomalies are detected rapidly. Real-time monitoring can significantly 

reduce the time and labor involved in authenticity testing, providing a more practical and scalable solution 

(Sharma et al. 2022). Additionally, integrating AI models with sensor data can enhance the accuracy and 

reliability of authenticity detection, ensuring that consumers receive genuine products and that producers are 

protected from economic losses due to fraud (Othman et al. 2023). 

Ensuring coffee authenticity through advanced spectroscopic techniques integrated with machine learning 

can promote fair trade and prevent fraud (Dharmawan et al. 2023; Deng et al. 2024; Yang et al. 2021). Despite 

significant advancements, a gap exists in effectively interpreting redundant information within spectral data. 

This gap highlights the need for methodologies that not only accurately verify coffee authenticity but also 

optimize spectral data usage to reduce costs and improve practical application in real-world scenarios. 

Efficient data processing techniques can filter out irrelevant information, focusing on important spectral 

features that are indicative of authenticity. Additionally, developing human understandable approaches for 

these advanced technologies can facilitate widespread adoption by stakeholders across the FSC, from 

producers to retailers. The implementation of such technologies can support the coffee industry by ensuring 

that products labeled as premium or origin-specific truly meet these standards, thereby preserving the 

economic value associated with authentic products. Furthermore, it reinforces consumer confidence and 

supports fair compensation for producers who adhere to quality and authenticity standards. 

Near-Infrared (NIR) spectroscopy, known for its non-destructive and rapid analysis capabilities, has been 

studied for coffee authentication (de Carvalho Couto et al. 2022; Correia et al. 2018; de Arau ́jo et al. 2021). 

When combined with machine learning techniques such as Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA), NIR spectroscopy has shown promise in differentiating coffee varieties and 

detecting adulterants (Quan et al. 2023; Baqueta et al. 2023; Mutz et al. 2023). Despite these advancements, 

a challenge remains in refining these models to focus solely on the most relevant spectral features, thereby 

enhancing their efficiency and reliability. Current NIR spectroscopy models often process a vast amount of 

data, much of which may be redundant or irrelevant to the specific authentication task. This not only increases 

computational complexity but also poses significant challenges for developing portable monitoring devices, 

which are in high demand in FSC. These portable devices are crucial for ensuring on-the-spot verification at 

the point of inspection, eliminating the need to transport samples to centralized verification stations. 

In this study, we address these challenges by employing a novel approach that integrates eXplainable AI 

(XAI) with the Vision Transformer (ViT) architecture proposed by Dosovitskiy et al. (2020). Originally 

designed for 2D image analysis, ViT has been adapted to handle the unique characteristics of 1D NIR spectra, 

aiming to improve the accuracy of geographical origin determination of Arabica coffee. To compare the 

performance of ViT, we implemented classical machine learning methods including Support Vector Machine 

(SVM) and Linear Discriminant Analysis (LDA). By utilizing GradCAM++ by Chattopadhyay et al. (2017) 

within the XAI framework, we gain insights into the decision-making processes of the models, enabling the 

compression and pruning of spectral features. Our approach not only achieves remarkable accuracy in coffee 

authenticity determination but also demonstrates the potential for significant cost reductions. By reducing the 

feature space to only the most relevant wavelengths, we enhance the practical applicability of these models 

for real-time monitoring of coffee authenticity. This advancement holds promise for ensuring fair value 

distribution within the coffee trade, safeguarding both consumers and producers against fraudulent practices.  

2. Materials and Methods  

2.1. NIR Measurements 

In this paper, we utilized the NIR spectra acquired by Munyendo et al. (2023). The Arabica coffee beans 

were purchased from Buxtrade GmbH, An den Geestbergen 1, 21614 Buxtehude, Germany, including 

varieties from Kenya, Guatemala, and Colombia. All samples were subjected to three different roasting 
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levels: light, medium and dark. The roasting process was conducted using a Gene Cafe CBR-101 coffee 

roaster at 240°C for 10, 15, and 20 minutes, respectively. Finally, all the samples were ground to fine powder 

using an electric grinder (Melitta Calibra EU 1027–01 Mill 160 W, Germany). The spectra of Arabica coffee 

samples were obtained using a Fourier Transform NIR spectrometer (Bruker, Germany) equipped with OPUS 

software (Version 7, Bruker, Germany). Spectra were collected in diffuse reflectance mode within the 

spectral range of 12 500 cm-1 to 3600 cm-1, with a resolution of 4 cm-1, resulting in 4615 channels. 

2.2. Evaluation Metrics  

For assessing the performance of the classification models employed in this study, we used accuracy 

evaluation metrics, which is the proportion of correctly classified instances over the total number of instances, 

and can be calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [%] =
Number of correct predictions

Total number of predictions
 ×  100 

2.3. Feature Compression based on XAI 

In this study, we adapt the Vision Transformer (ViT) architecture, originally designed for 2D image 

analysis, to handle 1D spectral data for the classification of coffee origin. The ViT model is chosen for its 

ability to effectively capture long-range dependencies and complex patterns in the input data, which is critical 

for accurate classification in high-dimensional spectra. We use GradCAM++ to explain the decision-making 

process of ViT model in coffee authenticity determination by highlighting the important wavelengths. 

3. Results and Discussion 

Table 1 presents the distribution of samples categorized by geographical origins—Africa, Central 

America, and South America—and roasting levels: light, medium, and dark. Figure 1 provides examples of 

spectra corresponding to lightly roasted Arabica coffee cultivated in three different global regions. The 

dataset contains 1823 coffee samples, which we randomly split into training, validation, and test sets using 

the common practice ratio of 6:2:2.  
Table 1. Number of samples from which the spectra were acquired for the studied dataset 

 
 

 

 
Figure 1. Spectra examples of light roasted Arabica coffee from three geographical origins. 

The applied 1D-ViT model achieved an accuracy of 99.8 % in classifying the origin of coffee, while LDA 

and SVM achieved accuracy of 100 % and 91.2 %, respectively, as shown in Table 2. By using the full NIR 
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spectrum, SVM performed poorly compared to LDA and ViT. Figure 2 provides a visual example, where 

the colors on the spectral data represent the extent to which each region contributes to the model's predictions. 

Specifically, regions with an importance score higher than 0.5 are highlighted with vertical lines. 

 

Table 2. Model performance comparison using all wavelengths of NIR spectra 

Model SVM LDA ViT 

Accuracy 91.2 % 100 % 99.8 % 

 

 
Figure 2. Example spectrum highlighting important regions of spectrum with vertical lines for ViT model 

prediction. Here, different colors indicate varying importance scores identified by GradCAM++ with red 

being the most important wave numbers in identifying the geographical authenticity of the Arabica coffee 

from Africa. 

For feature compression, we first identified regions with importance scores higher than 0.5 and record the 

occurrence of each wave number. Figure 3 shows the occurrence of the wavelengths deemed important 

during ViT model's prediction of all the test samples. A higher occurrence for a wavelength indicates greater 

importance for the model decision-making in the test phase. We set various occurrence thresholds  = [0, 40, 

50, 60, 70, 80, 90], where  = 0 represents selecting all wavelengths found important for at least one test 

sample, and  = 90 represents selecting only those wavelengths that were highly important for more than 90 

test samples. The findings revealed that only 1 % of the total wavelengths were important for more than 90 

test samples. 

 

 
Figure 3. Distribution of occurrences indicating how often each wavelength was deemed important during 

sample testing. Higher counts correspond to greater importance in the test samples. 

We evaluated the performance of the ViT, SVM and LDA to investigate the trade-off between accuracy 

and the number of selected wavelengths. The results of the experiments are presented in Figure 4. The figure 

indicates that as compression increases, SVM performance declines sharply, whereas LDA and ViT maintain 

consistent accuracy in identifying coffee authenticity. With 95 % wavelength compression, LDA achieved 

100 % accuracy but dropped to 65.7 % with the smallest wavelengths space (1 % of total wavelengths). In 

contrast, ViT exhibited minimal performance decline with higher compression rates, maintaining an accuracy 
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of 86 %. 

 

 
Figure 4. Comparison of model performance in identifying the geographical authenticity of Arabica coffee 

using varying sizes of NIR wavelengths as input. The input wavelengths were compressed from 0 % to 

99 %, where 0 % indicates the use of the original spectra and 99 % indicates that only 1 % of the total 

wavelengths were used. The compression was based on GradCAM++ attribution values, retaining the most 

important wavelengths at the final stage of compression. 

4. Conclusions 

In this study, we adapted the Vision Transformer (ViT) architecture, originally designed for 2D image 

analysis, to handle 1D near-infrared (NIR) spectral data for identifying the geographical authenticity of 

Arabica coffee, achieving an accuracy of 99.8 %. By utilizing GradCAM++, an explainable AI tool, we 

significantly reduced the feature space, using only 1 % of the total wavelengths while maintaining an 

accuracy of 86.39 %. Our method demonstrates the potential of combining advanced deep learning 

techniques with explainable AI to ensure food authenticity, support fair trade practices, and protect against 

fraudulent activities in the coffee industry. 
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Abstract 

In UAV applications, leveraging image-focused Deep Learning (DL) approaches can significantly 

enhance farm management capabilities. Integrating UAV-captured images with DL models enables a fully 

autonomous sensing platform, providing critical insights into cattle location, health, and headcounts. These 

models must generalize across various cattle breeds and environments. Although DL models, such as 

DALL-E, exhibit broad generalization capabilities, their applicability in UAV agriculture is limited by the 

scope and diversity of training datasets. Creating comprehensive datasets involves extensive efforts, 

including multiple UAV flights across different seasons, locations, and cattle breeds, and manually 

annotating ground-truth data. 

To address these challenges, this study explores five training-set augmentation techniques aimed at 

improving model accuracy and generalization: overlapping, rotating, and zooming training chips, styling 

chips using the Segment Anything Model, and pseudolabel distillation through the DINO model. Findings 

indicate that augmentations like overlap and rotation significantly enhance model performance and 

robustness. However, the effectiveness of these augmentations is contingent on the breed variety within the 

training set. 

Moreover, leveraging transformer networks like DINO, which excel in generalization due to self-

supervised attention mechanisms and large dataset pretraining, shows promise in feature extraction for 

agricultural applications. These sophisticated feature-extractors require domain adaptation for specific 

UAV and precision agriculture (PA) tasks. Thus, sharing best practices for adapting large pretrained 

networks to PA tasks is crucial, potentially involving classifiers or thresholds applied to feature maps. This 

study underscores the importance of dataset diversity and advanced augmentation techniques in developing 

robust DL models for UAV-assisted cattle detection. 

Keywords: drones, deep learning, cattle detection, generalization, augmentation 

1. Introduction 

Uncrewed Aerial Vehicles (UAVs) pose an ideal solution to farm manager activities in cattle farming. 

Regular check-ins with the cattle when outdoors, to localize and count the cattle herd is deemed as a labor-

intensive task, a task ideally situated to be supported from the aerial perspective (Shao et al., 2019). 

Especially for areas with difficult to access terrain, the UAV offers a distinct advantage with its flexibility 

of deployment (Doornbos et al., 2024).  

This is also in line with the paradigm of Agriculture 5.0, with its increased reliance on 

technologies such as Artificial Intelligence (Ryan et al., 2023) to support sustainability goals whilst 

increasing yield to feed a growing population. Even though the environmental context is getting more 

difficult, with productive soil decreasing, water scarcity and fertilizers getting more expensive (Fraser & 

Campbell, 2019).  

For UAV applications, it is the image-focused Deep Learning approaches from Artificial 

Intelligence that can open doors to farm management beyond an eye-in-the-sky. A combination of UAV 

images, fed through a image-based Deep Learning model that could enable a fully autonomous sensing 

platform to provide insights about the location, health and headcounts of the cattle (Shao et al., 2019; Rivas 

et al., 2020). 

The requirements for such a image-based Deep Learning model is the ability to detect all varieties 

of cattle, in any environment. Deep Learning has the capacity of such generalizations within a single 
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model, as seen with image generation models, such as Dall-E being able to generate an image of almost 

anything imaginable (Radford et al., 2021). Whilst the architecture and design of such models enables wide 

generalization, it is the training data that limits its UAV-agricultural applicability (Udandarao et al., 2024). 

The LAION dataset that such generalized image-generation models are trained on ranged between 100 

million and 5 billion images (Schuhmann et al., 2022). Which is largely out of the scope for any 

agricultural-UAV application. Finally, on top of the size, it is the variety within these datasets that enable 

generalization (Barbedo, 2018).  

Rather obvious, a Deep Learning model such as Dall-E, exclusively trained on varieties of grass, 

will not be able to generate a tree. Translated to the cattle detection case, a Deep Learning model needs to 

have seen the complete variety of breeds, during various times of day, image angles, and environments, 

before it can have a chance at detection the subject (somebody) in a robust and generalizing manner 

(Safonova et al., 2023). 

However, such varying datasets require much effort to create. Often through multiple UAV flights, 

in multiple seasons, in multiple areas and with various breeds of cattle. On top of these efforts is the 

resource-intensive task of creating ground-truth labels. Ground-truth is information related to the task you 

want the Deep Learning model to perform. This can be a bounding box of the cattle, the class (cow), 

perhaps breeds (Holstein), or even more difficult estimations like weight, health or age. Such data is always 

manually linked to the object in the image.  

Cattle detection is not the only field grappling with the ‘requires large data’ problem. Many tricks 

have been developed to pose a solution to require ground truth in the dataset. Such tricks can be approached 

at two levels, the model and the dataset. Tricks at the model-level aim to alter the architecture of Deep 

Learning networks to require less data to acquire good accuracies, examples include multi-task learning or 

few-shot learning (Safonova et al., 2023). At the data-level, the data-input is altered before it is seen by a 

model, examples include rotating the image, adjusting the HSV values, and style-transfer (Xiong et al., 

2021).  

Finally, models, data and training approaches are combined and mixed for the best possible 

results, and the final model can perhaps best be seen as a snapshot of ‘best efforts at the time’. A Deep 

Learning model like ChatGPT has gone through an ongoing, iterative process of training, dataset 

adjustment and finetuning (Kauffmann et al., 2023). Weakly-supervised models for example are both 

trained on labelled and unlabeled instances simultaneously, usually through some unsupervised learning 

mechanism that aims to increase similarity between known samples and unknown samples. Similarly, in 

active learning, the model itself identifies where the unknowns in unlabeled data are, so a human can act to 

correctly label them.  

 The gap of knowledge for these methods is applying them to real-world, data-scarce areas 

(Udandarao et al., 2024). As presented earlier, acquiring all possible permutations of environment and 

breeds in the training data is unachievable. Even though it is of high importance to achieve generalization 

in cattle-detection to achieve meaningful support from the aerial perspective to the farm-manager. This 

results in an ideal testbed to explore various approaches to improve generalization in cattle-detection.  

Therefore, this study both explores the dataset and model-level as an opportunity for attaining 

higher model accuracy and improve out-of-sample generalization by providing five distinct, but compatible 

techniques for training-set augmentation.  

The five techniques are as follows: 1. Overlapping training chips, 2. Rotating training chips, 3. 

Zooming the training chips, 4. Styling the training chips using the Segment Anything Model, and 5. 

Pseudolabel distillation through the DINO model. 

2. Materials and Methods  

There are three parts to the methods: 1. the cattle dataset, 2. the dataset augmentations and 3. the detection 

model. The cattle dataset is an open-source dataset developed in the ICAERUS project for cattle detection 

in France, section 2.1. will focus especially on how this dataset will evaluate generalization. The dataset 

augmentations are four techniques on dataset style adjustments, and also include the process of pseudolabel 

distillation, all presented in section 2.2. The chosen Deep Learning detection model is YOLOv8-nano, 

which is further explained in section 2.3.   

2.1. Dataset: ICAERUS Grazing cows 

The base dataset used in this study is an open grazing-cows UAV-image dataset developed by Institut de 
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l'Élevage (IDELE) for the ICAERUS project1. In this dataset, multiple UAV flights covering sites in 

France, with four breeds. The UAV was a DJI Mavic 3 Enterprise. The three areas are Jalogny, Derval and 

Mauron. With breeds covering Holstein/Normande (black, black-white), Charolais (white), Holstein-

crossbreed (brown-white) and Salers (brown). All the cows in the images were annotated using CVAT2 

with their respective bounding-boxes (see figure 1 for a few examples of the dataset).    

 

Table 1. Cow detection dataset splits overview. Train is the base training set on which augmentations were performed. 

 

The main focus for this study is exploring generalization of Deep Learning methods for cattle detection. To 

evaluate generalization, it was chosen to only train on Charolais (white) cattle, whilst evaluating on both 

Charolais and all other breeds (see table 1 for the overview). On the one hand to show that Deep Learning 

overfits on the training set, which is highly limiting to many UAV and agricultural applications. Whilst 

simultaneously exploring methods to overcome these overfitting tendencies. Additionally, the large-sized 

UAV images were chipped in 512x512 resolution to fit the input dimensions of the YOLOv8-nano model. 

 

Figure 2. Sample images and ground truth labels from the three datasets.  Left: an original image (4000x3000 pixels 

resolution) as taken by the UAV with bounding-box annotations. Right: an example chip of 512x512 pixels resolution 

with bounding-box annotations. Note the variety of cow-colours not seen in the training data. 

2.2. Dataset augmentations 

The core contribution of this paper is in exploring dataset augmentation for generalization. Five 

augmentations are presented: overlap, rotate, multi-scale, SAM-augment and DINO-Pseudo. The 

augmentations are used on the training dataset, to create additional labelled samples, without requiring any 

1 https://zenodo.org/records/10245396  
2 https://www.cvat.ai 

Location Breeds Subset No. UAV raw images 

Jalogny Charolais (white) 
Train 

Validation 

113 

25 

Derval 
Holstein/Normande (black-white), 

Holstein (black)  
Test 41 

Mauron 
Holstein/Normande (black-white), 

Charolais (white), Salers (brown) 
Test 62 

AgEng 2024 Proceedings

445

https://zenodo.org/records/10245396
https://www.cvat.ai/


additional labelling. The baseline method is to cut the large UAV input image (4000x3000 pixels) in 

512x512 chips, without any overlap. When a cow is inbetween two images, and is cut in half, the detection 

is only kept when it is larger than 20pixels. This is roughly the smallest object a Deep Learning model 

based around Darknet, such as the YOLO family of detectors, can detect. Examples of all augmentations 

are presented in the appendix. 

 Overlap is a simple augmentation, where the large UAV input is cut with 50% overlap between 

the chips. This results in overlapping images, when a cow detection is cut in half in one chip, it will be fully 

visible in the next image. This results in much more images than the baseline dataset.  

 Rotate is another simple augmentation, where the input chip is randomly rotated around its’ axis. 

This method results in the same amount of data as the baseline set, just with an even higher variance of 

images, as they are rotated. 

 Multi-scale is a method where the imagery is upscaled or downscaled. During image-chipping, 

both a 1024x1024 or 256x256 resolution chip is cut out of the larger resolution image, which is then up or 

downscaled to 512x512 resolution. This results in smaller and larger sizes of objects to be included in the 

dataset. As a cow-detection in a 1024x1024 chips is smaller in size than in 512x512 and vice-versa. 

 SAM-augment is a newly proposed method, which alters the input object with colour, hsv-

shifting, contrast and noise. These methods are shown to increase generalization for deep learning (Khan et 

al., 2020). SAM-augment uses the Fast Segment Anything model (Zhao et al., 2023) to only apply these 

augmentations on the object in the image (a cow), whilst ignoring things such as the background. The 

bounding-boxes of the cows and the images are fed through a pretrained FastSAM to acquire a mask of the 

object. The image is now randomly augmented in one or two methods of HSV-shifting, contrast increase, 

added gaussian noise, and/or band-mixing. 

 

 

Figure 2. Using DINO attention map to acquire pseudo-labels. Left is the input-image, middle is the DINO attention 

map, and right is the output pseudo-label box in red from thresholding the sizes for a reasonable bounding box. 

 

 DINO-Pseudo is another proposed method of creating pseudo-labels for unseen data. DINO is 

pretrained Deep Learning model which is highly useful as an unsupervised feature-extractor (Caron et al., 

2023). The model creates a set of attention maps, which show where DINO is focussing attention on. In the 

cattle images, these attention maps correspond very closely to the cows in the image. Therefore, a bounding 

box is drawn around the areas with high attention across all the attention-maps. The bounding box is kept 

when the size of this bounding box falls between a minimum and maximum threshold of the size of a cow 

in the image of the training data. This results in a pseudo-label, as the output label of this method is not 

checked again. This method is used to generate labels on the test-dataset, these pseudo-labels are then 

learned by the YOLOv8-nano model. 

For an overview of the number of images in the training data, and its corresponding training 

duration, refer to table 2 below.  
 

2.3. YOLOv8-nano detection model 

The YOLO family of Deep Learning detections models, as originally presented in Redmon et al. (2015), 

attempts to detect both the class and the bounding box of the objects in the image in a single evaluation. 

Furthermore, the YOLO models come with a variety of preprocessing steps, such as mosaicking and 

random cropping of the image to increase robustness. YOLOv8 has the same architecture, although builds 

upon YOLOv5 by replacing the non-maximum suppression of overlapping bounding boxes by SoftNMS, 

which better deals with overlapping boxes, YOLOv8 also uses anchor-free bounding box suggestions and 
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only a single detection head, instead of three (Reis et al., 2023). Finally, YOLO comes in various sizes, 

these sizes indicates the number of parameters in the network, and therefore complexity and ability to 

capture more and more complexity in the dataset. Larger networks often result in higher accuracies, but 

does not linearly scale, so there is a trade-off between compute required and accuracy. As we are dealing 

with a single class (cow) which have similar features, the ‘nano’ model is chosen, as it offers the fastest 

training and inference. It is assumed that the experiments can be translated to any Deep Learning detection 

network and size. 

The YOLOv8-nano model was instantiated with random weights from a set seed. Then it was trained on 

the training dataset, as presented in table 2, for 200 epochs with linear learning-rate decay and a batch-size 

of 16. All the YOLOv8 augmentations such as rotating, mosaicking and translating were turned off. The 

best performing model during training was selected for evaluation. This resulted in a baseline model and a 

model for every training-dataset augmentation. Given the various sizes of pretraining datasets, different 

training durations are also indicated in table 2. With all above augments, all the possible permutations of 

augmentations were included, and was therefore much longer to train.   

Four accuracy measures were evaluated on unseen data during training: Box Recall, Box Precision, 

mAP50, mAP50-95. Precision represents the accuracy of detected objects, indicating the proportion of 

correct detections. Recall reflects the model's ability to identify all instances of objects within images. 

mAP50: Mean Average Precision calculated at an IoU (Intersection over Union) threshold of 0.50, 

providing a measure of model accuracy for "easy" detections. mAP50-95: Average of Mean Average 

Precision calculated across IoU thresholds from 0.50 to 0.95, offering a comprehensive assessment of 

model performance across varying detection difficulty levels (Reis et al., 2023). These test-scores were 

measured on the validation set, to show an ideal case, where only white cows are present, as well as test 

scores on images from Mauron and Derval.  

 

Table 2. Training dataset augmentation variations. 

 

 

3. Results and Discussion 

 

The main focus of this research is to explore data augmentation techniques for increasing generalization. 

This is tested by training YOLOv8 exclusively on the Jalogny training dataset, which only contains white 

cows, whilst evaluating in two different areas. Only the training data augmentation technique is altered 

between each evaluation. In this section, accuracies in the Jalogny validation set, Derval test and Mauron 

test are presented. A perfect model would score 1 on all measurements. This model would create identically 

shaped and sized bounding boxes, at the same location in the image. Whilst a poor model would score 0, 

with non-overlapping bounding boxes, and missing bounding boxes altogether. Furthermore, it can be 

argued that recall is the most important variable in this study, as this tests for all detections by the model 

that are also in the ground-truth, therefore the ability of the model to generalize into the testing set on 

unseen cows. 

 

Table 3 shows the accuracy of the model on the Jalogny validation set. This set has similar features to the 

training set, with white grazing cows in a bright green pasture. The overlap method indicates a better model 

over the baseline. It is therefore no surprise that it shows high accuracy in the baseline as well as 

Training Dataset No. Training Images Training duration (s) 

Baseline 418 1908 

Overlap 

Rotate 

Multi-scale 

SAM augment 

All above augments 

1572 

418 

1401 

418 

8430 

7175 

1908 

6394 

1908 

38479 

DINO-Pseudo 912 4162 

DINO-Pseudo + SAM augment 912 4162 
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augmentations. The SAM-augments and DINO methods are lower in accuracy, compared to the baseline. 

The additional labels and variety in data has therefore also caused more confusion for the YOLOv8 model. 

 
Table 3. YOLOv8n accuracies on the Jalogny validation dataset when trained on different training datasets. Bold 

indicates the highest value in the accuracy metric. Italics indicate a score lower than the baseline. 

Training Dataset Box Precision Box Recall mAP50 mAP50-95 

Baseline 0.947 0.905 0.948 0.755 

Overlap 0.957 0.931 0.961 0.796 

Rotate 0.963 0.883 0.952 0.758 

Multi-scale 0.966 0.909 0.955 0.772 

SAM augment 0.944 0.896 0.951 0.761 

All above augments 0.952 0.897 0.946 0.785 

DINO-Pseudo 0.904 0.826 0.901 0.641 

DINO-Pseudo + SAM 0.932 0.799 0.898 0.641 

 

 

Table 4 shows the accuracies of the model on the Derval test set. This test-set is significantly different in 

terms of background, which are pastures with a wider variety of cows colours: black, white and and mixes 

are present. The accuracy is low across all augmentation training datasets, especially the  much important 

Recall shows that the YOLOv8-nano model is not able to generalize across different breeds of cattle it has 

not seen during training. However, the DINO pseudo-labels and the SAM augmentations are a significant 

large improvement over the baseline (between 80% and 110% increase in the accuracy measurements) and 

outperform all the simpler augmentations. However, the accuracy is still not as high as would be deemed 

usable in terms of precision agricultural application.  

 

Table 4. YOLOv8n accuracies on the Derval test dataset when trained on different training datasets. Bold indicates the 

highest value in the accuracy metric. Italics indicate a score lower than the baseline. 

Training Dataset Box Precision Box Recall mAP50 mAP50-95 

Baseline 0.301 0.176 0.206 0.0898 

Overlap 0.414 0.169 0.272 0.125 

Rotate 0.402 0.232 0.271 0.121 

 Multi-scale 0.192 0.106 0.12 0.042 

SAM augment 0.235 0.169 0.171 0.0696 

All above augments 0.408 0.204 0.273 0.128 

DINO-Pseudo 0.535 0.324 0.421 0.155 

DINO-Pseudo + SAM 0.571 0.366 0.465 0.181 

 

For the Mauron test dataset in table 5, the results are somewhat similar as the Derval test set. The largest 

difference is that in Mauron there are more white Holstein cattle. As previously mentioned, the simpler 

augmentations are highly accurate at detection these, showing the high precision. The DINO pseudo-labels 

show that the Precision is much lower than the other methods, whilst Recall is much higher. This indicates 

that it is difficult for the YOLOv8-nano model to both capture the pseudo labels of the differently coloured 

cattle, whilst maintaining a high accuracy for the white coloured cattle.  

  

Table 5. YOLOv8n accuracies on the Mauron test dataset when trained on different training datasets. Bold indicates 

the highest value in the accuracy metric. Italics indicates a score lower than the baseline. 
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Training Dataset Box Precision  Box Recall  mAP50 mAP50-95 

Baseline 0.803 0.259 0.542 0.383 

Overlap 0.884 0.239 0.568 0.438 

Rotate 0.853 0.291 0.581 0.424 

Multi-scale 0.863 0.241 0.558 0.404 

SAM augment 0.811 0.258 0.539 0.38 

  All above augments 0.882 0.251 0.575 0.432 

DINO-Pseudo 0.516 0.549 0.435 0.196 

DINO-Pseudo + SAM 0.541 0.504 0.419 0.198 

 

Finally, for a visual overview of what detections the various models succeed and struggles with is 

shown in figure 3. The left-side Jalogny images have identical detections, although the all-augments and 

DINO augmentations show a lower confidence score. Furthermore, in the Mauron and Derval imagery, 

many of the non-white cows are not detected in the baseline, with a small increase in cow detections for the 

all-augments model. DINO-SAM pseudo labels and augments has increased the number of true positives 

significantly. Important is that sometimes the white spots on a Holstein (black-white) cow are detected as 

an subject.  

 

Figure 3. Examples of detections across three areas. From left to right: A, B, C are from the Jalogny validation set, D, 

E, F are from the Derval test set, G, H, I are from the Mauron test set. A, D, G are detections from the baseline model, 

B, E, H are detections from the all-augments model, C, F, I are detections from the DINO-SAM pseudo-augment 

model. The proposed DINO-SAM detects a larger variety of cows, when trained on pseudo-labels. 

4. Conclusions 

The aim of this research was to explore ‘free’ data augmentation techniques, in which no new labels are 

required to increase accuracy in unseen variations. The YOLOv8-nano model was chosen as a state-f-the-

art Deep Learning detection model for fully supervised training methods. This model was trained on 

various augmented versions of the training set. Afterwards, the models were evaluated on three test-sets 

with a wider variety of cows present. The accuracies of the baseline and data augmentation models are high 

in the Jalogny evaluation set (a set with only Charolais cows, like the training data). However, as these 

models have not seen a different variety of cattle, it fails to detect these other breeds. The Pseudo-label 

methods increase the accuracy of unseen varieties significantly, the Recall on these datasets is much higher 

than the baseline and even augmentation models. 

As a rule of thumb, if the baseline of breeds variety in the training set is not good, the simple data 

augmentation techniques will only minimally increase or decrease the accuracy for an increase to 
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robustness to perturbations (such as rotation, subject-sizes and gaussian noise over the image). 

Interestingly, the all-augments model did not perform better than other data augmentation techniques, and 

due to the large increase in training time is not recommended as a preprocessing augmentation technique. 

Furthermore, a small but significant increase in accuracy was measured with the overlap and rotate method 

across most evaluations over baseline. As this is essentially a ‘free’ method, it is recommended to be a 

standard procedure for dataset preprocessing. The rotation is already implemented within the YOLO 

framework, but the overlap ought to be a standard procedure. 

Finally, it is the variation of breeds in the training dataset that really matters. Therefore, pseudolabeling 

through the DINO model was also introduced. The self-supervised attention mechanism and large dataset 

pretraining, the transformer network such as DINO are often very good at generalization into unseen data. 

The backbone of these models are often much better at feature extraction, in comparison to complete 

training from scratch. Therefore, these models can be used as highly sophisticated feature-extractors.  

In agriculture, the feature outputs of the new generation transformer networks are good for any task-

specific activity (Radford et al., 2021). However, they are not directly useable and require domain-

adaptation with the specific knowledge and tasks within the agriculture or UAV domains. Additional focus 

should therefore be made on sharing best practices of how these large pretrained networks are adapted for 

the PA tasks. These adaptations can range from placing a kNN classifier or even a threshold on the feature 

or maps. 

Whilst transformer models might be too complex and large to run in real-time, they are still accurate 

and can serve as a teacher model for smaller, more specific fully supervised networks such as YOLO. An 

adapted transformer can work as a pseudo-labeller, or even ground truth labeller if a user would check the 

results.  

Finally, there are many preprocessing steps before training a detector for cattle in UAV imagery as well 

as next steps in the pipeline after an accurate detection model has been achieved. For adoption of all these 

methods, processes and approaches, clear documentation, sharing of data and availability of code is a key 

requirement. Furthermore, collaboration with end-users will always be a necessity if AI is really to be used, 

trusted, and serve its proposed purpose on the farm to achieve sustainable end-goals.  
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Appendix 

A. Baseline images example: 

 

B. Overlap images example: 
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C. Multi-scale images example:  

 

D. SAM augment images example:  
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Abstract 

Critical N dilution curves (CNDC) are very useful for identifying the optimal N concentration (%Nc) and 

managing nitrogen (N) fertilization. A Bayesian model, superior to sequential models, offers a single-step 

estimation of critical N parameters. This research highlights the need for sophisticated models to improve N 

fertilization accuracy and concentrates on N dilution in plant tissues during the growth of crops. The primary 

objective is to analyze the implementation of a hierarchical model using a relatively small dataset of Plant 

Dry Matter (PDM) and Plant Nitrogen Content (PNC) from ryegrass-based fodder crops, to estimate CNDC 

parameters and assess their uncertainty. The study conducted experimental trials during the 2022-2023 season 

at the INIAV - Elvas Innovation Centre, Portugal (38°53'38.52"N; 7°3'19.01"W). The experimental design 

addresses a randomized block split-plot model with variations in N topdressing doses and water management 

scenarios (rainfed and irrigated). PDM and PNC data were collected at two critical crop stages—ryegrass 

tillering (t1) and stem elongation (t2). PDM ranges from 0.34 to 1.99 t ha-1 at t1 and 0.98 to 5.02 t ha-1 at t2. 

Meanwhile, PNC varies between 1.21-2.70% and 1.15-2.29% at the respective sampling moments. To 

estimate CNDC parameters, the study employs a Bayesian hierarchical model. The resulting CNDC under 

no-till management and semiarid conditions indicates an average A1 value of 3.33 [confidence interval 

(%CI)=(3.23;3.43)] and A2 equal to 0.66 [%CI=(0.63;0.69)]. The N Nutritional Index (NNI) reveals 

variations between 0.48 and 1.45. The paper showcases the potential of open-source software for data 

processing and the application of a hierarchical model, serving as a foundation for ongoing crop nutritional 

monitoring, and tailored N site-specific fertilization plans. This approach makes it possible to mitigate the 

risks of over-fertilization and improve the sustainability of agricultural systems. 

Keywords: Critical N, Grassland, Soil nutrients, Remote Sensing. 

1. Introduction 

The dilution of nitrogen (N) in plant tissues during crop growth has been widely discussed by various 

authors and different mathematical models have been applied to describe it. Initially, Lemaire and Salette 

(Lemaire et al., 1984) established the concept of the critical N dilution curve (CNDC). This allometric 

approach describes the decline in optimum N concentration (%Nc) as the accumulation of dry matter (PDM;t 

ha-1) of forage according to %Nc = A1*PDM-A2, where %Nc is the total concentration of N in the forage ( 

which produces an amount of plant dry matter (PDM; t ha-1), expressed in g N kg-1 of forage PDM; A1 is the 

coefficient that represents the %Nc of the forage at 1 t PDM ha-1; and A2 is the coefficient that characterises 

the pattern of decrease in %Nc during crop growth (Lemaire & Gastal, 1997). N concentrations below %Nc 

impair plant growth, and CNDCs help predict the N nutritional index (NNI). The NNI for a given amount of 

plant PDM can be estimated by comparing the current N concentration (PNC; %) with the %Nc calculated 

by the dilution curve (Lemaire & Meynard, 1997). An NNI value equal to or close to 1 means the crop is at the 

optimum value to achieve maximum yield. This value can be used as a yield and quality reference to correct 

gaps in crop management (Hoogmoed et al., 2018). It should be noted that the NNI can only diagnose the N 

status of the crop but cannot quantify the dose of N to be applied in top dressing, especially when the NNI is 

<1. It is necessary to clarify the relationship between the N status of the crop and the dose to be applied 
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depending on the crop's development stage, and to achieve a process to be applied in real-time (Li et al., 

2022). 

Following the Lemaire and Salette (1984) CNDC validated for fescue, Greenwood et al. (1990)  proposed 

simplifying by creating a general curve for C3 crops and another for C4 crops. However, other authors have 

created and validated CNDCs specifically for forage crops such as rainfed annual ryegrass (Marino et al., 

2004), Timothy grass (Bélanger & Ziadi, 2008), perennial ryegrass (Gislum & Boelt, 2009), irrigated annual 

ryegrass (Agnusdei et al., 2010), oats and again for fescue (Agnusdei et al., 2010), and hybrid annual ryegrass 

(Sandaña et al., 2019). These curves differ, and the value of A1 varies between 3.2 and 6.3, and the value of 

A2 is between -0.71 and -0.26 (Table 1). These variations prove the consensus presented by most authors 

that these curves vary depending on the year (climatic conditions), the crop, the variety and the crop 

management practised.  

Table 1. Information of Prior CDNCs for fodder crops. 

Crop/Species A1 A2 Ref. 

Festuca arundinacea 

Schreb. and Dactylis 

glomerata L. 

4.8 0.32 (Lemaire et al., 1984) 

C3 crops 5.7 0.50 
(GREENWOOD et al., 

1990) 

Lolium multiflorum 

L. 1 
4.1 0.38 (Marino et al., 2004) 

Pheleum pratense L. 3.7 0.35 (Bélanger & Ziadi, 2008) 

Lolium perenne L. 6.3 0.71 (Gislum & Boelt, 2009) 

Lolium multiflorum 

L. 2 
3.5 0.36 (Agnusdei et al., 2010) 

Festuca arundinacea 

Schreb. 
4.7 0.55 (Agnusdei et al., 2010) 

Avena sativa L. 3.2 0.26 (Agnusdei et al., 2010) 

min 3.2 0.71  

max 6.3 0.26  

Makowski et al. (2020) were concerned that these curves (sequential method) did not have the level of 

uncertainty with which they predict the %Nc and recommended the Bayesian model (hierarchical method) to 

estimate the parameters of the CNDC from experimental data in a single step. The model can estimate the 

A1 and -A2 parameters directly from the PDM-%Nc pair of observations using freely available software. 

Lacasa et al. (2023) compared both statistical methods and evaluated their performance, considering different 

observation times throughout the crop cycle, different fertiliser doses and different levels of measurement 

accuracy. They showed that the sequential models result in poor statistical properties of the estimated 

parameters and overestimate the %Nc values. The estimates of N requirements to reach N sufficiency levels 

exceeded the values estimated by the hierarchical model by around 30 to 100 kg N ha-1. Lacasa et al. (2023) 

corroborate the model presented by Makowski et al. (2020) indicating that its use reduces the risk of over-

fertilization. Fernandez et al., (2022) re-analysed the PDM and %Nc dataset from 14 fescue studies, also 

using the Bayesian model. They suggested that the original curve (%Nc = 4.79*PDM-0.32) by Lemaire and 

Salette (1984) was overestimated and obtained a curve (%Nc = 3.93*PDM-0.42) established by grouping the 

data sets according to a wide range of Crop x Environment x Management conditions. They emphasise that 

the use of an inappropriate experimental design reduces the reliability of CNDCs, especially in the case of a 

limited number of data collected under non-limiting N conditions or in the case of a limited range of PDM 

values (Fernandez et al., 2022). 

The potential of methods for estimating the site-specific crop N nutritional status are challenged by 

various factors. In this paper, we will find the CNDC that most closely matches our short database in annual 

ryegrass-based forage crops, using the Bayesian method, and estimate the NNI.  
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2. Materials and Methods  

2.1. Field trial conditions and design  

The experimental trials were conducted in Caia, Elvas, Portugal (38°53'38.52‘N and 7°3'19.01’W) during 

the 2022-2023 autumn/winter agricultural season. The trial design followed a split-plot randomised block 

model (ORAL, 2018; Perez et al., 1996). The main block had 3 doses of N topdressing (0, 120 and 200 kg 

ha-1 of fertiliser with 27% N), while the sub-blocks had two different forage crops, and the sub-sub-blocks 

had two water management scenarios (rainfed and irrigated). The plots in the blocks had a total size of 2 x 8 

metres (Figure 1). Each plot was replicated 4 times, totalling 48 plots. They were set up in a location with no 

relief, so as not to influence possible run-off, either of water or the nutrients themselves. 

 

Figure 1. Location and design of trial blocks. 

The crops of i) annual ryegrass and ii) fodder intercropping based on annual ryegrass and clovers (Table 

2), were sown separately with an inter-row of 0.18 m and a depth of 0.01 m. The sowing doses were 1,400 

seeds m-2 for annual ryegrass and 4,070 seeds m-2 for intercropping (Ryan-Salter & Black, 2012). Before sowing, 

sufficient doses of phosphorus (16.1 kg ha-1 P2O5) and potassium (13.8 kg ha-1 K2O) were applied, along 

with a dose of N (27.6 kg ha-1 N) distributed evenly across all the plots to ensure correct crop emergence. 

Irrigation was also applied evenly at this time. Weeds and diseases were controlled, where necessary, 

following good experimental practice. 

Table 2. Characteristics and dates of crop establishment operations. 

Crop 
Ryegrass 

(Crop 1) 

Legume-ryegrass mix 

(Crop 2) 

Species and 

varieties (%) 

Lolium 

multiflorum 

L. cv 

Diamond T 

Lolium 

multiflorum 

L. cv 

Hellen 

Trifolium 

vesiculosum 

cv Comm 

Trifolium 

resupinatum 

cv Lightning 

Trifolium 

michellianum cv 

Balansa 

Paradana 

100 67 10 17 6 

Seeds m-2 1,400 1,531 2,539 

Basal 

fertilization 
28/10/2022 

Seeding 07/11/2022 

Sampling 

dates 
t1 – tillering stage; t2 – elongation stem stage 

The predominant soil at the test site, according to the FAO classification, is a Luvisol which corresponds 

to a type of Mediterranean soil Pag and Sr (Cardoso, 1974), and the climate, according to Köppen-Geiger is 

Csa (Köppen, 1900). 
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2.2. Fit CNDC and NNI  

The R code created by Makowski et al. (2020) was used to adjust the CNDC, in which the PDM-PNC 

data pairs from each experiment plot were entered. Since the model for calculating the CNDC should not 

incorporate data pairs with PDM of less than 1 t ha-1, of the 96 initial pairs, only 58 were considered for 

adjusting the N curve. The %Nc was calculated based on the PNC of annual ryegrass and intercropping 

together, because, given the similarities in the crops, other authors have already proven that the values of the 

CNDC parameters do not change from one crop to another (Louarn et al., 2021; Soussana & Arregui, n.d.). The 

curves achieved by other authors in fodder crops, already described in the introduction and specified in Table 

1, were considered.  

With this adjustment, the values of the A1 and A2 parameters of the CNDC (%Nc = A1 * PDM-A2) were 

estimated, using the most appropriate curve for estimating the %Nc of these crops, installed by no-till in sandy 

soil, in this particular year. Knowing the value of PNC and %Nc, it was possible to calculate the NNI using 

the ratio between these two parameters: 

 𝑁𝑁𝐼 = 𝑃𝑁𝐶/%Nc (1) 

 

where PNC is the actual concentration of the sample and %Nc is the optimum concentration of N in the plant. 

2.3. Statistical analysis 

To begin analysing the general data, a statistical analysis was carried out, analysing the coefficient of 

variation, standard deviation and interquartile analysis to eliminate outliers. This was done using the R 4.3.2 

software. The data was then grouped by crop, parameter (PDM and PNC), time of sampling, N treatment and 

water management.  

In a second analysis, only data pairs with PDM greater than 1 t ha-1 were used. An interquartile analysis 

was carried out to eliminate outliers. With the data pairs resulting from this filtering, the NNI and N utilisation 

parameters were calculated. 

3. Results and Discussion 

3.1. Variations of forage production and N utilisation 

3.1.1. Variations of crops PDM and PNC 

From a total set of 95 lines of data, 3 outliers were eliminated, leaving a set of 92 lines of data. Looking 

at the total data set, the average value of the parameters increased from the 1st to the 2nd sampling time, 

except for the PNC of intercropping. In all parameters, fodder intercropping showed higher values than 

annual ryegrass (Figure 2).   

 

Figure 2. PDM and PNC variations for each crop, by sampling time and water management. 
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Looking at the 2nd sampling time (in which we can see the influence of the different N doses applied at 

the 1st time), notice that in irrigated areas the parameters values increase with the increase in the N dose 

(Figure 3). However, in rainfed areas, the higher N dose does not always represent the highest value of PDM 

or PNC. In both intercropping and ryegrass, the PNC increases, but PDM production decreases. This 

relationship allows the nutritional status of intercropped plants to increase, but it is not enough to increase 

that of ryegrass plants. 

  

  

Figure 3. PDM and PNC variations by N doses. 

 

3.1.2. CNDC and variations in NNI patterns 

The CNDC of the crops under study was established using the Bayesian statistical model, according to 

Makowski et al. (2020), as well as the confidence interval (CI) associated with all the data (PDM and PNC) 

recorded. Samples with PDM of less than 1 t ha-1 were not included in the curve fitting. The A1 and A2 

parameters range from 3.22 to 3.44 and 0.63 to 0.69, respectively. Finally, the CNDC that was determined is 

%Nc = 3.33 * PDM-0.66 (Table 3).  
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Table 3. Coefficient values and their calculated errors. 

 A1 A2 

Mean 3.3319 0.6643 

SD 0.1060 0.0320 

Naive SE 0.0009 0.0003 

Time-Series 0.0030 0.0009 

With this adjusted curve, it was possible to calculate the NNI value for each plot under study. The 

descriptive statistics of the calculated results are shown in Table 4. The average NNI value is 0.89. 

Table 4. Descriptive statistics of the parameters and NNI of the study blocks. 

 PDM PNC %Nc NNI 

Nº of samples 58 58 58 58 

Min 1.03 1.15 1.31 0.48 

Max 4.09 2.27 3.27 1.45 

Mean 2.33 1.72 2.07 0.89 

Median 2.30 1.70 1.92 0.86 

DP 0.84 0.24 0.55 0.25 

CV 36.25 13.96 26.69 28.20 

NNI is related to PDM, since the better the plants were nourished with N, the more PDM they had. It is 

also related to the PNC since plants with a higher NNI have a higher PNC. NNI is closely related to N 

absorption by the plants, since the higher the NNI, the greater the amount of N absorbed. 

4. Conclusions 

The paper showcases the potential of open-source software for data processing and the application of a 

hierarchical model, serving as a foundation for ongoing crop nutritional monitoring, and tailored N site-

specific fertilization plans. This approach makes it possible to mitigate the risks of over-fertilization and 

improve the sustainability of agricultural systems. Further studies could analyse the possibility of measuring 

the PDM and PNC parameters using remote sensing. This advance would make it possible to remotely 

calculate the parameters, or even the NNI itself directly, measuring the N nutritional status of crops more 

quickly and relatively economically.   
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Abstract  

Current and anticipated climate changes are set to profoundly impact crop cultivation, leading to reduced 

harvests, increased costs, and the need for significant deviations from traditional farming methods. To address 

the challenge of feeding a growing population in the context of an expanding economy, yields must be 

increased by 70% over the next 30 years. A critical strategy in meeting this challenge is the development of 

new crop cultivars that are more resilient and adaptable to evolving climate conditions. Obtaining new 

cultivars in cereals is labor-intensive and relies on manual measurements of height, vigor, disease resistance, 

or water use efficiency. Many of these parameters are manually collected by trained technicians, and 

subjective variables like vigor introduce a level of uncertainty, diminishing the reliability and efficiency of 

the breeding process. Global efforts are being made to automate the collection of objective data useful for 

breeders. This research presents a novel deep-learning model designed and trained to accurately predict the 

BBCH scale of barley based on RGB images, environmental factors, and structural parameters that can be 

automatically obtained. We gathered BBCH, temperature, crop height and RGB data during 2022-2023 crop 

cycle on the University of Seville campus farm. Additionally, we captured and labelled 1162 RGB images 

that we used to train a convolutional neural network (CNN). These images were randomly split into training 

(80%), validation (15%), and testing (5%) sets. Our model demonstrated an accuracy of r2 = 0.97 in predicting 

the BBCH scale of the studied barley crop after 24 epochs with a batch size of 32. 

 

Keywords: Deep-learning model, Phenotyping, Phenology, BBCH, Barley  

1. Introduction  

Current and anticipated climate changes are set to profoundly impact crop cultivation, leading to reduced 

harvests, increased costs, and the need for significant deviations from traditional farming methods. To address 

the challenge of feeding a growing population in a context of expanding economy (United Nations, 2022), 

yields must be increased by 70% over the next 30 years (Searchinger et al., 2018). A critical strategy in 

meeting this challenge is the development of new crop cultivars that are more resilient and adaptable to 

evolving climate conditions. However, the annual genetic gain of cereal crops hovers around 0.5-1% (del 

Pozo et al., 2022; Masuka et al., 2017), falling significantly short of meeting the predicted demands. 

Moreover, improvements in yield resulting from increased harvest index are becoming increasingly more 

complex to achieve as we approach the biological limits in our major cereal crops. Future yield improvements 

must come from more efficient biomass accumulation and, in many cases, under water-stress conditions. 

Obtaining new cultivars in cereals is labor-intensive and relies on manual measurements of height, vigor, 

disease resistance, or water use efficiency. Many of these parameters are manually collected by trained 

technicians, and subjective variables like vigor introduce a level of uncertainty, diminishing the reliability 

and efficiency of the breeding process.  

Global efforts are increasingly focused on automating the collection of objective data to aid breeders in 

surpassing current limitations that only allow the phenotyping of a few cultivars during each growing season. 

One of the technologies currently being developed and beginning to be used by breeders is phenotyping 

platforms. Until recently, the introduction of this technology in the agricultural sector was limited by the high 

prices of sensors and the limited processing capacity and automatization in the field. However, the recent 

widespread adoption of remote sensing technology and the development of new, more affordable sensors 

have facilitated the introduction of these innovative tools into the breeding sector. Equipped with remote 

sensing capabilities, phenotyping platforms are emerging as a pivotal tool with the potential to accelerate the 

breeding process. These platforms enable the phenotypic characterization of multiple cultivars in response to 
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specific environments and at distinct phenological stages, increasing the scalability of breeding programs 

worldwide. 

A key aspect of the breeding process is using the BBCH scale, a widely adopted system for categorizing 

plant growth stages. This scale is crucial for optimizing agricultural management practices and enhancing the 

plant breeding process. Traditionally, determining BBCH in breeding experimental fields is a labor-intensive 

process that relies on manual observations by trained technicians. An automatic crop phenology classification 

method is essential to bring the potential capabilities of autonomous phenotyping platforms to the breeding 

sector. Such a method would allow us to automatically link the measured phenotypes to the corresponding 

phenological stages of crops, thereby significantly accelerating the breeding process.  

Our research aimed to develop a deep-learning model capable of predicting the BBCH scale of barley that 

would be deployable on a phenotyping platform. Our model demonstrated an accuracy of r2 = 0.97. This work 

presents a novel deep-learning model designed and trained to accurately predict the BBCH scale of barley 

based on RGB images, days after sowing, crop height, and accumulated Growing Degree-Days (GDD). 

 

2. Materials and Methods   

 

2.1. Experimental design and dataset obtention 

The dataset was generated during 2022-2023 crop cycle on the University of Seville campus farm. The 

experimental site had 6 plots of barley, Hordeum vulgare L. var. nutans “Traveler”, each plot measured 6 x 

1.5 m. The seeding date was the 30 of December 2022, fifteen days later, we carried out nitrogen fertilization 

by applying 50 Tn·ha-1 of N. BBCH, height and RGB data were taken regularly, twice, or thrice a week during 

the crop cycle. RGB data obtention was performed using a Canon EOS 250D camera with a Canon EFS18-

15mm lens attached and with a Samsung Galaxy A54 64 MP cellphone camera. Images were resized to a 512 

x 512 resolution using a Python script. After resizing, we randomly split the 1156 RGB images the data set 

obtained in a proportion of 80% for training, 15% for testing and 5% for validation. The labels and non-image 

features associated with each image were stored in a .csv file for each set. The inputs for the created model 

were the RGB images, days after sowing, crop height and growing degree days (GDD). GDD was calculated 

by applying Eq.1. Weather data was collected on-site using a weather station (Raincrop, Sencrop, Lile, FR). 

𝐺𝐷𝐷 =∑ (𝑇𝑎𝑣𝑔 − 𝑇𝑏
0

𝑛
) 

(1) 

where GDD represents the accumulated growing degree-days in Celsius; n is the days after sowing of each 

sampling day; Tavg is the daily average temperature; and Tb is the base temperature. For this study, we used a 

Tb of 4.5°C based on the work by Rubio et al., 2017. 

2.2. Deep-learning model 

The deep learning model proposed is based on a Convolutional Neural Network (CNN) for the RGB 

image processing and concatenation layers to combine the image processing part of the model with the non-

image input features, combining them into a single layer. The model was built using the TensorFlow Python 

library and comprises 4 2D convolutional layers of 32, 64, 128 and 256 filters or kernels, respectively. Each 

layer has a filter size of 3x3 and a Rectified Linear Unit (ReLU) activation function. After each 2D 

convolutional layer, a max pooling layer was added to reduce each spatial dimension by half. A Flattening 

layer was added to flatten the 3D output of the last convolutional layer into a 1D vector, which could be fed 

into dense, fully connected layers. A final layer of 512 kernels and ReLU activation function was added to 

the model, followed by a dropout layer with a dropout rate of 0.5 to prevent overfitting. Non-image features 

were called from a .csv file associated with each image. These features fed the model through a concatenated 

layer that combines the output of the processing part of the model with the non-image input features, 
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combining them into a single layer. Finally, an additional dense layer of 128 kernels activated by a ReLU 

function and a dropout layer with a dropout rate of 0.25 was added. Given the regression nature of the BBCH 

prediction model, a final output layer was added using a linear activation function. The model was compiled 

with the Adam (Adaptive Moment Estimation) optimizer, mean squared error loss function, and mean 

absolute error as a metric. Optimal training was found at 24 epochs with a batch size of 32. 

 

3. Results and Discussion  

Our results show a good fit between our testing data and the predictions given by our model, r2 = 0.97 

(Figure 1). Our model's Mean Absolute Error (MAE) and Mean Squared Error (MSE) were 2.82 and 14.12 

respectively. This high correlation was expected and aligns with previous research indicating a strong 

correlation between the BBCH of crop development and accumulated degree-days, as well as the robustness 

of the accumulated degree-days models (Juskiw et al., 2001; Wang & Engel, 1998). The proposed deep-

learning model shows promise in scenarios where weather data, sowing date and crop height are available. 

The acquisition of inputs for this model can be automated using appropriate sensors capable of providing 

crop height measurements, such as LiDAR sensors, RGB-h cameras, or ultrasound sensors. 

Our model shows a higher error between BBCH stages 50 to 60, which might be explained by the visual 

similarities between both phenological stages, variability in the development within the plants in the same 

plot and a reduced number of samples during crop the 60 – 90 BBCH stages. Given the differences in GDD, 

crop height, and the different lengths in the crop cycle of each cultivar, our model may require some 

adjustments to maintain accuracy in other cultivars.  

 

 

Figure 1. True vs predicted BBCH results were obtained by our deep learning model using RGB and 

non-image features with mean absolute error (MAE) and mean squared error (MSE) values. 
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Figure 2. Training and validation loss of our model. 

4. Conclusions  

This work presents a deep-learning model based on RGB images and non-image features such as crop 

height, days after sowing and accumulated degree days. This model achieved an accuracy of r2 = 0.97 and 

could be implemented on a phenotyping platform capable of collecting RGB images, crop height and weather 

data. Implementing deep learning models in phenotyping platforms for BBCH prediction will increase the 

scalability of breeding programs, contributing to the obtention of new cultivars and accelerating the breeding 

process. However, validating this model in different scenarios is pivotal, given the other parameters 

characteristic of each phenotype and the environmental variables that can affect the crop cycle length. 
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Abstract  

In an agricultural sector that faces significant challenges and is committed to food security, spreading 

pathogens represents a severe threat. In this context, the need arises to implement new methodologies and 

tools capable of mitigating or alleviating existing problems. In Spain, this concern is aggravated in crops of 

great interest and economic impact, such as citrus fruits, especially oranges, since more than 150,000 hectares 

are dedicated to their production, representing a fundamental part of the country's agricultural economy. The 

orange tree crop suffers from a series of pathologies that affect its development and production, causing 

significant economic losses. To address this situation, this study applies cutting-edge technology such as 

computer vision and multispectral sensors carried on UAVs. Experimental results show the capacity of the 

YOLOv8-seg model to identify trees affected by Phytophthora spp. at early stages of infection when 

symptoms are not visible. With accuracy values of 94.3%, recall of 87.1% and mAP50 of 68.6% for 

segmentation and classification. These results represent a crucial step forward in developing an early 

identification system for Phytophthora spp. in young orange groves and highlight the potential of advanced 

technologies in the agri-food sector. 

Keywords: Plant pathology, unmanned aerial vehicles, multispectral images, deep learning, segmentation 

models.  

1. Introduction  

In a changing world marked by resource scarcity, population growth or climate change, long-term 

sustainability and food security have become a concern, and the conservation of crops has become a priority 

(Pereira, 2017; Hídricos, 2020). This concern is significant for orange cultivation in Spain since, according 

to the Ministry of Agriculture, Fisheries and Food (MAPA, 2022), around 150,000 hectares are cultivated, 

representing 10.7% of the orange groves in the European Union and 35.2% of the total orange production in 

the EU, which highlights the economic and cultural importance of the crop in the country. It is vital to protect 

the crop against pathogens that threaten production. Phytophthora spp., a fungus that causes collar or root rot 

in orange trees, is one of the most problematic pathogens. This fungal disease damages the roots and stem 

base of the trees, making it difficult for them to absorb nutrients and water. Most worryingly, the symptoms 

of infection are difficult to detect in the early stages, which facilitates the silent spread of the disease and 

causes significant damage before it is detected (Sáenz Pérez et al., 2019). In the face of pathogens such as 

these, early detection is crucial in mitigating food safety risks and minimising production costs.  

Since the beginning of agriculture, the detection of pathogens in crops has been based on observation and 

the experience and knowledge of professionals or producers. Although it has been, and still is today, a widely 

used methodology, it has severe limitations in the current context of changing agriculture. Aspects such as 

the shortage of qualified personnel or the physical and temporal requirements may limit the capacity to 

respond to unforeseen situations, with consequent economic and yield losses. Due to these limitations, 

exploring and researching the development and adoption of new technologies that can complement traditional 

pathogen detection methods is imperative. Many research projects have been carried out over the last decades 

to obtain and offer innovative solutions to this challenge. A clear example of disruptive and innovative 

technology is drones, also known as unmanned aerial vehicles (UAVs), due to their great capacity to collect 

data quickly and efficiently (Nex and Remondino, 2014). Specialised sensors and cameras allow drones to 

monitor large areas of crops in a relatively short time. They can also access hard-to-reach areas where visual 

detection would be virtually impossible (Khan et al., 2022). Multispectral cameras are another technology 

with great potential, as they simultaneously capture information in several bands of the electromagnetic 

spectrum, such as the red edge or near-infrared (NIR). Such cameras are popularly used in drones and 
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satellites, as they provide information that is not visible to the human eye. They allow detailed information 

on the vegetative state of crops or the soil, facilitating the optimisation of resources and supporting decision-

making. 

The concept of artificial intelligence (AI) emerged in the 1950s (McCarthy, 2007), a term coined at the 

Dartmouth conference. But it was not until the 2000s that this technology became a true revolution, thanks 

to advances and improvements in computer science (Kaul et al., 2020). ML (El Naqa and Murphy, 2015) and 

DL (LeCun, 2015) models offer the ability to learn complex patterns and extract relevant features from large 

volumes of data and images, making AI a key element in the day-to-day life of most industries (Hamet and 

Tremblay, 2017; Bannerjee et al., 2018; Chen et al., 2020). The study's main objective was to develop an 

identification system for early detection of the presence of Phytophthora spp. in young orange plantations 

using multispectral images captured with a UAV and a DL model. This new methodology has great potential 

to improve food security and increase the economic profitability of farmers. 

 

2. Materials and Methods   

This study uses multispectral images taken with UAV to segment and classify healthy trees and trees 

affected by Phytophthora spp. The fulfilment of this main objective involves a series of steps: I) acquisition 

of field images; II) data processing and creation of the training-validation-testing dataset; III) implementation 

of a DL model; IV) tree segmentation and classification; V) calculation of evaluation metrics and analysis of 

the results obtained. Figure 1 shows the study workflow diagram. 

 
Figure 1. Workflow diagram for developing an early detection system for Phytophthora spp. in orange 

grove. Own source. 

2.1. Study Area   

The experiment was carried out during the 2023 campaign in a plot of orange trees located in Brenes, 

Seville, Spain (Latitude: 37.554419º N, Longitude: -5.895260º W). The plot was selected by technical experts 

in the field who identified trees infected with Phytophthora spp. The orchard is plantated with 2-year-old 

Navelina orange tree seedlings, which occupies a total area of 4105 m2. The trees are grown on ridges at a 

tree spacing of 5.5 x 3.5 m2 and are drip irrigated using two polyethilene pipelines per tree row and cover 

crop in the alleys.  
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2.2. Identification of healthy and diseased trees as ground-truth data 

The early detection of trees infected with Phytophtora spp. requires the use of diseased trees without 

visible syptoms as ground truth. To select these trees in the field, an experienced technician identified diseased 

trees (through incipient stem collar damage) that were marked with eva-rubber targets designed and placed 

next to each of the identified trees (Figure 2). Black and white targets were used to be easily identifiable in 

the images taken by the UAV. Healthy trees were considered all those that were not identified as diseased 

trees.  

 

Figure 2. Identification of the tree affected by Phytophthora spp.. Own source. 

2.3. Drone-based Multispectral Imagery 

The DJI Mavic 3 Multispectral UAV was used to collect ground data. This compact UAV features an 

omnidirectional anti-collision system, i.e. it has a series of sensors that detect obstacles in all directions to 

avoid collisions and RTK positioning at the centimetre level. In addition, it integrates an imaging system 

based on a 20 MP RGB camera and four 5 MP multispectral cameras (green, red, red edge and near-infrared 

or NIR). This UAV also integrates a light sensor that captures solar radiation, which allows light 

compensation in the images, providing greater consistency in the data collected over time. 

  

2.4. Image acquisition 

On January 11th 2024, between 12:00 and 14:00 hours, a flight was conducted to collect ground data. The 

day was selected based on a previous analysis performed by the field technician. Data collection required an 

initial identification of healthy and pathogen-affected trees. Healthy and pathogen-affected trees served as 

‘field data’, and targets were placed next to the affected trees. Subsequently, it was decided to carry out a first 

automatic flight at 40 metres to obtain the images necessary to reconstruct the plot by creating the orthomosaic 

in Pix4D. A second flight was then carried out. In this case, a flight at a height of 12 metres in static and 

manual mode facilitates the data's labelling. This allowed us to copy the labels generated in one of the bands 

and paste them into the rest of the bands, reducing the labelling time. Four hundred forty-four images were 

obtained in the Green, Red, Red Edge, NIR and RGB bands from 74 sampling zones. 

2.5. Image pre-processing 

Image pre-processing is a vitally important step before image processing by an ML model. Tasks such as 

cropping, rotating, normalising, or resizing allow the image data to be transformed for further processing. 

The specific steps used during pre-processing are detailed below. 

The project was developed using an HP laptop with an Intel Core (TM) i7-7700HQ CPU @ 2.80GHz 

2.81 GHz, 8 GB RAM, and a 64-bit operating system. The implementation of the DL model, YOLOv8-seg. 
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was carried out using Google Colab, a cloud-based platform that offers an open-source development 

environment based on Jupyter Notebook, allowing for the free execution of Python projects. It also provides 

access to computational resources such as CPU, GPU, and TPU, making it particularly suitable for ML and 

DL tasks (Bisong, 2019). 

2.5.1. Normalisation 

Normalisation is a scaling or mapping technique to manipulate data, mainly to fit values to a common 

scale (Patro and Sahu, 2015). Different normalisation techniques exist such as histogram normalisation, min-

max normalisation, z-score normalisation, fixed-range normalisation, etc. In this study, a fixed-rank 

normalisation [0-1] was used, as it is a simple but effective technique widely used in data pre-processing for 

DL models. 

2.5.2. Resizing 

Resizing the images is another key step in the pre-processing stage, where the dimensions of the images 

are modified. After analysing the format and size of the images, it was found that the dimensions of the RGB 

images were 5280 x 3956 pixels, while those of the multispectral images were 2592 x 1944 pixels. The RGB 

images were first resized to convert their dimensions to those offered by the multispectral images. This 

facilitated and reduced the labelling time. 

Once the images were labelled, a second resizing was carried out. This aimed to adapt the size of the 

images to the size used for training the DL model, i.e. 640 x 640 pixels. In this resizing, the dimensions of 

the .txt files generated for each image in the labelling process were simultaneously modified. 

2.5.3. Labelling and dataset creation 

Labelling or annotating data is an essential preprocessing step before the application and/or data 

processing by a machine learning system. Through it, descriptive information is added to the dataset in labels, 

facilitating machine learning models' understanding of the data. Although there are different types of data 

labelling, depending on the task (detection, classification, and segmentation), polygon-based labelling was 

decided to be used, as it is the most suitable for identifying healthy and diseased trees. 

Using the open-source tool LabelMe, 335 images were labelled, for which two classes or labels were 

defined: ‘healthy’ and ‘phytophthora’. Note that in Figure 3, the labelling process is on an RGB image. See 

the yellow polygons forming the canopy of trees affected by Phytophthora spp. and the violet polygons 

corresponding to the canopy of healthy trees. 

 
Figure 3. RGB image labelled with LabelMe. 

After the labelling process, the image dataset was divided into a training set representing 80% of the data, 

a validation set comprising 15% and a test set comprising 5%. 
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2.6. Deep learning (DL) models 

You Only Look Once (YOLO) is a popular network model used in object detection tasks (Redmon et al., 

2015). Unlike other DL algorithms, this model and its later versions are based on single-stage detection, 

allowing faster and more efficient detection. Over the years, different YOLO models have been developed 

(Figure 4). 

 
Figure 4. Developed YOLO models. Source: Ultralytics. 

YOLOv8, developed and launched by Ultralytics in 2023, offers, like the previous models, five versions: 

YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large) and YOLOv8x (extra-large) 

(Jocher et al., 2023). YOLOv8 is very different from its predecessors, as it supports a variety of vision tasks, 

such as object detection, segmentation, pose estimation, tracking and classification. This model employs a 

backbone called C2f similar to that of YOLOv5, which allows combining high-level features with contextual 

information to improve accuracy in the detection process. In addition, YOLOv8 uses an anchorless model 

with a decoupled head, allowing each branch to focus on its task. YOLOv8 employs CIoU and DFL loss 

functions for bounding box loss and binary cross-entropy for classification loss (Li et al., 2023). As mentioned 

at the beginning of this section, YOLOv8 provides a semantic segmentation model called YOLOv8-seg. The 

architecture of this model is almost the same as that of the YOLOv8 model for detection. Still, it includes an 

additional output module in the head that generates the mask coefficients and FCN layers called Proto module 

that produces the masks. In this study, YOLOv8-seg uses the default hyperparameters provided by Ultralytics 

to ensure consistency with its original implementation and is trained for 30 epochs. On the other hand, the 

model output was adjusted to save the relative coordinates of the vertices of the masks generated in each tree 

in .txt format. 

 

2.7. Evaluation metrics 

The development and implementation of AD models require the application of evaluation metrics to 

measure their performance and effectiveness on a specific task (Li et al., 2018). In this study, metrics such 

as precision (P), recall (R) or Mean Average Precision (mAP) were used. P measures the accuracy of the 

model's predictions and is defined as the percentage of true positives (TP) to total predictions (Tharwat, 

2020), as shown in equation (1). On the other hand, R (Eqn. 2) measures the ratio of true positives to the total 

number of true positives (Grandini et al., 2020). mAP (Eqn. 4) is calculated by considering the average 

precision values (AP) of each defined object category. In addition, it uses the intersection over union (IoU) 

to evaluate the quality of the expected bounding boxes. IoU is the ratio between the intersection and union 

areas of the expected bounding box and the actual bounding box (see equation 3) (Yang and Yu, 2021).   

                                                               P=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                         (1)  

 

       𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                        (2) 

 

                                                              IoU=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
                                               (3)  
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      𝑚𝐴𝑃 = ∑
𝐴𝑣𝑒𝑃 (𝑞)

𝑄
  

𝑄

𝑞=1
                                                (4) 

where FP are the false positive, and FN is the false negative. In equation (4), q is the number of queries, Q is 

the total number of classes, and AveP (q) is the average precision for the query in question. 

 

3. Results and Discussion  

In this study, a system capable of early detection of orange trees affected by Phytophthora spp. was 

developed. The results obtained demonstrate the high accuracy and efficiency of the model in classification 

and segmentation tasks, underlining its potential. The model used achieved accuracy values of 0.943 for 

classification and 0.941 for segmentation. Equally high values were obtained for recall, 0.871 and 0.869, 

respectively. In the case of mAP50 and Map50-95, the values for classification were 0.96 and 0.686, while 

for segmentation, they were 0.957 and 0.597. These values show the model's excellent performance for the 

target task, making it a powerful tool. 

Figure 5a shows the model's accuracy evolution during the segmentation and classification training 

process in 30 epochs whereas Figure 5b shows the evolution of the loss in the 30 defined epochs. In terms of 

accuracy, both for classification accuracy, cls_P, hereafter, and segmentation accuracy (seg_P), Figure 5a 

shows the similarity of the values obtained and an increasing trend in the first 15 epochs to reach steady 

conditions later on. Regarding the loss, which represents the error made by the model when predicting the 

segmentation and object classes, a remarkable difference is observed between segmentation loss (seg_loss) 

and classification loss (cls_loss) lines. This is because the segmentation task is more complex than the 

classification task. Even with this difference, a decrease in loss is observed in both cases, indicating that the 

model continues to learn over epochs. 

 

Figure 5. Evaluation metrics during the training process of the YOLOv8-seg.  

The result of the developed system is the visual representation of the segmentation and classification of 

the trees, the count with the number of trees belonging to each class, and a file in .txt format that collects the 

relative coordinates of each mask originated. Figure 6 shows, as an example, the results obtained by the 

YOLOv8-seg model for the segmentation and classification of healthy and Phytophthora spp. affected trees. 

Figure 6a shows the results obtained by the model for a test image in the RGB bands; while Figure 6b shows 

the results for the same test image in the NIR band. 
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Figure 6. Result of the segmentation and classification of trees in an RGB image (a) and another in the 

NIR band (b). 

This figure represents the ability of YOLOv8-seg to segment and classify trees in RGB images and images 

taken in other spectral bands. This is due to the model's ability to learn from any image data type. Images in 

other spectral bands provide additional information on tree health and vegetative state not available in RGB 

images, which makes it easier for the model to identify patterns in the data. 

 

4. Conclusions  

Early detection of pathogens in crops is vital to reducing production costs, guaranteeing production 

quality, and ensuring food safety. Technologies such as airborne multispectral cameras or AI algorithms offer 

innovative, accurate and efficient solutions to this challenge, potentially transforming the way crops are 

monitored. In this study, the YOLOv8-seg. DL model and its ability to segment and classify healthy trees and 

those affected by Phytophthora spp. This new model of the YOLO family has significant advantages over its 

predecessors, the most notable being the incorporation of an additional output module in the head and FCN 

layers to, in addition to classifying objects, perform object segmentation. 

Furthermore, this study has shown that it is possible to train a DL model developed from RGB images 

with images in other spectral bands from UAVs. In the context of improvement, future work is proposed to 

capture multispectral images of orange trees affected by different pathogens. In this way, it will be 

investigated whether a DL model can identify this pathology early. 

   

Acknowledgements  
The authors would like to express their gratitude to the research group "AGR-278; Smart Biosystems Lab" 

for their  constant support throughout the development of this study. They would also like to thank the project 
GOPG-SE-20-0007, co-financed by the European Union through the FEADER fund and the Junta de 
Andalucía. 

  

References  
Pereira, L. S., 2017. Water, agriculture and food: challenges and issues. Water Resources 

Management, 31(10), 2985-2999. 

Hídricos, R., 2020. Agua y Cambio climático. 

Ministerio de agricultura pesca y alimentación (MAPA). 2022. Superficie y producciones anuales de 

cultivos. Retrieved from: 

https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-

anuales-cultivos/. 

AgEng 2024 Proceedings

472

https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/
https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/


Sáenz Pérez, C. A., Hernández, E. O., Estrada Drouaillet, B., Poot Poot, W. A., Delgado Martínez, R., & 

Herrera, R. R., 2019. Principales enfermedades en cítricos. Revista mexicana de ciencias agrícolas, 10(7), 

1653-1665. 

Nex, F., & Remondino, F., 2014. UAV for 3D mapping applications: a review. Applied geomatics, 6, 1-

15. 

Khan, M. A., Menouar, H., Eldeeb, A., Abu-Dayya, A., & Salim, F. D., 2022. On the detection of 

unauthorized drones—Techniques and future perspectives: A review. IEEE Sensors Journal, 22(12), 11439-

11455. 

McCarthy, J. (2007). What is artificial intelligence. 

El Naqa, I., & Murphy, M. J., 2015. What is machine learning? (pp. 3-11). Springer International 

Publishing. 

LeCun, Y., Bengio, Y., & Hinton, G., 2015. Deep learning. nature, 521(7553), 436-444. 

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36-S40. 

Bannerjee, G., Sarkar, U., Das, S., & Ghosh, I., 2018. Artificial intelligence in agriculture: A literature 

survey. international Journal of Scientific Research in computer Science applications and Management 

Studies, 7(3), 1-6. 

Chen, L., Chen, P., & Lin, Z., 2020. Artificial intelligence in education: A review. Ieee Access, 8, 75264-

75278. 

Kaul, V., Enslin, S., & Gross, S. A., 2020. History of artificial intelligence in medicine. Gastrointestinal 

endoscopy, 92(4), 807-812. 

Bisong, E. (2019). Building machine learning and deep learning models on Google cloud platform (pp. 

59-64). Berkeley, CA: Apress. 

Patro, S. G. O. P. A. L., & Sahu, K. K., 2015. Normalization: A preprocessing stage. arXiv preprint 

arXiv:1503.06462. 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016. You only look once: Unified, real-time object 

detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 

Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. 2023. Available online: 

https://github.com/ultralytics/ultralytics (accessed on 13 May 2024). 

Li, Y., Fan, Q., Huang, H., Han, Z., & Gu, Q., 2023. A modified YOLOv8 detection network for UAV 

aerial image recognition. Drones, 7(5), 304. 

Liu, Y., Chen, X., Wang, Z., Wang, Z. J., Ward, R. K., & Wang, X., 2018. Deep learning for pixel-level 

image fusion: Recent advances and future prospects. Information fusion, 42, 158-173. 

Tharwat, A., 2020. Classification assessment methods. Applied computing and informatics, 17(1), 168-

192. 

Grandini, M., Bagli, E., & Visani, G., 2020. Metrics for multi-class classification: an overview. arXiv 

preprint arXiv:2008.05756. 

Yang, R., & Yu, Y., 2021. Artificial convolutional neural network in object detection and semantic 

segmentation for medical imaging analysis. Frontiers in oncology, 11, 638182. 

AgEng 2024 Proceedings

473

https://github.com/ultralytics/ultralytics


Advancing precision livestock agriculture: Harnessing generative artificial intelligence for 
enhanced animal behaviour recognition 

Regina Eckhardt a,*, Reza Arablouei b, Kieren McCosker c, Heinz Bernhardt a 
a Department of Agricultural Systems Engineering, Technical University of Munich, Freising, Germany 

b CSIRO’s Data61, Pullenvale QLD, Australia 
b Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia QLD, Australia 

* Corresponding author. Email: regina.eckhardt@tum.de 

 

Abstract 

In precision livestock agriculture, the acquisition of sensor data is crucial for understanding animal behaviour and 

welfare. As farms and herds expand, managing this data becomes increasingly complex. Existing datasets often lack 

diversity, limiting their applicability for advanced analysis, particularly when employing artificial intelligence (AI) 

models. In this work, we propose a novel approach employing generative AI (genAI) to overcome these limitations by 

synthesizing extensive sensor datasets. Our approach involves two main steps: Firstly, we employ genAI, specifically the 

Autoformer model based on the Transformer architecture, to generate synthetic accelerometer sensor data. This approach 

demonstrates promising results, enabling accurate animal behaviour prediction across diverse scenarios. Secondly, we 

outline an AI model designed to predict cattle behaviour using datasets augmented via synthesised sensor data. Our study 

underscores genAI’s critical role in augmenting data resources for effective livestock management, enhancing predictive 

models tailored for livestock management and developing sustainable strategies. This approach represents a significant 

advancement in precision agriculture, expanding the utility of AI in agricultural systems engineering and providing 

farmers with tools to adapt to evolving environmental and managerial conditions. 

Keywords: accelerometer data, cattle behaviour, climate change, generative AI, precision agriculture 

 

1. Introduction 

The future of agriculture faces considerable uncertainty, not only from the direct effects of climate change but also 

from necessary adaptations such as dietary shifts aimed at reducing emissions and coping with environmental variations. 

Climate change directly impacts livestock agriculture, making it a focal point in discussions on emissions reduction. 

Thus, a reliable baseline is crucial to effectively manage the related challenges while ensuring that strategies for livestock 

welfare are aligned with broader environmental and economic considerations. Despite the widespread exploration of 

generative artificial intelligence (genAI) in various domains, its application in association with livestock sensor data 

remains largely unexplored. 

Our research seeks to fill this gap by harnessing genAI to generate synthetic accelerometer data that accurately 

reflects cattle movements. This synthetic data will enable the simulation of scenarios such as climatic impacts, dietary 

adjustments, and changes in husbandry practices, where empirical data may be lacking. We delve into the architecture 

and functionalities of Transformer-based models, adapting them for use with sensor data, and outline the necessary model 

adjustments required for this adaptation. Through rigorous evaluation, we assess the efficacy of these models in enabling 

accurate prediction of cattle behaviour across diverse conditions. In addition, we examine potential interpretations of 

these model's outcomes and how they can provide insights into cattle welfare. This discussion aims to set the stage for 

future research in this field, where the actual application of the model can be further pursued. 

The importance of data in agriculture, particularly within precision livestock farming (PLF), cannot be overstated. The 

potential of genAI to produce realistic synthetic data holds promise, especially given livestock agriculture's significant 

contribution to global emissions, with cattle playing a substantial role. As such, projecting and evaluating possible future 

scenarios is crucial for preparing for climate-related impacts on agriculture and global food supply. 

Synthetic data generation is motivated by the practical challenges associated with physically testing every potential 

future scenario, as well as the substantial resource demands involved. Our work with genAI aims to address these 

challenges by providing realistic synthetic data for future analysis, enabling proactive assessment of various scenarios 

without the need for real-world experimentation, which may be complicated or even unethical. 

In this paper, we explore the development of a Transformer-based model adapted for sensor data and describe an AI 

model intended to analyse newly generated data to simulate cattle behaviour. By facilitating the creation of realistic data 

for crucial scenarios, genAI has the potential to enhance our ability to strategically manage and mitigate future challenges 
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in agriculture. 

 

2. Materials and Methods 

Our objective is to generate synthetic data, enriching training datasets for various AI models and simulating data for 

future scenarios or complex conditions that are challenging to capture through traditional data collection methods. This 

necessitates a robust model capable of crafting precise synthetic data. 

In the subsequent sections, we initially delineate the data utilised in this study. Subsequently, we delve into the 

architecture and functionality of Transformer-based models, specifically focusing on the Autoformer model. We provide 

justification for our selection of these models for processing accelerometer data, elucidating the unique attributes of the 

Transformer and Autoformer models. Following this, we highlight the necessary adaptations to customise these models 

for sensor data applications. Finally, we describe the animal behaviour recognition model employed to analyse the 

synthetically generated data. 

 

2.1. Data and Preprocessing 

In this work, we utilise data sourced from an experiment conducted at the University of Queensland's Darbalara Farm. 

The data was obtained using a 3-axis accelerometer on a smart collar tag called eGrazor, which has specifically been 

designed for monitoring livestock, particularly cattle. A group of 23 cattle were fitted with eGrazor collar tags, capturing 

50 measurements per second across the x, y, and z axes over a span of 30 days. The measurements were accompanied by 

corresponding accurate timestamps acquired via an onboard global navigation satellite system (GNSS) receiver. 

Upon initial analysis, it was evident that the data from the first two days consistently exhibited constant and hence 

implausible values, which were consequently excluded from further examination. Given the extensive data and the 

complexity of the considered models, we selected a one-hour segment comprising around 180,000 triaxial accelerometer 

measurements for analysis. We partitioned this segment into 70% for training, 10% for validation, and 20% for testing, 

while preserving the chronological order of the data. 

We derived additional auxiliary variables from the timestamps, including minutes within each hour, thereby 

augmenting the dataset. These auxiliary variables can aid the model in identifying temporal patterns. Throughout the 

analysis, we maintained the chronological order of the data to uphold the integrity of the time series. The modelling 

efforts primarily centred on the accelerometer measurements along the x, y, and z axes, serving as the primary target 

variables. 

 

2.2. Transformer and Autoformer 

Accelerometer data, characterised by substantial fluctuations and seasonal variations, serves as a rich source of 

information reflecting diverse behaviours in cattle. A sophisticated architecture to understand and provide tailored output 

for sequential data was proposed as the Transformer model by Vaswani et al. (2017). While there exist several 

Transformer-based models designed for time series data, very few like Luptáková et al. (2022) are suitable for 

accelerometer data. 

The Autoformer model, proposed by Wu et al. (2021),  excels in handling time-series data characterised by significant 

seasonality, thus standing out as a particularly promising model. While Luptáková et al. (2022) have shown that 

Transformer models can effectively interpret human activity from wearable sensors, applying these models to cattle 

accelerometer data requires additional considerations. Cattle behaviour shows unique patterns and complexities such as 

pronounced seasonal and daily rhythms which may not be present in human activity data. The Autoformer is specifically 

designed to handle time series data with significant seasonality and trend components, potentially making it more suitable 

for agricultural settings where these patterns are common. 

We intend to customise the Autoformer model to suit the intricacies of accelerometer data. However, to fully utilise 

Autoformer's capabilities, it is imperative to first understand the strengths and limitations of the Transformer model, upon 

which Autoformer is built. Thus, we begin by exploring the architecture of Transformer, followed by a detailed 

examination of Autoformer's specialised features. 

Transformer, structured with an encoder-decoder architecture, excel in transforming one sequence into another by 

leveraging two pivotal components: the encoder and the decoder. Central to Transformer’s effectiveness is the attention 

mechanism, which enables the model to capture non-local dependencies and interactions in the input data. Unlike 

conventional models processing data sequentially, the attention module in Transformer is amenable to parallel 

AgEng 2024 Proceedings

475



processing. This module generates variables dubbed as queries, keys, and values from the input data, essential elements in 

the attention mechanism. 

Each query is matched against all keys to compute the attention scores, indicating the relevance of each input data 

component. These scores determine the weighting of values, representing the input data content. This mechanism enables 

the model to focus on pertinent input sections for any given task, enhancing efficiency and facilitating the handling of 

long-range dependencies in data.  

Within an attention module, one or multiple attention heads operate independently, each calculating its attention 

scores. This allows the model to simultaneously explore various features of the data. The outputs from all attention heads 

are combined to form the output of the attention module. 

Moreover, Transformer-based models are particularly adept at tasks necessitating context from past and future, 

rendering them well-suited for complex sequence transformation tasks often encountered in natural language processing 

(NLP) and, increasingly, in other domains such as time-series analysis of accelerometer sensor data. 

While Transformer is originally devised for NLP tasks, its adeptness in handling sequential data makes it fitting for 

time series data analysis. However, since time series data can significantly differ from textual data, specialised 

Transformer-based models have been developed for time series forecasting. These specialised models leverage the 

Transformer architecture but include additional features, such as temporal attention mechanisms, enhancing their 

capability to capture time-related dependencies and seasonality. 

The Autoformer model refines the basic Transformer model by adopting an encoder-decoder structure with unique 

decomposition blocks. These blocks aim at separating long-term trends from seasonal variations, addressing challenges 

conventional Transformer-based models may encounter with time series data. Moreover, Autoformer introduces auto-

correlation functions, replacing traditional self-attention mechanisms. These functions identify and consolidate 

similarities across sub-series based on their periodicity, enhancing the model’s ability to recognise patterns in data with 

prominent seasonality. 

In Autoformer, the encoder primarily focuses on modelling seasonal variations, while the decoder synthesises these 

insights into coherent predictions. This structure makes Autoformer particularly suitable for handling intricate seasonality 

inherent in accelerometer data captured from livestock, providing a robust foundation for predicting cattle behaviour 

across varying conditions. 

 

2.3. Model Adjustments 

Initially designed for NLP applications, the Transformer model requires several adaptations to effectively process 

accelerometer data. Primarily, data preprocessing involves normalization and feature engineering to capture the inherent 

temporal patterns within accelerometer readings. These features must seamlessly integrate into the dataset to enhance 

model comprehension. 

Defining features specifically tailored for the Transformer architecture is imperative to ensure optimal utilization. 

Given that Transformer operates on fixed-length sequences, selecting an appropriate input sequence length is crucial for 

efficient training and accurate temporal pattern recognition. Additionally, the number of attention heads needs careful 

consideration. Given the three-axis nature of accelerometer data, multiple attention heads can help the model focus on 

interrelated movements and behaviours concurrently. 

Beyond these Transformer-specific adjustments, other important considerations are listed in Table 1. 

Table 1. Model specifications to be taken into account in adjustments.  
 

Model specification Goal of adjustment 

Number of Layers Capture complex patterns in accelerometer data 

Positional Encoding Accurately represent temporal positioning of data points within sequences 

Learning Rate and Optimization Effective model training, ensuring fast converge with high accuracy without 

overfitting 

Regularization Prevent overfitting, enhancing the model's generalizability and performance 

 

We configure the input sequence length to 256 time steps, a setting validated for analysing sensor data according to 

(Arablouei et al., 2021). We initially adhere to the settings prescribed by the original Autoformer paper (Wu et al., 2021). 

The only adjustment we make is to the length of the predicted sequence, set to ten time steps. This shorter length helps 
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manage the inherent fluctuation and high granularity of sensor data, facilitating more accurate predictions. 

The specific values for the model settings outlined in Table 1 are based on the recommendations from the Autoformer 

paper, showcasing promising results in time-series analysis. We employ the root mean square error (RMSE) and median 

absolute error (MedAE) measures for model evaluation. While RMSE provides an intuitive measure of the error 

magnitude, MedAE offers a more realistic assessment due to its robustness to outliers, aligning with the characteristics of 

our data. 

 

2.4. Modelling Cattle Behaviour 

In our exploration of modelling cattle behaviour via sensor data, we turned to Scopus for its comprehensive coverage 

across disciplines. Our literature search concentrated on sensor technologies, cattle behaviour studies, and behavioural 

analysis methodologies, using keywords aligned with our research focus on cattle welfare and behaviour and the 

prominent use of accelerometer sensors.  

Table 1. Keywords for the literature review on modelling cattle behaviour using accelerometer sensor data. 

 Aspects 

Synonyms 
“accelerometer sensor*” Cattle Behavio*r 

accelerometry Cow  

 

This search yielded 98 relevant studies, highlighting the effectiveness of machine learning (ML) techniques across a 

broad spectrum of applications. These studies employed a diverse range of ML models, including Support Vector 

Machines (SVMs), as introduced by Martiskainen et al. (2009), and Random Forests, applied in multiple studies, 

including Cabezas et al. (2022), Foldager et al. (2020) and Gou et al. (2019). Advanced Deep Learning (DL) models were 

showcased by Arablouei et al. (2023), Bloch et al. (2023), and Pavlovic et al. (2021). Additionally, comprehensive 

analyses by Balasso et al. (2023), Busch et al. (2018), and Wang et al. (2023) compared the performance of a wide range 

of algorithms, considering multiple model types to enhance the robustness of their findings. 

 

Our review underscored DL as notably effective, surpassing other models in detailed behavioural analysis, as 

documented by (Chapman et al., 2023; El Moutaouakil & Falih, 2024; Nogoy et al., 2022). Drawing from these findings, 

we advocate employing DL models to predict cattle behaviour based on accelerometer data. Despite their considerable 

computational demands, the superior accuracy of DL models in both real-time and non-real-time applications establishes 

them as the preferred choice for attaining our research objectives. 

 

3. Results and Discussion 

An initial application of the Autoformer model to accelerometer data demonstrates promising results in generating 

realistic sequences. As illustrated in Figures 1, 2, and 3, the predicted values (orange) generally align with the trends of 

the actual values (blue), indicating Autoformer’s effectiveness in capturing underlying patterns within the accelerometer 

data. However, the match between predicted and actual values varies across the figures. While there are intervals where 

predictions closely mirror the actual data, denoting high accuracy, discrepancies emerge, especially at peaks, where 

predicted values diverge notably from actual values, hinting at challenges in handling abrupt changes or extremes in the 

data. 

The model exhibits sensitivity to data fluctuations, accurately predicting smaller peaks and troughs in accordance with 

the data. However, its performance wanes with larger spikes, a crucial consideration if these spikes represent significant 

behavioral events such as specific movements or actions. The observed variability in prediction error is noteworthy, 

indicating the extent to which predicted values deviate from actual values, which amplifies with the magnitude of the data 

points. This trend indicates potential reliability concerns in scenarios with higher magnitudes, potentially stemming from 

model constraints or intrinsic data characteristics. 
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Figure 1. Results for the x-axis when applying the Autoformer model to one hour of the dataset. 

 

 
Figure 2. Results for the y-axis when applying the Autoformer model to one hour of the dataset. 
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Figure 3. Results for the z-axis when applying the Autoformer model to one hour of the dataset. 

 

Applying the Autoformer model to accelerometer data yielded promising results, with an RMSE of 0.503 and a 

MedAE of 0.239. Each training iteration of the model required approximately 0.5 seconds. Given that the data range was 

17.1 m/s2 and the standard deviation was 0.9 m/s2, both the RMSE and MedAE are significantly small, highlighting the 

effectiveness of the model. These favourable performance measure values align with the visual trends observed in the 

figures. 

We selected a small subset of the available accelerometer data to train our generative model given the high 

computational demands of Transformer-based models like Autoformer. Training Autoformer on this subset, which 

comprises one hour of data or approximately 180,000 data points, took around six hours on an Intel Xeon CPU. While 

one hour of accelerometer data contains a substantial number of data points, it only encompasses a limited range of 

behaviours. This duration does not adequately capture the full diversity of cattle behaviours required for effective 

behaviour classification. Therefore, while we can evaluate Autoformer’s performance using this subset, it does not allow 

us to directly correlate synthetic data with specific cattle behaviours. This avenue remains a focus of our future research. 

 

4. Conclusions 

Initial findings from utilizing the Autoformer model for data generation show promise, albeit based on a limited 

dataset. The model encounters difficulties in accurately predicting extreme values, particularly at higher data values, 

indicating areas for refinement. To enhance performance in capturing rapid changes and high-magnitude values, we 

suggest adjustments to the model architecture, fine-tuning hyperparameters, or incorporating a more diverse training 

dataset. 

Expanding the dataset to cover longer time periods, spanning several hours or days, can offer deeper insights and 

enhance training outcomes, considering the predictable seasonal patterns and routine behaviors in cattle. This expansion 

is crucial for broader applications of behaviour models and facilitates modelling environmental impacts due to climate or 

dietary changes. It is essential to develop and integrate additional features at the same granularity level as accelerometer 

data, with adjustments to model settings to effectively incorporate these new features. 

A significant concern lies in the substantial computational resources required for training the Autoformer model, with 

up to six hours needed for processing just one hour of data. Future research ought to explore alternative solutions to 

alleviate computational costs and enable more efficient training of larger datasets over extended periods. 

In summary, while the initial applications of Autoformer demonstrate potential in transforming livestock management 

through enhanced data generation, ongoing improvements and adaptations are essential to fully exploit its capabilities and 

address challenges such as computational efficiency and data complexity in future research endeavours. 
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Abstract 

Wheat (Triticum aestivum L.) is a globally important crop, and accurate prediction of its grain yield plays 

a crucial role in optimising agricultural practices. Although numerous models have been developed and 

evaluated, reliable yield prediction remains one of the most challenging problems in precision agriculture to 

date. Predicting crop yield depends on a variety of interdependent variables such as weather, soil type, crop 

genotype, and management techniques. So to solve this problem, data from multiple sources is required and 

must be carefully integrated. 

This study introduces a machine learning approach using Bayesian Networks (BN) to predict winter wheat 

yield in Germany by integrating data from various sources and expert knowledge. Data collected includes 

electrical conductivity (EC) from the Veris iScan sensor, combine harvester yield data, and Sentinel 2 (S2) 

images from 15 fields for the 2020-2022 crop seasons. The topographic wetness index (TWI) was calculated 

using ArcGIS 10.6 and yield data. S2 images were processed to compute monthly normalised difference 

vegetation index (NDVI) values. A weather model was developed, incorporating expert knowledge of 

extreme events. The grain yield model combined the inherent potential index (IP), NDVI, temporal average 

yield, and normalised grain yield, and was trained using expectation maximisation (EM) on data from the 

2020, 2021, and 2022 seasons. 

The results showed that the model achieved an accuracy of 73 % based on the statistical indices, 

showcasing its ability to make accurate predictions. The correlation analysis (R2) between actual and 

predicted yield with 50 % probability ranging from 0.68 to 0.78. Additionally, similar patterns of spatial 

variation were observed in the actual and predicted maps with a 50 % probability. This shows a robust and 

consistent predictive ability over a wide range of scenarios by showing a strong correlation between the 

model's predictions and the observed results. 

Keywords: Bayesian Network, inherent potential, yield predictions. 

1. Introduction 

Winter wheat (Triticum aestivum L.) is one of the most important crops globally, and reliable crop yield 

estimation can help in developing efficient crop management strategies, mitigating crop failure risks, and 

optimizing resource allocation to improve crop productivity. Therefore, the improving crop yield predictions’ 

accuracy has received increasing attention (Schauberger et al., 2022). As reviewed by Jin et al. (2022), even 

though the predicted results of these studies are sufficient, their predictive periods (i.e., from the forecast date 

to harvest date) are typically too short to allow farmers sufficient time to respond and make decisions. For 

instance, German winter wheat has a growing season lasting 180-250 days, although yield forecasts are 

usually not available until 1-3 months prior to harvest (Karampoiki et al., 2022). Certain field interventions 

by farmers may be limited at this point because the crop is approaching the end of its growth (Helman et al., 

2019). Thus, long-term yield forecasts at an earlier stage, also known as early-season yield forecasts, are 

required to better manage future yield uncertainty and resource use efficiency (Khaki et al., 2020; Ziliani et 

al., 2022).  

In terms of methodology, three main yield estimation methods (i.e., survey-based methods, simulation-

based methods, and machine learning (ML)-based methods) have been employed in existing yield prediction 

research, among which machine learning techniques are emerging as the most popular due to their ability to 

accurately quantify the impact of climate (e.g., temperature, rainfall) on crop yields (Li et al., 2021a). 
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However, insufficient data make it almost impossible for machine learning models to learn complex 

relationships between climate and crop yields and thus they often fail to provide accurate yield forecasts 

(Chen and Tao., 2022; Feng et al., 2020b). This limitation has not yet been properly addressed and needs 

further investigation (Mitchell et al., 2022). Therefore, when employing ML algorithms, high prediction 

accuracy, quick computation, and outcome consistency must be given priority. As an example, Wang et al. 

(2021) utilised and contrasted six ML models: (i) Ordinary Least square (OLS); (ii) Least Absolute 

Shrinkage, and Selection Operator  (LASSO); (iii) Support vector machine (SVM); (iv) Random forest (RF); 

(v) AdaBoost; and (vi) Deep Neural Network (DNN), to forecast the winter wheat yield at the county level 

in the United States during the growing season. AdaBoost was found to be the most effective algorithm (R2 

= 0.86, RMSE = 0.51 t ha−1). Furthermore, Cao et al. (2021) compared the three Deep Learning (DL) methods 

with Random Forest (RF), the conventional ML method, i.e., Deep Neural Network (DNN), 1 Dimension 

Convolutional Neural Network (1D-CNN), and long short-term memory networks (LSTM), to forecast 

winter wheat yields in China, and found that each of the approaches under test worked well for this purpose 

(RMSE ranging from 0.56 to 0.96 t ha−1).  

This study aims to co-create with farmers a time-series grain yield prediction model based on a Bayesian 

Network (BN). The key contribution of this method lies in the integration of inherent potential index (IP) and 

a weather algorithm. Specifically, our objectives are: (1) to predict spatial variation of yield within winter 

wheat fields in a time-series, using novel algorithms by fusing multi-source data; (2) to assess model accuracy 

and precision; (3) to validate grain yield predictions with 50 % probability against ground truthing 

observations; and (4) to integrate the model into a software platform (Agricolus) to which farmers can 

subscribe. 

2. Materials and Methods  

2.1. Study area  

The study area is located in Füge and Landfried Farm, near Gauersheim, Rhineland-Palatinate, Germany, 

as illustrated in Figure 1. This area lies between lat. 49° 40' 38.39'' N and long. 8° 03' 22.93'' E. 

Farmers’ knowledge of known spatial variability in soil type and topography, the availability of historical 

data (such as yield maps of past crops, soil types, and soil electrical conductivity), and farmers’ access to 

precision agricultural technology, specifically yield mapping, were the main criteria used to select the 15 

fields. 

 

Figure 1.  Google Earth image showing the location of the German winter wheat fields in Füge and Landfried Farm 

based in Gauersheim, Rhineland-Palatinate, Germany. 
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2.2. Topographic and soil data 

Topographic wetness index (TWI) is used as a measure of soil moisture in the fields where there are 

variations in elevation. TWI was computed using ArcGIS 10.6 and the digital elevation model (DEM) using 

the following formula (Kopecký et al., 2021): 

 TWI = 𝑙𝑛 
𝑎

tan 𝑏
  (1) 

where: a = upslope contributing area (m2), b = slope in radians. 

Soil electrical conductivity (EC) was measured using a Veris iScan-sensor (Veris Technologies Inc., 

Salina, KS, USA). 

2.3. Remote sensing data 

A total of 75 cloud-free Sentinel-2 (A and B) (S2) images from March 2020 to July 2022 were 

downloaded from the European Space Agency (ESA) website (https://scihub.copernicus.eu/dhus/#/home). 

S2 offers 13 spectral bands (443-2190 nm), with a variable spatial resolution of 10, 20, 60 m pixel size and 

with a revisit time of 5 days. The data were used to calculate the normalised difference vegetation index 

(NDVI) with a spatial resolution of 10 m for different times during the growing season. The NDVI was 

calculated using the following formula: 

 

 NDVI =  
𝑅842−𝑅665

𝑅842+𝑅665
  (2) 

2.4. Yield data 

Yield data for winter wheat and previous crops were provided using a John Deere combine harvester 

(Deere & Company, Moline, Illinois, USA) at 2 m intervals with a 9 m swath. In the 2020, 2021 and 2022 

harvest seasons, thousands of observations per field were collected, 97,263 in total, providing a clear picture 

of spatial variability. The number of observations varied from field to field depending on the area. 

2.5. Data cleaning, processing and integration 

Numerous outliers, which can impact the map’s reliability, are typically present in the yield data 

supplied by the combine harvester. These anomalies are caused by a variety of harvesting-related errors. 

For that reason, these outliers were categorised using an automated data cleaning protocol that has been 

suggested (Natale et al. 2020). 

Since numerous sources of data were used to gather the information, including satellite data, soil 

electrical conductivity, TWI, and sensors on the combine, there was variation in the spatial distribution 

and density of the measurement points within the field. In order to create a regular grid of data points in 

which all data sources were interpolated or extrapolated onto a common grid, ArcMap 10.6 (ArcGIS 

Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute). was used. A 6 x 6 m 

grid size was selected to align with farming machinery having a 6 m working width. For every variable, 

interpolation maps were made. A 6 × 6 m grid was superimposed on the interpolation maps to create a 

raster map, from which the value at each point was extracted. The raster map of each satellite band was 

covered with a 6 × 6 m grid for NDVI purposes, and each pixel’s value was assigned to all points within 

it. 

2.6. Model development 

To build an effective yield forecast model and climate forecast processes, a BN machine learning 

algorithm was used. It has been widely applied for agriculture-related forecasting and generally exhibits 

satisfactory performances (Chawla et al., 2016).  

In a BN, the ‘nodes’ of the network represent each variable and links between nodes represent the 

interactions between variables. The resulting structure can be used for probabilistic inference, that is the 

probability that a yield at a specified grid point will equal or exceed a given value. It also allows the 

conditional dependence of variables to be represented so that variables are not considered to contribute 
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additive effects, but rather a BN can combine the information from correlated variables. For example, to infer 

that in situations when a particular location in a field repeatedly provides high relative yields over two or 

more years there is likely to be higher ‘Inherent Potential’ than a location that has a more variable yield in 

different years.  

An MLA is used to estimate the Prior Inherent Potential (PIP) and Inherent Potential (IP) of each grid 

point in a field. These are considered latent variables that cannot be directly measured or observed. Factors 

such as soil properties and nutrient availability influence the crop’s potential to develop, with high PIP often 

leading to higher IP and ultimately to higher yield. Improvements in estimating the IP can be made by 

observing soil properties like texture and carbon content, which impact water storage and nutrient availability 

for the crop. IP also considers other factors such as weed growth. In this study, the BN used in combination 

with the MLA aims to categorise each node within each field from high to low PIP based on the data available 

for a given field. Thus, the PIP was characterised by electrical conductivity (EC) and the topographic wetness 

index (TWI) (Figure 2 left), and the IP was characterised by crop type, observed yields, and PIP, ranging 

from very low to very high (Figure 2 right). To facilitate comparisons between yields of different crops in 

different fields in different years, the yield data for a given field was normalised as percentages of the mean 

yield for that field.  

 

Figure 2. Diagrams for the MLA of ‘Prior Inherent Potential’ (left) and ‘Inherent Potential’ (right). The 

probability distribution across states is shown as a %-probability and visualised with black horizontal bars. 

At the bottom of the Electrical conductivity (EC), Topographic Wetness Index (TWI) and ObservedYield 

as a % of the mean yield, the numbers show the mean and the SD of the values for each node. 

Since significant season to season variation in winter wheat yields is also caused by the variability in 

weather conditions, in particular rainfall and mean temperature (Addy et al., 2020). To represent this (Figure 

3), the Reference Yield node was used that described the expected average yield due to the weather conditions 

throughout the season (Mahmood et al., 2023). Here, we interview experts, including farmers, to build a 

Bayesian Network (BN) model that incorporates their years of experience into a quantitative model. These 

specialists determined that the time frame from the start of anthesis to the end of the grain filling stage was 

crucial, and that precipitation, mean temperature, and maximum temperature were important meteorological 

factors that should be included in the BN. The conditional probability table for the BN was created based on 

the experts' expected influence on the mean yield of various weather conditions in order to keep the time 

input from them manageable.  
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Figure 3. Model structure showing the categories of crop biomass (NDVI) in March and weather variables 

from beginning of anthesis to the end of grain filling stage and categories of simulated wheat yield. The 

probability distribution across states is shown as a %-probability and visualised with black horizontal bars. 

At the bottom of the TmaxAprilToJuly, NDVIinMarch, RainfallAprilToJuly and ReferenceYield (t ha-1) 

nodes, the numbers show the mean and the SD of the values for each node (Mahmood et al., 2023). 

 

The output of the IP and the weather algorithm were combined with in-season crop biomass data (based 

on NDVI from March to June) to forecast grain yield. The model structure outlined how variables were 

connected to predict winter yield for German fields (Figure 4). The model was tested at a farm level, with 10 

fields used for training and five for testing. The fields were randomly split using Matlab R2020a software. 

The relationships between variables were determined using 75 % of the data with expectation maximisation 

in Netica software, then validated with the remaining 25 %. Yields were normalized at the farm level. 

Probabilities for each grid point were obtained from Netica, and the output was processed in Matlab to 

calculate predicted values with 50 % probability. The predicted grain yields were mapped for each field and 

compared to actual yields. 

 

Figure 4. Example of diagram for MLA learning model for predicting wheat yield based on Inherent 

Potential, NDVI in May, and the weather algorithm. The model was applied on a farm basis. The 

probability distribution across states is shown as a %-probability and visualized with black horizontal bars. 

At the bottom of the nodes, the numbers show the mean and the SD of the values for each node. 

2.7. Model performance and evaluation 

In this study, confusion matrix metrics i.e. accuracy, precision (P), recall (R), F1-score for multi-label 

classification were used to assess the quality of predictions. The formulas are expressed as follows: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 , Precision = 

𝑇𝑃

𝑇𝑃+𝐹𝑃
 , Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 , F1-score = 

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 
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where TP = true positive, TN = true negative, FP = false positive, FN = false negative.  

To further measure the performance of the model, R2 and RMSE (Cheng et al., 2022; Li et al., 2021b), 

were applied    

 R2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
  (4) 

 

where SSE is the sum of squared error, SST is the sum of squared total. 
 

 RMSE =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 −𝐴𝑐𝑡𝑢𝑎𝑙𝑖 )

2𝑁
𝑖=1

𝑁
  (5) 

 

where N is the total number of observations, Predicted is the predicted value for the ith observation, Actual 

is the observed (actual) value for the ith observation. 

3. Results and discussion 

3.1. Model accuracy and evaluation 

A Confusion matrix is a square matrix used to assess the performance of a classification model. It 

compares the actual target values with the predictions made by the machine learning model. By analysing 

this matrix, we can evaluate how well our model is performing and the types of errors it is making. The 

confusion matrix, shown in Table 1, showcases the accuracy of the model in predicting each class in the data 

set. It helps us evaluate the quality of predictions by looking at the actual and predicted values which grouped 

into five classes representing normalised yields. The diagonal elements are the correctly predicted samples 

in April. A total of 24,534 samples were correctly predicted out of the 26,807 samples. Thus, the overall 

accuracy in April is 92%. The value equals to 38 implies that the model does not confuse samples originally 

belonging to class 1.30 to 1.92 with class 1.12 to 1.22. It turned out to be a good classifier for our dataset, 

considering how well our values classified.  

 

Table 1. Example of confusion matrix results regarding to testing data set corresponding to yield 

predictions in April. 

 Predicted 

values 

 

Actual 

values 
0.19 0.98 1.12 1.22 1.30 to Total 

0.19 to 0.98 6,000 0 0 0 0 6,000 

0.98 to 1.12 420 3,600 550 0 0 4,797 

1.12 to 1.22 10 150 7,050 0 38 7,050 

1.22 to 1.30 0 67 38 2,762 1,000 2,800 

1.30 to 1.92 0 0 0 0 5,122 6,160 

Total 6,430 3,817 7,638 2,762 6,160 26,807 

 
In Table 2, the accuracy, precision, recall and F1-score were calculated using the equations mentioned in 

2.7 when forecasting winter wheat yield in different months of the growing season. Comparing the results, 

the highest accuracy, precision, recall and F1-score were observed in April with a value of 92%, 82%, 91% 

and 91% respectively. The lowest accuracy observed in March at the tillering stage, with a value of 72%.  

 

Table 2. The outcome of the confusion matrix metrics to access model performance. 

Month Accuracy Precision Recall F1-score 

March 0.72 0.63 0.71 0.70 

April 0.92 0.82 0.91 0.91 

May 0.80 0.79 0.80 0.79 

June 0.79 0.68 0.78 0.79 
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3.2. Validation of time-series predictions against ground truthing observations 

The algorithm predicts the grain yield for each (6×6 m) grid node within a given field. We used two crop 

seasons to train the model and one crop season to test the model. The yield predictions in the fields used to 

test the model were good, reaching an accuracy of 92%. For example, using one field (Horn, 3.12 ha), the 

kriged maps of predicted yield with 50 % probability and observed yield showed similar patterns of spatial 

variation (Figure 5). The ground-truth yield and predicted yield values with 50 % probability from March till 

June were plotted (Figure 6) to see how close the prediction results are to the ground-truth values. The 

deviation of the data points from the 1:1 line shows the distribution of residuals. In April, the predicted and 

ground-truth values had a higher correlation compared to the other months (March, May and June), with R2 

equals to 0.78, 0.68, 0.76, 0.75 respectively. Similar results with R2 equals to 0.68, 0.70 have been presented 

by Zhang et al. (2023) developing a Bayesian optimised CatBoost regression model. The RMSE varied 

ranged from 14 to 15. The fitted 1:1 line shows that the model overestimated the yield in low yielding areas 

of the field and underestimated the yield in high yielding areas of the fields. Potential sources of inaccuracy 

in predictions could be explained by weed infestations, diseases or the model being overfitted. 

There are limited studies that incorporate climate, soil, topographic, and historic yield data for winter 

wheat yield predictions in cooperation with the farmers, therefore, there are still uncertainties in the yield 

predictions, primarily due to data sources. One of the main limitations is the poor quality of data, such as the 

low resolution of remote sensing, meteorological, and soil datasets. This can reduce the effectiveness of 

machine learning in predicting yields and lead to potentially uncertain results (Jin et al., 2017). The launch 

of higher-resolution remote sensing satellites, such as sentinel-2 (with the maximum resolution of 10×10 m) 

offers new opportunities to provide more accurate yield prediction (Vergara-Díaz et al., 2016). It is 

noteworthy that the current study only includes three years' worth of winter wheat yield data, which results 

in a relatively small sample size. Expanding the sample size will therefore be the main goal of future research 

in order to improve the model's accuracy and robustness. Nitrogen data can also be added to the model to 

increase its robustness and boost yield prediction accuracy and precision. 

 

* 

Figure 5. Maps of predicted wheat yield (t ha-1) based on data from March, April, May and June and the 

actual yield in Horn field (3.12 ha), which was used to test the model. The predicted maps are based on 50 

% probability. The values on the colour ramp cover slightly different ranges. 
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Figure 6. Predicted yields 50 % probability versus recorded yields from March to June. The solid line 

indicates that predicted yields are equal to recorded yields, and the dotted line indicates the 1:1 

relationship. 

4. Conclusion 

The main task of this study was to predict winter wheat yield based on time-specific data across a time-

series, at the farm level using BN based on climate (precipitation and temperature), NDVI, soil, topographic 

and recorded yield data embedding expert’s opinion. The introduction of IP was an indicator of the 

representation of different spatial locations to support wheat growth based on PIP and historical yield data. 

The results showed that the model accomplished a 72 % accuracy rate in March, demonstrating its predictive 

capacity earlier in the season compared to other models. The correlation analysis between actual and 

predicted yield with 50 % probability ranging from 0.68 to 0.78. Additionally, similar patterns of spatial 

variation were observed in the actual and predicted maps with a 50 % probability chance of achieving. Future 

work is needed to improve the model accuracy including more data as well as nitrogen data. 
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Abstract 

Several varieties of mango fruits have different physical properties, differentiating them from one another. 

Some of these physical properties may be similar, but not the same. This situation may lead to wrong produce 

identification by unsuspecting potential end users. Therefore, the objective of this study was to use existing 

selected physical properties (major, minor, intermediate, geometric mean diameters, surface area and 

sphericity) of four (4) varieties of mangoes (Julie, Ogbomoso, Saigon, and John Bull) with the aid of Artificial 

Neural Network (ANN) to identify the closest variety of mango to Ogbomoso mango fruit. The 

aforementioned physical properties of fifty (50) samples of each variety of mango were subjected to four (4) 

ANN models. The ANN software was tasked to specifically identify Ogbomoso mango among the four (4) 

varieties. The model had six (6) inputs, one (1) hidden layer and four (4) outputs. Six (6) data of Ogbomoso 

(sample, major, minor and intermediate diameters, geometric mean diameter and surface area) were used as 

input while sphericity of all the four (4) varieties were used as an output. The ANN analysis was done using 

four (4) transfer functions, TanhAxon, SigmoidAxon, BiasAxon and Axon. Results showed that TanhAxon 

predicted (identified) best out of the four (4) transfer functions used, with 87.5% for Ogbomoso mango, 80% 

for Saigon, 0% for Julie and 40% for John Bull, with mean square error of 0.02374. Also, from the results, 

Saigon had the closest prediction value of 80% (most similar) to Ogbomoso mango (87.5%). This implied 

that, Saigon is the variety usually misidentified as Ogbomoso mango by unsuspecting potential end users. 

The outcome of this study can be used to develop efficient and effective mango sorting systems. 

  

Keywords: ANN, Mango, Physical Properties, Ogbomoso 

1. Introduction 

Artificial Neural Network (ANN) is a computational model that works similarly to the working of 

biological neural networks. In ANN, signals are processed and either stored or forwarded to the next 

neighboring neurons in the network (Kumar and Garg, 2018).  Three (3) concepts are necessary in the ANNs 

characterization, they are; neuron, which is the basic computational unit in a network; architecture, the 

topological structure of how the neurons are connected; and learning, the process that adapts the network in 

order to compute a desired function or perform an assignment (Zhang and Zimba, 2017). ANN is an 

interconnection of artificial neurons. Every neuron in the layer is connected to all the neurons of previous 

and next layers. Each neuron receives input which is the output of neurons of the previous layer. ANN 

structure comprises of input layer (s), hidden layer (s) and an output layer (s) of neurons. ANN is a data 

processing system based on the structure of the biological neural system. Prediction via ANN is not like 

conventional modeling and simulation, but by learning from data generated experimentally or using validated 

models.  

Mangoes are popular nutritional tropical fruit, which are one of the most important fruits crops in the 

tropical and the subtropical areas of the world. They originated from India over 4000 to 6000 years ago 

(Yadav and Singh 2017). Beginning in the16th Century, mangoes were gradually distributed from India to 

other tropical countries in Asia, such as the Philippines, Indonesia, China and Thailand (Rashid et al., 2019; 

Kabeel et al., 2021).  

Ogbomoso mango is a peculiar local variety in Nigeria. This variety is named after Ogbomoso (8.1227° 

N, 4.2436° E), a town in Oyo state, South West region of Nigeria. Ogbomoso is widely accepted to be the 

location where this variety of mango naturally thrives in abundance in Nigeria. Ogbomoso mango is one the 

most popular varieties of mango fruits in Nigeria, and its demand is high due to itsndue to its unique taste. It 

has sweet fruit pulp, fibrous, rich in a variety of phytochemicals, high in prebiotic fibres, vitamin C, 

polyphenol and pro-vitamin A carotenoids as reported by (Ezekiel and Olukuewu, 2013). However, many 
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unsuspecting potential end users of the mango usually misidentify and wrongly select a closely similar mango 

variety instead of the Ogbomoso variety. Therefore, the objective of this study was to use existing selected 

physical properties (major, minor, intermediate, geometric mean diameters, surface area and sphericity) of 

four (4) varieties of mangoes (Julie, Ogbomoso, Saigon, and John Bull) with the aid of Artificial Neural 

Network (ANN) to identify the closest variety of mango to Ogbomoso mango fruit. 

2. Materials and Methods  

In this study, six (6) existing physical properties (major, minor, intermediate, geometric mean diameters, 

surface area and sphericity) of four (4) varieties of mango fruits (Ogbomoso, Saigon, Julie and John bull) 

were converted comma-separated values (CSV) format file using Excel spreadsheet. This was done to make 

the data compatible to the ANN software (NeuroSolutions version 6.0) used for analysis.  

The ANN software was tasked to identify Ogbomoso variety among Ogbomoso, Saigon, Julie and John 

Bull varieties. The primary data used for this model was Ogbomoso. The model had six (6) inputs, one (1) 

hidden layer and four (4) outputs. Six (6) data of Ogbomoso (sample, major, minor and intermediate 

diameters, geometric mean diameter and surface area) were used as input while sphericity of all the four (4) 

varieties were used as the output.  Sphericity was chosen to be the desired output since it has relationship 

with size of an object. In the process of neural building, 70% of the data was used for training, 15% was used 

for testing and 15% was used for cross validation. The ANN analysis was done using four (4) transfer 

functions (TanhAxon, SigmoidAxon, BiasAxon and Axon). The existing data of fifty (50) samples of each 

variety of mango were subjected to the four (4) ANN models. 

3. Results and Discussion 

3.1. ANN Models 

Table 1 shows the results of ANN models for Ogbomoso, Saigon, Julie and John Bull mangoes, using 

four (4) transfer functions. From the table, TanhAxon function correctly predicted (identified) Ogbomoso 

mango with 87.5% accuracy, but wrongly identified Saigon and John Bull as Ogbomoso with 80% and 40% 

indices respectively. However, Julie (0%) was correctly identified as Julie, it was not in any way wrongly 

identified as Ogbomoso. These results agreed with the determined physical parameters of the mangos in such 

that, both Ogbomoso and Saigon had similar shapes and sizes, with minor differences. Also, TanhAxon 

function had mean square error of 0.02374. Huang et al., (2021) predicted the key fruit quality of loquat 

using artificial neural network. Two transfer functions, Log-sigmoid and Tangent-sigmoid were used for the 

prediction. It was observed that Log-sigmoid for fruit weight had the lowest MSE prediction of 0.01511 and 

highest of 0.03699 while Tangent-sigmoid had the lowest MSE of 0.02363 and highest of 0.03712. The 

prediction is in agreement with 0.02374 which TanhAxon predicted for Ogbomoso Mango. Mean squared 

error (MSE) measures the amount of error in statistical models. It assesses the average squared difference 

between the observed and predicted values. When a model has no error, the MSE equals zero. The mean 

squared error is also known as the mean squared deviation (MSD) (Collier et al., 2018). Mean squared error 

(MSE) is ideal as an objective measure of model performance, but it gives insight into what aspects of model 

performance are “good” or “bad” (Hodson et al., 2021). 

 

Furthermore, SigmoidAxon function correctly predicted (identified) Ogbomoso with 62.5% accuracy, but 

wrongly identified Saigon as Ogbomoso with 86.67% index. Conversely, Julie and John Bull were correctly 

identified as Julie and John Bull respectively, with 0% index for both. SigmoidAxon had the lowest mean 

square error of 0.0148 of all the four (4) functions. This is in line with the prediction of Log-sigmoid for 

loquat fruit weight, having the lowest MSE of 0.01511 (Huang et al., 2021). Also, Cevher and Yıldırım 

(2022) recorded lowest MSE of 0.018 for the prediction of pear fruit. 
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BiasAxon function wrongly identified Saigon and John Bull as Ogbomoso with 93.3% and 30% indices 

respectively. Also, it correctly identified Ogbomoso with 75% accuracy, and all Julie mangoes as Julie, with 

no occurence of wrong identification (0%) as another variety of mango. BiasAxon activation function had 

MSE of 0.0357 which was high compared to what TanhAxon and SigmoidAxon functions. It was also similar 

to what was obtained in the prediction of weight of loquat fruit using Log-sigmoid which had the highest 

MSE of 0.03699 (Huang et al., 2021).  

In addition, Axon function correctly identified Ogbomoso mango with 87.5% accuracy. It wrongly 

identified Saigon and John Bull with 80% and 20% indices respectively. However, all Julie mangoes were 

identified as Julie, as indicated with 0% index. This trend is almost the same with TanhAxon, except for John 

Bull which has 20% (against 40% for TanhAxon).  

Finally, according to Table 1, it can be observed that TanhAxon and Axon activation functions correctly 

identified the Ogbomoso mango variety with the same accuracy index (87.5%). However, TahnAxon is a 

better identifier due to its lower MSE of 0.0237, as compared to MSE of 0.0371 for Axon. The lower the 

MSE, the better a prediction (Du et al., 2020). This observation for TanhAxon is in-line with 0.02363 

obtained for loquat fruit with Tangent-sigmoid ANN function (Huang et al., 2021).  

 

Table 1. ANN Predictions (Identifications) 

Transfer 
Functions TanhAxon 

Sigmoid Axon BiasAxon Axon 

Ogbomoso 87.50%                                                               62.50%                                                                75.00%                                                              87.50%                                                               

Saigon                                        80.00% 86.67% 93.30% 80.00% 

Julie 0.00% 0.00% 0.00% 0.00% 

John Bull 40.00% 0.00% 30.00% 20.00% 

                  MSE 0.0237 0.0148 0.0357 0.0371 

4. Conclusions 

The TanhAxon function under ANN correctly predicted (identified) Ogbomoso mango with 87.5% 

accuracy, but wrongly identified Saigon as Ogbomoso mango with 80% index. The closeness in the physical 

properties of both varieties was responsible for higher indices of wrong identification in all the four (4) ANN 

functions used. This could lead to mix-up in the identification/selection between the two (2) varieties. 

Therefore, the closest variety to Ogbomoso mango is the Saigon variety. This implied that, Saigon is the 

variety usually identified wrongly in most cases as the Ogbomoso mango by many unsuspecting potential 

end users.   
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Abstract 

Phytosanitary has a significant impact on the environment and biodiversity of agricultural fields. It is 

therefore important to adopt sustainable farming practices that reduce generalised pesticide usage while 

targeting its application only to infested plants or weak plants prone to develop diseases. UAVs offer a 

promising solution to optimise chemical usage. By determining flight paths, UAVs can effectively spray all 

the infested plants and maximise the effectiveness of pest management strategies. Nevertheless, UAVs have 

a short battery life. This paper aims to propose a two-step approach for enhanced disease spraying. A first 

flight is executed with a multispectral camera to acquire data about the current field conditions, including 

terrain and canopy information. The knowledge gained is used to compute a heatmap of the areas which have 

a higher risk of developing a disease. Afterwards, the heatmap is divided into cells, where each vine is 

embodied in two, one for each lateral of the canopy. Two campaigns are studied (2021 and 2023) with 

different percentages of infection. The Vehicle Routing Problem is modelled to spray the plants with a higher 

probability of developing the disease considering the battery limitation and having a big penalisation for each 

non-sprayed cell with high risk. For the 2021 campaign (38.1% of infested plants) the UAV required 42.1% 

more spraying time and 30.7% more travelled distance than for the 2023 campaign, with only 21.6% of 

infection. Compared to Coverage Path Planning, the proposed algorithm travels up to 38.0% less distance. 

Further, since many canopy sides with high risk might not be sprayed due to the battery constraint, multiple 

spraying sessions are considered to spray all the potentially diseased cells. For 2021, 6 spraying sessions 

were required, whereas 2023 needed 3 sessions. The proposed approach fosters a more sustainable method 

through decreased energy expenditure and battery utilisation. 

 

Keywords: Pesticide Reduction, Vineyards Management, Precision Spraying, Disease Control, UAV. 

1. Introduction 

Disease detection in agriculture is constrained by time limitations as extensive areas need to be surveyed 

within specific timeframes by field operators (Tang et al., 2010), often resulting in delayed responses. Recent 

advancements in Machine Learning and Deep Learning algorithms have introduced a paradigm shift by 

enabling early disease detection through pattern recognition (Burr, 2008), primarily focusing on visible 

symptoms. However, there are certain diseases, for instance in vineyards, that start being developed inside 

the grape bunch and remain undetectable until advanced stages, emphasising the need for alternative 

detection methods (AL-Saddik et al., 2017; Kumar et al., 2016). A novel approach involves assessing disease 

probability based on biophysical field conditions, avoiding the reliance on symptom manifestation and 

predicting areas with the highest disease development probability. Utilising Unmanned Aerial Vehicles 

(UAVs) equipped with multispectral imagery, researchers have achieved high accuracy in disease presence 

assessment, notably correlated with ground truth data (Vélez et al., 2023). 

Despite the promising applications of UAVs in pesticide spraying, challenges such as limited battery life 

hinder their efficacy, necessitating resource optimisation for larger coverage (Cavalaris, 2023). While UAV 

path planning has been implemented in agriculture, there is a need to shift focus towards targeted applications 

on infested plants instead of performing Coverage Path Planning (CPP) (Guo et al., 2021; Li et al., 2023). 

This is specifically relevant in vertical trellis systems like vineyards, where both sides of the canopy should 

be considered. Furthermore, a significant advantage of UAVs compared to other spraying platforms such as 

tractors and ground robots, is their capability to perform interrow manoeuvres, changing the canopy side by 
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flying over it (Figure 1). This capacity demonstrates the potential to minimise both the time and distance 

covered by the UAV in contrast to other spraying machines. 

The objective of this research is to evaluate the feasibility of utilising UAVs for spraying operations, 

contributing to the advancement of precision agriculture techniques in viticulture. Additionally, the research 

aims to address the constraint posed by limited battery life in UAVs, which can impact their spraying 

efficiency. Furthermore, the study incorporates the capability of UAVs to change canopy sides in the middle 

of the row.  

 

 

Figure 1. UAV for aerial spraying across the vineyard. When two infested cells are within the same row, 

the straight green arrow is followed. Conversely, when the infested cells are in different rows, the UAV 

highlights its ability to change row side (curved green arrow). 

 

2. Materials and Methods  

The disease assessment begins with capturing raw multispectral imagery using a UAV. This data 

undergoes processing to create multiple maps, which are then employed to train a Random Forest algorithm 

for predicting the probability of disease occurrence. Subsequently, the trained algorithm is utilised to generate 

a disease risk map based on the existing biophysical conditions of the vineyard, as outlined by (Vélez, Ariza-

Sentís, & Valente, 2023b). This heatmap serves as the basis for devising spraying routes, determined by the 

threshold at which pesticides should be applied. 

The risk map illustrates the likelihood of disease development, partitioned into smaller cells using a grid 

system. Each plant is represented by two cells, situated on either side of the canopy. To optimise the spraying 

task, the UAV requires an efficient route, a problem that can be conceptualised as the Vehicle Routing 

Problem (VRP) (Dantzig & Ramser, 1959; Toth & Vigo, 2002). The VRP seeks to minimise the cost function 

while visiting each node exactly once and returning to the starting point with a single vehicle. 

min∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑉i∈V

 
(1) 

where 𝑐𝑖𝑗  represents the distance and time cost from the node 𝑖 to 𝑗, 𝑥𝑖𝑗  is a binary variable determining 

if the vehicle moves from 𝑖 to 𝑗, and Vdenotes the list of nodes, ensuring each node is visited once. 

 

Given the finite battery capacity of UAVs, route planning must account for this constraint to avoid 

incomplete spraying. This necessitates modelling the time required for the UAV to spray each plant, with 

penalties imposed for unsprayed cells. However, due to battery limitations, many cells with a high disease 

probability may remain untreated, necessitating multiple UAV sessions to cover different areas. To address 

this, the problem is reformulated as the multiple Vehicle Routing Problem (mVRP), where each vehicle 

represents a pesticide application session. 
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∑𝑡𝑖𝑗 ∗ 𝑥𝑖𝑗 < 𝐵

𝑖,𝑗

 
(2) 

Here, 𝑡𝑖𝑗 denotes the time for the UAV to travel from cell 𝑖 to 𝑗 and spray cell 𝑗, with 𝐵 representing the 

battery life. 

In order to validate the proposed algorithm, it is compared with a baseline CPP algorithm that travels the 

total length of each row of the field.  

3. Results and Discussion 

Two experiments were conducted in a 0.1-ha vineyard during the 2021 and 2023 campaigns. In 2021, 

there were 38.1% risk areas, while in 2023, the percentage decreased to 21.6%. For the proposed algorithm, 

it is assumed that UAVs require 5 seconds to treat each risk area since they must stop flying to apply the 

chemical. It is also considered that the UAV speed is assumed to be 4 m/s (Qin et al., 2016; Xue et al., 2016) 

and 12 minutes of battery life according to the DJI Agras T40 (DJI Sciences and Technologies Ltd., 

Shenzhen, Guangdong, China). When considering the CPP algorithm, the UAVs travel the whole length of 

the rows, which is approximately 110 meters each. Six rows are inspected, and both sides of the canopy 

should be considered. Therefore, the travelled distance is 110 x 6 x 2 meters, a total of 1,320 meters, 

regardless of the percentage of infection.  

Figure 2 illustrates the optimised aerial paths for the 2021 and 2023 campaigns. It can be observed that 

in the case of 2021, since there is a higher percentage of infested plants, the spraying time and the travelled 

distance are higher than for 2023. Moreover, more spraying sessions are required to cover the infested area. 

Furthermore, the travelled distance is lower in both campaigns than 1,320 meters, meaning that the UAVs 

employ less distance and hence time when considering the proposed algorithm.  

 

 

Figure 2. Optimised UAV spraying paths (coloured lines) along with the spraying time, the distance 

travelled and the number of spraying sessions required for the (a) 2021 campaign, and (b) 2023 campaign. 

The red dots represent the sprayed cells, whereas the green ones indicate the non-diseased and hence non-

sprayed cells. 

 

This study introduces a methodology that offers significant environmental advantages in vineyard 

management. By employing UAVs equipped with multispectral cameras for disease assessment and chemical 

tanks for spraying, the approach accurately maps the biophysical characteristics of the vineyard, facilitating 

precise chemical application tailored to the crop's development stage. Additionally, by dividing the task into 

two phases—mapping disease risk and actual spraying—battery life usage is optimised, addressing a 

previously identified limitation (Hafeez et al., 2023). Previous research has explored UAV path planning for 

precise spraying (Li et al., 2023; Nanavati et al., 2023; Xu et al., 2023). However, these studies often overlook 

biophysical field parameters and battery constraints. Moreover, the capability of UAVs to fly over canopies 
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and change sides/rows (Figure 1) presents a distinct advantage in vertical trellis systems, focusing this study 

on vineyards rather than continuous crops like wheat or maize. 

Figure 2 indicates the optimal UAV routes for precise spraying only to infested plants for two campaigns, 

with a different percentage of infection. Moreover, it also includes the time required to spray all infested 

areas and the travelled distance, along with the number of spraying sessions, considering the battery life, that 

is required to spray the whole infested area. It can be observed that, for the 2021 campaign, with a larger 

affected area than in the 2023 campaign, the algorithm travelled 363 more meters (30.7% more distance) and 

needed 1379 seconds (almost 23 more minutes) than in 2023. This can be attributed to the fact that, even if 

the increase in infested areas is only 16.5%, it needed 3 more spraying sessions to cover all those areas. 

Moreover, the travelled distance is 10.6% and 38.0% lower for the 2021 and 2023 campaigns, respectively, 

compared to a baseline algorithm (CPP). The fact that UAVs have a limited battery life can be a drawback 

in scenarios where there is a widespread outbreak of diseases. Those cases should be further studied to 

validate whether UAVs are a good alternative or whether other spraying platforms would provide optimal 

solutions. 

The application of phytosanitary measures differs when applied via UAV compared to tractor sprayers, 

as they have different tank capacities, potentially necessitating research into appropriate concentrations for 

low-capacity sprayers to avoid leaf damage. However, this study did not include tank capacity as a constraint 

since battery limitations were deemed more restrictive, with UAVs returning home to recharge batteries and 

also refilling their tanks. 

4. Conclusions 

The two-phase strategy of first mapping disease risk and then conducting spraying operations not only 

optimises battery life but also ensures resource efficiency, representing a significant advancement in 

mitigating the environmental impact of intensive phytosanitary practices in vineyards. Moreover, the study 

includes battery constraints, which is translated to an increased number of spraying sessions to cover the 

field. The proposed methodology travels up to 38.0% less distance than baseline algorithms such as Coverage 

Path Planning since it only sprays infested plants. Future research should focus on refining spraying 

concentrations, further enhancing operational efficiency while minimising chemical usage. 
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Abstract 

Unmanned aerial vehicles (UAVs) and satellites are popular technologies for data acquisition in precision 

agriculture. However, both technologies have advantages and disadvantages. UAVs offer higher resolution 

but have a limited collection range, resulting in higher costs per acre. Satellite imaging is a cost-effective 

solution but has limitations of lower spatial resolution (> 0.5-10 m), which is not suitable for crop assessment 

in specialty crops. For example, our award-winning, cloud- and artificial intelligence (AI) based platform, 

Agroview, requires high-resolution images (~10 cm resolution) as inputs for accurate data analytics (aka., 

creation of plant inventory and fertility maps, plant canopy volume measurements, yield prediction, etc.). 

However, most available satellite images have much lower resolution (from 1-2 m up to 10 m). Several 

specialty crop growers and other stakeholders (e.g., crop insurance companies, crop consulting companies, 

etc.) expressed the need for developing a more cost-effective and less time-consuming data collection 

technology for precision crop management. The ideal solution would have near-UAV resolution levels with 

the cost and data collection advantage of satellites. In this study, generative AI models, particularly generative 

adversarial networks (GANs), were used to address atmospheric interference and sensor limitations to 

upscale satellite images. These models were trained on large datasets of low (e.g., satellite images) and high 

(UAV images) resolution images, learning to predict and recreate high-resolution details. The process of 

training a GAN to enhance satellite image resolution was conducted in a stepwise manner. This approach 

aimed to detect the points at which the GAN may encounter limitations in achieving the desired resolution 

of the original UAV ground truth images. This step-by-step analysis was essential for identifying specific 

stages in the training process where the GAN's performance may deteriorate, requiring adjustments or 

additional training to effectively enhance satellite image resolution.  

Keywords: Crop monitoring, Image processing, Satellite imagery, Tree identification. 

1. Introduction 

Satellite images have proven useful for a wide range of tasks, including environmental and climate 

monitoring, urban planning, and land management, among many others. Within precision agriculture, 

farmers use satellite images to monitor and obtain crop data, but the collection of these images, although 

effective in various analyses, is still very expensive and not widely used in specialty crop production (Barbosa 

Júnior et al., 2024; Ghatrehsamani et al., 2018). Super resolution methods have been developed to enhance 

satellite images (and other low-resolution images, e.g., airplane images) and are turning into a breakthrough 

in several fields, from urban planning and precision farming to environmental monitoring. For example, 

interpolation, which includes bilinear and bicubic approaches, is essentially a prediction technique that fills 

in missing pixels based on the values of nearby pixels. Chang et al. (2006) and Neetha and Kantipudi (2022) 

demonstrated significant enhancements in image clarity through locally adaptive wavelet-based methods and 

adaptive edge-based bilinear interpolation, respectively. Since interpolation just estimates the image's 

existing information rather than adding new information, it can produce images that appear smoothed out 

and lack sharp detail. 

Image-based reconstruction methods (Kala et al., 2018; Kawulok et al., 2019; Bätz et al., 2016) require 

multiple images of the same object with slight deviations. However, this is not always feasible or practicable, 

especially in remote sensing scenarios or when the required number of raw images is limited. Furthermore, 

such methods may require more calculations and be less successful at replicating high-frequency details. 

Deconvolution (Krishnan and Fergus, 2009; Levin et al., 2009) can bring details back into blurred images, 

assuming that the blur is known and can be modeled, which is not always the practice case. It can also amplify 

noise when trying to correct blurring, resulting in unwanted effects.  
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Generative artificial intelligence (AI) models such as generative adversarial networks (GANs) were also 

used to convert low-resolution images into high-quality data. GANs are a class of AI algorithms composed 

of two interacting neural networks, a discriminator network that determines whether the images generated by 

the generator network are real or manufactured. Through an iterative process of competition amongst the 

networks, the quality of the images generated is improved, leading to a resolution that is not achievable with 

previous methods. In recent years, significant progress has been achieved in the super-resolution field, 

particularly with the use of deep learning methods (Bashir et al., 2021; Zhang et al., 2020; Wang et al., 2022).  

Traditional methods based on machine learning (Dong et al., 2014; Yang et al., 2010), may not capture 

the complexity and variety of the data in the same way as GANs, resulting in super-resolutions that often 

look less natural or fail to reintroduce realistic detail. Patch-based super-resolution (Bevilacqua et al., 2012; 

Freeman et al., 2002) may be limited by the quality and diversity of the high-resolution patch database. If the 

available patches do not adequately cover all the possible variations found in new images, the quality of the 

resulting image may be poor. GANs, however, are capable of generating entirely new and realistic details 

that may not have been present in the original training set. 

Due to this feature, super-resolution by GANs is becoming essential for extracting detailed and accurate 

information from images that initially had resolution limitations (He et al., 2021; Karwowska and Wierzbicki, 

2022; Wang et al., 2020), allowing for a clearer and more detailed view in essential applications such as 

climate change monitoring, natural resource management and optimization of agricultural practices, where 

fine details can be crucial for effective analysis and intervention. In Wang et al. (2020), a significant advance 

is made in terms of computational techniques for super-resolution. High computational complexity was 

achieved by restructuring the residual blocks to avoid problems such as vanishing gradient and loss of 

information propagation. The work of Karwowska and Wierzbicki (2022) focuses on a more general 

approach to improving the spatial resolution of satellite images, but without being used in a field of 

application.  

Agroview is an award-winning, AI-enabled, and cloud-based application for crop monitoring and 

analysis, which uses high-resolution images captured by UAVs to provide detailed and effective information 

for precision crop management (Ampatzidis and Partel, 2019; Ampatzidis et al., 2020; Costa et al., 2022). 

Ampatzidis et al (2019) utilized Agroview to evaluate citrus rootstock varieties in commercial fields and 

reduce data collection time and cost. However, Agroview, requires high-resolution images (1024x1024 pixels 

and ~10 cm resolution) as inputs for the development of accurate data analytics (aka., creation of plant 

inventory). Since UAVs have a limited collection range and high costs per acre, the use of AI-enhanced 

satellite images could provide another alternative with a lower data collection cost and a high temporal 

resolution (compared to UAVs). Hence, the enhancement of low-resolution satellite images using GANs 

could be a decisive improvement in reducing costs, as well as improving performance and speed in the 

delivery of field evaluations. This study aims to improve the resolution of images taken by satellites and 

airplanes using super-resolution techniques and overcome the limitations of previously developed AI-enabled 

models. The effective use of these enhanced images on Agroview is evaluated too. 

2. Materials and Methods  

He et al. (2021) developed a GAN model able to produce images with a resolution of 256x256 pixels. 

However, this resolution proved to be insufficient for the effective performance of the Agroview AI detection 

models, which were trained using images collected by UAVs with a resolution of at least 1024x1024 pixels 

(around 10 cm resolution per pixel). To overcome this challenge, a new GAN model was developed able to 

convert low resolution images (e.g., satellite images of 200x126 pixel resolution; ~2 m resolution per pixel) 

to higher resolution (e.g., 600x600 pixels, ~40 cm per pixel). 

The first step was to generate low-resolution images to be used with their corresponding high-resolution 

image through the training process following the same pattern as He et al. (2021). To achieve this, an 

algorithm was created to remove pixels from the high-resolution UAV images decreasing its resolution. The 

final resolution of the low-resolution images generated was between 200x126 and 219x140 pixels (~2 m 

resolution).  

Then, a model was developed to create 512x512 pixel resolution (~45 cm per pixel) images. The total 

size of the model reached about 32 GB, which made it difficult to fit in only one GPU. This problem was 

solved by running the model on a server, which has 4 L40s Ada Lovelace architecture GPUs, each with 48 

GB of memory (model # SYS-741GE-TNRT, Supermicro Computer Inc., San Jose, California, USA). Model 
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parallelism was used for this purpose, which is defined as a strategy for partitioning different parts of the 

GAN model into different processors. Pytorch provides specific features to run the layers of the model on 

different GPUs without creating a gap in the backtracking process. The objective of this step was to continue 

the process of increasing the output image size to 600x600 pixels (~40 cm resolution per pixel). 

After setting a layer distribution strategy, we could control the metrics and the model converged as a 

consequence. The developed code was composed of the Generator (G), the Discriminator (D), and the 

Exponential Moving Average (EMA) version of the Generator (G-EMA). This one uses the same architecture 

defined for the Generator differing only in how its parameters are updated. Therefore, G and G-EMA were 

the neural networks demanding more memory. 

The final and stable GAN model is represented in Figure 1. The dashed lines emphasize the 

synchronization between the layers of the G and G-EMA. The accumulate function shown by Equation 1 is 

one part of the training process strongly affected by a wrong layer’s distribution strategy. 

 

  (1) 

 

where, β is a decay factor (typically close to 1, e.g., 0.999) that controls the update rate. Without the 

proper distribution, the corresponding layers would have their parameter values in different GPUs creating 

the necessity of sending all values to the same processing device before calculating the equation value for 

every training iteration. The final model size for 600x600 output configurations was 18 GB – GPU 0, 36 GB 

– GPU 1, and 15 GB – GPU 2, with the training session batch size of 2 images. To train the GAN model, 

20,000 images, collected by UAVs, were used. Figure 2 shows an example of the low-resolution and high-

resolution of the same image. 

 

Figure 1. Workflow of the multi-GPU GAN model. 
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(a) (b) 

Figure 2. Examples of images used to train the proposed GAN model: (a) Low resolution image, and (b) 

High resolution image (taken by UAVs). 

3. Results  

The current Agroview process pipeline starts with the upload of the collected images from the orchards, 

then an engine stitches the images to an orthomosaic map, and then the orthomosaic is sent to the detection 

AI-enabled algorithm. In this context, the first milestone was creating images with a minimum resolution that 

the stitching engine (Pix4D, https://www.pix4d.com) would be able to use and create the orthomosaic map. 
First, the model was trained to produce 256x256 pixels resolution images. At this resolution, the stitching 

engine generated errors related to a lack of information to stitch the images. There was not enough resolution 

for the Pix4D software to find the matching points and create the orthomosaic. The next step was training the 

model to output 512x512 pixels images. This was the first resolution that Pix4D could find the correlation 

among the images and stitch them. Figure 3 shows the 512x512 pixels image output from the GAN model, 

and Figure 4 shows the first orthomosaic map created from generated images. 

 

Figure 3. Example of a 512x512 pixels (~45 cm per pixel) resolution image generated by the GAN model. 
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Figure 4. Orthomosaic map generated by Pix4D using GAN generated images. 

After successfully stitching the generated images, Agroview’s performance in creating tree inventories 

was evaluated (Figure 5). The total number of trees in Figure 5 was 167 (ground truth) and the number of 

trees detected by Agroview was 105. Therefore, there is an error of 37.12% for an orthomosaic created from 

images about half the size of the images on which the Agroview detection algorithm was trained. 

Then, the 600x600 pixels resolution images (Figure 6) were used to create an orthomosaic map. Setting 

the image output to this size increased the GAN model to more than 300 million parameters. The images 

were stitched and uploaded to Agroview in the same way as the 512x512 images. Figure 7 shows the 

Agroview detection results; the total number of trees detected by Agroview was 127 with an error of 29.95%. 

Another important parameter, obtained after increasing the output size from 512x512 to 600x600, was the 

increase in image quality. 

 
Figure 5. Agroview tree detection on the orthomosaic created from 512x512 GAN generated images (dot 

colors represent different tree height categories). 

AgEng 2024 Proceedings

504



 
Figure 6. Example of a 600x600 pixels (~40 cm per pixel) resolution image generated by the GAN model. 

 
Figure 7. Agroview tree detection on the orthomosaic created from 600x600 GAN generated images (dot 

colors represent different tree height categories). 

4. Discussion 

First, the GAN model was tested at different resolutions to analyze how Agroview's detection AI model 

would perform. The process using 256x256 pixel images proved ineffective in creating an orthomosaic map. 

The results obtained by increasing the resolutions showed a clear improvement in Agroview's tree detection 

process starting with the 512x512 pixel resolution, where an error of 37.12% was obtained. The 600x600 

pixel resolution achieved an even lower error of 29.95%, indicating a marked increase in accuracy with the 

same dataset. A resolution increase greater than this is still being analyzed, which may indicate an even 

greater improvement in accuracy but at a higher computational cost. 
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5. Conclusions 

The study showed that even with increased resolutions of 512x512 and 600x600 pixels, there are still 

challenges in achieving high tree detection accuracy comparable to the original high-resolution images used 

to train Agroview. However, the results indicate that even with a relatively high error in tree detection with 

37.12% for 512x512 pixels and 29.95% for 600x600 pixels images, increasing the resolution as well as 

different GAN strategies and models adopted can considerably increase the accuracy of tree detection by 

Agroview. This study represents an important step toward improving the applicability of super-resolution 

images in the field of precision agriculture. The proposed AI-enabled technology could be used as a digital 

twin of an agricultural field and as a climate-smart technology to help farmers rapidly calculate losses and 

better communicate recovery needs to ensure business viability and minimize interruption to the U.S. produce 

supply chain due to unexpected weather and climatic events. 
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Abstract  

Plastic pollution in marine ecosystems presents a significant contemporary challenge due to its pervasive 

presence in rivers and oceans and its enduring persistence. This research specifically targets the river and 

traditional irrigation system of Vega Baja del Segura, situated in south-eastern Spain, where substantial 

accumulations of floating waste hinder efficient water distribution in irrigation ditches and drainage channels. 

The primary objective of this study is to develop an algorithm capable of automatically identifying and 

quantifying various types of debris through image analysis using aerial photographs captured by drones at 

multiple locations along the river and canals. The YOLOv5 algorithm was employed for training, with mean 

Average Precision (mAP) serving as the benchmark for evaluation. A mAP of 0.5 yielded an accuracy of 

97%, while accuracy ranged at 79% for mAP values between 0.5 and 0.95. This methodology promises to 

mitigate subjectivity in debris quantification and facilitate swift and secure identification of their sources 

within the river ecosystem. 

Keywords: YOLOv5, Python, Plastic, Waste, Rivers.  

1. Introduction  

Plastic waste in the marine ecosystem nowadays is a great concern due to its large amount in rivers and 

oceans (Hafeez et al., 2019) and its persistence in them (van Emmerik & Schwarz, 2020). Several studies 

have long established that the main source of marine plastic pollution is land-based and due to littering, plastic 

bag usage and solid waste disposal (Derraik, 2002). Rivers transport plastic to the oceans (Jambeck et al., 

2015; Lebreton et al., 2017). This waste reaches the sea and ends up generating microplastics that are 

incorporated into the trophic chain and affect the quality of fishing (Cole et al., 2013; Thompson et al., 2004). 

Since there is evidence that not all the plastic that enters a river is released into the ocean (van Emmerik et 

al., 2022), there is a growing interest in characterizing the flow of macroplastic residues in rivers in order to 

identify and design measures to reduce global plastic pollution (Hurley et al., 2023).  

In the river and in the traditional surface irrigation system of Vega Baja del Segura, located in the 

southeast of Spain, a large amount of floating waste accumulates at certain points, causing problems in the 

distribution of irrigation in ditches and drainage channels (Rocamora et al., 2021).  

In this area, the traditional surface irrigation system dating from the 13th century is still in use. The crops 

are supplied with the water diverted from the Segura River by means of dams, and it is distributed throughout 

the farmland through a set of irrigation canals or ditches that make up the so-called "living waters network”. 

Due to the low filtering capacity of the land (silt-clay), it became necessary to build a network of drainage 

aqueducts or azarbes, called the “dead water network”. The presence of this floating waste on many occasions 

hinders the flow of water through some sections of the syphons and prevents the normal operation of the 

gates and therefore the management of irrigation water.   

In addition, floating waste causes economic damage to the irrigators. The irrigation communities are 

responsible for the maintenance of their infrastructures and the water that arrives is poured back into public 

channels. The river authority has the power to impose sanctions on the irrigation communities if they do not 

keep their channels clean and allow the discharge of floating material into the river. Farmers must face the 

cost of removal of floating waste, or the fines imposed by the river authority (Rocamora et al. 2021). The 
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floating debris that is found in the river and irrigation network has varied origins, predominantly plant waste 

from the river itself, such as reeds, as well as waste from domestic, agricultural and industrial activities, 

among which plastic waste predominates (Rocamora et al., 2021).  

To eliminate this problem, it is necessary to characterize the floating waste to know their origin and thus 

be able to act at the source. Several studies have developed different methodologies to quantify and 

characterize floating debris, such as the development of software to quantify large amounts of waste in the 

oceans (de Vries et al., 2021), a deep-learning based methodology to detect floating macroplastics on water 

surface images (van Lieshout et al., 2020) and an algorithm based on convolutional neural networks (CNN) 

to classify litter items in different classes (Wolf et al., 2020).   

The objective of this work is to propose a standardized and quick methodology to characterize the floating 

waste found in the irrigation system to detect changes in its composition and origin. This objective will be 

attained by training a YOLO algorithm to automatically detect the different residues for their classification 

and quantification through image analysis, and by taking overhead photographs with a drone at various 

strategic points of the river and channels along time. This methodology will enable to monitor the status of 

the sampling points reducing the subjective component of the manual quantification and characterization of 

floating waste in the system of the Segura River and irrigation channels in the Vega Baja.  

The determination of the composition of the floating debris can assist the evaluation of actions taken by 

local authorities aimed at reducing plastic pollution from land origin.  

2. Materials and Methods   

The study was carried out in the system formed by the Segura River in its last section, in Vega Baja, and 

the irrigation and drainage channels of the traditional irrigation area. The acquisition of images was carried 

out in certain points of accumulation of floating waste in the river, ditches and drainage channels (Figure 1).  

 
 Figure 1. Location of sampling sites.   

2.1. Image acquisition   

The images obtained were with an unmanned aerial vehicle (UAV), the Autel EVO 2 model drone, a 

quadrotor. The drone specifications are as follows: weight: 1127 grams, wheelbase: 397mm, removable 7100 

mAh 11.55V batteries, maximum flight time: 40 minutes, maximum horizontal flight speed: 20m/s, 
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maximum flight distance: 25 km. Camera specifications: effective pixels: 48MP, field of view: 79º and lens 

dimensions: 25.6 mm.  

The flight planning was programmed for each of the different sampling points. In this study, a total of 3 

flights were carried out at each of the different selected points of the river on July the 28th, September the 8th, 

and October the 31st of year 2022. These flights were made at different heights: 5 meters, 10 meters and 20 

meters. The drone's camera captured aerial images from a zenithal view, with the number of photos at each 

point varying between one and nine, depending on the extent of waste found in the river. A total of 61 images 

were analysed, including all sampling dates and points.  

2.2. Types of waste  

The most abundant residues were known from a previous study (Rocamora et al., 2021). In that study, the 

largest class of waste was made up of bottles of bottled water, which represented 74.2% of the total number 

of items counted. The number of containers of domestic origin (food containers, personal hygiene, and 

cleaning products) represented 14.9% and finally, the number of agricultural wastes, that is, bottles and cans 

of phytosanitary products, represented only 3.8 %. Based on this information, we trained the algorithm to 

identify the following types of waste:  a) Different size plastic water bottles, b) Bleach bottles, c) Detergent 

bottles, d) Drums of chemical products from agricultural activity, e) Game balls.  

2.3. Software  

Makesense is a free online photo tagging tool that does not require any installation. We used Makesense 

to add all the labels of the different identified waste to a total of 477 images. Once the labelling was finished, 

these images were downloaded in YOLO format.  

YOLO (You Only Look Once) is an object detection algorithm that divides images into a grid system. 

Each grid cell is responsible for detecting objects within itself. Besides, it is one of the most famous object 

detection algorithms due to its speed and accuracy (Redmon et al., 2016). YOLO series algorithms have 

developed rapidly in recent years. In 2020, two versions of YOLO v4 and YOLO v5 appeared successively. 

YOLO v5 is the most advanced detection network of the YOLO object detection algorithm. Based on YOLO 

v3 and YOLO v4 algorithms, where arithmetic ensemble innovation was carried out to improve detection 

speed. In 2020 Glenn Jocher released YOLO v5 (Zhang et al., 2022).  

We used Colaboratory, a product of Google Research which allows any user to write and execute arbitrary 

Python code in the browser. Python is a programming language created by Guido van Rossum in 1991 (Van 

Rossum et al., 2009). It is characterized by being high-level and interpreted, with special emphasis on code 

readability. It uses dynamic types and is a multi-paradigm language, which means that it supports object-

oriented, structured, functional, etc. It can be expandable, that is, it consists of a core to which modules and 

libraries can be added as required.  

2.4. Training  

The entire process was carried out with an ASUS computer with Intel CORE i5 and Windows 8. The first 

step was to label our images with the Makesense software, where we used the following labels: Water bottle, 

Detergent bottle, Bleach bottle, Agricultural drum, and Ball. 430 images were labelled for training and 47 for 

model validation. This dataset presented images from the 2019 study (Rocamora et al., 2021), images of the 

objects to be identified, and aerial images taken with an UAV in 2022.  

Once these images were labelled, they were divided into two folders: one called "train" where the images 

in this folder are the ones that will be used to train the algorithm and the next one called "val" which will be 

used to validate the algorithm's training. Once the labelling is finished, we proceed to extract these images in 

YOLO format, where we will use them in Google Colab using YOLOv5. The number of classes, class names, 

and the locations of our train and val folders were specified in a Sublime Text file. 

Finally, the image size, 1024 pixels, and the number of epochs, 126, were written in a new cell. The image 

size refers to the number of times an image is divided when being analysed, if we increase this number the 

image is analysed more accurately. The number of epochs is a hyperparameter that defines the number of 
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times the learning algorithm will work on the entire training data set. An epoch means that each sample in 

the training data set has had a chance to update the parameters of the internal model. The number of epochs 

is traditionally large, often hundreds or thousands, allowing the learning algorithm to run until the model 

error has been sufficiently minimized (Brownlee 2022). In this case there were 126 epochs since from that 

number the training did not improve. In the precision graph (Figure 2) an asymptote is observed where it has 

already reached its training maximum. The batch size used was 2 because it provided good results, and 

choosing a larger batch size would consume more computing time. 

 
Figure 2. Precision graphs. 

Once the training cell was executed, a folder was created with a validation and prediction of the results, 

as well as a folder with the graphs analysing the effectiveness of our trained algorithm. Finally, once the 

algorithm training was validated, the 61 images taken in the riverbeds and channels in 2022 were analysed. 

3. Results   

The results cell gave us all the images analysed with the characterization and identification of each one 

of the residues by means of bounding boxes (Figure 3). 

Figure 3. Automatic characterization of waste at sampling point ID6, 22/10/31. 
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To verify the efficiency of the model, indicators such as precision, recall, mAP (mean Average Precision), 

detection speed and F1 score were used for evaluation in this study.  

Precision Eq. (1) is the proportion of true positive samples among all positive samples predicted by the 

model. 

 (%)100
FPTP

TP
P

+
=   (1) 

where TP is the number of true positive cases, and FP is the number of false positive cases. 

Recall in Eq (2) indicates the proportion of true positive samples predicted by the model out of all true 

positive samples.  

 (%)100
FNTP

TP
R

+
=   (2) 

where TP and FN are as in Eq (1), and FN is the number of false negative cases. 

Typically, there is a negative correlation between accuracy and recall, where one increases and the other 

decreases. From the precision and recall values, a PR chart (Figure 4) is plotted to observe their distribution. 

To balance the effects of precision and recall and evaluate a model more comprehensively, AP (Average 

Precision) can be entered as a comprehensive evaluation index.  

The value of AP in Eq (3) is the area under the PR curve, and a higher value means better model 

performance.  

 𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
  (3) 

The F1 score in Eq (4) is the reconciled mean of precision and recall, taking into account both the precision 

in Eq (1) and recall in Eq (2) of the classification model. 

 
RP

R·P·2
score1F

+
=   (4) 

Model performance can be represented by average precision, precision, recall, test time, and F1 score. In 

this experiment, a confidence threshold of 0.5 is set, and precision, recall, and F1 score are derived on this 

basis. The results obtained for this model were: a training time of 3h 7 min; a precision of 92.04%; a Recall 

of 97.07%; a mAP of 96.90% and a F1 score of 94.48%. 

 

Figure 4. Precision – Recall curve. 

The objective of this work is to identify the different residues quickly and accurately, for which the mAP 

values (96.90%) and the detection speed, 81.7 ms to detect an image, were used as the main evaluation 

metrics, where the higher the mAP value, the better the detection result. 

Once the algorithm was validated, it was applied to the images captured throughout 2022 on the sampling 

points defined. A total of 61 images were analysed in the results cell, leading to the automatic counting of 

each one of them.  
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To assess the reliability of this training, a statistical study of automatic counting through AI and manual 

counting using the ImageJ application was also carried out (Table1). 

 

Table 1. Comparison of the count of objects detected with the algorithm and with the manual count.  
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Manual counting with ImageJ 
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28/07/22  1 0          0          

 2 69    2    4  88          

 2.a* 0          0          

 3 3          4          

 4 17          20          

 5 0          6          

 6 4          4          

 7 40  5  4  3    58  2  2  1    

 8 2    1  1    2          

08/09/22  1 21          29    3      

 2 121    1  1    128  1  1  1    

 2.a* 233  1  2  2  1  243  2  10  6  2  

 3 154  2  5 2  1  173  3  5  6 2  

 4 10    1  1    19      2    

 5 0          9          

 6 59        1  63    2    1  

 7 37  2  5  2    49  4  2      

 8 90 1  3      96   2     

 8.a 236  1    2  1  329      5  3  

 8.b 55          74    1      

 8.c 130    3      130  1  9      

 8.d 141  1  4  2    141  0  5  2    

 8.e 37          46  1  4      

31/10/22 1 62  1  2  1    81 1    1    

 2 5  1  1  1  2  20          

 2.a* 118  1      14  166  1        

 3  

209 

  1  2  2  236    1  2       

2  

 4 0          0          

 5 199  6  8  4  1  218  4  9  4  1  

 6 167  2  5  1    170  1  6  1   

 8 185    2  3   204    2 3   

 8.a 400  1  1  6    524  1  1  6    

 8.e 153    2  8    174    2  8    

 8.d 58      1    72      1   

 

According to the study of Rocamora et al. (2021), in this research we can also see how the most common 

objects are plastic bottles with a proportion of 91.05% of the total. These bottles are the most difficult to 

characterize as they are found in large numbers and can be seen stacked together, making the bottle look in 

different shapes. On the contrary, bleach bottles and drums are easier to identify since they have a 

characteristic shape and colour, and they are not found in large quantities. 
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For water bottles, detergent bottles and bleach bottles, the model tends to count less objects than the 

manual count (positive bias). On the contrary, the model tends to count more agricultural drums and balls 

than the manual count. In the case of water bottles, the bias seems to change with count number, becoming 

higher when the count number is higher, probably due to the stacking of the bottles that can be appreciated 

in the manual count but not in the automatic one. 

3.1. Discussion  

Due to the shortage of convolutional neural technology (CNN) for the detection of plastic waste in the 

aquatic environment via drone images, we introduced this dataset to improve and facilitate the task of 

identification and characterization of plastic waste to expedite cleaning tasks and to be able to apply measures 

for a faster way to solve this problem. The results of this study show excellent performance in computing 

time and waste identification. The model works well for both isolated residues and grouped residues, 

accurately detecting them. However, our model suffers from false detections in the background of the images 

identifying them as plastic bottles. 

To compare the results of the algorithm with those of the manual count, it is essential to highlight the time 

investment inherent in both methodologies. Manual counting of 61 images using the Image J application 

required 7 hours and 34 minutes. In contrast, the automatic counting of the same 61 images took a mere 42 

seconds. Consequently, a pronounced reduction in analysis time is evident. Moreover, it is noteworthy that 

automatic counting circumvents issues such as subjective biases or fatigue that may arise during manual 

counting.  

The data obtained enables the continuous monitoring of floating waste presence across all surveyed points 

throughout the study period. Consequently, this methodology facilitates near real-time results, with drone 

flights for image capture being the sole limiting factor. 

The algorithm developed by Wolf et al. (2020) can classify anthropogenic waste into different classes 

such as water bottles, Styrofoam, canisters, cartons, bowls, shoes, polystyrene packaging, cups, textile and 

carry bags small or large. The algorithm developed in this work can classify different types of plastic bottles: 

water bottles, bottles of hygiene and cleaning products, and cans of chemical products used in agriculture. 

This distinction represents an enhancement over the algorithm of Wolf et al. (2020) since the type of bottle 

reveals its origin, which allows awareness campaigns or other measures to be addressed to the suitable 

population target. 

The algorithm shows a good agreement with the manual count except for the case of counting playing 

balls that are found in very reduced numbers. For water, detergent and bleach bottles, as well as for 

agricultural drums, the algorithm shows a good agreement with the manual count by a trained observer. 

4. Conclusions  

The results show that there are no significant differences between both counts, demonstrating the 

effectiveness of the algorithm in accurately detecting waste residues, as evidenced by its mAP score of 97%. 

While the developed detection algorithm performs admirably in identifying isolated objects, its efficacy 

diminishes when confronted with stacked objects, such as those accumulated in booms and other retention 

structures. 

We can conclude that this method can eliminate human biases inherent in manual counting processes. 

Moreover, the automatic count reduced dramatically the analysis time, providing expedited and reliable 

insights into the origins of riverborne waste. This procedure will enable targeted interventions tailored to 

various sectors of the population, contingent upon the diverse origins of waste types. 

The reduction of floating waste is the responsibility of the whole society but specially of the local and 

regional authorities tasked with legislating against plastic waste dumping and enforcing regulatory 

compliance. The image acquisition and automatic counting methodology that we propose in this work is a 

tool that can be useful, due to its speed and objectivity, in evaluating public policies aimed at curbing plastic 

contamination in the traditional irrigation network. 
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Abstract  

Accurate yield prediction is crucial for effective harvest planning and manufacturing optimization in table 

grape production, especially given the labour-intensive nature of the process. This study introduces the 

outcomes of training a detection model Yolov5 to predict the yield of a table grape plot within the Protected 

Designation of Origin "Uva de mesa embolsada del Vinalopó" in Alicante (Spain). The main objective was 

to develop a fast and efficient methodology for cluster bag counting and grape production estimation. An 

unmanned aerial vehicle conducted a single flight over a commercial plot, capturing images parallel to the 

trellis rows at a height of 10 meters and a 35º angle. A dataset comprising 55 labelled images, each containing 

an average of 150 cluster bags, was utilized for model training. Of these, 50 images were dedicated to training, 

while 5 were reserved for model validation. The results of the model training revealed a swift detection speed 

of 78.5 milliseconds, with a Precision of 80.38%, Recall of 85.63%, mean Average Precision of 86.40%, and 

an F1 rate of 83.13%. When applied to a different set of images, the artificial intelligence (AI) model 

accurately counted 20,520 cluster bags. Notably, the production estimation using this methodology exhibited 

a mere 6.2% underestimation in comparison to the farmer's estimate, which experienced a considerably higher 

underestimation of 37.67%. While these results showcase the potential of the proposed AI based methodology 

for yield prediction, it is acknowledged that further refinement and updating the detection model to the new 

version of Yolov7 are essential. Expanding the dataset to include more plots or multiple campaigns will 

enhance the robustness of the methodology. This research signifies a substantial stride towards leveraging AI 

technologies in viticulture, promising improved accuracy and efficiency in the crucial task of yield prediction 

and allowing the analysis of spatial and temporal variability, ultimately contributing to the sustainable 

advancement of table grape production practices. 

 

Keywords: Table Grape Production, Artificial Intelligence (AI), Yield Prediction, Unmanned Aerial 

Vehicle (UAV), Precision Agriculture. 

 

1. Introduction  

The use of artificial intelligence (AI) in agriculture is becoming more widespread and has great potential 

for practical applications. There are studies where AI has been used to predict crop yields, either from an 

algorithm trained on soil properties or by counting flowers (Papageorgiou et al., 2013; Robson et al., 2017; 

Sola-Guirado et al., 2017; Wu et al., 2020). 

Estimating the production of a farm is an important piece of information for the proper management of a 

farm, but it involves laborious work that requires time and labour with experience or specific training, which 

is why many studies have focused on the estimation of production by detecting fruits on the tree. There are 

examples for apples, cherry, grape, avocado, mango, passion fruit, and several types of fruit at once. This 

type of prediction of a farm's production can be done with a detection of the trees using aerial images taken 

from a drone and the subsequent counting of these trees or a detection of the fruit by images taken from the 

ground (Robson et al., 2017; Häni et al., 2020; Shi et al., 2020; Tu et al., 2020; Wan & Goudos, 2020; Affair 

et al., 2021; Osco et al., 2021; Yijing et al., 2021; Jintasuttisak et al., 2022; Wiggers et al., 2022).  
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In the particular case of the grape, there are studies that successfully identify and detect grape bunches by 

training an algorithm with images taken from the ground, this has the disadvantage that it requires a high time 

consumption to obtain the images, but it has the advantage of being able to take images in areas with flight 

restrictions (Sozzi et al., 2022; Wang et al., 2021).  

In the province of Alicante, there are emblematic crops of high economic value, such as the Vinalopó 

bagged table grape with Protected Designation of Origin (PDO). Bagged table grapes are exclusive to the 

province of Alicante and are distinguished by their unique ripening process: the bagging technique protects 

the grapes and imparts qualities such as sweetness, thin skin, and natural preservation, allowing for later 

harvest dates. The economic value of Vinalopó's bagged table grape production amounted to 26 million euros 

in the 2022 campaign. Accurate harvest prediction for these grapes is crucial, as it can significantly enhance 

yield management, market planning, and economic returns, further solidifying the crop's importance to the 

region. 

The objective of this work is to obtain an effective and fast methodology to estimate grape production in 

plots belonging to the Vinalopó bagged table grape PDO. For that, an algorithm for the detection of objects 

using images in the visible spectrum taken from a drone was trained and compared with the estimate made 

by the owner of the plot to have a first indication of the goodness of the automated estimate. 

2. Materials and Methods   

 

2.1. Description of the experimental site   

The plot where the measurements were made is located in the municipality of Monforte del Cid (Alicante) 

and has an area of 11,230 m2 The plantation, of the Italia variety, was made in 2008 and is conducted on 

trellises, with a width of 2.70 m and separation between vines of 1.50 m within the row.  The height of the 

trellis from the ground to the top wire was 1.50 m. All the bunches of grapes were bagged in white paper 

bags, according to usual practice and complying with the requirements of the PDO of Vinalopó Table Grapes.  

2.2. Description of Imaging  

The aerial images were taken on July 5, 2022 with an Autel EVO 2 pro model drone (UUC Technology 

Co., Ltd., Hong Kong), equipped with a visible camera with a 1" CMOS sensor (Sony Group Corporation, 

Tokyo), adjustable F2.8-F11 aperture capable of 20 MP resolution and video recording in 4K/30 FPS. The 

flight was made at a height of 10 m automatically, which is the minimum height at which the drone can fly, 

for greater accuracy in the images. During the flight, the camera was tilted at a 35º angle as it provided a good 

view of the bags and allowed the largest number of bags to be captured per image, and the drone's flight 

remained parallel to the crop lines. The flight time of the drone needed to obtain images of the entire plot was 

20 minutes, the overlap of these images was 10% and the total images of the plot were 140 images with 

dimensions of 3840 x 2160 pixels. 

2.3. Model Training  

The entire process of training the algorithm and labelling images was done with an ASUS computer with 

Intel CORE i5. The following are the main characteristics of the programs used in image processing and 

model training. 

Makesense is a free cloud-based photo tagging tool that doesn't require any installation. Here some of the 

images obtained from the bagged grapes that were not going to be used in the final count were added, and 

each bag was manually labelled with the name "grape". Once the labelling was completed, these images were 

downloaded in YOLO format, which is the algorithm that was later used to finally perform the object 

detection. (https://www.makesense.ai/). 

YOLO (You Only Look Once) is an object detection algorithm that divides images into a grid system. 

Each cell in the grid is responsible for detecting objects within itself. It is also one of the most famous object 

detection algorithms due to its speed and accuracy. The algorithms of the YOLO series have developed 

rapidly in recent years. In 2020, two versions of YOLO appeared successively, YOLO v4 and YOLO v5. At 

the time of the start of this work, YOLO v5, released in 2020 by Glenn Jocher, was the most advanced object 

AgEng 2024 Proceedings

517



detection algorithm, based on the YOLO v3 and YOLO v4 algorithms, where the arithmetic set was perfected 

to improve the detection speed (Redmond et al., 2016; Gai et al., 2021; Zhang et al., 2022). 

The first step was to obtain the images from the drone in order to create a database. Once the images were 

obtained, they were labelled using the Makesense application, where each of the bags where the grapes were 

found was labelled by means of rectangles. A total of 55 images taken at a height of 10 m were labelled, of 

which 50 images were used for training and 5 images for model validation. The extraction of these images 

was done in YOLO format. 

Once the database was created with our tagged images, two folders were created, one called "train" and 

the other "val", these folders were copied to our Google Colaboratory page, a Google Research cloud product 

which allows any user to write and execute arbitrary Python code in the browser, where YOLO v5 was 

installed.  

Finally, in a cell of Google colaboratory, the size of our image was specified as 1024. In an initial test, 

images were resized to 608, but the results were not as good as with 1024. The number of epochs, that refers 

to the iterations of algorithm training, was set to a minimum of 135 in this study, as this was the point where 

the algorithm produced the best results and the cell stopped training the algorithm. 

 

In the precision graphs (Figure 1) it can be seen that for 135 epochs the training has reached its maximum. 

 

 
Figure 1. Precision Charts 

  

Once this cell was executed, a series of graphs were obtained where the result of the training was 

represented and finally a folder was also created with the validation and prediction of the results, giving rise 

to the trained algorithm ready to be used.  

This algorithm was used on the photos of bagged grapes from the commercial plot. The result of the 

execution of the algorithm was the automatic identification and counting of bags that appeared in each image. 

 

3. Results and Discussion  

 

3.1. Model training Results  

To verify the effectiveness of the model, indicators such as accuracy, recall, mAP (mean Average 

Precision), detection speed, and F1 score were used for evaluation in this study (Yijing et al., 2021). 

Precision (Eq. 1) is the ratio of true positive samples among all positive samples predicted by the model. 

Retrieval (Eq. 2) indicates the proportion of true positive samples predicted by the model to all true positive 

samples. There is usually a negative correlation between accuracy and recovery, where one increases and the 

other decreases. From the accuracy and recall values, a PR (Precision-Recall) graph (Figure 2) can be plotted 

to observe their distribution. To balance the effects of accuracy and retrieval and evaluate a model more 

holistically, AP (Average Precision) can be entered as a comprehensive evaluation index. The AP value (Eq. 

3) is the area under the PR curve, and a higher value means better model performance. The F1 score (Eq. 4) 

is the reconciled mean of accuracy and recall, taking into account both the accuracy and recall of the 

classification model. 
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where TP, FP, and FN are the numbers of true positive cases, false positive cases, and false negative cases 

respectively (Yijing et al., 2021).  

 

 
Figure 2. PR Curve 

  

Table 1. Model performance 

Detectio

n speed 
Precision Recall mean 

Average 

Precision 

F1 score 

78,5 ms 80,38% 85,63% 86,40% 83,13% 

 

In this experiment, a confidence threshold of 0.5 is set, and on this basis accuracy, recall, and F1 score are 

obtained. The test time is represented by the average value of the model's test time in the 55 images analyzed.  

The objective of the present work is to quickly and accurately identify the grape bags, so the mAP values 

(86.63%) and the detection speed (78.5 ms) were used as the main evaluation metrics where, the higher the 

mAP value, the better the detection result. Finally, high values of  accuracy (80.38%),  recall (85.63%) and 

F1 (83.13%) (Table 1) indicate that the model works effectively, giving a high proportion of true positive 

samples predicted by the model (Wan & Goudos, 2020). 
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It can be seen that the model achieves very good detection results even when the grape bags overlap each 

other (Figure 3). 

 

Figure 3. Image taken from 10 meters 

 

3.1.2. Results of bag counting in the test plot.  

Prior to counting with the model, the images were cropped crosswise, to avoid overlaps, and 

longitudinally, so that each trellis row was seen in only one of the images analysed. Table 2 show the results 

of the automatic count. To estimate the production, the number of bags obtained was multiplied by the average 

weight per bunch, 1.1 kg/bunch, provided by the DO cooperative of the bagged grapes of Vinalopó. The 

actual production of the plot was provided by the cooperative itself. 

Table 2. Model estimation 

Plot Bag Counting 
Harvest 

Prediction 
Farmer's 

Estimate 

Actual 

production 

1 20,520 22,572 kg 15,000 kg 24,064 kg 
 

4. Conclusions  

The AI model was able to count the cluster bags in the images taken from the commercial plot within a 

moderate amount of time. The estimation of the production using the proposed methodology underestimated 

the actual production of the plot by 6.2%.  This underestimation by the model may be due to the non-detection 

of existing clusters in the images. However, it was much more accurate than the farmer’s estimate, which 

underestimated the harvest by 37.67%. To generalize this methodology, it is necessary to expand the sample 

to include more plots and conduct additional observation campaigns in order to better assess the model's 

accuracy. 

There are other aspects to consider. To develop a fast and practical method, it is necessary to automate 

the cropping of images during post-processing. Also, increasing the drone’s flight altitude can reduce flight 

time and expand the dataset for training the model, thereby improving its detection accuracy. 
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Abstract 

In dairy farming, cow face recognition stands as a crucial technology, particularly for individualized 

health monitoring. This approach allows farms to effectively track individual cows’ health conditions, such 

as body temperature and nutritional intake, which directly influence milk production and overall farm 

efficiency. This study aims to assess and enhance the accuracy and reliability of deep learning models in 

identifying individual dairy cows. Large-scale cow face images were collected from two dairy farms, 

comprising 405 unique cows. We built deep learning models utilizing different backbone architectures 

(Vision Transformer and ResNet) and loss functions (Arcface and Softmax Loss) based on the collected 

image datasets. Additionally, these models were trained on datasets with varying numbers of dairy cow IDs. 

This setup allows us to thoroughly investigate how these key factors affect model performance. Our findings 

indicate that models using ArcFace loss achieved over 99% accuracy in closed-set testing and demonstrated 

superior performance in open-set testing compared to those using Softmax loss. We compared critical factors 

such as model backbone architecture and loss functions, observing that these factors significantly influenced 

model performance. Notably, the choice between Arcface and Softmax loss functions played a crucial role 

in the precision and effectiveness of dairy cow identification. Overall, our study sheds light on the potential 

of deep learning models for enhancing the accuracy and reliability of cow face recognition systems in dairy 

farming, with implications for improved individualized health monitoring and farm management. 

Keywords: Cow Face Recognition, Deep Learning, Arcface, Precision Livestock Farming 

1. Introduction 

In dairy farming, individualized health monitoring is critical for optimizing production efficiency and 

ensuring animal health condition. Accurate cow identification allows for effective tracking of each cow's 

health, location, and nutritional intake, directly influencing milk production and overall farm performance. 

Traditional identification methods like ear tags and RFID have limitations in practice, as they are susceptible 

to physical damage and require intensive human labor to set up (Awad, 2016). Nowadays, the advent of 

sophisticated biometric identification techniques has leveraged deep learning to overcome these limitations. 

The idea that individual cattle have unique facial features that can distinguish them from others in a herd has 

led to the use of cow faces for identification purposes (Xu et al., 2022; Yao et al., 2019). 

The objective of this research is to assess and enhance the accuracy of deep learning models for dairy 

cow face recognition. We focus on evaluating two prominent backbone architectures, ResNet (He et al., 

2016) and Vision Transformer (Dosovitskiy et al., 2020), along with two types of loss functions: Softmax 

and Additive Angular Margin Loss (ArcFace) (Deng et al., 2019). ArcFace is particularly notable for its 

capacity to enhance discriminative power by increasing the compactness within classes and the differentiation 

between classes. Additionally, we investigate how varying the size of the training dataset impacts model’s 

performance.  

To thoroughly evaluate the models, we conduct both closed-set and open-set testing. Closed-set testing 

assesses the model's performance on the same cow IDs used during training, measuring recognition accuracy 

for known identities. Open-set testing evaluates the model's ability to generalize by using a separate set of 

cow IDs not seen during training, testing its capacity to recognize new identities. By systematically 

comparing these configurations, we aim to optimize model selection for practical deployments in dairy 

farming, ultimately contributing to improved individualized health monitoring and farm management. 
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2. Materials and Methods  

2.1. Dataset Collection and Setup 

The dataset comprised face images of lactating Holstein cows, captured via security cameras from two 

distinct environments in Taiwan. 45 unique cow identities (IDs) were recorded at the National Taiwan 

University (NTU) Experimental Farm, and the other 360 cow IDs are from a commercial dairy farm, forming 

a dataset with 405 unique cow IDs. These images are taken in various angles and lighting conditions under 

natural farm conditions. Each image was then manually labeled with the corresponding cow's ID.  

In our dataset of 405 unique cow IDs, we randomly split it into two groups: “train_324” where contains 

324 IDs for training models and an additional 81 IDs (unseen_81) reserved exclusively for open-set testing. 

For each cow, 200 images were utilized for training purposes, while a separate collection of 50 images was 

used for testing.  

2.2. Model Training Experimental Design 

2.2.1. Model Architecture and Loss Function 

To systematically evaluate and compare the effectiveness of different backbone architectures and loss 

functions in the context of dairy cow face recognition, we selected two prominent backbone architecture: 

ResNet50 and Vision Transformer (ViT_b), each configured to produce 512-dimensional embedding feature. 

These architectures are further trained with two different loss functions: ArcFace loss, known for enhancing 

the discriminability of features for face recognition tasks, and the traditional Softmax loss, typically used for 

general classification problems. The training framework is shown below in Figure 1. 

 

 

Figure 1. The proposed framework for training cow face recognition models 

The comparative analysis encompasses four distinct models resulting from the combination of the 

mentioned architectures and loss functions. These are: 

1. ResNet50 with ArcFace Loss 

2. ViT_b with ArcFace Loss 

3. ResNet50 with Softmax Loss 

4. ViT_b with Softmax Loss 

All cow face images are resized to112x112 pixels for training and testing, and the models were trained 

with a batch size of 128 and an initial learning rate of 0.01. The computational setup included two NVIDIA 

Titan RTX graphics cards with 24 GB memory each, and two NVIDIA RTX A6000 cards with 48 GB 

memory each. 

2.2.2. Training Data Variability 

In the open-set scenario, we reduce the number of training cow IDs to explore the influence of training 

set size on model. This examination helps us understand how variations in the training set affect models’ 

capability to adapt to entirely new identities. Initially, models trained with 324 cow IDs (train_324) are 

evaluated against “unseen_81” which was not seen during the training phase. Subsequently, the number of 

cow IDs used for model training is reduced to 162 (train_162) and then to 81 (train_81), with each 

configuration tested on the same "unseen_81". This experiment allows us to evaluate how the size of the 

training dataset (Table 1.) impacts the model's performance in recognizing new individuals. 

Backbone Loss FunctionInput Output

ResNet50

Vision Transformer
(ViT_b)

SoftMax Loss

Arcface Loss

512D 
feature vector

(112 x 112 x 3)
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Table 1. Composition of datasets used in cow face recognition framework 

Dataset Cow IDs Training images per ID Testing images per ID 

train_324 324 200 50 

train_162 162 200 50 

train_81 81 200 50 

unseen_81 81 - 50 

2.3. Identification Strategy and Performance Evaluation 

For each testing image, the model extracts a 512-dimensional feature vector. We then calculate an average 

feature vector for each cow ID, which serves as a representative for that ID. To identify the ID of a new 

image, we compute the Euclidean distance between its feature vector and the average vectors of all IDs. The 

ID with the closest average vector is assigned to the image. This straightforward approach uses the minimum 

distance to determine the most similar ID. 

To assess and compare the effectiveness of the models, we utilize accuracy, precision, recall, and F1-

score as key performance metrics. Accuracy shows the proportion of total correct predictions. Precision and 

Recall assess the accuracy of positive predictions and the ability to capture all positive instances, respectively. 

F1-score combines precision and recall to serve as an overall indicator. Precision, recall, and F1-score are 

calculated in their weighted versions, meaning they are averaged across all IDs while taking into account the 

frequency of each ID in the dataset, ensuring a balanced evaluation across all IDs. 

Additionally, we use t-SNE to project these 512-dimensional feature vectors onto a 2D plane. This 

visualization is used to assess how effectively the model can separate different cow IDs, providing insights 

into the discriminative power of the model. 

3. Results and Discussion 

3.1. Model Performance Analysis 

3.1.1. Closed-set Testing 

In this study, four distinct models were trained using the same dataset, which included 324 unique cow 

IDs: ResNet and Vision Transformer (ViT) each combined with either ArcFace or Softmax loss functions. 

These models were then evaluated in a closed-set testing scenario, where the model was tested against the 

same 324 cow IDs used during training. The performance of these models is summarized in Table 2. We can 

observe that models employing ArcFace loss, regardless of the backbone architecture (ResNet or ViT), 

consistently achieved accuracies exceeding 99.5%. While models using Softmax loss showed slightly inferior 

performance. 

Table 2. Evaluation index for different model architectures under closed-set scenario. 

Models Accuracy Precision Recall F1-score 

ResNet with ArcFace Loss 0.996 0.996 0.996 0.996 

ViT with ArcFace Loss 0.995 0.995 0.995 0.995 

ResNet with Softmax Loss 0.974 0.978 0.974 0.974 

ViT with Softmax Loss 0.992 0.992 0.992 0.992 

Furthermore, all testing images are processed through the models to extract 512-dimensional feature 

vectors, then reduced to 2D using t-SNE. Images from the same cow are plotted in the same color and the t-

SNE visualization is shown in Table 3. Each cluster represents feature vectors from multiple testing images 

of a single cow, illustrating the discriminative capability of the models. We can see that all models generally 

identify cows effectively. However, the model trained on ResNet combined with Softmax loss showed 

considerable overlap among some cow IDs. This indicates its limited effectiveness in differentiating cow 

IDs.  
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Table 3. t-SNE visualization of 324 cows face feature extracted by different models 

Loss 

Backbone Arcface Softmax 

ResNet 

  

ViT 

  

3.1.2. Open-set Testing 

In the open-set testing scenario, we focused on assessing the generalization ability of the trained models 

to recognize cow IDs that were not included in the training dataset. This tests the models' robustness when 

faced with completely new data, a common challenge in practical applications where dairy cow IDs often 

change. For this test, the models trained on a dataset of 324 cow IDs were evaluated against an unseen dataset 

comprising 81 cow IDs (“unseen_81”). The results are shown below in Table 4. 

Table 4. Performance for models trained on 324 cows and tested on 81 unseen cow face dataset. 

Model Accuracy Precision Recall F1-score 

ResNet with ArcFace Loss 0.969 0.973 0.969 0.970 

ViT with ArcFace Loss 0.961 0.962 0.961 0.961 

ResNet with Softmax Loss 0.920 0.936 0.920 0.924 

ViT with Softmax Loss 0.939 0.946 0.939 0.943 

The performance under open-set scenario was slightly lower compared to closed-set testing as expected. 

The results indicated a clear distinction in performance between the models utilizing ArcFace loss and those 

using Softmax loss. ArcFace models show better accuracy and consistency in recognizing new cow IDs. This 

reinforces the effectiveness of ArcFace loss in enhancing model reliability under open-set conditions. 
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3.2. Training Set Size Impact 

In this section, we investigate how varying the size of the training set impacts the performance of our 

models. We trained models on three different training set sizes (324, 162, and 81 cow IDs) and evaluated 

their accuracy under open-set conditions(unseen_81). The accuracy of models with different training 

configuration are shown below in Table 5. 

Table 5. Accuracy of models trained with various training size under open-set testing 

(a) ResNet  (b) ViT 

Train set Arcface Softmax  Train set Arcface Softmax 

train_324 0.969 0.920  train_324 0.961 0.939 

train_162 0.956 0.516  train_162 0.947 0.863 

train_81 0.931 0.369  train_81 0.926 0.627 

 

   

                                            (a)                                                                           (b) 

Figure 2. Accuracy of models trained on different amount of cow IDs (a) ResNet (b)ViT 

The results in Figure 2. show a clear trend: as the training set size increases, the accuracy of all models 

improves, especially those using Softmax loss. This indicates that a larger training set provides more diverse 

and comprehensive information, allowing the models to better generalize to unseen data. With ArcFace loss, 

both ResNet and ViT models can achieve a decent accuracy of over 90% even with a quarter or half of the 

324 IDs training set. However, models using Softmax loss perform poorly with a training set of only 81 IDs. 

ResNet with Softmax achieves an insufficient accuracy of 36.9%, making it barely usable in an open-set 

scenario.  

ArcFace loss consistently yields higher accuracy across all training set sizes compared to Softmax loss. 

In Table 6, it is obvious that Arcface loss has a stronger discriminative power to identify different cows’ 

features. However, there are many overlapping clusters for models utilizing Softmax loss, indicating that 

Softmax loss function can not effectively differentiate cow individuals especially when the training set size 

decrease. This suggests that while Softmax loss benefits significantly from larger training sets, ArcFace loss 

provides robust performance even with smaller datasets. 

In conclusion, models utilizing ArcFace loss normally outperform those using Softmax loss, particularly 

when the training set size is small. This highlights the importance of selecting appropriate loss functions and 

ensuring adequate training data to achieve reliable and accurate cow face recognition. These findings are 

critical for optimizing model configurations in practical deployments, where the availability of training data 

may vary due to the diverse conditions of farm environments. 
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Table 6. t-SNE visualization of 81 unseen cows’ features extracted by ResNet models trained with various 

amount of cow IDs. 

Loss 

Train size Arcface Softmax 

324 

cow IDs 

  

162 

cow IDs 

  

81 

cow IDs 

  

3.3. Error Analysis 

We identified common misclassified cow on both ViT and ResNet models with either arcface or softmax 

loss, trained on train_324 and tested on unseen_81. Table 7 highlights four pairs of cow faces that look very 

similar and are often confused by models using Softmax loss. In contrast, models using ArcFace loss can 

separate these pairs more effectively. 

Table 7. Sample pairs of cow ID easily misclassified by model using Softmax loss 
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ID   10906       10813 05                  10 15               16      3269             2468 

 

When we evaluated these models, we found several factors contributing to wrong identification. First, 

cows with similar facial features can confuse the model, especially with Softmax loss. Second, manual 

labelling which is labor-intensive task, sometimes leads to errors where different cows are mistakenly 

grouped in the same folder. Lastly, the lack of diverse angles and orientations in the training dataset can lead 

to incorrect predictions. For instance, a model primarily trained on frontal images may struggle to accurately 

recognize side views during testing. Additionally, if a cow ID includes both right and left face images in the 

testing set but they don't appear similar, the model might misidentify them as two different cows.  

To address these issues, improving data pre-processing to ensure clean and accurate labels is essential. 

Expanding the training dataset to include various angles and orientations will enhance the model's ability to 

recognize cows from different perspectives. Also, proper facial alignment of cow face images could also help 

mitigate these issues by ensuring that the features are consistent and comparable across different images. 

Addressing these common errors will lead to more robust and reliable cow face recognition models, 

advancing precision livestock farming. 

4. Conclusions 

The study reveals that models utilizing ArcFace loss achieve exceptionally high accuracy, with both 

ResNet and Vision Transformer (ViT) surpassing 99% accuracy in closed-set testing. ArcFace loss 

demonstrates better robustness in open-set testing with an accuracy of 96%, outperforming models that use 

Softmax loss. In addition, the training set size significantly impacts model performance. Models with 

ArcFace loss maintain competitive accuracy even with smaller training sets. These findings suggest that 

selecting appropriate loss functions and ensuring sufficient training data are crucial for optimizing model 

configurations in practical dairy farming deployments. Enhanced cow face recognition systems can 

significantly benefit individualized health monitoring and farm management. In the future, we recommend 

improving data pre-processing for accurate labelling, expanding the training dataset to include more cow IDs 

with various angles to enhance model performance.  
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Abstract 

Pig behavioural analysis can reveal upcoming and present disease, welfare and productivity problems. For group-

housed pigs, individual monitoring of behaviour by applying cameras is challenging due to (1) low farm ceilings, 

sometimes leading to multiple cameras needed to cover one pen, (2) bad image quality and (3) pigs being (partly) 

occluded. To tackle these challenges an approach is presented to monitor fattening pig behaviour by processing camera 

images, detecting and classifying objects, tracking pigs and identifying pigs in tracks using HF (High Frequency) RFID 

(Radio Frequency Identification) readers on the feeder and drinkers. During one fattening round, 35 fattening pigs were 

housed in a 4.3m by 9m pen equipped with 3 cameras placed on the ceiling at 2m45 above the floor. Videos were collected 

for 83 days and frames with sufficient lighting were labelled and used for detection and tracking. From each of the 1475 

videos, the first frame was selected, and pigs were labelled using the “segment anything” approach with behaviours: 

eating, drinking, lying on the side, lying on the belly, sitting with front legs up and standing on four legs. The Yolov8 

segmentation model was trained on a 4 to 1 split training and validation dataset keeping the first 33 days as test dataset. 

Pig identification was performed with HF RFID antennas around the feeder and two drinkers. The segmentation model 

obtained a detection accuracy of 81.5% and 75.0171% and a classification accuracy of 76% and 72.7% for the validation 

and test dataset respectively. Yolov8 tracking resulted in raw tracks with an average duration of 51±10 seconds which 

was increased with post-processing to 1.5±1.1 hours on average for each identified pig on each day. These results 

demonstrate the feasibility of long-term individual pig tracking using multiple cameras which can be applied to monitor 

pig health and wellbeing. 

Keywords: Multi-object tracking, HF RFID identification, Pig Tracking, Multi camera, Pig Behaviour 

1 Introduction 

Applications of cameras and computer vision become more common in precision pig farming and are used for pig 

identification, behaviour analysis and early disease detections (Arulmozhi et al., 2021). Research applications of computer 

vision are often based on single top view cameras to visualise a complete pen and the analysed datasets are generally 

small (less than 20 000 frames) due to limitations of processing power and time (Zhou et al., 2023, Zhang et al., 2019, 

Cowton et al., 2019). Zhou et al. (2023), Zhang et al. (2019) and Cowton et al. (2023) have shown promising results for 

computer vision applications, with Multi-Object Tracking accuracy of more than 70%. Besides object identification and 

tracking, Tu et al. (2024) and Lou et al. (2021) have automatically classified the behaviours standing, lying, eating and 

other of pigs using convolution neural networks and obtained an accuracy of about 90%. Liu et al. (2020) used computer 

vision for recognition of tail-biting behaviour. Finally, for tracking individual pigs, progress has been made mainly 

focussing on comparing different detection and tracking models and methods to match track snippets (Zhou et al., 2023, 

Zhang et al., 2019, Cowton et al., 2019). Van der Zande et al. (2021) reported tracking of individual pigs with top view 

cameras for almost one hour on average using Yolov3 and SORT for long video sequences of 7h. Melfsen et al. (2023) 

reported average track lengths of 18 minutes for 5 observation days with video sequences of 12h. In these studies, 

computer vision models are applied to track about 10 pigs per pen, or up to 20 pigs in 2 pens visualised with a top view 

camera (Parmiggiani et al., 2023, Liu et al. 2023). Automated identification of individual pigs was reported by several 

authors (Van der Zande et al., 2021, Kashiha et al., 2013) using external markings on the pigs and using numbered ear 

tags (Psota et al., 2020).  However, manually applying external markings to identify pigs on a regular basis is a time-

consuming work, fade over time and numbered ear tags may become illegible.  

The aim of the present study is to broaden applicability of camera monitoring of pigs by investigating and providing 

solutions for four challenges: (1) identifying single pigs, in videos of low (576p) resolution (2) using 3 cameras to allow 

visualising larger pig pens, (3) tracking 35 pigs in one pen simultaneously, (4) tracking identified pigs for up to 83 

consecutive days.  

2 Materials and Methods  

2.1 Experimental design 

The study was based on video material collected by Maselyne et al. (2018) where one pen out of 4 identical pens was 

visualised with three cameras at variable angles on the ceiling at 2m45 above the floor. The pigs were housed in an 

automatically ventilated barn at the experimental farm of ILVO (Melle, Belgium). The pen measured 4.3m by 9m with 
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approximately 40% slatted concrete floor and 60% solid concrete lying area. The two drinkers and one feeder in the pen 

were equipped with HF RFID antennas (more information in Maselyne et al., 2014, 2016 and 2018). In addition to natural 

light, artificial lighting was provided from 7:00 to 21:00. For 83 days between 13/1/2015 and 5/4/2015 video material 

was available. Each pig was given a number which was linked to the two HF RFID tags it carried (one in each ear).  

 

 

Figure 1: The HF RFID drinker and feeding systems. A: Drinker with HF RFID antenna attached to triangular side 

walls used for the attachment of the antenna and as separator limiting the registration of pigs that are not drinking. B: 

Round feeder with an HF RFID antenna to identify eating pigs. 

2.2 Image labelling 

Video material was available in 3-hour sub-videos recorded at 25 frames per second (fps) and image size of 704 by 

576 pixels (576p video). From each of the 1475 videos, the first frame was selected and labelled using the “segment 

anything” approach available in Labelbox (Labelbox Inc., USA). Pigs were labelled in frames with sufficient lighting 

resulting in 1145 labelled images and 330 images not labelled (included in the dataset as background images). The 

labelling of 1145 images resulted in 17417 ground truth annotations with behaviours: eating (1855 instances), drinking 

(200 instances), lying on the side (7706 instances), lying on the belly (4425 instances), sitting with front legs up (394 

instances) and standing on four legs (2837 instances) as illustrated in Figure 2 and 3. The first 33 days were used as test 

dataset, the 50 remaining days were split into a training (80%) and validation (20%) dataset. The Yolov8 nano 

segmentation model was trained on a desktop with two A5000 (24gb VRAM) and one RTX 3090 (24GB VRAM) with 

AMD Ryzen Threadripper PRO 5955WX 16-Cores, 130 GB RAM running Ubuntu 22.04. 

 

 

Figure 2: Examples of the pig behaviours showing drinking (A), eating (B), lying on the side (C) or belly (D), sitting 

(E) and standing (F) 
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Figure 3: Example of ground truth labelling (B) of the original image (A), with the different labelled behaviours, and 

predictions by the model (C). Values shown in (C) illustrate the confidence of the segmentation model. Arrows 

indicates the feeder (white) and two drinkers (grey) in image (A). 

2.3 Model inference  

On each day five 3-hour videos were concatted in a single 15h video per day while reducing the framespeed to 5 fps. 

The Yolov8 model was applied to all videos using “yolo track” standard settings (BOTSORT tracker) using 6 parallel 

sessions split over 3 GPUs in a terminal multiplexer tmux (version 3.2). The predictions of each frame were saved in 

individual TXT files, zipped, converted in a Pandas dataframe and stored as Feather file format using Jupyter-notebook 

(Project Jupyter, USA) python (version 3.10.12). Since not all videos started on the same moment and sometimes the 

camera stopped recording, a timestamp was calculated for each frame in each video using the timestamp in the title of 

each 3-hour video and the number of frames in each subvideo.  

2.4 Linking tracks to each other 

To increase the individual track lengths, matching of track snippets was performed. This was obtained by defining 2 

regions in each camera view as illustrated in Figure 4 by numbers in grey or white circles. When the track was broken in 

the main field of view (area 1, 3 or 5), it was assumed that the pig was still visible for the same camera but that the track 

was lost or the pig was temporarily occluded. When the pig was in region 2 or 4 when its track had stopped or started, 

this assumption was not made since the pig could have been exiting/entering the area that one camera visualized (see 2.5). 

Track snippets that started or ended in area 1, 3 or 5 and that have a length of minimum 60 frames were relinked by first 

determining the last detection (lost track) and first detection (new track) timestamp and ordering lost and new tracks by 

their timestamp. Tracks were coupled for every lost track followed by a new track; all other tracks were not linked. 
 

 

Figure 4: Overview of the camera set-up showing the field of view of the 3 cameras (A, B and C) that cover one pen. 

Images were rotated to show the overlapping areas side by side. Arrows indicate the feeder (white) and two drinkers 

(grey) in the pen. Areas 1, 3 and 5 show the area where track snippets are relinked when they are lost and re-occur. 

Identifications of pigs in area 4 are used to link the pig identifications of feeders and drinkers by camera (B) to pigs 

tracked with camera (C). 

2.5 Multicamera tracking 

Cameras (A) and (B) shown in Figure 4 allowed HF RFID identifications of pigs on the feeder and drinkers. Matching 

of pigs moving from camera (A) to (B) and back was not performed and relied on matching HF RFID identification of 

tracks. For camera (C) there was no HF RFID antenna, so pigs identified on camera (B) had to be linked to tracks on 

camera (C) when pigs moved in the area 4 indicated on Figure 4. Matching was performed based on centre of the pig 

located in area 4, timestamp and “standing” behaviour. Detections in other regions and other behaviour were ignored. 

3 Results 

3.1 Model inference 

The segmentation model achieved a detection accuracy of 81.5% and 75.0% and a classification accuracy of 75.7% 

and 72.7% on validation and test dataset respectively. The F1 score for the validation and test dataset was 90.5% and 
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85.7% for drinking and 85.4% and 85.9% for eating respectively as calculated from the confusion matrix (Table 1). The 

drinking and eating classes were used to link tracks containing eating and/or drinking behaviour with HF RFID 

identifications with antennas on the drinkers and feeder.  

 

Table 1: Confusion matrix of the trained model on the validation dataset (2389 labels) and test dataset (8899 labels). 

Showing the ground truth labels (columns) and predictions (rows) for classes drinking (drink), eating (eat), lying on the 

side or belly, sitting (sit) standing (stand) and background (backg) 

 

    Validation dataset   Test dataset 

    drink eat side belly sit stand backg   drink eat side belly sit stand backg 

P
re

d
ic

ti
o

n
s 

drink 19 0 0 1 0 1 2 drink 81 0 0 4 0 11 6 

eat 0 184 13 5 1 22 20 eat 0 711 42 37 7 67 106 

side 0 5 713 150 11 14 184 side 1 21 2203 559 28 73 743 

belly 1 4 114 314 13 33 112 belly 3 18 480 909 61 159 363 

sit 0 0 4 8 7 3 16 sit 2 0 12 18 20 14 51 

stand 1 13 7 33 16 236 46 stand 6 42 51 85 22 923 156 

backg 0 3 31 18 2 9   backg 0 28 533 171 9 63   

3.2 Identifying pigs in tracks 

In total, 780.3 million pig detections and behaviour classifications were recorded during the 83 days with 3 cameras 

(Figure 5) with an average (± stdev) track length of 51±10 seconds. During the first 30 days pigs stayed together in the 

area visualised by cameras (A) and (B) occasionally standing in area (C) as illustrated in Figure 5. After 30 days less pigs 

were observed by camera (A) while more pigs were observed lying down by camera (C). Before linking tracks, 129 

million detections (16.6%) were part of tracks containing feeding or drinking that could be coupled with HF RFID 

identifications. This resulted in on average (± stdev) 1.35 ± 0.55 hours of tracks for each identified pig on each camera 

(A and B) per day. Four pigs were not tracked until the end of the recording since they were removed from the pen on 

9/2, 28/2, 16/3 and 17/3. Performance of the cameras varied, where Camera (B) was the most reliable and each day all 

frames were recorded. In respect to the frames collected by Camera (B), Camera (C) was offline for on average 12.3% of 

the frames. Camera (A) was offline for on average 23.6% of the collected frames mainly occurring in month 3 as illustrated 

in Figure 5. 

 

 

Figure 5: Illustration of the total number of segmentations (in million, M) classified in behaviours drinking, eating, 

lying on the side and belly, sitting and standing per camera (A, B and C) recorded for 35 pigs for 83 days. 

3.3 Linking tracks to each other & multi camera tracking 

By coupling tracks lost in areas 1, 3 and 5 (Figure 4) the average rack length of 51±10 seconds increased, and 203.4 

million detections (26.0%) were part of tracks containing eating and/or drinking behaviour that were coupled with HF 

RFID identification on the feeder and drinker. This resulted in on average (± stdev) 2.12 ± 0.84 hours of tracks for each 

identified pig on each camera (A and B) per day and no tracks for camera (C). Coupling tracks of camera (B) with tracks 

on camera (C) allowed pig identification in areas without HF RFID antenna and 213.6 million detections (27.3%) were 

part of tracks containing HF RFID coupled eating and drinking behaviour. This resulted in on average (± stdev) 25 ± 11 

minutes of tracks for each identified pig on camera (C) per day (average 1.6 ± 1.1 hours for the three cameras). The 

maximum number of days tracks were linked to specific pigs was 81 days obtained for 23 pigs. Gaps in the HF RFID and 
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video recordings (see 3.2) resulted in an average of 67 days of linked tracks for each pig out of the 83 days. The height 

of these values can be explained by: (1) HF RFID and video recording gaps, (2) including only tracks with a length of at 

least 60 frames, hereby ignoring more than 50% of the track snippets and (3) when there were multiple pigs on the feeder 

one HF RFID could have been linked to multiple tracks, while other HF RFID may not have been linked to any track. 

The identification of each pig on each day, matching track snippets and matching pigs moving from one area to another 

allowed visualizing behaviour of single pigs over the 83 days as illustrated in Figure 6 for pig number 109. Figure 7 

illustrates the results for pig number 109 on 8/3/2015 moving on 18h33 out of the area visualised by camera (C) area into 

the area visualised by camera (B) where it was identified on the drinker and feeder. Manual verification of these results 

is illustrated in Figure 8. First the frame at the timestamp that pig 109 was drinking was determined (Figure 8C), then the 

pig was manually tracked back and forward in frames to select the frames where the pig was at the feeder (Figure 8D) 

and moving from Camera (C) to (B) (Figure 8 A, B). 

 
 

 

Figure 6: Illustration of the total number of segmentations (in thousands, K) classified in behaviours drinking, eating, 

lying on the side and belly, sitting and standing per camera (A, B and C) recorded for pig number 109 for 83 days. 

 

 

Figure 7: Illustration of the total number of segmentations classified in behaviours drinking, eating, lying on the side 

and belly, sitting and standing per camera (B and C) recorded between 18h20 and 18h46 on 8/3/2015 for pig number 

109 moving from the area visualised by camera (C) to the area visualised by camera (B). 

 

 

Figure 8: Screenshots illustrating manual verification of the track of pig 109 on 8/3/2015 showing the pig (A, black and 

white arrow) on camera (cam_C, A) moving into the area visualized by camera (cam_B, B) identified when drinking 

(C) and identified while eating (D). Images show the drinkers (grey arrows) and feeding station (white arrows) where 

HF RFID identification can be performed in the area visualised by cam6. 
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4 Discussion 

This paper shows an approach that uses computer vision combined with HF RFID identification to detect, segment, 

track and classify the behaviour of 35 pigs in a pen. Track snippets were linked within a camera view and between 3 

cameras. This way, 27.3% of the segmented objects were classified as drinking, eating, lying on the side and belly, sitting 

and standing and linked with HF RFID to a specific pig for 83 days.  

Tracking the behaviour of pigs for 83 days for on average 2 hours per day is higher than previously reported research 

showed linking track snippets obtaining tracking of pigs from a couple of minutes to up to 10 hours (Zhang et al., 2019, 

Zhou et al., 2023, Jaoukaew et al., 2024, Cowton et al., 2019, Van der Zande et al., 2021). Identifying pigs during multiple 

days was obtained by HF RFID identification with antennas on the feeder and drinker. However more than one track 

could have been linked to the same pig while no tracks were coupled to other pigs. As reported by Maselyne et al. (2016) 

multiple simultaneous detections on the drinker can be resolved by blocking access to the drinker for more than one pig.  

Segmentation labelling with segment anything in Labelbox allowed segmenting pigs that were close to each other by 

drawing a rectangle around the object and visually verifying the suggested segment. The “segment anything” approach 

lowers the labour intensiveness and expensiveness of instance segmentation as indicated by Liu et al. (2023) who 

suggested oriented bounding boxes as alternative. 

Classification of behaviour of each segmented object provided additional filtering possibilities before linking tracks 

with HF RFID identification and within and between camera field of view connection of track snippets. Matching eating, 

drinking or standing pigs with each other is faster than techniques that link all detected pigs on each frame as suggested 

by Jaoukaew et al. (2024) and Parmiggiani et al. (2023). Finally linking lost tracks with new tracks was reduced to its 

most simple form by filtering objects that are located in a specific area and only keeping one lost track in memory until a 

new track occurred in the same area. 

The video recordings of 576p resolution was low enough to allow yolov8 nano segmentation model training and model 

inference of videos at native resolution. More recent publications report similarly applied resolutions (Jaoukaew et al., 

2024, Zhou et al., 2023), lower resolutions (Van der Zande et al., 2021) or higher resolution recorded videos (1080p), 

followed by downscaling (Melfsen et al, 2023, Cowton et al., 2019, Zhang et al. 2019). When increasing image size, 

larger yolov8 models may be necessary to process more inputs, both increasing hardware requirements while slowing 

inference speed. 

By combining videos of 3 cameras, up to 35 pigs could be simultaneously tracked. Which is more than the up to 10 

pigs reported by other authors (Cowton et al., 2019, Jaoukaew et al., 2024, Van der Zande et al., 2021, Zhang et al., 2019, 

Zhou et al., 2023). The camera synchronization by recalculating each frame to the timestamp and using the same computer 

to collect all data allowed a precision at the second level where all 5 frames recorded during that second were linked to 

the start of that second. Shifts in synchronization between cameras and HF RFID measurements in the (sub)second level 

was however not corrected for. Furthermore, to synchronize multiple cameras and HF RFID detections at the (sub)second 

level a physical process to record the frames at the same time on all cameras may be necessary (Chen et al., 2020). 

Future research can focus on using better cameras with infrared recording during the night, longer recording covering 

the full fattening period, improved tracking and matching algorithms and more complex pig behavioural analysis. The 

approach is not limited to pigs in a pen, but can be applied to other situations where animals can move from one area to 

another or situations where additional cameras need to be used to reduce occlusion of animals by walls and other pen 

infrastructure 

5 Conclusions 

This paper shows the application of an approach identifying 35 pigs in one pen using HF RFID and track their 

behaviour for 83 days using three cameras. The results demonstrate that 23 pigs out of 35 could be identified and tracked 

on 81 out of the 83 days for on average 2 hours out of 15 hours recorded per camera per day. Monitoring changes in 

behaviour, pig health and wellbeing of individually identified pigs may become possible by expanding the monitoring 

period to the full fattening duration of pigs. 
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Abstract 

In contemporary markets, wineries face increasing pressure to adopt sustainable and transparent practices to 

remain competitive and comply with regulatory standards. Regardless, the industry resists generating, using and 

sharing data.  

To address this issue, we developed and proposed a solution to achieve precise data acquisition at critical stages 

of the winemaking value chain, while enhancing stakeholder value and data transparency. Our technological 

solution included a mobile application, IoT devices equipped with GPS, humidity, and temperature sensors, and 

a B2B platform and was implemented as proof-of-concept in the Galicia Wine Region (Spain) during the harvest 

season of 2023. During harvest, each grape harvesting box was equipped with a unique QR code and a custom-

built hardware device. To ensure data accessibility for grape producers, winemakers, and cellar operators, the QR 

codes allowed box scanning at various stages of the process to collect critical information regarding identifying 

parameters such as field location, trajectory of transfers, transport conditions and timestamps for winery entry and 

processing. Additionally, the hardware device guaranteed processes and data legitimacy and reliability. In the 

post-harvest period, the solution included relevant data, such as total harvest quantities per vineyard, transportation 

history, grape quantities delivered to each wine cellar, and the alcoholic grade of each delivery in a user-friendly 

display, assisting stakeholders to improve processes and field management. Such critical data was then 

automatically transmitted to the regulatory entity to ensure compliance with regulatory standards. Limitations in 

field implementation included poor network coverage areas, which were addressed through app and hardware 

adjustments.  

Nevertheless, the developed solution has proven effective in the acquisition of the intended data and the value of 

data-driven operations for all stakeholders in the proof-of-concept stage. Despite the recurrent use and acceptance 

of these technologies, technological literacy campaigns among end-users in the field are necessary. 

 

Keywords: Traceability, Sustainability, Transparency, Data Collection, Wine Industry  

 

1. Introduction 

1.1. State of the art  

In contemporary agriculture, traceability serves as the cornerstone for ensuring food safety, maintaining product 

quality, and fostering transparency across the entire supply chain. A diverse array of technologies and strategies 

has emerged to fortify traceability, extending from the early stages of production to the hands of the discerning 

consumer. This meticulous tracking of data throughout the supply chain lays the foundation for informed decision-

making and strategic planning. Embracing a data-driven approach empowers producers’ adaptability to changing 

conditions, mitigate risks, and drive innovation in agriculture, ultimately contributing to the resilience and 

prosperity of the sector. As highlighted by Ouafiq et al (2022), effective data management strategies are essential 

for maximizing the value of agricultural data and leveraging its potential to inform decision-making and drive 

sustainable practices. 

Furthermore, the Internet of Things (IoT) has triggered a shift in the agricultural paradigm by enabling real-time 

monitoring and data collection, which often provides accurate and reliable insights that are crucial for crop 

management and to assure compliance with standards and best practices. Najmul Mowla et al (2023) aligned with 

that vision, highlighting the IoT transformative role in enhancing traceability and management across various 

agricultural domains. Such technologies can optimize processes, reduce waste and enhance traceability of 

agricultural practices. In parallel, Lu Wang. et al (2021) investigated the efficacy of quick response (QR) codes 

in augmenting traceability within the agricultural supply chain. Their meticulous study elucidated the utility of 

QR codes in streamlining traceability processes and bolstering efficiency. Scanning a QR code can reveal detailed 

information about associated processes, such as planting details, farm data, enterprise qualifications, and other 

relevant information. These features demonstrate how QR codes can be used as a simple and comprehensive 

traceability solution for all stakeholders involved. Additionally, a recent study by Nino Adamashvili et al (2024) 

explored the fusion of IoT and traceability solutions such as blockchain technologies, specifically for wine 

traceability, showcasing the transformative potential of these innovations in enhancing reliability and 

accountability in wine production processes. Collectively, these studies offer a comprehensive panorama of the 
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technologies and methodologies harnessed in traceability and underscore the pivotal role of technological 

innovation, regulatory standards, and collaborative efforts between research and industry in safeguarding the 

safety, quality, and sustainability of agricultural products.  

Despite the advancements and potential benefits of data and technology in the wine value chain, there are 

significant challenges in the widespread adoption of technologies such as IoT for traceability in agriculture, 

particularly in vineyards. Even though several advantages come from using the previously mentioned technologies 

and methodologies, grape producers often face difficulties in adapting to technological change, integrating new 

devices into existing workflows, and overcoming barriers related to technological literacy, as noted by Tardaguila, 

J. et al (2021). Additionally, the initial investment and maintenance costs of these systems may pose financial 

challenges for smaller wine producers. Overcoming these limitations is a primary goal of the present project. To 

achieve this, several technologies have been designed and tested to ensure higher implementation acceptance, 

enhance decision-making support, and provide the authenticity and transparency demanded by markets and 

regulators. 

 

2. Methods  

2.1. Preliminary requirements elicitation 

To fulfill the objective of increased transparency, acceptance and data-driven management for the wine sector, a 

pilot project on traceability, from field to bottle, was initiated in collaboration with an Origin Control regulatory 

Council from Galicia, along with its wineries and grape producers. The Regulatory Council identified the harvest 

as a critical stage in the winemaking process, raising significant concerns about the authenticity and conditions of 

grapes, particularly for wines with a controlled designation of origin. Being the stage with the greatest impact on 

all stakeholders in the value chain, a proof of concept (POC) specific for the harvest was conducted in August 

2023. 

The implementation of the detailed solutions was conducted in partnership with three Galician wineries: one 

cooperative, one medium size, and one family owned. The selection of wineries and grape producers was based 

on a survey aimed at identifying the most representative entities in the sector, encompassing a spectrum of digital 

literacy levels and process complexities. The goal was to ensure that the solution was applicable and operational 

for all participants with diverse digital skill sets.  

To ensure a proper POC evaluation, it was essential to understand the main steps in the preparation and execution 

of a harvest, as well as the critical data that needed to be acquired. A working group consisting of grape producers, 

winemakers, and regulators was established to define the data flow and data governance model. This model 

specified when and how data should be collected, establishes data ownership, and distinguishes which data should 

be shared directly with regulators and which should remain restricted for decision support. With these models 

established, technological solutions were developed and implemented to ensure accurate data acquisition and 

management. The solutions implemented during this stage are described in the subsequent chapter. 

 

2.2. System architecture 

The developed traceability solution integrated a mobile application (app) and various field, transport, and winery 

IoT solutions, all connected to a business to business (B2B) platform linked to a blockchain network. These 

technologies collectively focus on acquiring data throughout the entire process, from field to bottle, providing a 

comprehensive and accurate overview of the entities, equipment, products, and processes involved in producing 

a specific wine. In particular, the harvest phase employs a dedicated module of the B2B platform, alongside the 

mobile app and IoT technologies for transport in order to gather, integrate, and transmit detailed data on grape 

harvesting and delivering activities. These capabilities ensure (i) the traceability of grape origin for authenticity, 

(ii) monitor field and transport conditions and (iii) manage the specific information on the reception and 

integration phases at the winery. With this data, wineries and grape producers can enhance the overall process by 

optimizing resource management and minimizing the time spent on various bureaucratic procedures. Ultimately, 

these technologies provide a comprehensive and transparent framework for sharing accurate, reliable, and 

verifiable data, ensuring compliance with key guidelines on grape collection and processing. Figure 1 displays the 

overall concept of the system architecture. 
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Figure 1 – Main System Architecture for the overall traceability process. 

 

2.2.1. Harvest Modules 

2.2.1.1. Data Acquisition Module 

The development of specific data acquisition solutions considered two relevant factors: the data to be acquired 

and the conditions of acquisition and integration. During the harvest season, stakeholders identified critical 

moments for collecting relevant data on grape picking, transport, reception, and integration. It was vital to 

document the location and time of grape collection, the estimated weight, and the humidity and temperature 

conditions to which the grapes were exposed post-harvest. Additionally, tracking the entire transport route and 

conditions, the time of entry into the winery, the time of integration into the press, the actual weight at entry, and 

the alcohol content of the grapes delivered was also essential. 

The Regulatory Council defines limits for grape producers producing grapes with controlled origins, establishing 

the cupo concept, which signifies the maximum allowable production in kilograms per hectare of registered land. 

Recognizing this concept was crucial, since the main goal of the POC was to mitigate fraud concerning grapes of 

uncertain origins. 

Moreover, given the harvest's fast-paced and often hectic nature, additional features necessary for the solution had 

to comprise (i) robustness, (ii) integration of automatic detection functionalities whenever possible and (iii) 

elementary, user-friendly interfaces or those demanding minimal interaction to reduce the likelihood of failure or 

fraudulent activities. Consequently, three distinct solutions were conceived for data acquisition from the field to 

grape processing. 

 

a) Vine DataTracker Mobile app & Webapp 

The mobile app acted as a tool for grape producers to manage various aspects of their vineyards registered under 

the specific denomination of origin. It allowed monitorization of the cupo allocation for each vineyard and the 

cumulative cupo for all registered vineyards, as well as registration of grape boxes in the field, which were 

previously marked with unique QR codes, and tracked the transportation of grapes to the winery. Producers only 

have access to their own digital area after an individual registration and login. 

Developed using React Native for both iOS and Android platforms, the application facilitates the transfer of 

acquired data to a web-based version managed by the winery, where all app-connected grape producers are 

managed as a group. This feature enabled the winery to accurately monitor the progress of the grape producer's 

harvest and oversee its subsequent intake. Furthermore, the Regulatory Council can verify the data to ensure 

compliance with established guidelines. As mentioned earlier, this solution operated within an ecosystem that 
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fosters RGPD compliant data sharing among all three stakeholders under the predefined data governance model. 

Figure 2 display represents the app mobile main interface. This Figure has been changed to protect personal and 

confidential data. 

 

 
Figure 2 – Main interfaces of the mobile App used by grapes producers. 

 As presented in Figure 2, the application provided a straightforward interface, offering grape producers two 

primary data flows to manage: 

1. Grape producers had the option to select the vineyard from a list and choose a work mode between the 

options "harvest," "transport," or "arrival at winery." If the grape producer selected the harvest mode, the 

camera for QR code scanning was automatically activated. This mode incorporated several features 

designed to prevent double scanning and assisted the grape producer in ensuring the operation's accuracy. 

Furthermore, if the grape producer changed the selected mode to “transport”, the mobile app would 

automatically initiate more frequent data collection on global positioning system (GPS) coordinates, 

temperature, and humidity until arrival to the winery. 

2. Grape producers could overview previous harvests and trips, along with their associated conditions. This 

information is listed and can be filtered by date or vineyard for easy access and analysis.  

The application additionally stored data, allowing grape producers to view the weight collected from each 

vineyard and control the achievement of its cupo. This data could be correlated to information gathered at the 

winery, such as the actual delivered weight and the grapes' specific alcoholic grade. 

 

b) Tracking solution for grape transport: 

Optionally, the mobile phone App could be linked to a tracking solution by Bluetooth, necessary to provide the 

Regulatory Council with more precise GPS coordinates for grape collection and transportation, as well as accurate 

temperature and humidity information. The hardware architecture of the harvest tracking and monitoring solution 

was based on an Arduino platform, using a combination of sensors and modules for environmental data collection 

and geolocation. The DHT22 sensor measured temperature and humidity, crucial for ensuring ideal conditions 

during the transport of grapes. Geographical coordinates were precisely captured by the TinyGPS++ GPS module. 

Interactions with the system were facilitated by an OLED display controlled by the U8g2lib library, offering a 

clear and legible interface. Additionally, the solution allowed grape producers to connect via Bluetooth but 

prevented any other activities from being carried out since access to the producer was blocked and only with their 

login the work mode could be changed. This ensured the system could only be connected or disconnected by each 

grape producer, without risk of disruption. Figure 3 displays the described hardware solution. 
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Figure 3- Tracking device for grape transportation. 

For wireless communication, the ArduinoBLE module enabled Bluetooth Low energy (BLE) transmission, 

essential for transmission of data to the mobile device or B2B platform in real time. The system also included a 

memory module that allowed data to be stored locally, ensuring the integrity and availability of information even 

without immediate network connectivity. 

The software integrated into the Arduino was programmed to initialize and manage the different sensors and 

communication modules, as well as handle the algorithms for switching between the different operating modes, 

from “harvest” to “transport” and “arrival at the winery”. As the hardware gathered information from each scanned 

box of grapes, it saved data connecting location data and environmental conditions to the specific load. As data 

was recorded and stored in the hardware, in case network conditions were not favorable, it was also possible to 

continue. This system not only enhanced traceability and ensured compliance with the regulatory council, but also 

supported future decisions when combined with fertilization data and the application of phytopharmaceuticals. 

Once assembled the entire production in the field and known where more grapes were produced in the previous 

year, it would be possible to manage and improve such parameters in the future.  

In the context of transportation for this proof of concept, all data was recorded at one-minute intervals. This 

interval met the project's requirements since most trips ranged from five minutes between small plots of smaller 

producers to longer journeys of twenty or thirty minutes. It was important to track every trip, shortest or longest, 

to ensure comprehensive monitoring and among other concerns to mitigate any possibility of fraud during transit. 

Furthermore, six tracking solutions were employed in the field for each grape grower in order to evaluate the 

precision of the data and the quality of the implementation. 

 

c) Data acquisition solution in the winery for automatic detection of QR marked boxes. 

The final stage of the process involved the utilization of reading equipment for data acquisition and occurred when 

the grape harvesting boxes arrived at the winery, where their receipt was recorded. Automatic readers were 

integrated into the reception and washing lines to register the entry of grapes into the winery and press, operating 

independently without human assistance. The automated scanning of received boxes at the winery was conducted 

using the Vuquest 3320g Hands-Free Scanner, designed for industrial use due to its resilience to humid 

environments and susceptibility to impacts. Capable of rapid reading without disrupting the normal operation of 

grape reception lines, this equipment was connected to a computer to directly transmit the scanned ID, along with 

the timestamp. This data was subsequently forwarded to the B2B Backend running on AWS cloud infrastructure 

through a JavaScript configuration and a REST API, where the weight and quality grade of each scanned basket 

were processed and appended. Both weight and grade units were already under automatic digital control by the 

winery, requiring only integration into our system. Figure 4 illustrates the implemented schema. 
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Figure 4 - Automated box scanner employed during the grape reception phase at wineries. 

2.2.1.2. Data Integration & Management Module 

 

Data integrity entails accuracy, consistency, and validity of data collected from various sources thorough 

validation and transformation. Meanwhile, Data intelligence processes focus on extracting valuable insights and 

patterns from integrated data, including analyzing historical data, business rules, trends, and anomalies. When 

data enters the system, it undergoes various standardization and transformation processes in backend components 

to ensure accurate analysis, for example the creation of a unique integration identifier for each event made of both 

a unique database generated Id and the physical Id scanned from the QR code on each box. Algorithms were 

employed to provide context to events, ordering and relating them to previously received ones, and assess or filter 

out duplicate data using key attributes like timestamps and unique identifiers. Gaps in the data were also addressed 

(e.g., if the unloading event is received before the loading event, the system updated the unloading event to relate 

to the newly created loading event). Subsequently, the data was verified against industry-specific business rules 

and the totals for the producer were adjusted accordingly. 

The system also incorporated an Audit Trail Module, which recorded all events within the system, regardless of 

data validation, to support auditing and debugging efforts. These processes occurred in real-time, ensuring that 

whenever winegrowers initiated any activities, the winery was promptly informed and could use this information 

to manage its resources and plan receptions accordingly. 

All the backend components mentioned in this topic were developed using the Java framework Quarkus and 

deployed using a cloud-native approach via Kubernetes on the AWS Cloud. 

The relationship between the entities and the modules explained in 2.2.1.1 and 2.2.1.2 are described in Figure 5. 
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Figure 5 - Process Flow representing the relationships between entities and solution modules. 

2.2.1.3. Data Visualization Module 

Once the data generated through the solutions has been processed, validated, and integrated, the data and reports 

were synchronized in the B2B platform and associated client apps, which were part of the full traceability 

architecture. In addition to the data collected during the harvest, this module of the platform incorporated other 

pertinent data that would help stakeholders in decision making. It is noteworthy to highlight that should any of 

the entities edit or delete data, this information remained accessible on the platform, thereby ensuring the integrity 

of the entire process. 

 

3. Results and Discussion 

The field implementation of the solution was well-received by the stakeholders, but it revealed the importance of 

adjusting several processes. It became clear that grape producers were filling and storing boxes randomly until 

transportation as well as grouping boxes from different locations in only one vineyard for the transportation to the 

winery. Those actions created misconceptions in the traceability process but were addressed in the field in the 

early phases of the harvest. Ensuring grape producers’ alignment on the importance of scanning boxes at the exact 

harvest location by a single responsible person simplified and enhanced the process and guaranteed the acquisition 

of accurate data. The mobile application’s feature of a fixed cupo limit for each vineyard also pushed producers 

to act according to the guidelines of tracing grapes in their origin vineyard. Figure 6 illustrates the enhanced 

process with the implemented solutions in the harvest and transportation.  
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Figure 6 – Grape harvesting boxes during grape collection and transportation. 

At the end of the harvest, all data acquisition solutions successfully facilitated the scanning and monitoring of 

each grape-filled box. Specifically, 16 vineyards were harvested, resulting in the tracing of 57,567 kg of grapes 

within 2,964 marked boxes, over 18 transportations. Figure 7 illustrates an example of a transportation of the 

traced grapes, providing all stakeholders with a comprehensive traceability report for a delivery to the winery. 

Sharing this information within the ecosystem in real-time, in accordance with the established data governance 

model, enhanced confidence in data authenticity for the regulator, reduced bureaucracy, and improved resource 

management for both the winery and the grape growers. This Figure has been changed to protect personal and 

confidential data. 

 

Figure 7 – Example of the obtained traceability for a harvest and transportation. 

Given that the mobile app and the built hardware shared common functionalities such as GPS, temperature, and 

humidity control, the degree of error between the data obtained by the two solutions was investigated. It was found 

that the GPS error of the hardware tracking solution was only 3 meters and the one from the mobile phone could 

go up from a few meters to tens of meters when medium network conditions were found. Moreover, the hardware 

tracking solution provided higher reliability. Still, for this particular use case, both solutions provided consistent 

results since most grape producers were harvesting under normal 4G network conditions.  

Regarding temperature and humidity control, the error of the mobile app was significantly higher as the collected 

data came from a meteorological API named Open-Meteo. Thus, priority was given to using the hardware 

alongside the mobile app to obtain more accurate data on grape conditions, particularly when the regulatory 

council aimed to audit processes. 

When delivering grapes to the winery, it was confirmed that only one tracking device was needed instead of 

multiple sensors on each box. Most of the measurements from several tracking solutions were consistent across 

all controlled transports in enclosed transportation. This was particularly beneficial for all stakeholders, as 

installing sensors in each box was not economically or practically feasible. 

Additionally, the best position for the tracking hardware was assessed. As shown in Figure 8, by positioning two 

separate hardware devices in several consignments of 200 boxes – one in the top middle of the boxes and one on 

the trailer’s wall – it was possible to confirm a small but noticed influence of wind and sun on the temperature 

readings from the hardware positioned on the wall (graph on the left, hardware 1 line, in orange). In contrast, the 
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humidity during transportation increased when the hardware was positioned in the box at the top middle (graph 

on the right, hardware 2 line, in green). Both devices were later placed inside grape boxes at the winery after 

transportation (after 16:08 h) while awaiting reception. 

 

 
Figure 8- Temperature (left) and humidity (right) readings from two tracking devices during a transportation event. 

The preferred tracking hardware position was the top middle in these conditions, since it described the best suited 

conditions to evaluate compliance with the main guidelines. On the other hand, as anticipated, when tractors were 

utilized for transportation, the top box exhibited the most significant fluctuations in temperature and humidity 

conditions due to exposure to the elements. Hence, even in those circumstances, only one tracking device was 

employed, with priority given to the top boxes for assessment. 

The receptions at the winery also proceeded positively, with the QR reader successfully scanning all the boxes 

entering the reception lines. However, the reader positioned on the cleaning lines encountered more difficulties, 

due to the large amount of water involved in the process, which created a film over the reader's protective cover, 

reducing its scanning efficiency. Additionally, the sensor's placement relative to the light had to be considered, as 

excessive light presence diminished the sensor's detection capability. Nonetheless, good results were achieved 

with minor adjustments to the sensor's placement. 
Once the grape harvest was completed, it was possible to automatically provide a descriptive analysis of the 

activity. The grape producers who managed to mark the boxes at the exact location of the harvest were able to 

obtain information about the weight, distribution and alcohol content of the grapes collected. An example of the 

analysis conducted for a plot of one of the pilot wineries can be found in the Figure 9. 

 

 

Figure 9- Descriptive analysis on grape production and alcoholic grade per vineyard. 

By analysing this dashboard, grape producers can discern areas of higher and lower production, as well as identify 

extremes in alcohol content. This facilitates an evaluation of vineyard activity, offering valuable insights for 

optimizing harvest practices and future vineyard management strategies. However, some field errors may be seen 

in the Figure 9, caused by malpractices in the scanning process. In that case, some baskets were manually moved 

to the location of the transport, resulting in a cloud of boxes outside of the declared vineyard. For the regulatory 
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entity, this traceability is still acceptable but under ideal conditions, it would be crucial to collect data precisely 

where the grapes were harvested to guarantee that the collected insights reflect the reality in place. 

3.1. Limitations and opportunities for improvement 

One of the faced limitations was the battery life of all devices involved in data acquisition in the field. To address 

this issue, several strategies were implemented such as (i) optimizing the main program loop to reduce processing 

time, (ii) implementing sleep techniques to put the device in a low-power state when inactive, (iii) implementing 

efficient algorithms, and (iv) creating a customized power profile for the device. These measures extended the 

device's lifespan throughout the entire harvest period and reduced the mobile app's consumption. However, further 

field tests are necessary to determine its full capacity and understand its potential across different use cases. 

Additionally, some efficiently problems were also found while sending environmental data files via BLE to an 

embedded device with limited resources, such as Arduino. The solution involved developing an efficient file 

transmission algorithm that divided the file into small data chunks and sent them sequentially through the BLE 

connection. Additionally, memory and processing optimization techniques were implemented to ensure the device 

operated efficiently and prevented data loss during file transfers, which proved effective for correct data 

acquisition. However, more field tests are needed to confirm the solution's scalability. 

Finally, the population's literacy level poses an additional challenge to the adoption of such technologies. 

Although the traceability solution incorporated user-friendly features for the various stakeholders, all activities 

required initial guidance followed by tailored adjustments to the harvest process. Moreover, stakeholders are 

unlikely to embrace a technical solution that necessitates changing processes and workflows without fully 

understanding the potential benefits. Therefore, future data literacy and agriculture 4.0 training initiatives are 

essential for stakeholders to grasp the value and become more engaged in these types of ecosystems. 

 

4. Conclusion 

This project showcased the potential of IoT technologies to enhance traceability and transparency in wine 

production. By collaborating with wineries and grape producers in Galicia and focusing on critical stages like the 

harvest, a robust traceability solution was developed that included mobile applications, B2B platforms, Bluetooth-

enabled tracking devices, and automated QR code scanners to collect and manage data, ensuring regulatory 

compliance and better decision-making. 
The pilot implementation revealed several key findings. The Bluetooth-enabled tracker provided accurate real-

time data on grape harvesting, transport, and reception at the winery. The mobile app solutions for acquiring data, 

despite higher error rates in poor network areas, effectively collected field data for the harvest activities. Both 

solutions offered reliable and accurate data, demonstrating to the Regulatory Council the origin of the harvested 

grapes and the compliance to the key guidelines. 

Challenges for broader adoption includes high initial costs and maintenance, as well as varying levels of 

technological literacy among stakeholders. The provided solutions took these factors into account and reduced the 

investment burden for all involved parties. However, achieving full adoption will implicate instructions from 

regulatory bodies, as well as further data literacy initiatives to disclose the full potential of data-driven and 

transparent organizations.  

In conclusion, this project has established a strong foundation for comprehensive traceability in the wine industry, 

enhancing transparency, resource management, and product authenticity. Continuous refinement of technologies 

and methodologies, along with stakeholder education and support, will be essential to fully realize the benefits. 
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Abstract 

Accurate, site specific, air temperature data is essential for effective agricultural management activities 

including decisions regarding irrigation water management. Traditional methods rely on dense networks of 

agro-meteorological stations, which can provide precise measurements but can be costly to install and 

maintain and may not detect micro-climatic variations adequately. Alternatively, satellite data constitute a 

promising solution as they offer Land Surface Temperature (LST) measurements at high spatial resolutions. 

However, challenges such as intermittent availability due to orbital dynamics and cloud coverage hinder its 

widespread application. In this study, we explore the utilization of satellite derived LST data from the MODIS 

instrument onboard TERRA and AQUA satellites to estimate air temperature for the plain of Arta, Greece. 

Historical timeseries from local ground stations are also used and two distinct methodologies, namely 

empirical estimation and machine learning approach are employed. The empirical method establishes linear 

regression relationships between satellite-derived LST and ground-based air temperature data, providing 

foundational equations for conversion. In contrast, the machine learning method utilizes Random Forest 

Regression (RFR) algorithms, leveraging auxiliary data to predict air temperature parameters such as 

maximum, minimum, and mean temperatures. By integrating satellite data with ground measurements, this 

study contributes to enhancement of spatial and temporal coverage of air temperature data, which could 

provide improved relevant timeseries. 

Keywords: agrometeorological stations, reference evapotranspiration, Hargreaves – Samani, irrigation 

management 

1. Introduction 

Air temperature (Tair) near the Earth’s surface is a crucial parameter for numerous research areas and 

engineering applications. Daily mean air temperature, when combined with humidity, wind speed, and solar 

radiation, can be used to estimate evapotranspiration (Allen et al., 1998). Tair is typically measured directly 

at weather stations with temperature sensors mounted in shelters located 2 meters above ground (FAO. 

Doorenbos, 1977). Achieving a high-resolution spatial representation of Tair requires a dense meteorological 

network, as interpolation methods that are used to improve resolution can introduce significant errors and 

unrepresentative spatial patterns (Willmott et al., 1995). The accuracy of these interpolations is highly 

dependent on station network density and the scale of spatial and temporal variability (Vogt et al., 1997), 

(Herrera et al., 2018). 

Satellite remote sensing technology offers an attractive means to obtain high-resolution data, though Tair 

is not directly measured by satellites. Several researchers have proposed methods to estimate Tair using remote 

sensing data. Satellite sensors capture signals composed of energy emitted from the Earth's surface, absorbed 

and re-emitted by the atmosphere, primarily from the contained water vapor. At the surface level, this energy 

is a mixture of temperatures from vegetation, sunlit and shadowed soil, and artificial objects (Cresswell et 

al., 1999). The quality of Land Surface Temperature (LST) retrievals is influenced by sensor characteristics, 

atmospheric conditions, variations in spectral emissivity, surface type heterogeneity, soil moisture, viewing 

geometry, and assumptions related to the split‐window method. Although LST and Tair are strongly 

correlated, differences arise due to factors such as high background temperatures in regions with mixed 

vegetation and bare soil. LST also depends on the evapotranspiration rate and environmental factors like 

incoming solar radiation and wind speed. Common methods for estimating Tair from LST include:  

i) Statistical approaches based on regression techniques, from simple to advanced methods (Viau 

et al., 1997; Stathopoulou et al., 2006).  

ii) Machine learning techniques that account for the non-linearity between predictors and LST, 

incorporating many explanatory variables in the physical-deterministic modeling. These 
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techniques include Bayesian-based modeling, support vector regression, Artificial Neural 

Networks (ANN), and Random Forests (RF) (Kamoutsis et al., 2013; Ovando et al., 2022).  

iii) The temperature–vegetation index which is based on the assumption that the top-of-canopy 

temperature equals the within-canopy temperature for an infinitely thick canopy (Goward et al., 

1985). 

iv) Physically based energy-balance approaches, which require extensive information (Goward et 

al., 2002). 

 

This study aims to estimate Tair through both statistical analysis and machine learning algorithms, utilizing 

remote sensing data for LST and ground-measured temperature data from a network of agrometeorological 

stations. The statistical method employed linear regression, while the machine learning one, used various 

algorithms, ultimately selecting the Random Forest Regressor. Mayer et al. (2016) and Lezama et al. (2021) 

highlighted the validation of auxiliary data for evaluating LST and emphasized methods in training, 

evaluation, and prediction techniques to mitigate overfitting in machine learning models. 

2. Materials and Methods  

MODIS LST was successfully used to estimate Tair for various regions of the world using a variety of 

methods (Mostovoy et al., 2006; Colombi et al., 2007; Vancutsem et al., 2010; Benali et al., 2012; Zhu et al., 

2013; Sohrabinia et al., 2014). In this study, Tair within the region of interest was estimated utilizing LST 

data derived from the thermal bands of the MODIS instrument onboard the TERRA and AQUA satellites. 

Additionally, a network comprising of six agrometeorological stations served as ground reference. We 

employed two distinct methods to estimate Tair. The first method, termed as “empirical estimation method", 

relies on establishing a linear regression relationship between satellite-derived and ground-based data. This 

approach yields a foundational equation for converting LST satellite data into Tair values. The second method, 

known as the “machine learning method”, utilizes regression algorithms within a machine learning 

framework to develop models that use satellite data to predict Tair values, as well as other air temperature 

parameters such as maximum temperature (Tmax), minimum temperature (Tmin), and mean temperature 

(Tmean). 

2.1. Study area, data and data preparation.  

The plain of Arta (Figure 1) is situated in western Greece within the region of Epirus and spans 

approximately 450 km2 (45,000 hectares). The elevation of the area ranges from 2 to 10 m above sea level. 

Predominant crops include citrus fruits and kiwifruit, with the latter increasingly occupying a larger share of 

cultivated land. The region features a Mediterranean climate characterized by rainy winters and hot summers. 

Annual rainfall exceeds 1,000 mm, while two rivers and a rich underground aquifer provide abundant water 

resources to the plain (Fotia et al., 2021).  

The observational dataset for Tair was sourced from six weather stations (WS), part of the University of 

Ioannina agrometeorological network at the region of Epirus (Figure 1, Table 1). These stations consistently 

record data at 10-minute intervals, spanning from April 2015 to December 2023. All stations measure Tair at 

2 m height from the ground following WMO provisions for agricultural meteorology (WMO, 2012). Prior 

analysis, data preparation procedures were executed on the Tair dataset from each station. Using the Python 

Pandas library, missing values were systematically eliminated to ensure data integrity. Furthermore, a 

comprehensive examination of Tair measurements was conducted, involving pair-wise comparisons between 

stations to identify and subsequently eradicate corrupted values.  

MODIS (Moderate Resolution Imaging Spectroradiometer) is a satellite-based sensor mounted on both 

TERRA and AQUA satellites, capable of capturing data across 36 spectral bands. Notably, MODIS sensors 

are sensitive to Thermal InfraRed (TIR) radiation, with specific channels, 31 (10.78–11.28 μm) and 32 

(11.77–12.27 μm), utilized for LST and cloud temperature measurements. The spatial resolution of MODIS 

LST data is 1 km. To mitigate atmospheric effects, the split-window algorithm is employed, leveraging the 

differential absorption of radiation in the atmosphere. In this study, version 6 products 

(MOD11A1/MYD11A1) from both TERRA and AQUA satellites were utilized, covering the same temporal 

period as the weather station observations (April 2015 to December 2023). Due to the orbital characteristics 

of the satellites, LST TERRA and LST AQUA data are available during both day and nighttime, 
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approximately between 10:00–13:00 and around 21:00–2:00 local time. From the MODIS LST dataset, only 

values with a "GOOD" quality flag were retained for analysis. Consequently, the final satellite data comprised 

the day and time of observation, land surface temperature, and satellite view angle, exclusively for 

measurements with a high-quality confidence rating. 

 

 

Figure 1. Study area. Plain of Arta with locations of the ground agrometeorological stations. 

 

Table 1. Information (coordinates in WGS84) of agrometeorological weather stations at the plain of Arta, 

Greece 

WS name WS web page link (Mamasis et al,. 2021) Longitude Latitude 

UoI https://system.openhi.net/stations/1402/ 39.12208 20.94755 

Bigla https://system.openhi.net/stations/1405/ 39.07888 20.88525 

AgS https://system.openhi.net/stations/1403/ 39.14904 20.87591 

Kampi https://system.openhi.net/stations/1404/ 39.21634 20.91295 

Kompoti https://system.openhi.net/stations/1407/ 39.09518 21.06071 

Kommeno https://system.openhi.net/stations/1406/ 39.05061 21.01207 

 

The study area was divided into grids of 1 km resolution and covers temporal the period from 2015 to 

2023. All MODIS LST data was acquired using Google Earth Engine. Agrometeorological stations served 

as reference points, and LST values were aggregated within a 1.5 km radius around each station. Additionally, 

local weather station measurements were collected concurrently with the LST data for comparison purposes. 

2.2. Estimation of Air Temperature Using MODIS LST Data and Simple Linear Regression 

The first method aims to develop an empirical methodology for estimating air temperature (Tair) by 

utilizing MODIS Land Surface Temperature (LST) data through simple linear regression techniques. 

Researchers found that corelation between LST and Tair for day and night measurements differs. Benali et al. 

(2012) noted that the integration of MODIS TERRA and AQUA data has great potential for air temperature 

estimation. Tomlinson et al. (2012) compared the nighttime LST from MODIS with ground-measured air 

temperature across a conurbation and found that the measured air temperature was always greater than the 

MODIS-derived LST. Hachem et al. (2012) found that the mean daily LST was more strongly correlated 

with near-surface air temperature in an area with continuous permafrost when the TERRA/AQUA MODIS 
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data were combined than when these values were considered separately (TERRA or AQUA, daytime or 

nighttime). In this study LST data from MODIS was separated into day and nighttime blocks and examined 

separately.  

Simple linear regression analyses were conducted for each agrometeorological station, with LST as the 

independent variable and Tair from ground stations as the dependent variable. This analysis yielded the 

coefficients 'a' and 'b' of the equation Υ = a x Χ + b, as well as the R2 value, indicating the goodness of fit of 

the regression model. A very strong relationship (0.89 < R2 < 0.95) between Tair and TLST was observed across 

all weather stations and for all years. Utilizing the 'a' and 'b' coefficients derived from the regression analysis, 

a new linear equation was calculated as the mean of all weather stations for all years, termed as "Total 

MEAN" for both daytime and nighttime.   

2.3. Tair estimation using MODIS LST and machine learning 

Researchers, after considering various algorithms, found that Random Forest Regressor (RFR) algorithm 

performed very successfully in predicting air temperature (Tair) from LST data (Noi et al., 2017). NASA 

publication refers in using RFR for downscaling land surface temperatures at regional scales (Hutengs and 

Vohland, 2016). Random Forest is a type of ensemble learning algorithm that works by building multiple 

decision trees during training and outputting the average prediction of the individual trees. It is an extension 

of the Random Forest algorithm, which is widely used for both classification and regression tasks. In RFR, 

multiple decision trees are trained on random subsets of the training data, and predictions are made by 

aggregating the predictions of all the individual trees. This ensemble approach helps to reduce overfitting 

and improve the generalization performance of the model. Compared to classical linear regression, RFR can 

capture more complex relationships between LST and Tair. It does not rely on the assumption of linearity and 

can handle non-linear relationships and interactions between variables more effectively. Additionally, 

Random Forest models tend to be more robust to outliers and noise in the data.  

Utilizing the Random Forest Regressor enables the calculation of air temperature (Tair) in various 

instances, Tins (instant Temp), Tmax, Tmin, and Tmean. Here's how each instance is typically defined: 

1. Tins refers to the instantaneous prediction of air temperature at a specific moment in time based 

on the corresponding Land Surface Temperature (LST) data. 

2. Tmax represents the maximum predicted air temperature within a given period, such as a day, 

based on the maximum LST values observed during that day. 

3. Tmin denotes the minimum predicted air temperature within a specific day, derived from the 

minimum LST values recorded during that day. 

4. Tmean calculates the average predicted air temperature within a specific day, utilizing the average 

LST values over the same day. 

The data set of each calculation was split in the following way. For the total dataset a random 10% was 

kept hidden from model. The rest 90% was divided to 70% for train and 30% for testing each model. After 

the model construction the previous hidden 10% of the data was used to validate the model.   

The independent variables (also named as features in ML) are the measured LST values from MODIS 

instrument, for each location and time of area of interest. Compared with the closed spatial and temporal Tair 

values of all weather stations was feed each model to train it. Auxiliary data, also known as supplementary 

data or side information, refers to additional information that is not directly part of the primary dataset but 

can be useful for improving the performance of a machine learning model or providing context for the 

analysis. Not all Auxiliary data have a considerable importance for a ML model (Meyer et al, 2016; Lezama 

et al, 2021).  In this study we have calculated and tried a various auxiliary data as:  

1. The MODIS satellite name (Terra – Aqua) 

2. The day of the year (value 1-365) 

3. The month of the measurement. (value 1-12) 

4. The time of measurements (value AM or PM) 

5. The time difference from each day solar noon and solar midnight (values in min). 

6. Max MODIS Temp of the day. 

7. Min MODIS Temp of the day. 

8. Mean MODIS Temp of the day. 

9. Distance from coast. 
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3. Results and Discussion 

According to the methodology that was followed, two separated types of products was performed. The 

first based on the "empirical estimation method" as also a "machine learning method" with the following 

results. 

3.1 Empirical method 

Both daytime and nighttime R2 calculations shown a strong relationship between LST and Tair 

measurements from weather stations. Separate analysis for day and nighttime confirmed that a better 

correlation at nighttime exists, as shown at Τable 2, and mentioned previously at literature. Figure 2 shows a 

representative example of linear regression (AgS weather station for the year 2023), for both day and 

nighttime. In Figure 2 it can be observed that at nighttime colour distribution is evenly above and under the 

regression line in addition to daytime plot where some months are located more at one side. This observation 

can be further examined at future studies.  Other weather stations plots are similar to Figure 2 and a complete 

set for all years can be found at this GITHUB link as open-source material.  

     

Table 2. R2 for linear regression analysis and final a, b coefficients. 

WS name R2 day R2 night 
Total Mean 

regression daytime 

Total Mean 

regression nighttime 

AgS 0.90 to 0.92 0.90 to 0.97 

a = 0.87 

b = 3.67 
a = 0.98 

b = 1.30  

Bigla 0.89 to 0.93 0.94 to 0.96 

Kampi 0.92 to 0.94 0.92 to 0.95 

Kommeno 0.90 to 0.95 0.95 to 0.97 

Kompoti 0.91 to 0.93 0.94 to 0.97 

UoI 0.89 to 0.92 0.97 to 0.98 

 

 

 

Figure 2. Tair to LST regression for daytime – nighttime MODIS data (AgS weather station for the year 

2023). Coloured dots, from red to blue, indicates the month of the year. 

Utilizing a and b coefficients a mean daytime and mean nighttime linear equations (1 and 2) can be 

calculated as: 

Daytime: y = 0.87x + 3.67 (1) 

Nighttime: y = 0.98x + 1.30 (2) 

Both equations can be used as empirical tools representing air temperature distribution in the area of 

interest and can be compared with interpolation methods in future work.   

3.2 Machine learning method 

Results from "machine learning method" realises models for Tins, Tmax, Tmin and Tmean directly from 

satellite LST data. All models were performed with high R2 value as Table 3 shows, with the Mean Absolute 

Error (MAE) to be around to 1-1.5 0C. Training dataset, except LST data, was also included auxiliary data. 
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Performing a variety of different training dataset combinations, we concluded to specific auxiliary data that 

perform better for each model training. For Tinst model training, data with the best importance were 

Modis_Temp (78%) and number of the month (22%). For Tmax, Tmin and Tmean model training, best importance 

set were Max_Modis_temp, Min_Modis_temp and Mean_Modis_temp. Number of the month as auxiliary 

data had a low importance for Tmax, Tmin and Tmean models. Data importance was found as the following.  

1. Tmax Mean MODIS_Temp (48%), Max MODIS_Temp (28%), Min_MODIS_Temp (22%), 

month (2%) 

2. Tmin Mean MODIS_Temp (33%), Max MODIS_Temp (18%),  Min MODIS_Temp (47%), 

month (2%) 

3. Tmean Mean MODIS_Temp (47%), Max MODIS_Temp (21%),  Min MODIS_Temp (31%), 

month (1%) 

Finally, auxiliary data of MODIS satellite name (TERRA – AQUA), day of the year, time of 

measurements, solar noon and solar midnight as distance from coast had no considerable importance to 

models training.  

Table 3. Machine learning models results. 

WS name Tinst Tmax Tmin Tmean 

AgS 

R2= 0.9656 

RMSE = 1.7348 

MAE = 1.2914 

R2= 0.9345 

RMSE = 1.8873 

MAE = 1.4218 

R2= 0.9447 

RMSE = 1.6478 

MAE = 1.2216 

R2= 0.9696 

RMSE = 1.2899 

MAE = 1.0147 

Bigla 

R2= 0.9604 

RMSE = 1.7209 

MAE = 1.2955 

R2= 0.9307 

RMSE = 1.8896 

MAE = 1.4230 

R2= 0.9516 

RMSE = 1.4598 

MAE = 1.0995 

R2= 0.9667 

RMSE = 1.2971 

MAE = 0.9607 

Kampi 
R2= 0.9699 

RMSE = 1.5561 

MAE = 1.1299 

R2= 0.9449 

RMSE = 1.8753 

MAE = 1.3716 

R2= 0.9375 

RMSE = 1.7532 

MAE = 1.3084 

R2= 0.9707 

RMSE = 1.2939 

MAE = 1.0212 

Kommeno 
R2= 0.9697 

RMSE = 1.6137 

MAE = 1.1575 

R2= 0.9270 

RMSE = 1.8394 

MAE = 1.4634 

R2= 0.9513 

RMSE = 1.5798 

MAE = 1.1908 

R2= 0.9638 

RMSE = 1.3558 

MAE = 1.0217 

Kompoti 
R2= 0.9681 

RMSE = 1.7558 

MAE = 1.2836 

R2= 0.9288 

RMSE = 2.0226 

MAE = 1.5702 

R2= 0.9513 

RMSE = 1.5773 

MAE = 1.1930 

R2= 0.9648 

RMSE = 1.4227 

MAE = 1.1005 

UoI 
R2= 0.9699 

RMSE = 1.5561 

MAE = 1.1299 

R2= 0.9360 

RMSE = 1.8133 

MAE = 1.3610 

R2= 0.9142 

RMSE = 1.8227 

MAE = 1.9403 

R2= 0.9600 

RMSE = 1.4033 

MAE = 1.0766 

 

 

 

 

 

Figure 3. Real and predicted Temp for AgS weather station using ML. 
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All other weather stations models are similar to Figure 3 and a complete set for all years can be found at 

this GITHUB link as open-source material.  

4. Conclusions 

The goal of the presented research was to provide models based on statistical analysis and machine 

learning algorithms and fed with free remote sensing data for the estimation of Tair. To develop these models, 

data from ground agrometeorological stations were used. For the statistical method linear regression, and for 

the machine learning one, the Random Forest Regressor were employed respectively. The results from both 

methods were good and promising for both models. The machine learning approach proved capable of 

providing various temperature products (Tins, Tmin, Tmean and Tmax). Several practical uses could arise from 

this outcome. For example, they could be used to detect problems in ground weather stations measurements, 

to provide temperature timeseries for any location within an area of interest, and to feed calculations of 

complex agricultural management parameters, for example the calculation of reference evapotranspiration 

(ETo). The latest can be based only in temperature measurements by applying the Hargreaves – Samani 

approach (Mamasis et al,. 2021) and provide precious information for irrigation water balance models. 
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Abstract   

Monitoring individual dairy cow feed intake is crucial for optimizing feed efficiency and detecting health 

events. In this study, we investigated the effects of camera-to-feed distance and time of day on the relationship 

between estimated feed volume and measured feed weight. An Intel® RealSense D455 camera was 

positioned above a heap of feed (Total Mixed Ration) and was paired with a digital scale to measure feed 

weight. RGB-depth images of the feed were taken across a range of 0.5-20 kg, with increments of 0.5 kg, at 

two different heights (1 m and 2.6 m), and under varying light conditions (morning and afternoon). Each 

setup captured five different shapes for every feed weight, resulting in a total collection of 800 RGB-depth 

images. The Segment Anything deep learning model was used to segment the feed on each RGB image and 

applied the resulting masks to the depth images. After generating a point cloud of the segmented feed, a 

Delaunay 2.5D algorithm was used to create a mesh, and feed volume was calculated by summing up the 

triangle volumes within the mesh. We used a linear model to study the relationship of estimated feed volume 

with feed weight, accounting for camera-to-feed distance and light conditions. We observed an interaction 

between the light condition and weight (P=0.003), with estimated feed volume increasing by 8.4% and 6.7% 

with every 10% increase in feed weight in the morning and afternoon, respectively. Camera-to-feed distance 

was also significantly related to estimated feed volume (P<0.001). The linear model explained 66.5% of 

volume variance at 1 m distance, and only 38.1% at 2.6 m. Therefore, models predicting feed intake of 

individual cows using RGB-depth recordings as input should take into account distance from the camera and 

light conditions. These models would mark an important step towards more sustainable dairy farming.   

Keywords: Feed intake, Computer vision, Precision dairy farming  

1. Introduction 

Individual dairy cow feed intake is closely related to the feed efficiency, feeding behaviour and health 

status of cows. Changes in feeding behaviour are one of the key indicators to predict disease (i.e. mastitis, 

ketosis, and lameness) in dairy cows (González et al., 2008), with diseased cows generally eating less than 

healthy cows. In addition, individual feed efficiency, which is an important trait for more sustainable dairy 

farming, can be estimated based on the feed consumption, together with milk production and composition 

data (Johansen et al., 2018). Therefore, developing an automated system to monitor individual feed intake in 

dairy cows would reduce the amount of feed needed to produce a unit of milk, which would reduce land use 

and improve dairy herd health management at the same time. Moreover, individual feed intake information 

could also support decision-making on the dairy farms, as feed costs represent the main operating cost for 

dairy farmers (Buza et al., 2014). 

Several approaches and tools have been developed to monitor feed intake and feeding behaviour. For 

example, using the Ultra-Wide Band (UWB) system the time spent in the feeder zone can be estimated, 

however, it cannot specify when the animal is eating (Shane et al. 2016). Pressure sensors can also be used 

to monitor chewing movement by attaching them to dairy cows (Ruuska et al., 2016). These sensors give a 

good monitoring performance, but they are only suitable for research due to high cost. A roughage intake 

control bin is a common method for measuring the feed quantity provided and feed intake of individual cows 

in research (Bach et al., 2004; Chapinal et al., 2007; DeVries et al., 2003; Ferris et al., 2006; Krawczel et al., 

2012). However, these bins are not applicable on commercial farms due to their high investment costs and 

the frequent cleaning required. 

A more affordable option to monitor feed intake in practice would be to use a computer vision-based 

approach to measure feed intake. Some computer vision-based systems determine a linear correlation 

between the image features, e.g. the volume of a feed pile, and the pile’s actual weight. The weight of the 

feed pile can be calculated by using depth cameras by calculating the volume of point clouds received directly 

from the camera (Borchersen et al., 2018; Lassen et al., 2018; Shelley et al., 2016). 

A Time-of-Flight (ToF) camera measures the distance from the camera to an object by emitting and 
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sensing infrared light. The camera only obtains useful images when shielded from sunlight, as sunlight 

naturally contains infrared light. Studies have found it difficult to achieve reliable results due to sunlight 

interference with the cameras' infrared sensors (Borchersen et al., 2018). These methods can be impractical 

on a commercial farm mainly because of their sensitivity to sunlight. A computer vision approach based on 

deep learning algorithms has been studied and investigated in recent years. The deep learning model learns 

different features and representations of image data. (Bezen et al., 2020) investigated the use of RGB and 

depth images with the use of computer vision and with light variation conditions. They propose that using 

the differences between two feed pile images, subtracting the image of the pile after the meal from the image 

of it before the meal can decrease the final error prediction; however, the proposed method was developed 

for short distances, which is not practical in a barn.  

In this study, we investigated the effects of camera-to-feed distance and light conditions on the 

relationship of estimated feed volume with feed weight, using RGB-depth images. More information on these 

effects can facilitate the development of accurate feed intake prediction models on dairy farms, using 

computer vision. 

2. Materials and Methods  

2.1. Data collection and workflow 

An Intel® RealSenseTM D455 depth camera was installed at the Dairy Campus research facility of 

Wageningen University and Research (Leeuwarden, the Netherlands). The camera was placed on a frame 

above a pile of feed (Total Mixed Ration), and the feed weight was measured using a digital scale with 0.1 

kg accuracy. RGB-depth images of the feed were captured within a 0.5-20 kg range (with 0.5 kg increments) 

at two different vertical distances from the camera (1 m and 2.6 m), under two light conditions (morning and 

afternoon light) in the barn. Five different shapes were captured for each feed weight in each setup. In total, 

800 RGB-depth images were collected. An example of one weight (i.e. 6kg) with five different shapes is 

shown in Figure 1. 

  

(a) (b) 

 

Figure 1. RGB and depth images of five distinct shapes within a 6 kg feed pile captured at (a) a distance of 

1 meter and (b) a distance of 2.6 meters. 

2.2. Image pre-processing and segmentation 

The orientation of the wooden frame placed below the feed pile was detected for each setup and applied 

automatically to all images within the set to crop the RGB and depth images. An open-source deep learning 

algorithm for image segmentation, "Segment Anything", was used to segment the feed pile within the RGB 

image (Kirillov et al. 2023). Two points on the feed were randomly selected in the image for each distance 

AgEng 2024 Proceedings

556



(1m, 2.6m) and used as input with the RGB image to the Segment Anything model. Image pre-processing 

and segmentation is shown in Figure 2. 

 

 

 

 

 

 

 

(a) (b) (c) 

 

Figure 2. Feed segmentation. (a) Cropped RGB image with two points as inputs of segmentation model 

(b) Segmented mask output from the segmentation model, (c) Segmented feed 

2.3. Point cloud and Mesh creation 

The RGB and depth images were used to create a point cloud with Open3D, a Python library for 3D data 

processing (Zhou et al., 2018). To compute the volume from the point cloud, a mesh is needed. To transition 

from the point cloud to the mesh, a surface reconstruction algorithm called Delaunay 2.5D was used (Bobach 

et al., 2007). In a point cloud, each point has associated 3D coordinates (x, y, z), obtained from the depth 

sensor. However, the points themselves do not inherently represent a surface; they are merely scattered points 

in space. The Delaunay 2.5D surface reconstruction method involved several steps: first, the point cloud data 

was projected onto the XY plane by removing the Z-coordinate, creating a set of 2D points. Next, the 

Delaunay triangulation algorithm was applied to these 2D points to generate a set of triangles covering the 

2D surface. Then, each triangle's 2D vertices were replaced with their corresponding 3D vertices from the 

original point cloud, extending the triangulation into 3D space while preserving connectivity. Finally, the 

resulting set of triangles with 3D vertices represented the surface reconstruction of the original point cloud, 

achieving a Delaunay 2.5D approach for surface reconstruction. Figure 3 shows an example of a point cloud 

and the reconstructed mesh. 

  

(a) (b) 

Figure 3. An example of (a) point cloud and (b) mesh creation for 3 kilogram feed, captured from 1 m at 

morning light. 

2.4 Statistical analysis 

To test the relationship of the estimated feed volume with camera-to-feed distance and light conditions, 

a linear model was fitted to the data with log-transformed feed volume as the dependent variable, and log-

transformed feed weight, camera-to-feed distance (1 m vs. 2.6 m), light condition (morning vs. afternoon), 

and all two-way interactions as explanatory variables. Observations with standardized residuals greater than 

2 in absolute value were removed as outliers. After removing the non-significant interactions (P>0.05), the 

final model included log-transformed feed weight, camera-to-feed distance, light condition, and the 

interaction between log-transformed feed weight and light as explanatory variables. Statistical analyses were 
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performed in R version 4.3.1 (R Core Team, 2023). The level of significance was set to P≤0.05. 

3. Results and Discussion 

3.1. Feed volume estimation 

The estimated feed volumes from different camera-to-feed distances and light conditions are shown in 

Figure 4. We observed more variation in the volumes within weight estimated from 2.6 meters, as expected, 

because of the lower accuracy of the depth images and the incomplete point clouds as a result.  

 
 

 
Figure 4. Feed volumes estimated at different light conditions (morning and afternoon) and camera-to-

feed distances (1 m and 2.6 m) 

3.2. Relationship of feed weight and feed volume at different distance and light setups 

Log-transformed weight (P<0.001), camera-to-feed distance (P<0.001), and light conditions (P<0.001) 

were related to the estimated volume, moreover, the interaction of log-transformed feed weight and light was 

also significant (P=0.003). Every 10% increase in feed weight increased estimated feed volume by 6.7% in 

the afternoon. On the other hand, the same increase in feed weight increased the estimated volume by 8.4% 

in the morning (Figure 5.). Camera-to-feed distance also influenced the estimated volumes, as feed volumes 

recorded from 2.6 m were larger than those recorded from 1 m for the same weight (Figure 5). When fitted 

separately by distance, the model explained 66.5% of volume variance at 1 m distance, but only 38.1% at 2.6 

m, probably reflecting the noisier measurements from the higher distance. 

Therefore, camera-to-feed distance plays an important role in estimating the volume of the feed and 

should be considered when predicting feed weight from the estimated feed volume. In practice, cameras 

should not be placed close to cow level because of the risk of damage. One option would be to choose a high-

quality camera that can capture accurate depth images even from larger distances. Light condition also plays 

an important role, and its effect should be minimized when building prediction models to phenotype feed 

intake of individual cows using depth images as inputs in practice. 
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Figure 5. The relationship of log-transformed feed weight with log-transformed feed volume at different 

camera-to-feed distances and light conditions 

 

4. Conclusion 

The vision-based approach to estimate the feed volume and related feed weight can be a good approach 

as it is scalable, non-invasive, and cost-effective. However, the effects of distance and light should be taken 

into account for further model development. 
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Abstract 

Germination monitoring in crucial: it aids in planning and maximizing crop yields, contributing to 

sustainable agriculture practices. Furthermore, in the cultivation of Cannabis sativa L., precise control over 

the number of plants during the germination process is critical due to legal and regulatory restrictions. To 

assist growers in tracking germination progress, we planned to developed a classifier that informs them 

precisely when a plant has successfully germinated in the seedbed. A well-curated dataset is essential for 

teaching the algorithm to recognize different features. The dataset should encompass a diverse range of 

examples to ensure that the classifier can accurately identify and categorize instances it encounters during its 

operation. The quality and diversity of the dataset play a pivotal role in the performance and reliability of the 

developed classifier. Due to the limited information available on cannabis crops, we undertook the task of 

constructing an image dataset from the ground up. This dataset was meticulously crafted through a rigorous 

process. To build the dataset, we sow two varieties of cannabis, Finola and Kompolti, in separate seed trays, 

each containing 72 cells, in a greenhouse. A camera fixed above the seedbeds took one image every hour 

throughout the germination experiment. Four iterations were carried out: two without controlling climatic 

conditions, and two with controlled conditions and photoperiod. Then, we cropped the images and applied a 

homography process to correct perspective. The resulting images of each cell for each date and hour were 

labelled using six categories. first, the images were labelled considering the categories germination, non-

germination, only cotyledon, and true leaves, then, they were labelled again using the categories invasion 

and non-invasion. The result was a comprehensive dataset comprising 80,640 images of seedbed cells 

showcasing plants at various growth stages. This paper outlines the step-by-step process employed in creating 

this image dataset. 

Keywords: Cannabis sativa, germination, artificial vision. 

1. Introduction 

Seed is the most important input in agriculture, thus the need to ensure viability (Basu, 1995) and vigour 

(Dornbos, 1995). Seed vigour refers to both the ability and strength of a seed to germinate successfully and 

establish a normal seedling. Germination and seedling development monitoring is very time consuming and 

requires well trained technicians, resulting in very high personnel costs. Besides, classification process is not 

uniform and depends on skills and personal circumstances, which justifies the attempts to automate these 

tasks (Ureña et al., 2001).  

Systems for monitoring seed germination based on artificial vision have been developed. Some of these 

systems are based on images of the seeds germinated in an incubator or in Petri dishes, recorded with a fixed 

frequency, in which seed evolution was analysed. Ducournau et al. (2004) designed a machine vision system 

to count the number of emergent radicle tips in seed lots under controlled lighting, temperature, and 

hygrometric conditions, performing continuous recording of sunflower seed germination at a frequency of 

one shot per hour. Dell'Aquila (2005) used a CCD camera to study broccoli and radish germination, 

monitoring the extent of imbibition phases through the assessment of seed area increase and timing of radicle 

emergence detected in individual seeds. Li et al. (2015) used image analysis to calculate the changes in seed 

length. Changes in seed area and length towards radicle emergence over time were used to identify the onset 

of germination. 

Ureña et al. (2001) developed an automatic system for monitoring lettuce, cauliflower and tomato seeds 

germination based on the automatic measurement of leaf area, followed by classification of these 

measurements within a fuzzy logic-based framework. A mobile high resolution colour CCD camera captured 
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the image and the trays were placed manually. After image acquisition and pre-processing, automatic 

calculation of the leaf area of cotyledons and leaves was performed by using image processing algorithms: 

segmentation to obtain separate seedlings and description using leaf area. Seedling detection was based on 

the colour difference between the seedlings (green) and the trays’ rooting media. A pixel was considered to 

be a green one if its proportion of green component was greater than that of its red and blue components. 

Fuzzy logic and expert knowledge was used to classify the degree of development of the seedlings. Since 

they had to work in realistic conditions, they captured images around solar midday trying to minimize the 

influence of light on the shadows and the colour of the images. 

With the development of transplanting robots, machine vision systems to detect seedlings have been 

developed, based on leaf area. Artificial vision is used to identify and locate empty positions in the seedling 

tray. Ryu et al. (2001) developed a robotic transplanter that used a vision system to detect empty cells in 

high-density plug trays by counting and comparing the number of white pixels representing the seedling 

leaves with a predefined value. The vision system was also used to determine the leaf direction of the 

seedlings to minimise damage to them.  

More recently, a vision system was used to measure the leaf area in each cell to distinguish “bad” and 

“good” plugs, achieving relative identification accuracies of seedling quality of 98.6%, 96.4%, 98.6% and 

95.2% for tomato, cucumber, aubergine and pepper, respectively (Tong et al., 2013). An algorithm was 

developed that could segment overlapping leaves from neighbouring cells; additionally, an algorithm was 

developed to calculate the leaf area including intruding leaves. 

Jin et al. (2022) proposed a low-damage transplanting method for leafy vegetable seedlings based on 

machine vision. Image processing based on Python-OpenCV was performed to obtain the seedlings’ height 

and extreme edge points. The pixel coordinates in the RGB image were then obtained, and the depth image 

was aligned with the RGB image to acquire the depth information of the corresponding extreme points. 

Cannabis cultivation is restricted around the world by governments. According to European Monitoring 

Centre for Drugs and Drug Addiction (2018), in the European Union, it is legal to cultivate and supply 

cannabis plants for hemp fibre if they have low levels of THC, the psychoactive substance present in cannabis 

plants. Additionally, medicinal cannabis can be produced if the farmers obtain a license from the Office of 

Medicinal Cannabis (OMC), the organisation in charge of controlling the production and supplying to 

pharmacies. Controlling the number of plants produced during the germination process could be beneficial 

for farmers to comply with license restrictions.  

We propose implementing an integrated architecture to support farmers in the cultivation of cannabis for 

medicinal and industrial purposes. In this architecture, we take advantage of advances from emergent 

technologies like the Internet of Things (IoT), Wireless Sensor Networks, and Artificial Intelligence to 

provide a solution to support the germination process of cannabis plants. Our goal is that farmers can follow 

up on the germination of plants more easily, knowing when the germination occurs, the number of germinated 

plants, and other relevant information from the cultivation environment.  

In order to assist farmers in monitoring germination, our aim is to develop a classifier that enables them 

to determine the number of plants that have germinated in the seedbed. Training the classifier requires a 

collection of labelled images.  

Several datasets of cannabis images have been published for various purposes. Eranga et al. (2022) 

published a dataset containing different climate, soil, and yield data related to cannabis cultivation. Chumchu 

and Kailas (2023) released a dataset of cannabis seed images for machine learning applications. The same 

authors (Kailas and Chumchu, 2024) published a dataset for botanical exploration, including images of entire 

plants. However, none of these datasets include images of the plant's germination process. 

Due to the limited information available on hemp cultivation, we have created a dataset. In this paper, we 

outline the rigorous process undertaken to capture, clean, label and organise the images to ultimately generate 

the dataset necessary for training the classification algorithm. 

2. Materials and Methods  

We work in a greenhouse where we deploy sensors to monitor ambient conditions. The greenhouse’s size 

is approximately 56 square meters (9.75 m x 5.83 m), distributed in six crop tables, one of which was used 

for the germination experiment. The greenhouse can automatically control environmental conditions like 

temperature, humidity, and lightning. We have deployed a web platform to monitor and control the distinct 
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parameters in the greenhouse. We can access the sensors using the web platform and query the data gathered. 

We have also configured notification services to get alerts when a parameter is out of range or a sensor is 

disconnected. In Fig. 1, we show the distinct subsystems deployed in the greenhouse. 

 

Figure 1. Greenhouse components 

2.1. Germination experimental setup 

Seeds of two varieties of Cannabis sativa L. were sown: Finola and Kompolti. The research group has a 

license from the Spanish Agency of Medicines and Medical Devices (AEMPS) to cultivate these hemp 

varieties. Finola is an oilseed hemp variety and was admitted to the European Union's list of subsidized crops 

in February of 2003. Kompolti is cultivated industrially and used for cosmetics, oils and even flours. 

Each variety was sown in a 72-cell seedbed. The substrate was a mixture of blonde peat (65%), coconut 

fibre (20%), perlite (10%), and black peat (5%). During the germination tests, the substrate moisture was 

maintained by manually spraying the seedbeds with osmotised water with a pH of 6.2 and an electrical 

conductivity of 1.2 mS·cm-1. 

We conducted four iterations each lasting 14 days since seeding. Two iterations were carried out without 

environmental control and two iterations were conducted under controlled conditions: the ambient 

temperature of the greenhouse was maintained between 18 and 26 ºC, the relative humidity between 55 and 

80 %, and a photoperiod of 18 hours. 

We put a camera above the seedbeds and connected it to a Raspberry Pi 4B. We created a python script 

to control the camera and take pictures. During each iteration, a photo was taken every hour. In Table 1, we 

detail the camera's specifications used in the experiment. Only the camera's focus was adjusted for the initial 

setup to avoid blur in the result images. 

Table 1. Camera specification. 

Camera model  Arducam 64 MP Auto-focus Camera 
Optical size  Type 1/1.7” 
 9.25 mm Diagonal (7.4x5-55 mm) 

Focus type  Manual/Auto 
Sensor resolution  9152x6944 
Color filter  Quad Bayer Coding (QBC) 
Focus  8cm 
Focal ratio (F-stop)  F1.8 
Focal length  5.1 mm 
View Angle  84 degrees (diagonal) 
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2.2. Images captured from overhead camera 

Figure 2 shows an example of the image captured by the camera. We put drawing pins in the corners of 

the seedbeds for later processing of the photos. After completing each iteration, we collected the images and 

prepared the next iteration. Then, we created a python script to process the images. At the beginning of the 

process, we applied filters to clean the image and reduce the noise. Then, by using the drawing pins and 

Hough Circle Transform (Yuen et al., 1989), we detected the four corners of the seedbeds. After that, we 

used the coordinates of each corner and applied a Homography process (Hartley and Zisserman, 2004) to 

correct and align the image. At the end of the process, we cut the resultant image to get each cell of the 

seedbed. The whole process is detailed in Figure 3. 

 

 
Figure 2. Example of an image captured by the camera. Left: Finola hemp variety samples. Right: 

Kompolti hemp variety samples. 

 

 

 

Figure 3. Images pre-processing steps. 

 

To finish this process, we saved the images of cells. An automated labelling process was employed, 

wherein each image from the seedbed was cropped and assigned a name indicating the variety, iteration, day, 

time, and position within the seedbed. The cells were renamed as follows:  
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Variety_iteration_day_hour_cell-Row_cell-Column.jpg 

For example: Finola_1_1_10_3_5.jpg. 

Table 2 shows the possible values of the automatic labelling. Each iteration lasted 14 days. Every day 10 

pictures were cropped, starting from 8 to 17 or from 9 to 18, according with the sun hours. Experiments were 

conducted during November 2022 to January 2023. 

Table 2. Automatic labelling. 

Label Possible values 
Variety  Finola / Kompolti 

Iteration 1/2/3/4 

Day 1/2/3/4/5/6/7/8/9/10/11/12/13/14 

Hour 1/2/3/4/5/6/7/8/9/10 

Row 1/2/3/4/5/6/7/8/9/10/11/12 

Column 1/2/3/4/5/6 

2.3. Pre-processed images  

Figure 4 shows an example of the images pre-processed for a seedbed cell at days 6, 10, and 14. The 

pictures of Figure 4 correspond to a Finola hemp variety sample. Therefore, these images are easy to classify. 

 

 

Figure 4. Example of images for the same cell at day 6 (left), 10 (center), and 14 (right). 

Figure 5 shows examples of cells that are more difficult to classify. They correspond to different scenarios 

such as the presence of a plant sprouted in an adjacent cell, whether there is germination in the cell or not, or 

a plant whose leaves are not visible in the picture. This often occurs when the stems grow and bend. 

 

 
Figure 5. Examples of scenarios where a plant is present, not always indicating germination in the cell. 

Left: plant leaves are missing, yet a germinated plant is present. Centre: neighbouring plant leaves alongside 

a germinated plant in the cell. Right: presence of a neighbouring plant, but no germinated plant within the 

cell. 

Once we got images representing cells at different times, we labelled each one. To do that, we conducted 

two labelling phases and used six categories. The categories and stages are detailed in Table 2. 
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Table 2. Labelling phases and categories. 

First labelling phase  Second labelling phase  
- Non-germination       NG   

- Germination G - Invasion I 

    + Cotyledon Only CO - Non-invasion NI 

    + Cotyledon and True Leaves TL   

 

By combining two labels, we can support the correct classification of cells in germination.  

For example: in general, a cell with the label Germination and Invasion means the presence of a plant. 

On the other hand, Non germination and Non Invasion correspond to not presence of a plant inside the cell. 

Meanwhile, there are another two cases in which a plant can be presented in a cell, when it is labelled as 

Germination and Non Invasion, and when it is labelled as Non germination and Invasion. 

3. Results and discussion  

A dataset has been created consisting in 80,640 images. 

The images underwent thorough cleaning and organization processes, followed by the assignment of 

appropriate names and labelling. The dataset was meticulously curated to ensure consistency and accuracy 

in its contents. 

The first automated labelling ensured efficient organisation and categorisation of the dataset, laying the 

groundwork for subsequent manual labelling and analysis. The systematic naming convention adopted 

facilitated easy retrieval and referencing of individual images during the dataset creation process, 

contributing to the overall coherence and accessibility of the dataset for research purposes. 

Following the automated labelling process, manual labelling was conducted to further categorise the 

images based on several criteria. Each image was manually classified according to the presence of germinated 

plants, distinguishing between images depicting seedlings with only cotyledons and those exhibiting true 

leaves. Additionally, images were annotated to identify instances of plant invasion from adjacent cells. This 

meticulous manual labelling process enabled the creation of a richly annotated dataset, providing valuable 

insights into the progression of seedling development and interactions within the seedbed environment. 

The combination of automated and manual labelling strategies ensured the accuracy and granularity of 

the dataset, enhancing its utility for a wide range of research applications in plant biology and agriculture. 

Table 4. Example of a doubly labelled image from the dataset. 

Image Variety Iteration Day Hour Row Column Classes 

Finola_it1_6_1_3_2.jpg Finola 1 6 1 3 2 I/CO 
 

 

The dataset provides researchers with a valuable resource for studying seedling development and related 

phenomena. 

Having a dataset of seed germination images is of paramount importance for future research worldwide. 

These datasets serve as invaluable resources for scientists and researchers across various fields, providing a 

rich source of data to study the intricate processes involved in seed germination.  

By collecting and curating such datasets, researchers can gain insights into the factors influencing 

germination rates, timing, and success, thereby advancing our understanding of plant biology and agricultural 

practices.  

This dataset enables the development and validation of machine learning algorithms and computer vision 

techniques for automated seed germination detection and analysis, paving the way for innovative solutions 

in precision agriculture and crop management. 

This dataset can be further enhanced by incorporating images of germinated cannabis plants exhibiting 

various stress conditions such as nutrient deficiencies, water stress, pest infestations, and diseases. It can also 

be supplemented by incorporating images of hemp plants in later stages of development. 

By augmenting the dataset with these additional images, it will be possible to train more sophisticated 

algorithms capable of accurately detecting and diagnosing a range of pathophysiological conditions.  

Having a dataset with images of cannabis plants at more advanced stages of development may allow to 
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determine the sex of the plants at an earlier stage, which is particularly important for cannabis cultivation, 

where the identification of male plants is crucial to prevent them from pollinating female plants. It would be 

also possible to perform a detailed analysis of the growth patterns and morphological changes over time and 

to predict the potential yield of the crop.  

4. Conclusion  

In this work, we have presented the creation of a dataset comprising images of cannabis seed germination 

for the Kompolti and Finola varieties. This dataset has been meticulously and rigorously developed, 

encompassing the entire process from image capture, pre-processing, and cropping of individual seedbed 

cells, to the systematic naming and labelling of the resulting images. Each cell was labelled to indicate the 

presence or absence of germination, whether the seedling exhibited only cotyledons or true leaves as well, 

and whether invasion from an adjacent cell was observed. 

This dataset will enable the training of an algorithm for the automatic classification of seedbed images. It 

represents the first systematic dataset published with images of Cannabis sativa germination. The publication 

of this dataset will provide a valuable resource for researchers needing high-quality images to train their 

algorithms. 

Moreover, the dataset can be further enhanced by incorporating images of plants affected by pests and 

diseases or images of plants at more advanced stages of development. This would facilitate the training of 

more sophisticated algorithms capable of detecting a broader range of conditions and traits, thereby 

expanding the utility and impact of this resource. 

By making this dataset available, we aim to support the scientific community in advancing research in 

cannabis cultivation, ultimately contributing to improved agricultural practices and plant health monitoring. 
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Abstract 

Optimization-based control of greenhouses and indoor farms has gained popularity due to the growing 

demand for energy-efficient and sustainable crop production. Model Predictive Control (MPC) is an ad-

vanced optimization-based control strategy that regulates the greenhouse climate based on a mathematical 

model and weather forecast data. Despite gaining popularity among researchers, the acceptance of this 

method among suppliers of greenhouse climate control systems and growers remains limited. The primary 

reasons are the lack of transparency and the understandability of the control algorithms. Additionally, there 

is difficulty in quickly comprehending the output generated by the control algorithm for various goals and 

grower-defined bounds. In this paper, we introduce a language-based support system designed to offer a 

comprehensive summary of the greenhouse’s single-day climate trajectories. The language-based support 

system as a first step, dynamically segments the generated time-series reference data to identify the signifi-

cant slope change. Secondly, the Natural Language Generation (NLG) method is employed to generate 

meaningful and coherent long texts of the generated non-linguistical data. The detailed long texts are final-

ly condensed into user-friendly information using a pre-trained Large Language Model (LLM) by formulat-

ing an output-focused prompt. The proposed support system aims to act as a bridge between proven ad-

vanced control and real-time implementation of optimal control in Controlled Environment Agriculture 

(CEA) farms.  

Keywords: Natural language generation, model predictive control, time-series to text, large language mod-

els 

1. Introduction 

The projected increase in the global population from 7 billion in 2010 to an estimated 9.8 billion by 

2050 is predicted to lead to a significant 50% rise in food demand (Searchinger et al., 2019). However, the 

necessity to boost food production encounters significant obstacles, as the expansion of agricultural land is 

limited by rapid urbanization and the adverse effects of climate change. Thus, the adoption of sustainable 

techniques is becoming more and more crucial in the field of agriculture. Controlled Environment Agricul-

ture (CEA) farms like greenhouses, vertical farms, and indoor farms have gained popularity due to their 

capability to maintain the climate and produce high yields in limited space. However, the efficient and sus-

tainable operation of CEA farms relies on the automatic control of climate to influence crop growth.  

In greenhouses, classical control methods like on/off and Proportional-Integral-Derivative (PID) control 

are employed to regulate temperature and humidity (Iddio et al., 2020). Apart from these methods, Model 

Predictive control (MPC) has demonstrated its ability to achieve energy-efficient operations economically 

(Van Beveren et al., 2015; Padmanabha et al., 2020). Employing a hierarchical control scheme based on 

timescale decomposition facilitates the implementation of MPC by mitigating its intricacy and computa-

tional load in complex systems such as greenhouses (Van Henten et al., 2009). Additionally, it contributes 

to heuristic performance evaluation, encompassing factors like energy consumption, irrigation water use 

efficiency, and maximum yield (Ramírez-Arias et al., 2020).  

The current state of computerized control in greenhouse farming poses challenges due to the lack of un-

derstanding and the complexity of the control algorithm in generating the programmable trajectories. Modi-

fications to these trajectories can significantly impact energy consumption, resource utilization, and crop 

growth, yet the exact effects remain largely unknown to growers (Van Straten et al., 2010). As a first step 

towards understanding the control algorithm, this paper proposes providing textual descriptions of refer-
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ence trajectories generated within a hierarchical control framework using a Natural Language Generation 

(NLG) method.  
NLG is a branch of artificial intelligence and computational linguistics focused on developing computer 

systems capable of generating understandable texts in human languages, like English, from non-linguistic 

representations of information. NLG finds diverse applications, including generating reports for soccer 

matches, weather forecasts, financial reports, and clinical summaries (Gatt et al., 2018).  

In this paper, our goal is to develop a data-to-text generation method to summarize reference trajecto-

ries, explaining the planned climate conditions of a greenhouse. Sharma et al. (2021) propose T3 - a do-

main-agnostic neural approach for time-series narration, leveraging transfer learning from a pretrained 

Large Language Model (LLM). The universal nature of T3 may limit accuracy for specific fields like 

greenhouses or vertical farms. Furthermore, the absence of a training dataset for greenhouse climate and its 

description, necessitates an alternative approach. 
Therefore, we propose using a rule-based modular NLG approach for generating the summary. Initially, 

the data undergoes analysis, and significant change points are detected using temporal analysis techniques. 

These change points serve as input to the NLG algorithm. The NLG output comprises a detailed report, 

which is then summarized using an LLM to generate a concise report based on a predefined prompt. This 

language-based support system aims to empower growers with insights into the anticipated outcomes for 

the next day's operations and lays the groundwork for future iterations of the control algorithm. 

2. Hierarchical Model Predictive Control of the Greenhouse  

MPC is a control scheme where a dynamic mathematical model is employed to predict the system's fu-

ture behaviour over a finite horizon. Based on these predictions and the previously measured state of the 

system, optimal control inputs are generated on solving a constrained dynamic optimization problem with a 

user-defined objective (Rawlings et al., 2017). An economic objective function to maximize the yield and 

minimize the growing costs is of special interest to the greenhouse system. 

2.1 Greenhouse System Description  

We consider a Venlo-type semi-closed greenhouse growing tomato crop. The greenhouse climate is de-

fined in terms of temperature (T), CO2 concentration (C), and relative humidity (H) of the air inside the 

greenhouse. The crop growth is defined as the fresh weight biomass (B), estimated using an observer. The 

variables x = (T,C,H,B) describing the current status of the greenhouse are called the states of the green-

house system. These variables are influenced by various control inputs, including ventilation, CO2 injection, 

heating, and cooling, collectively termed control inputs (u) of the system. Additionally, external variables 

such as outdoor temperature, CO2 levels, relative humidity, and solar radiation known as disturbances (d) of 

the system affect the greenhouse climate. For the mathematical model equations describing the greenhouse 

climate dynamics and crop growth, refer to Sathyanarayanan et al. (2024). The dynamic system is summa-

rized as 

 

 

The greenhouse climate has a direct effect on crop growth and health, and it is essential to maintain them 

within defined bounds, see e.g. Sanchez-Guerrero et al. (2005), Zarnescu et al. (2019). 

2.2 Hierarchical Control Strategy 

The complexity and the computational burden of the MPC problem increase with increasing prediction 

horizon (e.g. one day or one week). The hierarchical control strategy decreases the complexity by decom-

posing the problem into smaller subproblems and arranging it in a hierarchical tree. A two-level hierar-

chical framework of greenhouse control shown in Figure 1 is considered, and for further details see Sathy-

anarayanan et al. (2024). The control framework consists of an open-loop optimization problem in the up-

per level and a reference tracking MPC in the lower level. With an objective to maximize yield and mini-

mize growing costs, the upper level generates the input and state reference trajectories 𝑥ref, 𝑢ref for a single 

day using forecast data of d. Then, the lower-level controller tracks these generated references in real time.  

  (1) 
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Figure 1. Hierarchical control of the greenhouse 

3. Language Support System (LSS) Architecture 

The time series data (reference trajectories) generated from the upper level of the hierarchical control is 

the foundation of our architecture. The architecture as shown in Figure 2 is developed using the insights 

from Section 2, and these reference trajectories are the input to the LSS. These trajectories are instrumental 

in extracting meaningful insights from the dataset, which includes measurements of key state variables. 

Each observation in the dataset is recorded at a frequency of 5-minute intervals, covering the entire 

duration of a single day, from 00:00 to 23:55. 
 

 

 

 

 

 

Figure 2 AI-enhanced language support system architecture 

3.1 Temporal Analysis Techniques 

Temporal analysis involves observing data over a period to perceive its behaviour, with a primary 

emphasis on identifying patterns, trends, and alterations that occur over time. The focus is on 

comprehending the dataset's temporal evolution by constructing trajectories and investigating change point 

identification techniques to detect notable shifts or transitions within the dataset. 

3.1.1 Change Point Detection  

The process of detecting change points in time series data is a complex task that involves identifying 

abrupt variations, which may signify transitions between different timestamps (Kawahara and Sukiyama, 

2012). A key aspect of this process is the minimization equation, which is crucial for selecting the optimal 

segmentation S and is formally defined as a model selection problem. Over the last few decades, 

researchers have developed numerous methods for identifying change points. A comprehensive analysis of 

the most common methods can be found in Aminikhanghahi and Cook (2017). Based on the dynamic 

changes of the state variable, we used an unknown change point detection method (Troung et al., 2019). 

Three different approaches are used: Pruned Exact Linear Time (PELT) (Killick et al., 2012), Cumulative 

Summation (CUMSUM) (Wei and Xei, 2023), and Exponentially Weighted Moving Average (EWMA) 

(Raza et al., 2015). After evaluating their performances in Section 4.1, we select the best approach that 

suits our dataset. 
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3.1.2 Slope Segmentation 

In the previous section, we introduced various change point detection methods and their significance in 

analysing our greenhouse dataset. To analyse the data further, we employed slope segmentation. This 

technique involves fitting linear regression models to relevant data segments to determine each segment's 

slope. By comparing these slope values between adjacent segments, we can detect abrupt shifts indicative 

of potential future changes (Sharma et al., 2023). Using slope segmentation, we applied customized criteria 

tailored to the unique features of our greenhouse dataset. Such criteria allow us to classify segments based 

on their temporal properties, providing a deeper understanding of the dataset's dynamics. This customized 

strategy improves the level of detail in our analysis, enabling us to extract deeper insights from the dataset. 

3.2 Natural Language Generation and Prompt Engineering 

NLG is a branch of Artificial Intelligence (AI), plays a significant role in the interpretation of data. It 

automatically generates natural language text from structured data or other input forms. NLG systems, 

utilizing various techniques, convert data into a coherent and contextually appropriate language, mirroring 

human communication. 

3.2.1 Document Planning 

Data-driven NLG approaches leverage machine learning algorithms and statistical models to analyse 

and understand text. These methods learn patterns and associations directly from data, such as extensive 

collections of text corpora, without relying on predefined rules or linguistic knowledge. By learning from 

data, these approaches can capture complex patterns and nuances in natural language, leading to more 

accurate and robust NLG systems. In NLG document planning, it acts as a critical intermediary, converting 

time series data into a human-readable format. It is the link between raw data interpretation and the final 

text generation. We created comprehensive documents tailored to temperature, humidity, and CO2 levels. 

3.2.2 Prompt Engineering 

Prompt engineering involves systematically designing and optimizing input prompts to guide the 

responses of LLM, ensuring accuracy, relevance, and coherence in the generated output. This process is 

essential for unlocking the full potential of these models, making them more accessible and applicable 

across diverse domains. Contemporary prompt engineering includes a range of techniques, from 

foundational approaches like role-prompting (Shanahan et al., 2023) to more advanced methods such as 

"chain of thought" prompting (Wei et al., 2022).  

Researchers have observed that a Generative Pre-trained Transformer (GPT-4) (OpenAI et al., 2023) 

produces overly general output when provided with basic instructions without explanation (Luo et al., 

2019). This instruction technique, sometimes called re-reading, utilizes human reading strategy heuristics 

(Xu et al., 2023). The model faces a wide range of alternatives when given basic instructions, which result 

in a comprehensive outcome (Yang et al., 2019).  

Most LLM systems employ a wide range of textual data, a compilation of concepts from many authors. 

When given broad or ambiguous prompts, the model usually produces general output suitable for various 

scenarios but may not be optimal for a particular case. Conversely, a clear and detailed prompt allows the 

model to produce data that almost matches the unique requirements of the given case. These 

recommendations reduce the uncertainty and drive towards more accurate responses (Chen et al., 2023).  

4. Evaluation and Result 

We evaluated the time series data, i.e. the reference trajectories generated by the upper level of 

hierarchical control. From this simulated data, we randomly selected 20 days for evaluation. This dataset 

comprises simulated observations of state variables. These simulated observations are recorded at regular 

intervals, reflecting the dynamic nature of the greenhouse environment over the specified time frame. The 

above-mentioned change point detection methods are implemented and evaluated based on three key 

metrics: the coefficient of determination (R2), F1 Score and Jaccard Similarity. These metrics provide 

comprehensive insights into the performance and effectiveness of the change point detection method 
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concerning the available greenhouse dataset. 

4.1 Evaluation of Change Point Algorithms 

In Table 1, we identified change points for each of the algorithms. Then, a piecewise linear regression is 

placed to estimate the relationship between these points this correspond to  estimates. This allows us to 

compare the R2 values generated by different algorithms across various state variables, providing insight 

into the goodness of fit between segments. The formula for calculating R2 is:  

 

 

In the context of our analysis,  represents the actual observed values of the dependent variable (e.g. 

state variables) at each data point 𝑖 obtained directly from the dataset. On the other hand,  represents the 

predicted values of the dependent variable at each data point 𝑖 as estimated by the piecewise linear 

regression model fitted to the data. 

Table 1: Comparison of R2 values for different state variables and algorithms 

Parameter Algorithm 

           PELT                        CUMSUM                  EWMA 

T 0.7491 0.8839 0.8826 

C 0.7117 0.012 0.2010 

H 0.3995 0.2178 0.1461 

 

From the Table 1, we can see that the PELT algorithm performed better than the others in most cases, 

showing that it is good at predicting changes in the greenhouse environment. The F1 score is a harmonic 

mean of precision and recall, offering a single metric that balances both precision and recall, with higher 

values signifying better performance in binary classification tasks (Nancy, 1992). To establish change 

points for the F1 score, we manually labelled potential change points for all randomly selected 20 dates and 

each state variable. These potential change points were determined by visual inspection of the data. 

Subsequently, we utilized the PELT algorithm to identify change points automatically. By comparing the 

manually labelled change points with those identified by the PELT algorithm, we computed the F1 score 

for each algorithm in Table 2, the average F1 score (AvgF1) can be calculated using the formula: 

 

 

 

where n represent the total number of samples, i is the index representing individual sample and F1i is the 

sample of F1 score for ith sample. The Jaccard similarity quantifies the similarity between two sets by 

comparing their intersection to their union. It is beneficial for evaluating the overlap or agreement between 

two state variables, as shown in Table 2, where a higher Jaccard Similarity score indicates a greater degree 

of similarity or overlap, while a lower score suggests more divergence or dissimilarity (Levandowsky and 

Winter, 1971). Weight F1 and Weight Jaccard weights are chosen based on the relative importance of 

precision (captured by F1 score) and similarity (captured by Jaccard score) in the context of the application. 

As both F1 and Jaccard scores lie between 0 and 1 and need to be maximized, we assign equal weights to 

reflect their relative significance in the combined score calculation. 

 

The combined score (Combined Score) for an algorithm can be calculated as 
 

 

 

 

  (4) 

     (2) 

   (3) 
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Table 2: Comparison of F1 score, Jaccard similarity and combined metrics for different algorithms 

Algorithm F1 Score Avg_F1 Jaccard Similarity Combined Score 

T C H T C H  

PELT 0.0909 0.3636 0.2857 0.2464 0.0476 0.2222 0.1667 0.1961 

CUMSUM 0.1667 0.0 0.2 0.0889 0.0909 0.0 0.111 0.0949 

EWMA 0.0 0.1053 0.2 0.0351 0.0 0.0556 0.111 0.0787 

Therefore, based on the analysis of Table 1 and Table 2, our evaluation, mainly through the combined 

score, which considers both the F1 score and Jaccard similarity across all state variables (T, C, H), provides 

a comprehensive understanding of each algorithm's performance. Among the algorithms assessed, the 

PELT algorithm performs better than others in detecting change points within the dataset. PELT's 

efficiency lies in its computational approach, employing an exact linear time segmentation method that 

proves highly effective for large datasets. This iterative process carefully considers all potential change 

points, selecting the most optimal ones at each step (Killick et al., 2012). 

Despite PELT's initial effectiveness, we recognized the need for further refinement to optimize its 

performance. This led us to fine-tune crucial parameters, such as penalty and jump values, to balance 

detecting change points and ensuring segment fit. The penalty value regulates the number of change points 

detected, while the jump value influences the algorithm's sensitivity to small changes in the data. Through 

evaluation of various parameter combinations, we identified that a penalty value of 10 and a jump value of 

6 yielded the best fit. This optimization, supported by visual examination and goodness of fit evaluation, 

ensures PELT's optimal performance in accurately detecting change points within our greenhouse dataset. 

4.2 Slope Segmentation Analysis 

      A slope calculation approach is employed to identify trends between two dataset segments. The slope 

calculation function assigns descriptive labels to the calculated slopes based on their magnitude, which is 

customized to this research and can be adjusted for different systems. (i.e., Mild: Slope values between -

0.03 and 0.03, Decrease: Slope values between -0.1 and -0.03, Sharp Decrease: Slope values between -0.5 

and -0.1, Exponential Decrease: Slope values less than -0.5, Increase: Slope values between 0.03 and 0.1, 

Sharp Increase: Slope values between 0.1 and 0.5, Exponential Increase: Slope values greater than 0.5.) 

This mapping allowed us to identify the trend direction and magnitude, as exemplified by the temperature 

trend illustrated in Figure 3, providing valuable insights into the dataset's behaviour. 

 

 

Figure 3: Change point detection and slope segmentation for temperature reference trajectory 
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4.3 Document Generation Approaches 

The first approach is creating templates containing critical information extracted from the time series 

data. These templates are structured to include relevant details such as daily fluctuations, trends, and 

significant occurrences within the data. For example, in the case of temperature data, the template may 

include sections highlighting daily temperature ranges and significant temperature spikes or drops. 

Similarly, templates for humidity and CO2 levels would focus on capturing fluctuations using mapped_ 

feature_name as shown below. The second approach entails adding annotated slope values to the document 

as description in the document planning, as shown below. 

 

For example, the illustration about the document planning process is shown below:  

1. At the beginning of the day, the {mapped_feature_name} was {start_value:.2f} {unit}.  

2. From {start_hour:02d}:{start_minute:02d} to {last_merged_end_hour:02d}: 

{last_merged_end_minute:02d}, the {mapped_feature_name} experiences {description} from 

{previous_value:.2f} {unit} to {actual_y:.2f} {unit}.  
 

By systematically analysing each feature and segmenting the data, we provide a comprehensive overview 

of greenhouse conditions, facilitating better understanding and decision-making. Due to space constraints, 

our detailed report focuses on a single state, T. However, we have provided a comprehensive report in 

Section 4.4, accommodating all features for summarization results. 

 

Detailed Generated Report 
On June 02, 2011, let us explore how the greenhouse conditions changed throughout the day. At the 

beginning of the day, the Temperature was 14.0 °C. From 07:00 to 09:30, the Temperature experiences an 

Increase from 15.7 °C to 17.3 °C. From 09:30 to 13:30, the Temperature experiences an Increase from 

17.3 °C to 18.5 °C. From 13:30 to 16:00, the Temperature experiences an Increase from 18.5 °C to 19.5 

°C. From 16:00 to 19:30, the Temperature experiences an Increase from 19.5 °C to 20.1 °C. From 19:30 to 

23:00, there was a sudden drop and the Temperature experiences a Mild Decrease from 18.2 °C to 17.2 °C. 

From 23:00 to 23:55, the Temperature experiences a Sharp Decrease from 17.2 °C.  to 16.0 °C. By the end 

of the day at 23:55, the Temperature will be 16:0 °C, reflecting the last observed value  
For the above climate growth conditions, we can see a biomass growth from 17.1 kg/m2 to 17.5 kg/m2.  

4.4 Summarization 

The GPT-4 model is utilized in the summarization process to incorporate sophisticated natural language 

processing techniques. With its ability to comprehend and summarize language, this model is exceptional 

in producing clear and concise abstract paragraphs from transcriptions. It uses the GPT-4 and prompting 

function to summarize the main conclusions from the document planning process. The function 

summarizes the greenhouse conditions at each time of day, as shown below. This summary highlights 

significant trends and variations in temperature, humidity, biomass levels, and CO2 concentration. 
 

Summarized result in GPT-4 
On June 2, 2011, the greenhouse conditions varied throughout the day. The temperature steadily increased 

from 14.0 °C to 19.5 °C before slightly decreasing to 16.0 °C by the end of the day. CO2 levels experienced 

fluctuations, initially decreasing from 859.6 ppm to 954.76 ppm, then increasing to 965.1 ppm, and finally 

decreasing to 865.8 ppm at the end of the day. Relative humidity saw drastic changes, starting at 89.9%, 

dropping to 48.1%, then increasing to 89.9%, and further fluctuating until it reached 96.2% by the end of 

the day. These changes in climate growth conditions led to biomass growth from 17.1 kg/m2 to 17.5 kg/m2.  

5. Conclusions 

This paper presents a language support system architecture utilizing NLG techniques, transforming 

complex numerical data of planned CEA climate trajectory into readable text. We proposed change point 

detection algorithms to find shifts in the data and used slope segmentation to identify trends. Additionally, 

NLG's document planning approach is used to create detailed reports. Finally, concise summaries are 

generated using GPT-4 with pre-defined prompts. Thus, leveraging advanced natural language processing 

techniques to make informed CEA farm management decisions enhances productivity and efficiency. 
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Future research will focus on optimizing the change point detection method in generating more robust and 

accurate results Additionally, exploring advanced visualization techniques aims to present data insights 

more understandably for practical use.  
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Abstract 

Accurate measurement of combine harvester separation process efficiency - the amount of grain separated 

from straw and material other than grain (MOG) - is crucial to process automation and economic efficiency 

in agriculture. Traditional methods rely on structure-borne noise sensors for grain counting. In most combines 

of leading harvester manufactures there is a single sensor line at the end of the separation unit to measure the 

amount of grain within the straw fraction, some manufactures are already using multiple sensors. The signal 

processing underlies disturbance variables like varying grain, field, and weather conditions, which interferes 

with predictions for the separation process. 

This study introduces a novel approach utilizing a large grid aligned sensor network within the combine 

harvester's separation unit, in conjunction with a suite of machine learning regression models. The models 

used to predict the separation efficiency are k-nearest neighbours (k-NN), support vector regression (SVR), 

decision trees (DT), fully connected neural networks (FCNN), convolutional neural networks (CNN), and 

recurrent neural networks (RNN). Through the analysis of sensor and combine setting data represented in 

one-, two-, and three-dimensional spatial tensor formats, we demonstrate that FCNNs and CNNs, especially 

with three-dimensional data representations, yield the highest prediction accuracy, while CNNs are the best 

models when just sensor data is considered. 

Most models achieved validation accuracy, evidenced by an average R² score of up to 90 % with k-fold 

cross-validation on the limited recorded data, thereby proving their reliability across varying conditions. 

Machine learning models like k-NN or DT with an R² score of up to 79 % could not achieve such validation 

results. A major difference between CNNs and most other machine learning models is the inherent focus on 

location-dependent data due to the convolutional calculations, which indicates to be the main benefit in 

analysing separation processes. 

 

Keywords: separation process, separation efficiency, sensor network, machine learning, neural networks 

1. Introduction 

Grain harvest is a seasonal process within a short period of time. The separation efficiency, which is the 

amount of grain separated from straw and material other than grain (MOG), must be as high as possible to 

minimize grain losses. The separation efficiency is crucial to process automation and economic efficiency of 

combine harvesters (P. Miu, 2015). 

Using single sensors and polynomial functions (S. Nath et. al., 1982) was the first approach to predict 

grain losses. Structure-borne noise sensors were used for impulse measurements as grain counting signals. 

Soon after, the polynomial models and the sensor systems were developed further and the models were fit on 

multiple sensors, which were installed under the separation unit (A. Bjork, 1990; C. Liu, 1990; C. Liu and J. 

Leonard, 1993). For grain counting, the piezoelectric sensors (S. Meyer zu Hoberge and U. Hilleringmann, 

2011) and acoustic sensor systems (J. N. Gelinske et. al., 2015) have become common. The manufacture 

AGCO protected by patent using multiple sensors at specific positions (J. Koch et. al., 2019). 

While grain loss monitors can directly be used as input value for machine optimization algorithms based 

on machine learning models like neural networks (NN) (T. M. Gundoshmia et. al., 2020; T. Kösters and O. 

Nelles, 2023), machine learning models can be designed as virtual grain loss sensors, which are based just 

on combine settings (M. Isa Bomoi et. al., 2023). The manufacture John Deere protected by patent a specific 
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model of virtual grain loss sensors based on NNs as reference for the physical grain loss sensors (W. Yu et. 

al., 2020). 

The utilisation of deep learning methodologies for extracting higher-level abstractions from sparsely 

distributed data points has found application across diverse domains. For instance, C. Bilgera et. al. (2018) 

used a distributed sensor network comprising gas sensors employs a convolutional neural network with long 

short-term memory units (CNN-LSTM) architecture to process sparse data and infer spatio-temporal patterns. 

Similarly, O. Costilla-Reyes et. al. (2018) demonstrates the effectiveness of capturing spatio-temporal 

characteristics by examination of human gait pattern classification using plastic optical fibre sensors arranged 

on a mat, employing a CNN 3D architecture. These investigations illustrate the versatility of machine learning 

methodologies, particularly within image-based data modalities, for analysing spatial-temporal data 

structures and deriving actionable insights. 

In this study, utilizing a large grid aligned sensor network within the separation unit of the combine 

harvester, we introduce different machine learning regression models for separation efficiency prediction.  

Due to the required ability to run on combine harvesters during the harvest process, we focus on adapting the 

model size and type to ensure compatibility with resource-limited hardware. Additionally, the models 

undergo testing on consumer hardware CPUs and GPUs, as well as with a TinyML framework on a resource-

constrained microcontroller platform (µC). 

2. Materials and Methods 

In this section, we describe the experimental setup of the sensor network, the recordings of the reference 

data and give an overview of the considered machine learning models for regression. At last, we dive into 

the datasets and their representations and the model evaluation methodology. 

2.1. Experimental Setup 

A grid aligned sensor network with almost 100 structure-borne noise sensors has been installed under 

the separation unit of the combine harvester. The sensor signals have been optimized for measuring grain. 

The sensor network output is defined as a two-dimensional (2D) array with grain counting values. However, 

individual positions within the sensor array may remain unoccupied, either due to non-essential symmetry in 

sensor placement or variations in sensor-to-sensor spacing. 

The data has been recorded during grain harvest seasons with focus on wheat in Central Europe in 

different years, which presented contrasting grain, field, and weather conditions. The sensor network has 

been lined up in multiple combine harvesters. The tests contain different combine settings and throughputs, 

with repetitions in years and on different fields. The test runs include initialization periods to reach a steady 

state operation, test periods within the steady state operation, and a shut-down period. The sensor network 

has been recorded continuously at a sampling rate of 1 Hz, along with combine settings like revolution speeds 

or sieve openings and material characteristics like throughput or moisture. 

As reference, the grain loss mass flow of the separation unit 𝑄out (Figure 1) has been collected selectively 

during the test periods within steady state operations. Grain has been separated from MOG with a semi-

automated cleaning process and the separation efficiency has been calculated. Time stamps for selective 

material collection have been generated with automatic trigger for precise reference with the sensor network. 

 

 

Figure 1. Grain mass flow diagram of a combine harvester’s separation unit with 𝑄in as the combine input grain mass 

flow, 𝑄sep as the separated grain mass flow, and 𝑄out as the grain loss mass flow. 

 

The separation efficiency 𝑊 is defined as the relation between the separated grain mass flow 𝑄sep and 

the input grain mass flow 𝑄in as shown in Figure 1 (P. Miu 2015). The separated grain mass flow can be 
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calculated by the difference between the input grain mass flow 𝑄in and grain loss mass flow 𝑄out (Equation 

1). The mass flows are measured in 𝑡 ∙ ℎ−1. 

 
𝑊 =

𝑄sep

𝑄in

=
𝑄in − 𝑄out

𝑄in

 
(1) 

2.2. Overview of Machine Learning Models for Regression 

In this section, we look at the machine learning methods used in this study, explaining the comprehensive 

range of algorithms used for regression analysis. These include traditional models (T. Hastie et. al., 2009) 

such as k-nearest neighbours (k-NN), support vector regression (SVR) and various decision trees (DT), as 

well as advanced NN architectures (C. C. Aggarwal, 2018) such as fully connected neural networks (FCNN), 

convolutional neural networks (CNN), and recurrent neural networks (RNN). The algorithm selection process 

is based on a comparative analysis to identify the most suitable method for our regression problem. The aim 

is to identify the most effective algorithm that meets the specific requirements of our data and optimizes 

performance for our target regression results. 

The k-NN algorithm is a non-parametric method used for regression. It analyses the k most similar 

instances (neighbours) in the training data to predict the output variable for a new sample. As a non-

parametric method, it does not make strong assumptions about the form of the mapping function from inputs 

to outputs. This allows it to adapt to various data distributions. The prediction is often the mean of the target 

values of the nearest neighbours. The effectiveness of k-NN in regression problems depends on the choice of 

k and the distance metric used to identify the nearest neighbours. 

SVR adapts the support vector machine framework for regression tasks by implementing a margin of 

tolerance (ε), which defines an error-insensitive zone around the regression line. This mechanism allows SVR 

to fit the data within a specified margin while minimizing deviations and enhancing model robustness. SVR 

is particularly adept at handling high-dimensional data, as it implicitly maps inputs into a higher-dimensional 

space to accommodate complex data structures and non-linear relationships. SVR's versatility is further 

enhanced through various kernel options, allowing customisation to different data types. The model's 

performance and complexity can be fine-tuned using parameters such as the regularisation parameter C and 

ε, which balance between training accuracy and generalisation. 

DTs, including CART and ExtraTrees, are flexible algorithms for classification and regression tasks. 

CART uses features and thresholds for maximum information gain at each node, while ExtraTrees builds 

multiple trees and averages to increase accuracy and minimize overfitting. DTs are valued for their 

interpretability because they provide a clear insight into how decisions are derived from data features. 

However, they tend to overfit, especially when the trees are deep. 

FCNNs, also known as dense neural networks, consist of multiple layers of interconnected neurons. In 

regression tasks, FCNNs show an exceptional ability to model complex non-linear relationships by adjusting 

weights and biases. Key parameters that affect performance include the depth, width, and activation functions 

of the network. However, their "black box" nature can affect the understanding of their decision-making 

processes. In contrast to the traditional DT, SVR and k-NN methods, FCNNs can handle larger and more 

complex datasets, but require more computational resources and are less interpretable. 

CNNs are particularly adept at image processing and are also well suited to regression tasks involving 

spatial or temporal data, even image-like sensor grid data. Using convolutional layers, CNNs learn spatial 

feature hierarchies so that they are capable to recognize underlying patterns in datasets with spatial 

relationships. While CNNs are valued for their ability to process large amounts of data and their efficiency 

in feature extraction, they require significant computational resources and have longer training times than 

FCNNs. However, the pattern recognition capability of CNNs comes at a higher price in terms of complexity 

and lower interpretability compared to simpler models such as DTs. 

RNNs are designed to process sequential data and are therefore well suited to time series regression 

tasks. They contain feedback loops that allow information to persist and influence future outputs, capturing 

the temporal dynamics and dependencies within the data. Advanced variants such as Long Short Memory 

(LSTM) and Gated Recurrent Unit (GRU) further enhance this capability. A regression part, usually 

consisting of FCNN layers, is typically attached to translate temporal features into precise continuous outputs. 

To reduce the number of parameters for the LSTM layers and to give rise to neighbourhood dependency 

processing, structures of RNN with preceding FCNN (NN-RNN) or CNN (CNN-RNN) are considered. 
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2.3. Strategies for Model Evaluation, Representation, and Optimization 

This section outlines our approach to assessing and refining machine learning models for regression tasks 

by detailing our dataset and the used data representations, by presenting our use of k-fold cross-validation to 

partition our dataset, and by describing our approach to measuring inference runtime on diverse hardware to 

test the practicality of our models for real-world scenarios. 

2.3.1.  Datasets and Model Configuration 

The sensor network has been recorded continuously. For training and validation, only data from the test 

periods have been considered. The data has been latency corrected. After selecting for viable data, there are 

more than 8,000 data points with known separation efficiency. 

The data can be represented in different structures: The simplest way is the vector representation. The 

sensor values, combine settings, and material characteristics are stored in specific order in a vector (Figure 2 

(a)). This data representation can be used for most machine learning algorithms like k-NN, SVR, DT, FCNN, 

RNN, and NN-RNN. To support neighbourhood dependencies, the sensor values can be represented by a 2D 

array (Figure 2 (b)) for CNN and CNN-RNN models.  The combine settings and material characteristics are 

stored in a data vector, which is a parallel input next to the convolutional layers. To support additional data 

dependencies of the sensor values, the sensor network can be represented by a three-dimensional (3D) array 

(Figure 2 (c)). The sensor values are stored in one array layer. Other layers can contain sensor-specific data 

such as sensor positions or sizes, as well as combine settings or material characteristics specific to certain 

positions. Sensor unspecific data is stored in the data vector as before. 

 

 
 

 

(a) (b) (c) 

Figure 2. Data representations for NNs: The vector representation in (a), the 2D representation for sensor values in (b) 

and the 3D representation for sensor values and sensor specific meta data in (c). 

 

All data has been normalized. The sensor values are normalized to the maximum sensor value of the 

current time stamp. The combine settings and material characteristics have been normalized to the interval 

of expected values. 

To research combine setting and material characteristic dependencies, the models are trained with 

different input types: The smallest input data amount is using just sensor values, the highest is using the 

sensor values with all additional data containing combine settings and material characteristics. For CNNs, 

sensor meta information like sensor positions can be included and sensor specific combine settings and 

material characteristics can be coded in array layers. In Table 1 there is an overview of all input types and 

their signs in the model names. 

 

Table 1. Description of the different input types for all models and their signs in model names. 

Sign Models Description 

(V) all Just sensor values. 

(A) all All data. 

(DS) CNNs Sensor values and sensor meta information. 

(DA) CNNs Sensor values, sensor meta information, and sensor specific coded combine settings 

and material characteristics. 

 

The model sizes and for NNs the layer designs are crucial for the results. We carefully designed all 

considered models to have a reasonable parameter count with respect to the training data point count. The 
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biggest model is the NN-RNN (A) with 7,841 parameters. For each considered NN model FCNN, CNN, 

RNN, NN-RNN, and CNN-RNN we designed different models varying in layer depth, sequence, and type. 

Only the best model is considered in this study. 

2.3.2.  Cross-Validation Strategy and Evaluation Metrics 

The k-fold cross-validation is well-established for ensuring robust model generalisability on small 

amounts of data. Eight k-folds have been identified for validation data, containing for example a mixture of 

tests of different years and tests of just a single year or tests with a uniform mixture of combine settings and 

tests with only combine boundary settings. The train-validation-split is done test-wise. The amount of 

validation data points is varying between 19 % and 25 %. Due to machine symmetry the data has been 

augmented by mirroring along the machine length, giving rise to more than 16,000 data points in total. 

The models have been optimized and trained on the root mean squared error (RMSE, J. M. Wooldridge, 

2015). For comparison, both RMSE and the coefficient of determination R² (J. M. Wooldridge, 2015) are 

considered. 

2.3.3.  Hardware Platform Performance Assessment 

By investigating the runtime inference performance of our models on different hardware platforms, we 

aim to ensure their practical utility in diverse environments, including resource-constrained settings. 

Understanding how our models perform on various hardware configurations enables us to optimize them for 

deployment on edge devices, which may include those integrated within the combine harvester. This 

assessment provides crucial insights into the computational efficiency of our models, guiding us in tailoring 

them to meet the specific requirements of edge hardware. CPUs and GPUs run the models in a Python 

environment on Ubuntu 22, while the µC utilizes TensorFlow Lite Micro (R. David et. al., 2020) on Mbed 

OS. Our focus is on assessing model performance without quantization or pruning, using float32 parameters, 

to understand their raw computational efficiency on diverse hardware configuration. 

3. Results 

In Figure 3, the k-fold cross validation average results of RMSE and R² of all models with combine 

settings and material characteristics as input are listed. The FCNN is the best model with a RMSE of 0.60 % 

and an R² of 90.58 %, directly followed by the CNN with considered sensor specific values, combine settings, 

and material characteristics (A). All recurrent models and k-NN are worse than FCNN and CNN, with the 

best RMSE of 0.87 % and R² of 82.19 %. DTs and SVR are the worst models, considering the RMSE. While 

DTs have the worst R², the SVR models with an R² to up to 83.24 % seem to be as good as FCNN and CNN, 

but the RMSE is much higher. 

 

 

(a) (b) 

Figure 3. Average RMSE in (a) and average R² in (b) of the k-fold cross validation results of all models with combine 

settings and material characteristics (input types A and DA). 

 

In Figure 4, the k-fold cross validation average results of RMSE and R² of all models without combine 
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settings and material characteristics as input are listed. The CNN is the best model for both input types (DS, 

V) with a RMSE of 0.75 % and an R² of 84.76 %. The FCNN is directly following. Again, recurrent models 

and k-NN are worse than CNN and FCNN, while k-NN is slightly leading this group. DTs still do not get 

good results as the NNs and the SVR with an R² of 85.41 % being better than CNN still has the worst RMSE. 

 

 

(a) (b) 

Figure 4. Average RMSE in (a) and average R² in (b) of the k-fold cross validation results of all models with only 

sensor values or sensor values and sensor meta information (input types V and DS). 

 

The evaluation of advanced CNN and FCNN models across various computational platforms, including 

CPUs, GPUs, and a µC, has demonstrated considerable performance capabilities (Figure 5). For CPUs, the 

AMD Ryzen 9 5950X, with a 3.4 GHz clock speed and 16 cores, achieved the best inference time at 

approximately 22 milliseconds. This showcases its suitability for high-throughput tasks, although standard 

consumer CPUs also performed robustly, confirming their adequacy for complex model computations. The 

performance variance among the CNN and FCNN models on these CPUs was notably small. 

 

 

Figure 5. The boxplots display inference times for top-performing CNNs and FCNNs on CPUs (AMD Ryzen 9 5950X, 

Intel i7-7700K, Intel i7-10850H) and GPUs (NVIDIA RTX 3080 Ti, RTX 3090, GTX 1080 Ti), each based on the 

average of 100 runs. For the STM32F401RE µC, inference times for FCNNs and CNNs are plotted separately to 

highlight performance differences for this resource-constrained hardware. 

 

GPU performance was also strong, with inference times spanning from 22 to 30 milliseconds, indicating 

that these devices are well-equipped to handle NN tasks efficiently. In contrast, the µC STM32F401RE with 

an 80Mhz clock speed showed a greater disparity in performance times: FCNNs were exceptionally fast, 

clocking in at around 1 millisecond, while CNNs lagged significantly, requiring over 51 milliseconds. This 

discrepancy can be attributed to the different requirements of the two network types and their execution on 

µCs. CNNs, which require extensive matrix multiplications and multiple filters, inherently require more 

operations between layers, which further increases their computational load. Despite the increased 
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requirements, the performance of both types of networks on µCs is very close to that of more robust CPUs 

and GPUs. This unexpectedly high efficiency is due to the lower overhead of µCs, simpler threading and the 

use of C programming, which reduces overhead and optimizes performance in resource-constrained 

environments. 

Given that sensor data is sampled at 1 Hz, all tested hardware configurations comfortably met the 

operational requirement of sub-second execution times. This performance underscores the feasibility of 

deploying these models on even the most resource-constrained devices such as µCs that operate in the 

milliwatt power range, broadening the scope for applying deep learning technologies in environments where 

power efficiency and space are critical constraints. 

4. Discussion 

The models FCNN and CNN are the most effective at predicting separation efficiency. The inclusion of 

additional information leads to improved RMSE and R². However, when using only sensor values or values 

combined with sensor-specific information, the CNN is more resilient due to its focus on location-dependent 

calculations. This suggests that sensor neighbourhood information is crucial for the prediction of separation 

efficiency with only sensor values. 

Surprisingly, recurrent models are the worst NN models. But the data sets contain just data from regular 

steady state harvest operations. These models could have an advantage over non-recurrent models if 

initializing harvesting periods, combine setting changes, or harvest condition changes were included. The 

regression models k-NN, DT and SVR are the worst of all considered models, even though the R² of the SVR 

models were at the same scale as the FCNN and CNN. 

The inference time measurements demonstrate that both FCNNs and CNNs are suitable for real-time 

applications, particularly given the 1 Hz sensor measurement rate in sensor acquisition systems. All tested 

platforms, including the resource-constrained STM32F401RE µC, delivered inference times well below the 

one-second threshold required for real-time decision-making. The use of µCs, which typically have less 

overhead and a simpler threading architecture than CPUs and GPUs, enhances real-time capabilities, making 

them particularly effective for tasks like on-the-fly grain separation efficiency predictions. This ensures that 

regardless of the hardware's computational power, the deployment of these models remains feasible for real-

time applications. 

5. Conclusion 

In this study, we validated different machine learning models for grain separation efficiency prediction. 

Taking all data into account, including combine settings and material characteristics, the FCNN is the most 

precise model. But processing just on sensor values, the CNN models are recommended. The main advantage 

of CNN models is the inherent focus on location-dependent data due to the convolutional calculations. 

Having very different results depending on the input type for each considered model, the expert 

knowledge about model design and input shapes still has an important impact on model results. Additionally, 

data pre-processing including data collection, data reference, data latency correction, and data sorting is still 

fundamental for machine learning. 

For this study, just a data amount of more than 8,000 samples of regular steady state harvesting operations 

was available from Central Europe. To give rise to more data variability in grain, field, and weather 

conditions, more data should be collected in several harvest seasons and in different countries. Even though 

operating combine harvesters in steady states is recommended, the non-steady state operations should also 

be analysed for advantages of recurrent models. Additionally, these models should also be tested with other 

grain than wheat, but with similar harvesting conditions like barley, rye, triticale, canola, or maize. 

Finally, the sensor network still contains many sensors. There are investigations needed to reduce the 

number of sensors. Respectively, it is recommended to research sensor anomalies and to analyse sensor 

network reduction conditionally on sensor anomaly influence on grain separation efficiency prediction. 
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Abstract 

In agriculture, timely intervention of crop pathogens is crucial, as fungal pathogens worldwide cause 

significant crop losses worth $100-$200 billion annually. To mitigate such substantial economic losses, 

Artificial Intelligence (AI) plays a vital role in early detection process. Currently, potential infections are 

visually detected and confirmed through laborious laboratory analyses. Early detection is crucial not only for 

the rapid disease control strategies but also to minimize impacts on crop production and the environment. 

This study aims to detect grey mould caused by Botrytis cinerea on cucumber plants, early by integrating 

Deep Learning (DL) techniques and multispectral imaging. Cucumber leaves were artificially inoculated with 

B. cinerea and employing multispectral imaging in the initial days post-inoculation, a dataset was created for 

diverse DL models. Both classification and object detection techniques were employed, demonstrating 

remarkable accuracy. The best-performing classification model achieved 0.93 accuracy and 0.89 F1-score, 

while the object detection model reached 0.88 mAP50 (mean Average Precision), providing valuable insights 

into informative wavelengths. Further research focused on the more challenging DL task of semantic 

segmentation, creating a comprehensive dataset featuring healthy and infected plants subjected to two 

different inoculation methods. DL models were developed to segment specific leaf regions. The dataset 

contained photographs of the cucumber plants captured with a multispectral camera during the experiment, 

focusing on the early days, to test whether it is possible to detect early symptoms that are invisible to the 

naked eye. The resulting model exhibited impressive accuracy of 0.90 and a Dice Coefficient of 0.67. The 

model effectively detected early symptoms from the second to the sixth day, providing a crucial window for 

timely intervention. These implementations showcase AI's potential for early pathogen detection in 

agriculture. Applying these models to autonomously navigated agro-robots and mobile apps can enhance 

real-time monitoring, enabling efficient and timely proactive disease management strategies. 

Keywords: artificial intelligence, deep learning, hyperspectral imaging, early detection, smart agriculture 

1. Introduction 

Botrytis cinerea is a destructive fungus that affects over 500 different types of plants, leading to 

significant economic losses in agriculture (Williamson et al., 2007) [1]. Each year, it causes damage 

exceeding $10 billion globally due to reduced crop production (Weiberg et al., 2013) [2]. It is ranked as the 

second most significant plant pathogen because of these factors (Dean et al., 2012) [3]. 

Cucumber (Cucumis sativus) is a widely cultivated plant, revered for its nutritional and economic value 

globally (Mallick, 2022) [4]. As a significant component of the agricultural sector, cucumber serves not just 

as a staple in dietary consumption but also plays a role in various industrial applications (Mallick, 2022) [4]. 

However, like many crops, cucumber plants are susceptible to a range of diseases, with B. cinerea being one 

of the most devastating (Ben-Shalom et al., 2003) [5]. 

The significant economic impact of B. cinerea is a concern for farmers, economists, and policymakers. 

Its ability to quickly infect a wide range of hosts, particularly in greenhouse settings, underscores the need 

for innovative detection methods. Traditionally, B. cinerea management relies on fungicides once symptoms 

appear. Early detection is crucial for preserving crop yield and quality and controlling pathogen spread. 

However, current diagnostic methods like ELISA and PCR are complex, expensive, and time-consuming 

(Weßling and Panstruga, 2012) [6]. Thus, there's a pressing need for advanced, rapid, and precise detection 

technologies to mitigate economic losses by detecting and managing the disease early. 

Spectral imaging has emerged as a tool for non-invasive crop assessment, improving plant disease 
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detection (Terentev et al., 2022) [7]. By capturing images across different spectral bands, multi-spectral 

imaging offers high-resolution insights, especially for vegetables (Pechlivani et al., 2023) [8]. The Near-

Infrared (NIR) spectrum is notable in plant pathology for its ability to identify infected leaf areas with 

precision (Fahrentrapp et al., 2019) [9], potentially revealing disease-related physiological changes before 

visible symptoms manifest. 

Recent advancements in Deep Learning (DL) have revolutionized computer vision, offering new avenues for 

early pest and disease detection in crops (Singh et al., 2016) [10]. Convolutional Neural Networks (CNN) 

and Vision Transformers (ViTs) have demonstrated potential in improving the efficiency and accuracy of 

detection, particularly in the initial stages. Additionally, integrating CNNs with multi-spectral imaging 

enhances the comprehensiveness and detail of analysis, significantly improving disease diagnosis accuracy 

and precision (Piao et al., 2019) [11]. 

This paper aims to highlight earlier research from our team already published that prompted us to conduct 

further study on the early detection of B. cinerea in Cucurbitaceae crops before symptoms responses become 

visible to the human eye. Our past study presented here (Giakoumoglou et al. (2023) [12]), investigates the 

effectiveness of multi-spectral imaging combined with DL models for B. cinerea detection in cucumber 

plants. The paper contributes by establishing a multi-spectral image dataset, conducting experiments for 

detection and classification, and exploring the usefulness of the NIR spectrum for identification. Building 

upon this foundation, our new approach (Giakoumoglou et al. (2024) [13]) proposes a novel methodology 

for early B. cinerea detection at all disease stages in Cucurbitaceae crops. Robust DL segmentation models 

are developed and tested using a specially created imagery dataset based on artificially inoculated plants. 

These models utilize multi-spectral imaging to capture various disease stages within the first week of growth, 

providing detailed insights from barely visible symptoms to late-stage disease signs. This dataset serves as a 

valuable resource for developing DL models to detect B. cinerea. 

2. Materials and Methods  

2.1. Classification and detection of Botrytis cinerea cucumber plants using multi-spectral 

imaging 

Giakoumoglou et al. (2023) [12] explored the use of multi-spectral imaging to detect B. cinerea in 

cucumber plants with DL models. This study had three main goals: i) create a multi-spectral image dataset 

for detecting and classifying B. cinerea-infected and healthy plants, ii) experiment with detection and 

classification methods to find the best approach, and iii) assess the usefulness of the NIR spectrum for 

identifying B. cinerea and determine the most important spectral band. 

2.1.1.  Dataset 

Healthy cucumber plants (Cucumis sativa variety MURAT F1) were artificially inoculated with B. 

cinerea for data collection. Spores from 3-week-old cultures grown on Potato Dextrose Agar were suspended 

in glucose water, filtered, and adjusted to 1 × 105 spores/ml. Four inoculated cucumber plants and four control 

plants were used. Lesions were created on leaves, and inoculum droplets were applied. The inoculated plants 

were covered to maintain moisture. Multi-spectral images were captured using a Qcell MUSES9-MS camera 

at six wavelengths (460, 540, 640, 700, 775, and 875 nm) over five days, starting immediately after 

inoculation. Images were taken daily at 12:00 under both artificial and natural light to capture early fungal 

symptoms not visible to the naked eye (Figure 1). 

The dataset contains 121 annotated images (98 symptomatic, 23 healthy), with bounding boxes around 

infected and healthy leaves. A custom leaf detector, based on YOLOv5 (Jocher et al., 2022) [14] and trained 

on the PlantDoc dataset (Singh et al., 2020) [15], was used to annotate the images, with adjustments by an 

agronomist. This resulted in 580 annotated leaves (138 infected, 442 healthy). 

Two datasets were created: Botrytis-detection (bounding box annotations) and Botrytis-classification 

(cropped images of each bounding box). Both datasets were split into training and testing sets, with all images 

of one specific infected plant reserved for testing to ensure unbiased model training. The image counts for 

each dataset are detailed in “Table 1” of Giakoumoglou et al. (2023) [12]. 
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Figure 1. The six different spectral bands (460, 540, 640, 700, 775, 875) of a cucumber leaf infected with 

B. cinerea, captured 4 days post inoculation, from the Botrytis-classification dataset [12]. 

2.1.2.  Experiments and evaluation metrics 

The Botrytis datasets were evaluated through two main tasks: classification using CNNs on the Botrytis-

classification dataset, and object detection on the Botrytis-detection dataset with bounding box annotations. 

The goal was to identify the most informative wavelengths for detection by leveraging classification results. 

For classification, the F1-score was the primary metric, with accuracy, recall, and precision also reported. 

Accuracy indicates overall model performance, precision measures relevance of identified objects, and recall 

assesses the model's ability to find all relevant cases. For object detection, COCO detection metrics (Lin et 

al., 2015) [16] were used, including mean average precision (𝑚𝐴𝑃) across 10 IoU thresholds (0.5 to 0.95) 

and 𝑚𝐴𝑃 at IoU = 0.5 (𝑚𝐴𝑃50). Precision and recall were also measured. 

Data augmentation techniques were employed to improve model generalization due to the limited dataset 

size. For the Botrytis-classification dataset, techniques included horizontal flipping, scaling, and translation. 

For the Botrytis-detection dataset, mosaic augmentation (Bochkovskit et al., 2020) [17] was used to address 

occlusion and translation issues. These techniques were applied only during training, not evaluation. 

2.2. Early detection and segmentation of Botrytis cinerea cucumber plants 

Building on the promising findings from our previous research, we expanded our efforts by curating a 

novel dataset and refining DL segmentation models (Giakoumoglou et al. (2024) [13]). Our goal was to 

precisely segment leaves affected by B. cinerea, with a primary focus on early detection. 

2.2.1.  In planta assays and disease assessment 

This study used cucumber (Cucumis sativus L.) cv. Hasan from the Green Baboo variety. Seedlings with 

fully expanded first true leaves were transplanted into 24 cm diameter, 24 cm high plastic pots with sterile 

compost and grown in controlled environment chambers. Conditions were 21 ± 1°C, 16 hours of light at 

352.81 μmol/sec, and 85%-90% relative humidity. Plants were irrigated twice weekly and kept under these 

conditions for about two months, mimicking greenhouse environments. 

Botrytis cinerea was isolated from naturally infected cucumbers showing grey mould symptoms. The 

isolate was stored at −20°C in a conidial suspension (106 conidia/mL) in 20% aqueous glycerol (Decognet et 

al., 2009) [18]. Before use, it was cultured on Potato Dextrose Agar (PDA) in Petri dishes and incubated at 

21°C for seven days. 

The bioassays at Benaki Phytopathological Institute (BPI) used two controlled environment growth 

chambers with identical conditions (21 ± 1°C, 16 h light/8 h dark, 85%–90% humidity) for B. cinerea-

inoculated and mock-inoculated (water-treated) plants. Plants at the four-leaf stage were inoculated using 

two methods: (i) spraying leaves with conidial suspension until runoff (De Meyer et al., 1998) [19] (method 

"A"), and (ii) placing mycelial plugs on leaves (method "B"). Mock inoculations followed the same procedure 

without the pathogen. Each group had 10 plants per inoculation method, with 29 mock-inoculated plants. 

After inoculation, plants were kept in the dark for 24 hours to promote conidia germination. 
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Each plant and leaf were numbered, and disease severity was assessed twice a week for 37 days post-

inoculation (dpi). Disease severity, expressed as the percentage of infected leaf area, was transformed using 

the logit function (Eq. 1 in the research paper) to linearize the data (Campbell and Madden, 1990) [20]. Linear 

regression in SPSS was used to estimate the slope and intercept of disease progression for each leaf. The 

results provided stable and interpretable summaries, with slopes indicating constant infection rates. These 

models helped estimate the time of infection onset (y=0.001) for each leaf. 

2.2.2.  Image acquisition, annotation and dataset creation 

For crops like vegetables, imaging in the visible (400-700 nm) and NIR (700-1300 nm) spectrums is 

particularly useful (Peñuelas and Filella, 1998) [21]. A customized Qcell Phenocheck camera, capturing 

wavelengths at 460, 540, 640, 775, and 875 nm, was used to collect multi-spectral images at 3096×2080 

pixels resolution. Images were taken daily for the first five days post-inoculation and then weekly until 37 

dpi, resulting in 1061 images: 418 from method A, 210 from method B, 355 from mock-inoculated method 

A, and 78 from mock-inoculated method B. An example of some individual spectra of a B. cinerea-inoculated 

plant can be seen in Figure 2. 

   
(a) (b) (c) 

Figure 2. Multi-spectral imaging of B. cinerea-inoculated plant. This figure showcases the individual 

spectra captured at different wavelengths: (a) 540 nm, (b) 640 nm, (c) 775 nm [13]. 

Images were annotated using Roboflow to classify leaves based on disease symptoms: "control", 

"healthy", "invisible", "visible", and "unaffected". A total of 373 leaves were labeled as "control", 2049 as 

"healthy", 269 as "invisible", 794 as "visible", and 283 as "unaffected". Images were then reclassified into 

three categories: "healthy", "invisible", and "visible". For training, B. cinerea-inoculated plants numbered 2, 

3, 6-10, 12, 13, 15-20 were used, while 1, 5, 11, and 14 were for validation. Control plants 4-6, 8-10, 12-17, 

19-29 were for training, and 1-3, 7, and 18 for validation. Detailed statistics are provided in Table 1. 

Table 1. Dataset’s class distribution statistics [13]. 

Proportion Proportion Proportion Proportion 

0-healthy 
Train 1998 71.15% 

Valid 707 73.65% 

1-invisible Train 195 6.94% 

Valid 74 7.70% 

2-visible Train 615 21.90% 

Valid 179 18.65% 

2.2.3.  Deep learning segmentation training and evaluation metrics 

The dataset, with three classes, was used to train DL models, resizing images to 1024×1024 pixels. Three 

architectures were employed: U-Net++, DeepLabV3, and DeepLabV3+. U-Net++ is an advanced U-Net for 

biomedical image segmentation, featuring a deeply-supervised encoder-decoder network with nested skip 

pathways for detailed feature extraction. DeepLabV3 uses atrous convolutions and spatial pyramid pooling 

for handling object scale and detail. DeepLabV3+ enhances this with an encoder-decoder structure for better 

segmentation precision. Encoders used included ResNet-34, ResNet-50, and MobileViT-S. ResNet-34 and 

ResNet-50 offer a balance of performance and efficiency, while MobileViT-S combines CNN and ViT 

strengths. Models were adapted to handle five spectral channels, fully utilizing the multi-spectral data for 

image segmentation. To adapt to the unique dataset comprising multi-spectral images, the input channels of 

these models were adjusted to process five distinct spectral channels.  

The DL segmentation models were trained with specific hyperparameters. Each backbone was initially 

AgEng 2024 Proceedings

589



randomized. U-Net++ used Dice loss combined with Binary Cross Entropy (BCE) loss, while DeepLabV3 

and DeepLabV3+ employed Cross-Entropy (CE). To manage class imbalance, loss functions were weighted 

based on class frequencies, adjusted to range from 1.0 to 0.1. Optimizers varied: Adam and AdamW for U-

Net++, Adam for DeepLabV3, and Nesterov momentum and AdamW for DeepLabV3+. Learning rates were 

set at 5⋅10-4 for U-Net++, 5⋅10-3 for DeepLabV3, and 2⋅10-3 for DeepLabV3+. A 5-epoch warm-up phase 

used a learning rate ten times the base rate, followed by a cosine scheduler reducing the rate over 100 epochs. 

Weight decay was 10-4 for models with ResNet encoders and 10-2 for ViT encoders. Batch sizes ranged from 

2 to 8 based on computational resources. For DeepLabV3+ with Nesterov momentum, the momentum 

coefficient was 0.9. 

The DL segmentation models were evaluated using several metrics to assess accuracy, reliability, and 

effectiveness in identifying botrytis infection stages. Pixel accuracy measured the proportion of correctly 

classified pixels. Intersection over Union (IoU) assessed the overlap between predicted and actual labels, 

indicating the model's class differentiation ability. Recall evaluated sensitivity, and precision assessed 

specificity. The Dice Coefficient (DC) provided a comprehensive view of segmentation performance by 

combining precision and recall insights. 

3. Results and Discussion 

3.1. B. cinerea leaf classification and detection results 

For the classification task, various state-of-the-art DL models were used, including AlexNet, DenseNet-

121, EfficientNet B0 and B1, GoogLeNet, MobileNet v3 small, ResNet-18, ResNet-34, ResNet-50, and 

VGG-11 with and without Batch Normalization (BN). The aim was to find the best architecture for each 

wavelength combination. 

All models were pre-trained on ImageNet and fine-tuned on the Botrytis-classification dataset. Only the 

last fully connected layer was modified from 1000 to 2 classes. Each model was fine-tuned using Stochastic 

Gradient Descent with a batch size of 16 for 100 epochs, a learning rate of 0.001 decaying every 30 epochs 

by a factor of 0.1, and weight decay and momentum parameters set to 0.0001 and 0.9, respectively. Input 

image size was 224×224. Experiments were implemented using PyTorch (Paszke et al., 2019) [22]. 

Table 2 presents the classification performance metrics for models using triplet wavelength combinations. 

Tests with various vegetation indices (Calderón Madrid et al., 2015) [23], all six wavelengths, and PCA-

transformed wavelengths yielded poor results. The RGB and NIR wavelengths performed similarly across 

all metrics. However, the combination of 875 nm with 460 nm and 640 nm achieved the highest F1-score of 

0.888 and the highest Recall, crucial for detecting B. cinerea. The top models also included the 875 nm 

wavelength, which boosted Recall. The VGG-11 with BN architecture showed high generalization ability, 

performing well regardless of input. 

Table 2. Botrytis classification results [12]. 

Wavelength Architecture Acc. F1 Rec. Prec. 

460, 540, 640 ResNet-50 0.925 0.870 0.822 0.925 
460, 540, 700 DenseNet-121 0.850 0.822 0.881 0.951 

460, 540, 775 Resnet-50 0.891 0.818 0.800 0.837 

460, 540, 875 VGG-11 (BN) 0.911 0.853 0.844 0.863 

460, 640, 700 VGG-11 (BN) 0.911 0.843 0.777 0.921 

460, 640, 775 VGG-11 (BN) 0.911 0.853 0.844 0.863 

460, 640, 875 VGG-11 (BN) 0.932 0.888 0.888 0.888 
460, 700, 775 VGG-11 (BN) 0.918 0.857 0.800 0.923 

460, 700, 875 VGG-11 (BN) 0.898 0.814 0.733 0.916 

460, 775, 875 Efficient Net B0 0.925 0.870 0.822 0.925 
540, 640, 700 ResNet-34 0.925 0.864 0.777 0.972 

540, 640, 775 VGG-11 0.918 0.853 0.777 0.945 

540, 640, 875 VGG-11 (BN) 0.918 0.866 0.866 0.866 

540, 700, 775 VGG-11 (BN) 0.918 0.857 0.800 0.923 

540, 700, 875 VGG-11 (BN) 0.918 0.869 0.888 0.851 

540, 775, 875 VGG-11 (BN) 0.925 0.876 0.866 0.886 
640, 700, 775 VGG-11 (BN) 0.925 0.867 0.800 0.947 
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640, 700, 875 VGG-11 (BN) 0.904 0.837 0.800 0.878 

640, 775, 875 ResNet-50 0.918 0.853 0.777 0.945 

700, 775, 875 VGG-11 (BN) 0.925 0.870 0.822 0.925 
* The rows in bold indicate the trials with the highest F1-score. 

For object detection, state-of-the-art DL models YOLOv5 and YOLOv7 (Wang et al., 2022) [24] were 

evaluated on the Botrytis-detection dataset. YOLOv5 used CSP-Darknet53 as the backbone, while YOLOv7 

used E-ELAN. Both models were trained with Stochastic Gradient Descent, a batch size of 8, a learning rate 

of 0.001, weight decay of 0.0001, and momentum of 0.937. Input image size was 1024×1024. Detection 

experiments were conducted using PyTorch. 

Table 3 shows the detection results. YOLOv5m performed best among YOLOv5 variants, and YOLOv7-

E6E excelled in the YOLOv7 category. The key metrics were mAP50 and recall, which reflect the model's 

ability to detect Botrytis-infected leaves. The combination of 460, 640, and 875 nm achieved the highest 

mAP50. However, for a better balance between mAP50 and recall, the combination of 460, 775, and 875 nm 

was optimal, with a recall of 0.857, significantly higher than the best mAP50 model. Combining RGB and 

NIR bands improved performance, with the 875 nm wavelength being crucial for high accuracy in detecting 

Botrytis. 

Table 3. Botrytis detection results [12]. 

Model Wavelength mAP50 mAP Prec. Rec. 

YOLOv5 460, 540, 640 0.866 0.738 0.877 0.768 

YOLOv5 460, 640, 875 0.838 0.718 0.721 0.857 

YOLOv5 460, 775, 875 0.789 0.658 0.707 0.821 

YOLOv5 540, 775, 875 0.810 0.695 0.754 0.821 

YOLOv5 700, 775, 875 0.766 0.634 0.767 0.768 

YOLOv7 460, 540, 640 0.859 0.733 0.823 0.750 

YOLOv7 460, 640, 875 0.882 0.716 0.872 0.732 
YOLOv7 460, 775, 875 0.873 0.739 0.787 0.857 
YOLOv7 540, 775, 875 0.834 0.714 0.867 0.696 

YOLOv7 700, 775, 875 0.834 0.705 0.857 0.749 

* The rows in bold indicate the trials with the highest mAP50 score. 

3.2. Segmentation and early detection results for B. cinerea cucumber bioassays 

3.2.1.  Disease severity 

Disease severity was assessed per leaf and plant by calculating the percentage of leaf area with grey mould 

symptoms. This assessment occurred every 3 to 5 days for 37 days post-inoculation (dpi). The progression 

of grey mould was tracked on leaves across ten cucumber plants inoculated with B. cinerea using two 

methods. Leaves inoculated artificially showed rapid initial disease progression, while non-inoculated leaves 

displayed symptoms later, typically between 9 and 23 dpi. Factors such as leaf age, position, nutrient content, 

and secondary disease cycles influenced disease progress. B. cinerea infection routes vary based on plant 

species and tissue type, with conidia playing a major role in spread through air currents or mechanical forces. 

Greenhouse crops, especially vegetables, are vulnerable due to labor-intensive practices that create numerous 

infection sites and facilitate spore transfer. 

3.2.2.  Deep learning performance evaluation 

The evaluation of DL segmentation models for B. cinerea severity classification, shown in Table 4, 

highlights the effectiveness of different architectures and encoders. U-Net++ with MobileViT-S 

outperformed others with a Dice Coefficient (DC) of 0.677, IoU of 0.656, and recall of 0.807 at epoch 80, 

benefiting from its efficient design with fewer parameters. In contrast, ResNet-50's higher complexity 

sometimes led to overfitting. Comparing U-Net++ to DeepLabV3 with the same encoder, U-Net++ was 

superior with a DC of 0.475 for DeepLabV3 and 0.633 for DeepLabV3+. ResNet-34 showed consistent 

performance across models, while ResNet-50 performed better with DeepLabV3 architectures but less 

effectively with U-Net++. 

Table 4. Overall performance of deep learning segmentation models (best-performing model highlighted in 

bold) [13]. 
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Architecture Encoder Accuracy DC IoU Recall 

U-Net++ ResNet-34 0.843 0.570 0.534 0.701 

U-Net++ ResNet-50 0.765 0.421 0.479 0.595 

U-Net++ MobileViT-S 0.901 0.677 0.656 0.807 
DeepLabV3 ResNet-34 0.843 0.630 0.522 0.762 

DeepLabV3 ResNet-50 0.849 0.590 0.565 0.770 

DeepLabV3 MobileViT-S 0.745 0.475 0.431 0.614 

DeepLabV3+ ResNet-34 0.863 0.646 0.543 0.754 

DeepLabV3+ ResNet-50 0.851 0.624 0.520 0.722 

DeepLabV3+ MobileViT-S 0.868 0.633 0.598 0.768 

3.2.3.  Early-stage evaluation 

On dpi 0, 10 plants underwent inoculation with method A, while another 10 were subjected to method B. 

To gauge early detection capabilities, the model's performance was assessed using IoU metrics from dpi 1 to 

dpi 6, capturing the initial week post-inoculation. The model demonstrated adeptness in identifying the 

invisible B. cinerea class early on for both inoculation methods, as shown in Figure 3. Initial detection at dpi 

1 yielded an IoU of 0.230, progressively intensifying to 0.375 on dpi 2 and 0.403 on dpi 3. This incremental 

trend suggests a growing sensitivity to evolving pathogen presence, showcasing the model's ability to 

tentatively spot early infection signs. As the infection advanced, the model's performance improved, reaching 

an IoU of 0.430 on dpi 5, indicating enhanced capability in detecting pathogen manifestation. A significant 

milestone was reached on dpi 6, with a peak performance IoU of 0.437, underscoring the model's robust early 

detection capability. Despite initial challenges in detecting the visible class, a notable increase was observed 

from dpi 3 to dpi 5. Lower IoU values early on were attributed to misidentifying the visible class when B. 

cinerea was predominantly invisible. Continued improvement from dpi 5 to dpi 6 solidifies successful B. 

cinerea detection, indicating the model's proficiency in spotting advanced disease stages. Combining results 

from invisible and visible classes alongside known infection status reinforces early-stage detection 

confirmation from dpi 2, with accuracy peaking at dpi 6. This capability is pivotal, preceding obvious 

symptom appearance, providing a critical window for timely agricultural intervention and management 

strategies by dpi 2. 

 

Figure 3. Mean IoU for B. cinerea invisible and visible classes at dpi 1-6 for both inoculation methods. 

Specifically, the model achieved an IoU of 0.230 on dpi 1, 0.375 on dpi 2, 0.403 on day 3, 0.430 on dpi 5, 

and 0.437 on dpi 6 for the B. cinerea invisible class. For the visible symptoms of B. cinerea, the model 

achieved an IoU of 0.154 on dpi 3, 0.214 on dpi 5, and 0.233 on dpi 6 [13]. 

3.2.4.  Qualitative results 

Accurate identification and segmentation of grey mould severity on cucumber plants is vital for effective 

plant pathology. This entails detecting subtle differences in disease progression, from early, invisible 

symptoms to more obvious signs. This section presents qualitative results from the top-performing model, 

focusing on its ability to identify and segment varying severity levels of B. cinerea infection in cucumber 

plants. The assessment reveals the model's strengths and limitations. Figure 4 (a)-(c) depict original images 

with true masks, while Figure 4 (d)-(f) show predicted masks by the model. Figure 4 (d) aligns well with its 

true label (Figure 4 (a)), showcasing accuracy in delineating infected areas. However, Figure 4 (e) 

erroneously classifies parts of healthy leaves as affected by invisible B. cinerea, inconsistent with its true 

label (Figure 4 (b)). Similarly, Figure 4 (f) misinterprets healthy regions as infected and segments areas 

AgEng 2024 Proceedings

592



without annotations, indicating misidentification, partly due to the dataset including leaves with unknown 

disease status. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Qualitative assessment of segmentation performance: (a)-(c) present the original images resized 

to 1024×1024 overlaid with the true masks; (d)-(f) depict the images, resized to 1024×1024 overlaid with 

the predicted masks from the best-performing model [13]. 

4. Conclusions 

Combining the insights from both studies, our research showcases the efficacy of DL techniques in the 

classification and early detection of B. cinerea infection in Cucurbitaceae crops. Leveraging multispectral 

imaging and advanced DL segmentation models, we observed significant improvements in detecting infected 

leaves. Specifically, integrating NIR spectra with RGB channels yielded superior results, emphasizing the 

importance of spectral contrast for accurate detection. Moreover, our experiments demonstrated the potential 

of DL models to achieve high classification accuracy and detection rates, with F1-scores of 0.89 and mAP50 

of 0.88, respectively. Furthermore, the disease severity of Β. cinerea was addressed using DL segmentation 

models for the early and late detection of grey mould disease in cucumber plants grown under controlled 

conditions that were similar to those prevailing in a greenhouse. The evaluation of the U-Net++ model with 

ViT encoder resulted in a DC of 0.677, an IoU of 0.656, a recall rate of 0.807, with a total accuracy of 90.1%, 

while it managed to detect early stages of B. cinerea at dpi 2 with an IoU of 0.375. 

The success of this approach in early disease detection highlights the potential of advanced DL techniques 

in precision agriculture and proactive disease management in greenhouse environments. This approach, 

combined with multi-spectral imaging, provides a powerful solution for fast, on-site, early disease detection 

in crops, allowing farmers to make quick, informed decisions and manage crop health more efficiently. This 

advancement has the potential to optimize resource usage, decrease chemical inputs, and improve yield and 

food security. Integrating these models into daily farming practices will benefit the agricultural sector, 

ushering in a new era of smart agriculture. 
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Abstract 

Insect crop attacks present a significant challenge that Artificial Intelligence (AI) can help address. Early 

insect detection and insect population growth prediction can bolster yield in both open fields and greenhouse 

cultivations. Olive trees, vulnerable to the olive fruit fly, Bactrocera oleae (BO), and vegetables like tomatoes 

and cucumbers, often attacked by pests like Tuta absoluta, aphids, and whiteflies, underscore the significance 

of AI in agricultural applications. This study, aims to provide Deep Learning (DL) models for crop 

monitoring and early detection of these insects and their plant symptoms, aligning with the Green Deal 2030 

principles of agricultural sustainability and reduced reliance on chemical pesticides. This study utilizes 

available RGB images from libraries in combination with synthetic datasets and datasets created with insect 

traps. In particular, four implementations were developed. a) For detecting infestations of Tuta absoluta, DL 

was combined with ensemble techniques, by merging outputs from multiple models, enhancing detection 

metrics by 20% and elevating the mAP50 (mean Average Precision) from 0.58 to 0.70. b) To overcome 

insufficient data of small insects (1 and 4 mm), adhesive traps were employed to capture images of prevalent 

insects in vegetable crops, including whiteflies and black aphids and the DL models reached 0.75 mAP50 for 

the detection of these miniscule insects. c) To tackle whiteflies data scarcity, a synthetic dataset was 

generated, reaching 0.66 mAP50, coupled with a high accuracy of 0.76. d) For the detection of BO, a threat 

to the olive industry, a DL technique for creating lightweight models was used, reaching 0.81 mAP50, enabling 

real-time detection in-situ. These high-performing results apply to a range of digital tools (mobile apps, argo-

robots, AI-based robotic traps). Real-time monitoring, insect population growth prediction, and integration 

with Decision Support Systems is achieved, providing essential data for informed decision-making in crop 

protection while also enabling timely intervention. 

Keywords: artificial intelligence, smart agriculture, deep learning, insect detection, smart farming 

1. Introduction 

The tomato plant (Solanum lycopersicum L.) plays a vital role in global agriculture, being a significant 

contributor to food systems worldwide. A substantial threat comes from the tomato leaf miner, Tuta absoluta 

(Meyrick) (Zekeua et al., 2017) [1], which has expanded beyond its native South America, causing 

considerable damage globally since its identification in Europe in 2006 (Urbaneja et al., 2007) [2]. Despite 

efforts involving various pest management methods, such as pesticides and resistant tomato varieties, 

effectively controlling T. absoluta remains challenging. Consequently, there's a demand for digital-based 

technologies that leverage deep learning to achieve fast, accurate, and non-invasive detection. 

Farmers often resort to using chemical insecticides to combat insect threats, leading to environmental and 

health consequences (Aktar et al., 2009) [3]. The challenge lies in timely and accurate pest diagnosis, which 

can enable the implementation of appropriate preventive measures and pest management strategies. 

Traditionally, insect and crop disease detection relied on visual inspection, a time-consuming process (Banga 

et al., 2018) [4]. Computer vision offers a more efficient alternative, requiring clear and high-resolution 

images. Adhesive traps, baited with pheromones, are used to capture insects and provide clear images for 

analysis. 

A costly and tedious part of the machine learning process in agriculture is the data annotation. Creating 

synthetic datasets can alleviate this problem (Zhang et al., 2020) [5]. Transfer learning with synthetic data 

can improve algorithm performance by accounting for environmental variations (Yang et al., 2022) [6]. 

Additionally, synthetic data can address challenges when real data collection is limited or expensive (Prakash 

et al., 2019) [7].  Traditional methods for generating synthetic datasets involve 3D rendering, but recent 

advancements include generative models like GANs and VAEs (Goodfellow et al., 2014), (Kingma and 
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Welling et al., 2022) [8], [9]. Diffusion probabilistic models have emerged as effective tools for image 

generation (Song and Ermon et al., 2020) [10].  

Another under threat plant that holds great culinary and economic significance (Galili et al., 1997) [11] 

is the Olive tree (Olea europaea), with over 11 million hectares cultivated globally, primarily in the 

Mediterranean region which produces about 98% of the world's olives. However, the invasive pest Bactrocera 

oleae (BO) poses a severe threat to olive crops, potentially causing losses up to 80% in oil value and 100% 

in table olive cultivars in some areas (Nardi et al., 2005) [12]. Traditionally, farmers have relied on visual 

identification using traps for insect detection, a method that is labor-intensive, error-prone, and unreliable 

(Khan et al., 2022) [13]. Recently, convolutional neural networks (CNNs) within deep learning models have 

shown promise in pest and disease detection in agriculture (Singh et al., 2016) [14], enabling efficient early 

detection of BO infestations (Sarker, 2021) [15]. 

Finally, an important step towards effective insect management in agriculture besides the ability to detect 

the active insect population count, is the ability to also forecast its development so that mitigation actions can 

be taken accordingly. To that end, algorithmic approaches of machine learning and time series analysis can 

be applied and be effective (Khanna and Kaur, 2022), (Chiu et al., 2019) [16], [17]. 

This paper aims to highlight earlier research from our team already published, focused on real-time early 

detection of Tuta absoluta (Giakoumoglou et al., 2023 [18]), black aphids and whiteflies (Giakoumoglou et 

al., 2022 [19], Giakoumoglou et al., 2022 [20]) and Bactrocera oleae (Giakoumoglou et al., 2023) in crops 

of importance. These papers collectively demonstrate how DL techniques can be used for accurate insect 

detection, facilitating applications in robotic systems such as agro-robots, AI-based robotic traps, and mobile 

apps. Furthermore, we provide an approach of how AI predictions about insect populations can be integrated 

into such systems, enhancing the functionality of robotic traps. Additionally, these studies explore solutions 

for dataset insufficiencies. These studies align with the overarching goals of the Green Deal 2030 for pesticide 

reduction in farming and better crop monitoring. 

2. Materials and Methods  

2.1. Lightweight deep learning models for Tuta absoluta infestation detection 

In this research, Giakoumoglou et al. (2023) [18] assessed the effectiveness of four ensemble techniques 

in improving the detection of T. absoluta infestations on tomato plants using deep learning object detection 

models. The use of real-life data from open fields and greenhouses presents unique challenges for detection, 

necessitating optimization of the models to operate on a mobile platform integrated into a fully autonomous 

robot. The collected data undergoes processing within a robust decision support system, ensuring precise 

detection and evaluation of infestations. 

2.1.1.  Dataset 

An RGB dataset captured under real-life conditions in fields and greenhouses is utilized in this study, 

illustrating damage inflicted by T. absoluta on tomato plants. The dataset consists of 659 images. Expert 

agronomists annotated each image with bounding boxes around areas of damage. These images and 

annotations were sourced from the EDEN Library (https://edenlibrary.ai). Sample images demonstrating 

characteristic damage caused by T. absoluta on tomato leaves are depicted in Figure 1. 

  
(a) (b) 

Figure 1. Samples from the dataset: (a)-(b) images resized to 1024×1024 pixels, with bounding box 

annotations in red highlighting T. absoluta damage on tomato leaves [18]. 
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2.1.2.  Object Detection Models and Ensemble Techniques 

This study utilizes two popular object detection models, Faster R-CNN and RetinaNet, to detect T. 

absoluta damage in tomato crops. For Faster R-CNN models, configurations include Feature Pyramid 

Network (FPN) heads with ResNet-50 and ResNet-101 backbones, incorporating Convolutional Layer 4 (C4) 

and Dilated Convolutional Layer 5 (DC5) heads. RetinaNet configurations employ ResNet-50 and ResNet-

101 backbones, both complemented with FPN heads. 

The ensemble techniques employed in this study to combine predictions from multiple object detection 

models, were Non-Maximum Suppression (NMS), Soft Non-Maximum Suppression (Soft NMS), Non-

Maximum Weighted (NMW), and Weighted Boxes Fusion (WBF). The process commences by inputting an 

image into multiple object detection models, each autonomously identifying and locating T. absoluta 

infestations, resulting in annotated images with bounding boxes around detected damage instances. These 

outputs are amalgamated using ensemble techniques, leveraging the strengths of each model to enhance 

accuracy and reliability, thus ensuring a more comprehensive representation of T. absoluta damage instances 

within the input image. NMS eliminates duplicate detections by retaining only the bounding box with the 

highest confidence score, while Soft NMS reduces the confidence scores of overlapping detections based on 

the degree of overlap. NMW employs a weighted combination of overlapping detections to form a more 

accurate bounding box, and WBF generates a weighted box based on detection scores, yielding a fused result 

reflecting all detection outcomes according to the score. 

All ensemble techniques were applied post-training of the models, obviating the necessity for further 

training. This approach conserves computational resources and enhances the robustness and accuracy of the 

detection process, rendering it suitable for real-world agricultural applications. 

2.1.3.  Training and Evaluation Metrics 

The object detection models underwent training with specific hyperparameters. Training was conducted 

on images sized 1024 x 1024 employing the Stochastic Gradient Descent (SGD) optimization algorithm. 

Data augmentation techniques were utilized, including vertical and horizontal flipping, rotation, and Contrast 

Limited Adaptive Histogram Equalization (CLAHE). Evaluation involved the use of COCO detection 

metrics with the main metric of interest being mAP50, at an Intersection over Union (IoU) threshold of 0.5 

across all classes. 

2.2. Dataset creation and detection of whiteflies and black aphids 

In this study, Giakoumoglou et al. (2022) [19] contributed by: i) establishing an image dataset of black 

aphids and whiteflies, addressing a gap in existing datasets, ii) presenting statistics on image and insect 

instances within this dataset, iii) conducting benchmark experiments on insect localization and classification, 

evaluating the accuracy and inference latency trade-off for different object detectors. 

2.2.1.  Yellow Glue Paper Traps 

The Yellow Glue Paper Traps dataset comprises images of targeted insects captured on adhesive traps 

placed in open fields with vegetable crops (tomato) in Volos, Greece. Color images were taken using a digital 

camera with a resolution of 3840 × 2160. A total of 225 images were captured while Figure 2 shows an 

example of an acquired image with bounding boxes enclosing the insects, while Figure 3 shows a closer look 

at the target insects. 

 

Figure 2. Example of an acquired image from the trap with bounding boxes enclosing the insects [19]. 

Expert agronomists from the University of Thessaly (UTH) performed data annotation using Roboflow, 

labeling the location and class of insects. In total, 5904 insect instances were labeled, with 2431 whiteflies 

and 3473 black aphids, averaging 26.24 annotations per image across both classes. To validate the dataset, 

the images were split into training and validation subsets, with 180 images for training and 45 for validation, 
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maintaining an 80-20% proportion. The split ensured a similar ratio and distribution of classes between the 

training and validation subsets. The insect counts in each subset are detailed in “Table 1” of Giakoumoglou 

et al. (2022) [19]. 

 

Figure 3.  Two examples of whitefly (left) and black aphid (right) [19]. 

2.2.2.  Training and Evaluation Metrics 

To evaluate the Yellow Glue Paper Traps Dataset comprehensively, the utilized learning architectures 

included RetinaNet, YOLOv3, YOLOv5, Faster R-CNNs and Mask R-CNNs. For backbone architectures, 

we selected ResNet-50, ResNet-101, and ResNeXt-101 with Feature Pyramid Networks (FPN) for Faster R-

CNNs and Mask R-CNNs, and ResNet-50 and ResNet-101 for RetinaNet. 

Data augmentation techniques such as horizontal flipping, vertical flipping, and rotation were employed 

to expand the dataset artificially. We utilized Detectron2 for RetinaNet, Faster R-CNN, and Mask R-CNN, 

and PyTorch for YOLOv3 and YOLOv5 implementations. 

For model validation, detection metrics included the mAP calculated across various Intersection over 

Union (IoU) thresholds and the at mAP50. Additionally, the detection speed in milliseconds (ms) was captured 

to evaluate the accuracy versus inference speed trade-off. 

2.3. Synthetic dataset creation and detection of tiny insects 

In this study, Giakoumoglou et al. (2023) [20] aimed to create a realistic synthetic dataset using the 

Generate-Paste-Blend-Detect methodology for detecting insects in agriculture, specifically focusing on 

whiteflies. The contributions include proposing a methodology for generating and adding object instances to 

background datasets and conducting experiments to detect these objects using deep learning models. 

2.3.1.  Dataset 

The methodology employs two datasets: 𝐷𝑏𝑔 as a background scene dataset for model training, and 𝐷𝑜𝑏𝑗 

to train a model for generating objects from random noise, akin to "Cut, Paste and Learn". Denoising 

Diffusion Probabilistic Models (DDPM) were preferred over GANs or VAEs due to data annotation 

limitations and training complexities. DDPM adds noise to images for a set number of timesteps. Generated 

objects are placed on backgrounds manually or automatically using annotated datasets, with augmentation 

techniques like rotation and flipping ensuring diverse coverage. Poisson image blending is used for seamless 

integration, improving aesthetic appeal without requiring a foreground mask. 

As this study aims at detecting whiteflies insects contained in multiple leaves with different types of 

background conditions with varying lighting conditions. For that reason, the PlantDoc dataset was selected 

as the background dataset denoted (𝐷𝑏𝑔) which will be used to add the insects on leaves. By leveraging 762 

PlantDoc images, 644 were augmented with whiteflies. However, the scarcity of insect image datasets 

remains a significant challenge in agriculture. To confront this limitation, manual cropping was employed to 

create an object dataset (𝐷obj) comprising 113 whitefly images. This analytical approach underscores the 

careful consideration of dataset characteristics and the proactive steps taken to address data scarcity in the 

agricultural domain. 

DDPM was configured with 𝑇 = 1000, with variances increasing from 𝛽1 = 10−4 to 𝛽𝑇 = 0.02. Reverse 

processing employed a U-Net backbone with group normalization and self-attention, enduring 1300 epochs 

with a batch size of 4 and 64×64 image dimensions. Employing the AdamW optimizer and cosine annealing 

scheduler, satisfactory results emerged post-epoch 1000, exhibiting near-realistic images. Foreground masks 

were predicted via U-Net architecture (Ronneberger et al., 2015) [21], as attempts with GANs and VAEs 

proved futile due to fluctuating model parameters, necessitating DDPM. The results of the generative model 

for every 100 epochs is shown in “Fig. 2” of Giakoumoglou et al. (2023) [20]. 

Subsequently, 500 whitefly instances were generated with DDPM and applied to 649 images from the 

PlantDoc dataset. Objects were inserted into the 𝐷𝑏g dataset with a pixel size of 10 ± 10%, maintaining 

aspect ratios, and subjected to random rotations and flips. Each image underwent three variations: unblended, 

Gaussian blurred, and Poisson blended, ensuring fair comparison. The resultant dataset boasted 53,401 
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annotations, averaging 82.9 annotations per image, with object counts ranging from 1 to 421. 

2.3.2.  Training and Evaluation Metrics 

The synthetic dataset underwent assessment using all YOLOv8 models. Training was done with input 

image dimensions of 1024×1024 and the applied data augmentation encompassed hue, saturation, and value 

augmentation, along with rotation, translation, scaling, shearing, and horizontal and vertical flipping, as well 

as copy-paste techniques (Ghiasi et al., 2021) [22].  

Evaluation included the mAP across IoU thresholds from 0.05 to 0.95 (stride 0.05) denoted as 𝑚𝐴𝑃, and 

mAP at IoU = 0.5 denoted as 𝑚𝐴𝑃50. Precision and recall metrics complemented the evaluation process. 

2.4. Lightweight deep learning models for Bactrocera oleae detection 

The study of Giakoumoglou et al. (2023) named “Deep Learning-based Lightweight Models for 

Bactrocera Oleae Detection” focused on deploying deep learning techniques on resource-limited devices to 

detect BO infestations. The goal was to develop lightweight architectures suitable for embedded devices such 

as IoT-based traps, mobile phones, and tablets, ensuring effective operation within constrained environments. 

2.4.1.  Dataset 

The DIRT Dataset (Kalamatianos et al., 2018) [23] was utilized in this study, which includes 841 

annotated trap images with BO classifications. Using Roboflow, preprocessing adjustments ensured 

bounding boxes did not exceed image boundaries. The final dataset included 6,623 annotated BO insects, 

averaging 7.9 insects per image. The dataset was divided into training and testing sets with an 80:20 split. 

2.4.2.  Object Detection Models 

This study explored various object detection models, including Faster R-CNN and SSD with different 

backbones: EfficientNet B0, MobileNet v3, ResNet-18, and ResNet-50. Each backbone was randomly 

initialized. For Faster R-CNN, the backbones (MobileNet v3, ResNet-18, ResNet-50) were integrated with a 

Feature Pyramid Network (FPN) and used a Fast R-CNN predictor for two classes. EfficientNet B0 within 

Faster R-CNN utilized an RPN anchor generator. The SSD Lite model with a 320x320 input size and 

MobileNet v3 backbone was used. EfficientNet-B0 with SSD included anchor boxes with specified aspect 

ratios and scales. SSD models with ResNet-18 and ResNet-50 backbones used default anchor box settings 

with specified aspect ratios and scales. 

2.4.3.  Training and Evaluation Metrics 

For consistent comparison, all models were trained using the ADAM optimizer with learning rates from 

10-2 to 10-6, the epochs set to 1000 and a batch size of 4. Early stopping was set with patience of 10 epochs 

based on validation loss. Images were resized to 416x416 pixels. Data augmentation included flipping, 

random rotation, and blurring. Performance was evaluated focusing on mAP at an IoU threshold of 0.5 

(mAP50), with mAP and mAP50 used interchangeably. Additionally, the number of model parameters and 

inference time per image (in milliseconds) were captured. 

2.5. AI pest prediction of population growth 

2.5.1.  Dataset and pest detection 

For this experiment, images were collected using a smartphone camera by UTH, capturing daily photos 

of yellow sticky traps placed in greenhouses throughout the crop cycle (Figure 4a). Environmental data such 

as temperature and humidity were also automatically collected via on-site sensors. 

The images were annotated with Roboflow. Initially, the dataset was small, with only 223 RGB images 

of black aphids. To expand this dataset, augmentation techniques like 90° rotation, brightness, and blurring 

adjustments increased were applied bringing the dataset size to 548 images. Each image was pre-processed 

and resized to ensure compatibility with the neural network. For the detection, a YOLOv8 model was trained 

for 100 epochs. Training parameters included a batch size of 2 and an image size of 960×960 pixels.. 

2.5.2.  Environmental data manipulation and pest population prediction 

The 223 images spanned a 44-day period, despite being taken over 28 days. Environmental data were 

collected daily for these 44 days, including non-working days (weekends and holidays), which resulted in 

gaps in the photo data. To even out the data distribution for better prediction, insect counts on return days 

were spread across the missing days. This created a dataset with temperature, humidity, and insect count over 

44 days. 
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Using this dataset, machine learning models were developed to predict black aphid populations over a 7-

day periods, leveraging weather forecast data from the open-meteo API (https://open-meteo.com/). Given the 

limited data, a plethora of machine learning and time series forecasting models were employed. The machine 

learning models included Random Forest Regressor, Gradient Boosting Regressor and LSTM. For time series 

forecasting, ARIMA, ARIMAX, and SARIMAX models were used. The dataset was split 80/20 for training 

and testing. 

3. Results and Discussion 

3.1. Tuta absoluta infestation detection and ensemble results 

Τhe initial performance evaluation, highlighted varying effectiveness among object detection models, 

considering both accuracy and inference time, summarized in “Table 1” of Giakoumoglou et al. (2023) [18].  

Table 1 presents ensemble results, demonstrating the impact of different configurations on mAP50 scores 

and associated inference times. An illustration of the superiority of ensemble models in mAP50 scores 

compared to individual models, despite increased inference times can be found at Figure 4 of Giakoumoglou 

et al. (2023) [18].  

Initial evaluations of Faster R-CNN and RetinaNet models suggested a need for a refined strategy to 

enhance performance. Ensemble techniques, effectively improved detection predictions, leading to enhanced 

mAP50 scores. Particularly, WBF increased the mAP score by 20%, from 0.58 to 0.70, demonstrating the 

potential of ensemble methods. 

Table 1. Ensemble results (mAP50) using different configurations of models and ensemble techniques [18]. 

Ensemble Configuration WBF NMW Soft NMS NMS 

All models 0.70 0.66 0.63 0.61 

All Faster R-CNN 0.69 0.66 0.63 0.61 

All RetinaNet 0.64 0.63 0.60 0.59 

All Faster R-CNN ResNet-101 0.64 0.62 0.60 0.59 

All Faster R-CNN ResNet-50 0.67 0.64 0.61 0.60 

All Faster R-CNN C4 0.63 0.61 0.60 0.59 

All Faster R-CNN DC5 0.63 0.62 0.60 0.60 

All Faster R-CNN FPN 0.61 0.60 0.58 0.56 

3.2. Whiteflies and black aphids dataset detection results 

Table 2 displays the detection results and inference speed of the methods mentioned at a resolution of 

1024×1024. Despite sub-optimal resizing from the initial 3840×2160 images, we focused on inference speed 

for timely detection. Each model was pretrained at specific dimensions: the Faster RCNN and Mask R-CNN 

were pretrained at 1024×1024, the YOLOv3, YOLOv5n, and YOLOv5s were pretrained at 640×640, and the 

YOLOv5m, YOLOv5l, and YOLOv5x were pretrained at 1280×1280. 

Table 2. Detection Results [19]. 

Model Backbone mAP50 mAP speed Model Backbone mAP50 mAP speed  

YOLOv3 DarkNet53 0.48 0.11 35.3 Faster R-CNN ResNet-101 0.67 0.45 104.4 

YOLOv5n CSP-Darknet53 0.75 0.46 3.3 Faster R-CNN ResNetX-101 0.68 0.48 213.1 
YOLOv5s CSP-Darknet53 0.71 0.33 7.2 RetinaNet ResNet-50 0.68 0.47 74.71 

YOLOv5m CSP-Darknet53 0.62 0.21 17.7 RetinaNet ResNet-101 0.69 0.49 101.0 

YOLOv5l CSP-Darknet53 0.60 0.20 32.4 Mask R-CNN ResNet-50 0.74 0.51 104.7 

YOLOv5x CSP-Darknet53 0.60 0.21 54.5 Mask R-CNN ResNet-101 0.73 0.50 128.9 

Faster R-CNN ResNet-50 0.70 0.51 79.3 Mask R-CNN ResNetX-101 0.72 0.52 238.7 

Error! Reference source not found.The performance summary of the Yellow Glue Paper Traps Dataset, 

with YOLOv5n and CSP-Darknet53 outperforming other detectors in both accuracy and speed can be found 

in Giakoumoglou et al. (2022) [19] with the tag “Figure 5”. In terms of inference latency, YOLO series had 

lower latency than RetinaNet (one-stage models), followed by Faster R-CNN (two-stage models), and Mask 

R-CNN (three-stage models). Mask R-CNN performed slightly better than Faster R-CNN and similarly to 

YOLOv5n and YOLOv5s. 

The experimental results highlight YOLOv5n's superiority with an mAP50 of 0.75 and mAP of 0.46, while 

Mask R-CNN achieved similar results with an mAP50 of 0.74 and mAP of 0.51, showcasing the potential of 
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this work in insect pest management. 

3.3. Synthetic dataset of tiny insect detection results 

According to (Dwibedi et al., 2017) [24], Gaussian blurring and Poisson blending were employed to 

evaluate the detection model, contrasting with scenarios where no blending was applied. Table 3 showcases 

detection outcomes across all three cases. The YOLOv8m model with Gaussian blurring achieved the highest 

accuracy (mAP50 = 0.661, mAP = 0.316). Despite high precision, all models exhibit lower recall, indicative 

of missed relevant objects, given an average of 82.9 small-sized objects per image. 

Table 3. Object detection results [20]. 

Model mAP50 mAP Precision Recall 

No blending 
YOLOv8n 0.594 0.245 0.735 0.530 

YOLOv8s 0.627 0.262 0.725 0.567 

YOLOv8m 0.627 0.262 0.752 0.549 

YOLOv8l 0.624 0.268 0.744 0.551 

YOLOv8x 0.618 0.253 0.736 0.546 

Gaussian Blurring 
YOLOv8n 0.605 0.256 0.735 0.542 

YOLOv8s 0.642 0.298 0.748 0.567 

YOLOv8m 0.661 0.316 0.762 0.573 
YOLOv8l 0.647 0.306 0.770 0.565 

YOLOv8x 0.632 0.285 0.757 0.563 

Poisson Blending 
YOLOv8n 0.623 0.275 0.740 0.561 

YOLOv8s 0.642 0.300 0.746 0.575 

YOLOv8m 0.654 0.309 0.759 0.577 
YOLOv8l 0.652 0.307 0.757 0.567 

YOLOv8x 0.642 0.293 0.759 0.567 

* The rows in bold indicate the models with the highest metric. 

3.4. Bactrocera oleae detection results 

Table 4 summarizes the detection results in terms of mAP, number of parameters, and inference time for 

different models. The Faster R-CNN with ResNet-18 is the preferred choice due to its balance of 

performance, lower latency, and fewer parameters. 

Table 4. Number of parameters in million (M), mAP, and inference time in milliseconds (ms). 

Object Detection Backbone Parameters (M) mAP50 Inference time (ms) 

Faster R-CNN MobileNet v3 18.9 0.7154 26.49 

Faster R-CNN ResNet-18 28.3 0.8016 38.63 
Faster R-CNN ResNet-50 43.3 0.8134 63.99 

Faster R-CNN EfficientNet B0 84.1 0.7046 39.01 

SSD MobileNet v3 3.4 0.1869 39.57 

SSD ResNet-18 24.7 0.6821 21.26 
SSD ResNet-50 28.4 0.7171 26.27 

SSD EfficientNet B0 4.3 0.1865 22.19 

3.5. AI pest prediction of population growth results 

The models’ results were 61.3% mAP50 for the YOLOv8x model with the SGD optimizer, 40.4% mAP50 

for the YOLOv8x model with the Adam optimizer, and 60.1% mAP50 for the YOLOv8l model with the SGD 

optimizer. Figure 4b displays YOLOv8x model predictions, with red bounding boxes highlighting black 

aphids and their detection confidence scores. 
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(a) (b) 

Figure 4. Images from the dataset used: (a) image collected manually for insect annotation and modelling; 

(b) YOLOv8x Black-Aphids detection. 

The Mean Squared Error (MSE) proved that the Time Series models outperformed the typical machine 

learning models. ARIMA had 102.45 MSE, SARIMAX had 90.49 MSE and ARIMAX had 75.61 MSE. In 

conclusion, ARIMA yielded good results with dates and insect counts, while ARIMAX improved 

performance by almost 27% by including temperature and humidity. SARIMAX, incorporating seasonality, 

didn't outperform ARIMAX but may improve with more data from future crop cycles. The prediction model 

needs a 30-day initial data gathering period to adapt to new greenhouses [17]. This adaptation ensures robust 

predictions across different environments. If ARIMAX predicts a significant rise in aphid populations, 

farmers can proactively implement pest management strategies, safeguarding their crops. 

4. Conclusions 

The aforementioned studies, underscore the potential of DL techniques in enhancing and automating 

agricultural processes. With focus on early pest detection and monitoring across various crops and leveraging 

advanced DL models, highlighted become the enhanced detection capabilities of such models in a variety of 

pests including Tuta Absoluta, Black Aphids and Whiteflies. The detections, achieved by either singular 

models or ensemble techniques, achieved impressive real-time results with mAP50 ranging from 0.7 to 0.81 

for all pests combined. The synthetic dataset created for whiteflies also proved an important approach and 

shined a light in the potential of artificially enhancing datasets to overcome data insufficiencies. Finally, the 

population prediction techniques, especially with Time Series analysis models proved appropriate to enable 

timely intervention on crop infestations. These technologies and their integration with digital tools and 

robotic systems offers a promising pathway towards improved crop yields and reduced environmental 

impacts leading the way for advanced technological solutions in modern agriculture.   
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Abstract 

Run-over accidents represent one of the most common occupational hazards related to agricultural 

machinery and obstacle detection systems can represent a major step forward in workers’ safety. In this field 

of research, the use of colour (RGB) and depth cameras (D) is a possible solution to support both driving 

assistance technologies for tractor drivers and computer vision for autonomous vehicles. The object of this 

study, funded by the Italian National Institute for Insurance against Accidents at Work (INAIL), is therefore 

to evaluate the performance of RGB-D cameras in agricultural contexts for detection tasks at various ranges. 

To do so, a real-time pipeline of images has been captured by an RGB-D camera that provides both RGB and 

depth frames at the same pixel resolution and rate.  Colour frames have been analysed through a deep-learning 

algorithm using a TensorFlow-lite object classification model, which has been run on a Raspberry Pi 4 

coupled with a Google Coral AI accelerator. The distance of detected obstacles on the three axes have then 

been estimated from the corresponding depth frames to get both frontal and lateral distances this way. Tests 

have been run with clear illumination conditions and detection data has finally been compared to the 

georeferenced data of obstacles obtained with satellite navigation technology provided by Real Time 

Kinematics (RTK). Despite the assessed depth distances showed an absolute error of 0.84 m within 10 metres 

and 0f 6 m for obstacles beyond 16 metres, the lateral distance from the camera proved to be quite reliable 

an all ranges, with a minimum absolute error of 0.04 m and a maximum of 1.42 m at far ranges. Results 

showed that RGB-D cameras in agricultural environments can be particularly effective in estimating the risk 

of collision with obstacles in the vehicle’s trajectory.  

 

Keywords: Farming automation, Sensors, ADAS, safety, obstacle detection.  

1. Introduction 

Agricultural environments represent one of the most challenging scenarios for health and safety at work 

(Dogan et al., 2010; Türkoǧlu et al., 2017) given the wide range of hazards that might be present and 

particular socio-technical constraints that often make risks unavoidable or severe (Pickett et al., 2005; 

Swanton et al., 2015)  

In this context, agricultural vehicles are naturally exposed to hazards that involve obstacles (Kröyer, 

2015), infrastructures along their path and nearby persons or animals that might be on their trajectory(Nour 

et al., 2021): whether they are pedestrians like in road traffic or workers on foot, run-over accidents represent 

a consistent part of fatal accidents in many sectors.  Risk mitigations strategies often include signal 

standardisation, traffic lights, acoustic alerts and on-board sensors that can provide significant improvements 

in the safety management and a reduction of accidents in many sectors. Agriculture, although, presents 

additional challenges like harsh weather, dust, particular terrain conditions and lack of standardisations or 
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limited communication ways between drivers and bystanders.  The ability to avoid impacts against obstacles 

is also affected by such environmental and socio-technical factors, increasing both the likelihood of accidents 

and incidents to happen.  

Nowadays, computer vision (CV) is a useful technological advance that is practically paramount to 

achieve safe use of robots, autonomous vehicles and remote-controlled machinery (Ali et al., 2022; Chen et 

al., 2020; Mohammed et al., 2017). It can provide important information by analysing colour patterns, by 

segmenting objects and by detecting human gestures; plus, depth imaging can also help drawing contours in 

images and generate 3D models of reality through point clouds. Despite a fast evolution of  CV techniques 

in road traffic, agricultural environments have critical features that are still hard to overcome and this is 

utterly influenced by a generalised lack of data: common Artificial Intelligence (AI) algorithms are, in fact, 

based on training material in the form of datasets made of thousands images for every labelled subject 

contained by them and presented in common situations like rooms, public places or roads and with various 

light conditions (Kragh et al., 2017; Tian et al., 2020). Agriculture is therefore quite demanding in terms of 

training data(Kragh et al., 2017), which also requires particular attention to let algorithms detect partially 

hidden obstacles (i.e. worker dressed in green partially covered by vegetation, or obstacles in shaded areas) 

and avoid overfitting in doing so.      

The possibility of including such tools in driving systems results in many different approaches in which 

the use of AI spans from little support in helping drivers perform an action to the deployment of automatic 

systems such as emergency breaks. This aspect is often enhanced by several types of sensors that increase 

the chances of detecting obstacles: lidars, cameras and ultrasounds are just an example of the solutions that 

have been explored so far. Regarding cameras, an interesting possibility is represented by depth cameras, 

that altogether with RGB cameras (RGB-D) can provide a significant amount of useful information for 

obstacle detection (Mayrhofer et al., 2014). The evolution of sensors for these field applications was also 

improved through the development of specific software libraries that helped with 3D data analysis (Rusu and 

Cousins, 2011) and increased the domain of possible usage. This can also lead to safety applications, such as 

anomaly detection in the background (Christiansen et al., 2016), collision avoidance safety systems (Gunturu 

et al., 2022) and their use on agricultural robots (Skoczeń et al., 2021). 

This research focused on determining the feasibility of using RGB-D cameras in agricultural contexts to 

detect obstacles at various ranges. To do so, tests have been run to estimate the measurement errors of such 

devices in all the axes and even outside of their working range: results of the research would therefore show 

the degree in which such technology could be suitable for a driving assistance system on board of tractors.   

2. Materials and Methods  

In order to fulfil the aim of this research, several aspects have been covered to provide a valid research 

protocol for field tests. Given the specific working conditions and outputs that authors wanted to investigate, 

information must be provided on all the tools that have been tailored to the case, more specifically:  

• Hardware configuration; 

• Software configuration;  

• Performance assessment methodology. 

The elements that have been just pointed out have been deeply described in the following sections, 

together with useful details that are necessary to achieve the expected results.  

2.1. Hardware configuration  

 

The hardware utilised during the test comprised an Intel RealSense D455 depth camera Figure 1-a), which 

has already been evaluated for agricultural environments in a range of 0.1 m to 10 metres (Condotta et al., 

2020), mounted on a Raspberry Pi 4 running Raspbian Bullseye as operating system. To enhance the system's 

inference capability, the Raspberry Pi was equipped with a Google Coral USB accelerator. 

During the field test, the system was powered by a portable power source with a voltage of 5 Volts and 

an energy capacity of 20 Ah. The entire system was mounted on a base constructed from aluminium profiles, 

which provided a solid and stable footing on the ground. The height above ground of the depth camera, once 

mounted on the support, is 1 meter which is consistent with the possible positioning of a similar device on a 
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vehicle. 

The camera was operated by a Python script which was based on its own SDK package, while data has 

been monitored and collected through the 10 inches touch display visible behind the camera (figure 1b) 

together with the Raspberry Pi board.  

To determine the position of the camera and of the obstacles a DGNSS Real Time Kinematics (RTK) 

system was used by using Ublox Zed-F9P board (figure 1c) as GNSS receiver connected to the NTRIP server 

of Lazio Region, hence receiving corrections every second from a base station positioned within 3 km at the 

Civil Engineering Department of Viterbo.  

 

  

 
(a) 

 
(b) 

 

(c) 

Figure 1. Design of the hardware configuration used in field tests. In image a), RGB-D camera and support 

structure are visible; in image b), the touch display that contains the Raspberry Pi 4 board operating the 

camera is visible just behind it; in image c), the RTK antenna plugged to the U-blox ZED-F9P module is 

positioned over the camera for georeferencing purposes.   

2.2. Software configuration 

 

Data from the RealSense Camera has been collected using its SDK (written in C language) through Python 

wrappers specifically compiled for version 3.6 in order to avoid compatibility issues with the rest of the 

system. In fact, also Google Coral USB Accelerator which was required to process the image streams 

provided Python wheels that work in Python 3.6 only. Moreover, newer versions of Raspberry OS do not 

support that version anymore, so the Bullseye 64-bit OS edition has been used.  

The code was able to handle both the colour frame stream and the depth frame stream at 30 frames per 

second with various resolutions that, however, must be the same for both of them: this will allow the 

possibility of knowing the depth of each pixel in the RGB frame.  

Colour frames have then been processed to be passed to the Google Coral AI USB accelerator and provide 

object detection through a neural network. To facilitate this step, a frozen MobileNet (Howard et al., 2017) 

neural network pretrained on COCO dataset (Lin et al., 2014). The model has been processed with 

TensorFlow Lite and loaded in the Raspberry Pi with its labels.  

The script, as shown in Figure 2, was able to provide the bounding box around detected persons in the 

field: using this information gathered from the neural network, data has been further augmented with data 

from the depth frame to estimate the distance of the center of the box from the camera, its frontal distance 
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and lateral offset from it.  

 

2.3. Performance assessment methodology 

The depth camera is designed to work in a range of 6-10 m, but errors may vary according to the distances 

in three dimensions. To verify its performances, four points have been tested in front of the camera and 

another set of four points have been tested on the limits of its field of view. Tests have been run at several 

distances, both inside the optimal working range and outside its range.  

 

 
a 

 
b 

Figure 3. Layout of field tests. Obstacles are indicated with white placemarks in figure a), ground truth data 

collection is shown in figure b). 

 

An overview of the testing field is provided in Figure 3. Points of obstacles have been established with 

the goal of estimating the feasibility of using such devices even beyond the optimal range of use for specific 

applications, such as determining the possibility of impact according to trajectories rather than just exact 

distances as other motion planning systems for autonomous navigations do (Aghi et al., 2020; Xiong et al., 

2023). Given the aim of the research, distances on x, y and z axis will be calculated to verify the measurement 

errors in all directions.  An additional point at 20 m in front of the camera has been used as reference point 

COCO RGB dataset 

ResNet TF model 

Inference of RGB 
frames 

Frame alignment 

Object detection 

Red bounding box for 
obstacles in tractor’s 

trajectory 

Yellow bounding box for 
obstacles near tractor’s 

trajectory 

Green bounding box for 
obstacles outside of 
tractor’s trajectory 

Depth and RGB frames 

Computation of 
distances 

Figure 2. Flowchart of the algorithm 
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to determine the frontal distance of obstacles and their offset from the camera, as shown in Figure 4.  

 

 
Figure 4. Ground truth obstacle georeferencing 

3. Results 

The results of the field test are represented in Figure 5, in that the red square symbols indicate the 

position of the camera and obstacles according to RTK georeferencing, while cross symbols indicate the 

position of the obstacles measured by the depth camera: same colours indicate the same obstacle, so that 

ground truth from RTK and estimated positions can be compared for each one of them.  

 

The image  

  

 

Figure 5. Depth distance measurements and its comparison with ground truth data. Same color indicates the 

same obstacle. 

Statistical analysis of the results is also reported in the Table 1. Test data include the depth of the obstacles 

from the camera, the frontal distance of the object from the camera, the lateral distance of the object from the 

camera (offset) and ground truth data for each one of them. After comparing ground truth with test data, 

absolute errors and relative errors have been computed.  
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Table 1. Depth measurement for test obstacles and comparison with ground truth data 

 ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7 ID 8 

Average Depth 

distance 

32.38 m 16.43 m 9.48 m 4.34 m 14.15 m 24.71 m 18.58 m 17.68 m 

Ground truth distance 16.01 m 12.01 m 8.05 m 4.09 m 12.95 m 19 m 17.13 m 18.44 m 

Absolute error depth 16.37 m 4.42 m 1.43 m 0.25 m 1.2 m 5.71 m 1.45 m 0.76 m 

Relative error depth 102% 37% 18% 6% 9% 30% 8% 4% 

Average depth frontal 

distance 

32.33 m 16.39 m 9.45 m 4.33 m 12.96 m 22.89 m 15.98 m 12.88 m 

Ground truth frontal 

distance 

16.01 m 12 m 8.05 m 4.09 m 12.77 m 18.81 m 16.4 m 16.8 m 

Absolute error frontal 16.32 m 4.39 m 1.4 m 0.24 m 0.19 m 4.08 m 0.42 m 3.92 m 

Relative error frontal 102% 37% 17% 6% 1% 22% 3% 23% 

Average depth lateral 

distance 

0.29 m 0.01 m 0.03 m 0.09 m 5.6 m 9.22 m 9.43 m 12.1 m 

Ground truth lateral 

distance 

0.06 m 0.04 m 0.07 m 0.05 m 4.82 m 6.72 m 8.01 m 10.57 m 

Absolute error lateral 0.23 m 0.03 m 0.04 m 0.04 m 0.78 m 2.5 m 1.42 m 1.53 m 

Relative error lateral 383% 75% 57% 80% 16% 37% 18% 14% 

 

Absolute errors are greater as the distance increases, especially outside the standard working range of the 

depth camera. Especially at small angles of inclination from the depth sensors, which happen when obstacles 

are right in front of the camera, distances that are widely beyond the operational limits of the instrument are 

assessed with greater errors as happened for obstacle ID1 at approximately 16 metres of distance. Despite 

relative error are greater for obstacles at closer range, it must be noted that such values show instead a small 

absolute error. Another important aspect should be noted regarding lateral distances, where the errors are 

minimal even when differences among ground truth distances and measure depths are high: this means that, 

even outside of the camera’s working range, the estimated lateral distance of objects seem to be precise. 

Moreover, the obstacles that are positioned near the limits of the field of view have shown better depth 

measurements compared to obstacles in front of the camera. Further data analysis reported in Table 2 shows 

a comparison regarding distances by dividing data in three ranges which are 0-10 m (suggested camera 

working range), 10-16 m (limit range) and 16+ m of distance (way outside of the range, but with still some 

detection capabilities).  

 

Table 2. Benchmark of measurement errors at different ranges 

 0 m - 10 m 10 m - 16 m 16+ m 

Number of observations 43 56 118 

Average absolute depth error 0.84 2.807 6.071 

Average absolute frontal error 0.82 m 2.29 m 6.19 m 

Average absolute lateral error 0.04 m 0.41 m 1.42 m 

 

Data in Table 2 shows a different increase of error among ranges and different axes, with unreliable 

measurements beyond 16 m but still better results for lateral errors. A significant increase in the error for 
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depth measurements is already visible outside of the standard working range of 10 m, while it is smaller than 

1 metre for measurements within that range.  

4. Discussion 

Results show that RGB-D data provides fairly good precision in the working range suggested by the 

manufacturer, with an error that starts increasing as the frontal distance from the camera increases. Data 

analysis in far ranges showed that over 16 m depth measurements become hardly usable for an obstacle 

avoidance system, while obstacles within the range 10-16 m can be useful in contexts where such distances 

are covered in a significant amount of time.  

An interesting result is related to the assessment of lateral position (offset) of the obstacles, which proved 

to be reliable even at great distances and that was always smaller than 0.5 m even in tests performed in ranges 

between 10 m and 16 m.  

The detection was also influenced by shapes of the obstacles since the centre of every one of them has 

been used as reference point and can be therefore considered as the median point of the bounding boxes 

calculated by the algorithm rather than the average distance of the whole shape of the obstacle. It is also 

important to note that background data should always be removed or processed before calculating the 

distances because hollow obstacles might return background distance data instead of the distance of the 

obstacles themselves.  

5. Conclusions 

Field tests showed that RGB-D cameras in agricultural environments can be a useful tool to reduce the 

risk of collision and run-over hazards to workers on foot: in particular, they are not just useful for distance 

assessment in all the axes, but they are rather useful to understand their offset compared to the trajectory of 

the vehicle. This would already be useful as a driving assistance system since the classification of obstacles 

could not be necessary and tractor drivers already know the path of the vehicle in the field and the algorithm 

already considers the shape of the tractor to assess the risk accordingly.  

Future tests could be run in different working conditions and agricultural contexts, while further 

enhancements on the algorithms could focus on image segmentation by computer vision thresholds to 

separate the obstacles from the background and therefore avoiding the use of AI pre-trained models for object 

detection and classification.  
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Abstract  

The role of Unmanned Aerial Systems (UAS) in different application areas in the agricultural sector is 

increasing rapidly. Following the current trends, the focus of SPADE EU Project (HE 101060778) is to 

investigate the potential benefits of UAS contributing to multiple field operations and processes and promote 

sustainable digital services in the sectors of agriculture, forestry, and livestock. Part of the developments 

within the SPADE ecosystem involves deployment of UAV formations (single UAV, collaborating UAVs, 

UAV swarms) equipped with edge-computing devices (AI/ML) for direct applications in livestock 

management such as detecting focused risks. These developments are being evaluated in real field conditions 

through the dedicated pilot activities.  

The current work presents the preliminary results of SPADE livestock use cases undergone two trials to 

evaluate the performance of UAS-enabled edge-computing AI tools, for ML modelling & data assimilation. 

The scope is to enable the flying systems for real time monitoring of sheep in open field grazing 

environments. Within this framework, the SPADE Livestock setup utilized state-of-the-art object detectors 

and edge computing devices. The Models being investigated included Faster R-CNN, YOLO, and SSD as 

backbone object detection in aerial images captured by the UAS. The acquired dataset was used to train 

selected Tiny Object Detection algorithms.  

The trials included flights at varying altitudes for capturing objects at different scales and evaluate the 

motion blur due to high-speed at low-altitude flights. The analysis proposed the utilization of TPH-YOLOv5 

model, an enhanced version of YOLOv5, where an additional prediction head is introduced to detect objects 

at different scales. Furthermore, the original prediction heads are replaced with Transformer Prediction Heads 

(TPH), which leverage a self-attention mechanism to enhance object detection capabilities. Moreover, the 

convolutional block attention model (CBAM) was integrated into the model to identify attention regions in 

scenarios with dense objects. The results showed that TPH-YOLOv5 exhibits excellent performance when 

applied to drone-captured scenarios and thus outperformed competing methods. Specifically, on the DET-

test-challenge dataset, TPH-YOLOv5 achieved an average precision (AP) of 39.18%, surpassing the previous 

state-of-the-art method by 1.81%. Plans for future work include the implementation of further in-situ pilot 

trials, to evaluate the real-time response of the system. 

Keywords: Digital Agriculture, Unmanned Aerial Systems, Edge-computing, Machine learning, Livestock 

management 

1. Introduction 

Some of the key applications of UAVs in livestock health care include Aerial Surveillance, Environmental 

Monitoring, Grazing Management, Predator Management, Herd Management and Mustering, Data 

Collection and Analysis, Remote Access, and Monitoring. This work addresses the utilisation of UAVs with 

edge computing capabilities as tools for more efficient Livestock management. This concept is enhanced by 

combining direct sensing on the physical livestock assets (i.e. animals) with remote sensing using UAV edge 

computing ML tools aiming at implementing digital twin(s) modelling. The latter enables augmenting the 

traditional role of UAVs, in supporting livestock health care and farming operations, by providing 

knowledge-full aerial surveillance, grazing management, environmental and healthcare monitoring. 

Moreover, our ecosystem determines interoperability between two independent DTs that are addressing two 

independent dataspaces corresponding to the same physical phenomenon (livestock). Thus, we are achieving 

the implementation of a cognitive continuum among independent dataspaces defined by direct sensing (DT1) 
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and UAV-based remote sensing (DT2).  

In the literature there are object detection and tracking algorithms that can be utilised in UAV footage, to 

be implemented on edge devices. Such modern deep learning technologies can help farmers to optimize 

livestock management. In this work, a state of the art overview was done based on which such algorithms 

can be categorised in the following categories based on their applications: 

a) General Object Detection 

b) Object Tracking 

c) Edge Computing 

d) Tiny Object Detection on UAVs 

a) General Object Detection: Automatic object detection is one of the most well studied fields of 

research in the computer vision domain. Especially with the rise of deep learning and publicly available large 

annotated datasets, automatic detection and classification of objects gained huge popularity. One of the first 

attempts to utilize CNNs for object detection called Regions with CNN features (R-CNN) was published by 

Girshick et al. (2014). Several improvements of this basic algorithm such as Fast R-CNN (Girshick, 2015) 

and Faster R-CNN (Ren et al., 2015) were developed afterwards. As an alternative, a one-stage object 

detector called YOLO (You Only Look Once) was introduced by Redmon et al (2015). Compared to previous 

deep-learning frameworks for object detection, YOLO is extremely fast. Since then, several improvements 

of the original implementation of YOLO were made over the years which results in a whole family of object 

detection architectures and models pretrained on the COCO dataset. Another one-stage detector that 

eliminated the need for region proposals called SSD (Single-Shot-Detector) was presented in Liu et al. 

(2015). More recently, the authors of Tan et al. (2020) presented what is known as EfficientDet, a family of 

object detectors that focuses on achieving a balance between accuracy and efficiency. It utilizes EfficientNet 

(Tan et al., 2019) as backbone, a high-performance CNN which has fewer parameters and thus requires less 

computational resources. Another family of anchorless one-stage object detectors is CenterNet (Duan et al., 

2019). Unlike other object detectors that focus on predicting bounding box coordinates or keypoints, 

CenterNet aims to simplify the detection by focusing on detecting object centers and relative bounding box 

dimensions rather than bounding box coordinates directly. Another advantage of CenterNet is that it replaces 

the need for Non-Maximum-Suppression (NMS) as post processing step with a more efficient algorithm 

which can directly be integrated into the CNN. Consequently, removing NMS as post-processing step enables 

much faster inference than competing methods. 

b) Object Tracking: Furthermore, real-time object tracking is a vital component of UAV-based 

applications. Traditional tracking algorithms such as Kalman Filters and Particle Filters as well as more 

advanced deep learning-based trackers such as DeepSORT (Wojke et al., 2017), StrongSORT (Du et al., 

2023), ByteTrack (Zhang et al., 2022), and CenterTrack (Zhou et al., 2020), enable UAVs to continuously 

track and follow objects of interest in real-time, even in complex and dynamic environments. Continuous 

multi-object tracking and object association in consecutive frames builds the basis for subsequent tasks such 

as motion analysis for instance. By tracking objects over time, computer vision systems can analyse their 

motion patterns, speed, direction, and trajectories. This information is valuable for tasks such as activity 

recognition, behaviour analysis, and anomaly detection. 

c) Edge Computing: With the proliferation of edge computing and onboard processing capabilities in 

modern UAV systems, there is a growing demand on performing object detection and analysis directly on 

the UAV itself. Edge computing offers several advantages for deep learning applications: Firstly, edge 

computing reduces the latency and response time by performing computations directly on edge devices or 

embedded systems. This enables real-time decision-making which makes it well-suited for time-sensitive 

applications like real-time surveillance of livestock for instance. Secondly, edge computing minimizes the 

reliance on cloud connectivity, ensuring that deep learning models can operate even in remote or 

disconnected environments which is particularly beneficial in scenarios where reliable network connectivity 

may be limited. Thirdly, edge computing reduces the bandwidth and storage requirements by processing data 

locally. Deep learning models can be deployed directly on edge devices, eliminating the need to send large 

amounts of raw data to the cloud for processing. This results in significant cost savings and optimized 

resource utilization, as only relevant information needs to be transmitted.  

In recent years, several edge devices for deep learning applications have been developed by the industry. 

The NVIDIA Jetson family, such as the Jetson Nano, Jetson Xavier, or Jetson TX2, for instance, is one of 

the most popular edge computing platforms designed specifically for accelerating deep learning applications 
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on the edge. An alternative to this is Google’s Coral which is a platform of hardware components equipped 

with Google's Edge TPU (Tensor Processing Unit) and software tools for deep learning inference on the edge. 

d) Tiny Object Detection on UAVs: With the astonishing capabilities of state-of-the-art object detectors 

and the rise of edge computing devices, also automatic object detection and tracking in UAVs has seen 

significant advancements in recent years. Models like Faster R-CNN, YOLO, and SSD have emerged as the 

backbone of object detection in aerial images, but since UAVs usually fly in high altitudes, a variety of 

adjustments and advancements had to be invented to accurately detect oriented tiny objects with high 

accuracy. A comprehensive overview of state-of-the-art object detectors especially designed for small objects 

and object localization in UAV images were presented by Chen et al. (2023) and Wu et al. (2022). One 

interesting approach to cope with objects being captured at different scales due to varying altitudes at which 

drones navigate as well as motion blur due to high-speed and low-altitude flight of drones was presented in 

Zhu et al. (2021).   

In the following chapters we describe the ecosystem developed within the framework of SPADE EU 

project focusing on the enhanced management of Livestock utilising DTs that are based on wearable 

technologies and ML algorithms for UAVs with edge computing capabilities. 

2. Concept and Methodology  

The SPADE Project Livestock Pilot 

Addressing the needs of the Livestock sector and its community, SPADE’s (https://spade-horizon.eu/) 

efforts focused on the Digital Twin (DT) concept that is being standardized (ISO/IEC JTC 1/SC 41) and 

especially in a DT System of Systems (SoS) Virtual to Physical ecosystem (Figure 1). 

 

Figure 1. Digital Twinning of SPADE Livestock platform in line with ISO 2022 ISO/IEC JTC1/SC 27 

 

In this approach Livestock animal-based sensing and Livestock UAV-based monitoring are being 

simulated by two DT interoperability cases. The DT A represents the Physical to Virtual space monitoring 

of Livestock data using wearable devices. The DT B represents the Physical to Virtual space monitoring of 

Livestock data using UAV based equipment. In DT A, physical conditions such as herd position, mobility, 

and deduced activity can be extracted to the virtual space, while in DT B the physical conditions of the UAV 

and its flight mission as well as Livestock physical conditions such as herd-flock and animal tracking, grazing 

landscape status monitoring, environmental and predator risk assessment, can be extracted to the virtual 

space. 

Objectives, piloting, and ecosystem prototype: This work develops a prototype platform to pilot sheep 

breeding and healthcare monitoring (Madesis et al., 2019), which is an essential economic activity offering 

hundreds of jobs. It also helps to shape the ecosystem and adds significantly to the agricultural, cultural, and 

gastronomic history of regions. The system evaluation is performed on the Greek island of Lesvos, where 

sheep breed consists of 350,000 purebred animals distributed in approximately 2.000 flocks. Almost 80% of 

the animals are kept in the north-western part of the island. The average milk yield is 223±70 kg in a milking 

period of 163±34 days. The breed’s prolificacy is 1.10 - 1.25 lambs/ewe. Therefore, this work presents a 
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scenario case where a multipurpose drone is used for enabling livestock grazing and healthcare monitoring, 

in line to assisting the overall livestock management. The overall objective of this work is the optimization 

of both animal grazing and healthcare management, to improve milk yield, safeguard the sector’s 

sustainability and contribute to the authentication, tracing, monitoring and conservation of traditional 

production systems and sheep rearing. Moreover, the proposed technology aspires to improve the working 

conditions and income of farmers and entice young farmers to engage in traditional sheep rearing by offering 

a platform capable of providing evidence-based decision support and minimize the effort required for 

everyday tasks. 

3. Results and discussion 

3.1. Physical and health-care conditions in the grazing process (DT A), usage of wireless 

animal wearable sensors 

Motivation: For DT A we use animal wearable sensors to trace animal location and correlate animal 

movements (via x,y,z accelerometers) with activity/grazing and/or health status. This solution attempts to 

have a first level of automated tracking and detection of activity and potential healthcare issues. Focusing on 

grazing, we realized that eating habits may imply a first level animal healthcare status. Therefore, DT A 

implements a digital mapping of the physical situation as per monitoring a number of animals (the optimum 

would be all) via wearables. The expected outcome, based only on DT A, would be detecting fluctuations in 

eating patterns (e.g. lower grazing times) and thus identifying whether animals might be unhealthy, lame, or 

unwell. 

During the first SPADE project stage lightweight wearable devices were used comprising of a multi-

sensor cellular IoT prototyping platform (Nordic Thingy:91) using LTE-M and GNSS. The cellular 

communication combined with the GNSS positioning systems and the multitude of sensors for motion and 

impact are making this solution ideal for grazing and healthcare monitoring. As depicted in Figure 2, a 

lightweighted device (Thingy:91) attached to sheep collars is used as a ‘wearable’. The device is a dedicated, 

battery-operated microcontroller equipped with low-power inertial sensors (accelerometer and gps) and 

wireless communication. Furthermore, the device is built around the nRF9160 System-in-Package (SiP), it 

is certified for a broad range of LTE bands globally and it supports LTE-M, NB-IoT and GNSS, and a 

nRF52840 board controller, with Bluetooth Low Energy and NFC. The position of the animal is detected 

with the GNSS integrated in the nRF9160 SiP while the accelerometers provide the measurements to perform 

animal motion analysis. The device samples regular accelerometer and tracking measurements at the 

frequency of 20 Hz. The SPADE Livestock platform is currently under development utilizing the 

OpenRemote open-source platform (OpenRemote IoT Platform). The prototype version has been customized 

by NST (http://www.nydorsystem.com/) for position tracking and activity status monitoring. The direct 

sensing part of the experiment resulted in a successful real time feed of the SPADE Livestock platform 

from the direct animal sensing collars. The system showed high potential for real time tracking of animals’ 

status as well as detection of specific animal behaviour patterns (grazing, limping, moving in cycles). 

Communication issues have been clarified and timestamping has been satisfactorily employed as the main 

reference element to establish coherence between DTA and DTB datasets. Further development is planned 

to enhance the combined DTA – DTB system via augmenting the timestamping reference element with 

animal IDs and location tracking. 

Preliminary results on using monitoring technologies for direct livestock healthcare and grazing 

management: SPADE decided to exploit a direct sensing link (DT A) using wearables directly on animals 

and UAVs as well as a remote sensing link (DT B) utilising remote sensing provided by UAVs with edge 

computing capabilities. Field trials have been conducted for testing the system in real field conditions and 

these will be continued throughout the next 24 months. Hitherto, monitoring real time grazing has been 

evaluated in conjunction with parts of DT B, where remote sensing via UAV flight sensing missions tests 

advanced computer vision algorithms for animal detection/tracking/identification/counting towards 

behavioural patterns recognition.  

 

AgEng 2024 Proceedings

615



 
Figure 2. The physical to digital context of SPADE Livestock in DT A: wearable device attached to animal 

collar (left); the digital representation on the OpenRemote cloud platform, showing both position in the 

herd and activity based on a three-axis acceleration (right). 

3.2.  Computer Vision on Edge Devices for Livestock Monitoring (DT B), usage of UAVs and 

ML edge computing tools 

Motivation: Unmanned aerial vehicles (UAVs) equipped with automated animal detection systems 

implemented on edge devices have emerged as promising tools for wildlife monitoring, conservation, and 

livestock farming. Advanced computer vision algorithms, integrated into aerial platforms, for animal 

detection and tracking in footage from UAVs provides researchers, conservationists, and farmers with a non-

intrusive, cost-effective, and efficient way to monitor livestock, increasing animal welfare and optimising 

livestock management.  

Preliminary results on selecting a tiny objects detection ML model and training with Livestock footage 

acquired in SPADE: The authors propose TPH-YOLOv5, an enhanced version of YOLOv5, where an 

additional prediction head was introduced to detect object at different scales. Furthermore, the original 

prediction heads are replaced with Transformer Prediction Heads (TPH), which leverage a self-attention 

mechanism to enhance object detection capabilities. To identify attention regions in scenarios with dense 

objects the convolutional block attention model (CBAM) was integrated into the model. The authors showed 

that TPH-YOLOv5 exhibits excellent performance when applied to drone-captured scenarios and thus 

outperformed competing methods. Specifically, on the DET-test-challenge dataset, TPH-YOLOv5 achieves 

an average precision (AP) of 39.18%, surpassing the previous state-of-the-art method by 1.81%. 

Using State of The Art on Animal Detection in UAV images: Large, annotated datasets are a prerequisite 

to properly train and evaluate object detectors for animal detection in UAV images. To compare different 

approaches and their ability to detect sheep in UAV images, two datasets are considered: The first dataset we 

currently investigate is SheepCounter which consists of 1731 images containing only white sheep mainly on 

meadows (Nolan G., 2021). The second, more challenging dataset, is called Sheep Detection from Above 

with 2018 images (it3915masterpreparatoryproject, 2022). Compared to Nolan G. (2021), this dataset not 

only contains white sheep but also brown, black, and grey sheep, which makes the dataset more diverse. 

Additionally, terrain and illumination are more challenging. 

Due to the lack of available video datasets and to be able to benchmark different types of object detectors 

and tracking paradigms, we recorded a dataset of videos from drones showing herds of sheep on the 

University Farm of Aristotle University of Thessaloniki (A.U.Th.). The dataset currently contains 17 videos 

of different lengths, ranging from 30 seconds to over 4 minutes. We are currently annotating the dataset using 

the open-source Computer Vision Annotation Tool (CVAT) , an open-source web-based tool specifically 

designed for annotating images and videos to create training datasets for computer vision algorithms. 

Although, general object detection is getting not only more accurate but also more efficient, detecting 

animals in UAV images is still a challenging problem. Especially in precision livestock farming or 

monitoring of endangered species, high accuracy is demanded while smaller and more energy efficient 

models are needed due to implementation on mini-computers and edge devices. In relevant work (de Lima 

et al., 2023), the authors compared YOLOv4 and YOLOv5 models to count bovine cattle in images taken at 

altitudes of 20, 40, 80 and 100 m. All variants of YOLOv5 exceed a precision of 92% with the smallest model 

reaching a precision of 96% and the largest model 98%. In Wang et al. (2023) the newer YOLOX nano model 

was used and improved the detection performance for small objects. The obtained mean average precision 

(mAP) for cattle, sheep and horses is 86.47% at a height of 300m. In case of common cranes, it was shown 

in Chen et al., (2023) that the use of automatic approaches to count individuals in UAV images can be more 
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accurate than manual counting of field observers, who underestimated the population. The applied YOLOv3 

model reached a precision of 99.91% and a recall of 94.59% for RGB images at daylight. 

Within SPADE we already trained and compared several state-of-the-art object detectors, achieving 

promising results on the SheepCounter dataset mentioned above. Figure 4 shows the performance of the SSD 

object detector with MobileNetV2 backbone on a test image of the SheepCounter dataset. 

 

 

Figure 2. Detection results of SSD with MobileNetV2 backbone on an image of the SheepCounter 

dataset. The green boxes represent the detected bounding boxes. 

4. Conclusions 

This work produced a first set of tangible results in line with the EU Horizon (HE) project SPADE. On 

the Tiny Object Detection on UAVs tasks, satisfying results were achieved especially on a self-created 

hyperspectral image dataset with a F1-score of 0.836. Although the achieved results are promising, the 

proposed model architecture is relatively complex which makes implementation on edge devices infeasible. 

Another interesting approach was presented by Fan and Lu (2021). The authors used a simplified AlexNet 

CNN architecture for landscape classification but introduced a spatial and spectral feature fusion paradigm 

to improve crop classification robustness, raising the accuracy for their dataset from 86.07% to 92.76%.  

On the process of modelling Livestock assets via Digital Twinning our first results proved several benefits 

for Livestock Farming: Animal Health and Welfare: Digital twinning can contribute to monitoring and 

improving animal health and welfare by creating virtual representations of livestock and integrating data 

from wearable sensors. In addition, to support the UAV flight mission, the wearables introduced in the 

architecture of the Livestock platform to provide to the UAV pilot the exact GPS position of the herd. Based 

on the conclusions from the Livestock trial,  the wearables  can be used to achieve a) tracking and reporting, 

in real time, the exact position of the animals by tracking the bell animals of the herd, b) if equipped with 

extra sensors like accelerometer and thermometer, the wearables can be used for the data collection aiming 

to train and validate AI models to detect animal’s activity (such as normal non-grazing activity, normal 

grazing activity, abnormal activity (i.e., illness, kneeling, moving in cycles, fever, etc.), c) testing the virtual 

fencing of the pasture area as well as to validate the UAV’s calculations of animals trespassing. 

Overall, this work presented findings from the SPADE Livestock pilot trials on the automatic detection 

of sheep from aerial images. This work is being improved by comparing different state-of-the-art object 

detectors. Although first results are promising, we further need to investigate advantages and shortcomings 

as well as their feasibility to be implemented on edge devices.  

Moreover, we plan to combine object detection with tracking algorithms, to derive semantically higher 

information from videos such as animal counting or behaviour analysis. Another research direction we plan 

to investigate is to automatically classify grassing regions which enable farmers to strategically allocate 

grazing areas for their livestock.  
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Abstract 

In the endeavor to safeguard Mediterranean forests amidst evolving environmental and societal shifts, 

leveraging cutting-edge technologies becomes imperative. This paper introduces an initial approach to forest 

digitization, harnessing the capabilities of both drone and quadruped robot. Through the integration of 

machine learning algorithms, crucial parameters such as soil moisture, tree crowns, and tree species were 

estimated. The findings underscore a remarkable precision and recall, 0.983 and 0.982, in soil moisture, with 

notable advancements in tree crowns and tree species. This synergistic fusion of aerial and terrestrial 

technologies heralds a promising frontier in advancing forest management practices. 

Keywords: Forest digitization, Drone, Quadruped Robot, Machine Learning, Sustainable Forest 

Management.  

1. Introduction 

The Mediterranean (MED) region, which encompasses over 25 million hectares of forests and 

approximately 50 million hectares of other wooded lands, is at a critical juncture. The potential repercussions 

of climatic and socio-economic changes in the region could lead to the loss of vital ecosystem services and 

could trigger a host of economic, social, and environmental issues. Forest managers and industries in the 

region face significant challenges, primarily due to limited or missing access to current and emerging digital 

technologies. These technologies often appear outdated in key areas or fail to address some of the most 

pressing difficulties that the industry is expected to confront in the coming decades. Compounding these 

challenges, traditional methods of data collection often fall short in providing comprehensive and accurate 

information about forest health. This combination of technological limitations and inadequate data collection 

methods presents a formidable obstacle to effective forest management [1]. 

Drones have become an essential tool in modern forestry, providing comprehensive and detailed 

multispectral images that are instrumental in monitoring the bio-structural health of forest trees. These 

images, particularly those captured in the infrared band, enable the detection of water content in plant tissues 

and chlorophyll content in leaves, aiding in the timely diagnosis of dehydration or malnutrition in trees. In 

addition to health monitoring, multispectral imagery significantly contributes to forest inventory management 

by facilitating a better understanding of vegetation types, species composition, and distribution in forests, 

thereby promoting sustainable resource management. The imagery’s ability to capture leaf’s colour and 

spectral reflectance of plants allows for the detection of changes in different vegetation types and densities. 

Furthermore, multispectral imagery plays a crucial role in harvesting and regeneration processes by detecting 

tree age and growth, thereby determining which trees are suitable for harvesting or preservation. This 

information enables foresters to plan specific harvesting or renewal programs, maximizing the use of existing 

resources and increasing the success of forest plantations [2]. 

A notable study by Qu et al. (2024) [3], provides an exhaustive analysis of how drone multispectral 

technology can be harnessed for real-time monitoring and analysis of soil moisture across extensive 

agricultural lands. The study introduces a rapid inversion model for deep soil moisture (0–200 cm) in dryland 

agriculture, utilizing data from drone-based multispectral remote sensing. The crops under study were maize, 

millet, sorghum, and potatoes, with multispectral data, canopy leaf, and soil moisture content at various 

depths collected at intervals of 3 to 6 days. Vegetation indices exhibiting a high correlation with crop canopy 

leaf moisture content (p < 0.01) were identified using Pearson correlation analysis. This led to the 

development of linear and nonlinear regression models for predicting moisture content in canopy leaves and 

soil. The results demonstrated a significant linear correlation between the predicted and actual canopy leaf 

moisture levels for the four crops, according to the chosen vegetation indices. The use of canopy leaf moisture 

content to predict surface soil moisture (0–20 cm) exhibited enhanced accuracy. The models designed for the 

top 20 cm of soil moisture successfully estimated deep soil moisture levels (up to 200 cm) for all four crops. 

The study concludes that using drone-based multispectral technology, leaf water content can be forecasted 
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via vegetation index analysis, facilitating swift and effective soil moisture inversion. This research introduces 

a novel method for monitoring and managing agricultural water resources, providing a scientific basis for 

precision farming and moisture variation monitoring in dryland areas. 

In a study conducted by Greifeneder et al. (2021) [4], a machine learning (ML) based approach was 

introduced for high spatial resolution (50 m) mapping of soil moisture. The methodology integrated Landsat-

8 optical and thermal images, Copernicus Sentinel-1 C-Band SAR images, and modelled data, executable in 

the Google Earth Engine. The novelty of this approach lies in applying an entirely data-driven ML concept 

for global estimation of the surface soil moisture content. Globally distributed in situ data from the 

International Soil Moisture Network acted as an input for model training. Based on the independent validation 

dataset, the resulting overall estimation accuracy, in terms of Root-Mean-Squared-Error and R², was 0.04 

m³·m⁻³ and 0.81, respectively. This study demonstrates the potential of ML in providing accurate and high-

resolution soil moisture estimations, thereby contributing significantly to the fields of meteorology, 

hydrology, and agriculture. 

Ball et al. (2023) [5], developed a method based on the Mask R-CNN computer vision framework for 

delineating tree crowns in tropical forests from aerial RGB imagery. Their approach, named Detectree2, is 

capable of recognizing the irregular edges of individual tree crowns. The study highlighted the potential of 

Detectree2 for effective forest monitoring and understanding of forest response to global change. It 

emphasized that Detectree2 can be rapidly trained to perform well in new types of forest and other 

ecosystems. Moreover, Detectree2 has demonstrated its effectiveness in a real-world scenario. It was 

independently tested in a temperate deciduous forest in Japan, where it outperformed DeepForest, achieving 

an F1 score of 0.57. 

Gan et al. (2023) [6], conducted a comprehensive study on tree crowns detection and delineation in a 

temperate deciduous forest using two deep learning approaches: DeepForest and Detectree2. They used 

drone-acquired RGB imagery to detect tree crowns in an alpine, temperate deciduous forest with a 

complicated species composition. The study involved 499 digitized crowns, including four dominant species, 

with corresponding, accurate inventory data in a 1.5 ha study plot. The results showed that the spatial 

resolution had a significant effect on the estimation accuracy of tree crowns detection, especially when the 

resolution was greater than 0.1 m. Furthermore, Detectree2 could estimate tree crowns areas accurately, 

highlighting its potential and robustness for tree detection and delineation. 

In a systematic review by Zhao et al. (2023) [7], explored the use of convolutional neural networks 

(CNNs) for individual tree crowns detection and delineation from remotely sensed data. They found that 

CNN models, when applied to high-resolution RGB images, showed significant improvements in accuracy 

over traditional methods. One study highlighted in the review reported an increase in detection accuracy of 

over 11%, while two studies noted increases in F1-score of over 16%. The review concluded that future 

research could benefit from exploring data fusion approaches, improving data efficiency with customized 

sampling and synthetic samples, and evaluating the impacts of pre-training and parameter tunings. 

Quadruped robots, with their advanced manoeuvrability and adaptability, are increasingly being 

recognized as valuable tools in forestry and environmental monitoring. These robots can navigate difficult 

terrains and dense forest areas that are often inaccessible to humans or wheeled vehicles, making them ideal 

for ground-level data collection. Equipped with various sensors and cameras, quadruped robots can gather 

detailed environmental data and monitor the health of individual trees and plant communities. 

In a study conducted by Tsenis et al. (2024) [8], a robust NDE quadruped robotic platform were utilized 

to perform monitoring and inspection in energy producing infrastructures. This platform addressed the 

challenges associated with conducting inspections in diverse and complex environments, offering flexibility, 

accuracy, and safety. The results highlighted the effectiveness of employing quadruped robots to access 

hazardous areas and perform comprehensive evaluations, ultimately contributing to the overall sustainability 

and performance of energy infrastructure systems. 

A study conducted by Idrissi et al. (2022) [9], evaluated the forest ecosystem through a semi-autonomous 

quadruped robot and a hexacopter drone. The study aimed to improve the resilience of forests for economic 

growth and climate regulation. The quadruped robot was equipped with an integrated camera and an external 

sensing platform with light and infrared cameras, computing, communication, and power modules. The robot 

was used to observe forest health indicators from the ground, such as burrows and deadwood, which are 

inaccessible from the air. The study concluded that the use of quadruped robot and drone can significantly 

reduce the time required for forest monitoring by reducing computation and conserving energy. 
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Another study by Cheng et al. (2024) [10], focused on the traversal of 3D complex environments by 

quadruped robots with limited perception. The study proposed an end-to-end learning-based quadruped robot 

motion controller that relies solely on proprioceptive sensing. This controller can accurately detect, localize, 

and agilely respond to collisions in unknown and complex 3D environments, thereby improving the robot’s 

traversability in complex environments. The study concluded that methods based on collision detection can 

enhance a robot’s perception of environmental obstacles, enabling quadruped robots to successfully traverse 

challenging obstacles in various complex environments. 

This paper introduces an initial forest digitization approach, leveraging drone and quadruped robot. Its 

aim is to address limitations in traditional data collection methods and enhance accuracy in capturing vital 

forest ecosystem data. By integrating advanced sensor technologies and machine learning algorithms, the 

study focuses on assessing key parameters such as soil moisture, tree crowns and tree species. Through 

detailed methodology descriptions and performance evaluations, it emphasizes the potential of this integrated 

approach to transform forest monitoring. 

The remainder of the paper is organized as follows: Section (2) provides the background theory of 

vegetation indices, laying the theoretical groundwork for understanding the key vegetation indices used in 

forest monitoring. Section (3) elaborates on our methodology, outlining the data gathering, processing, and 

describes our drone and robot models. Section (4) presents the results and discussion, regarding the drone 

and robot models, including performance evaluations. Finally, section (5) presents conclusions and future 

work, summarizing the key findings and further research to enhance the methodologies and technologies 

discussed in the paper. 

2. Background Theory of Vegetation Indices 

Vegetation indices are mathematical combinations of spectral bands designed to highlight specific 

characteristics of vegetation, such as biomass, chlorophyll concentration, or stress levels. These indices are 

typically derived from remote sensing data collected by satellites, drones, or other aerial platforms. By 

comparing the reflectance of light in different spectral bands, vegetation indices provide insights into the 

health and vigor of plant communities. This paper focuses on three commonly used vegetation indices: the 

Normalized Difference Vegetation Index (NDVI), the Normalized Difference Red Edge Index (NDRE), and 

the Green Normalized Difference Vegetation Index (GNDVI). 

 

NDVI is one of the most widely used vegetation indices, particularly effective at assessing vegetation 

health and density. The NDVI is calculated using the following formula: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
   

where NIR represents the reflectance in the near-infrared band (approximately 700-1100 nm) and 𝑅 

represents the reflectance in the red band (approximately 600-700 nm).  Healthy vegetation absorbs most of 

the visible light (particularly red) and reflects a large portion of the near-infrared light, whereas unhealthy or 

sparse vegetation reflects more visible light and less near-infrared light. By comparing the difference and 

sum of the near-infrared and red reflectance, NDVI effectively measures the density and health of vegetation. 

NDVI values range from -1 to 1, with higher values indicating healthier and denser vegetation.  

Tucker et al. (1979) [11], introduced the NDVI, describing its formulation and its utility in monitoring 

vegetation health and density using remote sensing data. The study demonstrated how NDVI could be used 

to assess vegetation cover and provided the theoretical foundation for its widespread use in ecological and 

agricultural applications. 

 

NDRE is similar to NDVI but uses the red-edge portion of the spectrum instead of the red band. It is 

particularly useful for detecting stress in vegetation earlier than NDVI. The NDRE is calculated using the 

following formula: 

𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅−𝑅𝐸

𝑁𝐼𝑅+𝑅𝐸
    

where NIR represents the reflectance in the near-infrared band and RE represents the reflectance in the 

red-edge band (approximately 700-750 nm). The red-edge band is located at the transition zone between the 
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red and near-infrared bands, where there is a sharp change in the reflectance of chlorophyll. This makes 

NDRE more sensitive to changes in chlorophyll content and, consequently, better at detecting early signs of 

stress or changes in plant health. NDRE is especially valuable in precision agriculture for monitoring crop 

conditions and optimizing inputs like water and nutrients.  

In a study conducted by Gitelson et al. (1994) [12], explored the spectral characteristics of leaves during 

senescence and highlighted the importance of the red-edge region for chlorophyll estimation. This research 

laid the groundwork for the development of indices like NDRE, which leverage the red-edge band to detect 

early signs of plant stress and changes in chlorophyll content. 

GNDVI focuses on the green portion of the spectrum, making it sensitive to the amount of chlorophyll 

present in vegetation. The GNDVI is calculated using the following formula: 

 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝐺

𝑁𝐼𝑅+𝐺
    

where NIR represents the reflectance in the near-infrared band and G represents the reflectance in the 

green band (approximately 540-570 nm). The green band corresponds to the peak reflectance of healthy 

chlorophyll, making GNDVI particularly effective at assessing chlorophyll content and photosynthetic 

activity. Like NDVI, GNDVI values range from -1 to 1, with higher values indicating greater chlorophyll 

content and healthier vegetation. GNDVI is useful for monitoring crop health, estimating yield potential, and 

managing agricultural practices. 

In a study Gitelson et al. (1996) [13], discussed the potential of using the green band for vegetation 

monitoring and proposed the GNDVI as an alternative to NDVI. The study demonstrated that GNDVI is 

particularly sensitive to variations in chlorophyll concentration, making it a useful tool for assessing 

vegetation health and photosynthetic activity. 

In summary, NDVI, NDRE, and GNDVI are essential tools in remote sensing, providing critical insights 

into vegetation health, stress, and chlorophyll content. By utilizing different spectral bands, these indices 

enable early stress detection and effective monitoring, enhancing sustainability practices and ecological 

assessments. 

3. Our Methodology 

The employed methodology involves data collection, data processing and data storage. The data 

collection is conducted via drone and robot. The drone autonomously executes pre-programmed flight paths 

to gather high-resolution RGB and multispectral imagery across various spectral bands—Green, Near 

Infrared, Red, and Red Edge. Concurrently, the quadruped robot traverses designated forest trails, capturing 

RGB images from the ground, leveraging its semi-autonomous navigation system. The data harvested by the 

drone and robot are analyzed through machine learning algorithms. These algorithms are adept at deducing 

critical parameters like soil moisture from multispectral images and tree crowns/species from RGB images.  

3.1 Our Developed Drone Model 

The study utilized drone equipped with multispectral and RGB cameras. Flight parameters were fine-

tuned to optimize data collection efficiency. Maintaining an altitude of 25 meters allowed for close-up views 

of the forest area. A flight speed of 4 m/s struck a balance between detailed image capture and efficient area 

coverage. Front and side overlaps were carefully configured at 70%. The gimbal was positioned towards the 

ground. Continuous image capture at 1.5-second intervals ensured uninterrupted data acquisition throughout 

the flight duration.  

The process of soil moisture detection, as depicted in  

Figure 1, begins with the implementation of histogram equalization to counteract the effects of diverse 

lighting conditions. Subsequently, vegetation indices are computed to transform the band images into 

valuable insights about the vegetation of the forest area. The gathered images are then converted into 25x25 

square meter tiles and resized to pixel dimensions using the field of view and relative altitude from the 

ground, with the aid of trigonometry. The link between the measurements and image tiles was established by 

cross-referencing the GPS coordinates. For each tile, statistical features such as mean, standard deviation, 

and kurtosis were extracted. The tiles that correspond to the measurements were then used for training, 
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validation, and testing.  

The model is trained with a distribution ratio of 70:20:10 for the training, validation, and test sets, 

respectively. The training phase spans 100 epochs, with a batch size of 64 and a learning rate of 0.0001. The 

model architecture includes three fully connected layers, consisting of 512, 256, and 128 neurons 

respectively, and concludes with a softmax activation layer at the output. After training, the model’s 

performance is evaluated using metrics like precision and recall.  

 

 
 

Figure 1: Soil Moisture Detection Process 

The procedure of tree crowns/species detection, as illustrated in Figure 2, commences with the 

preprocessing of collected RGB images. To ensure consistency across the dataset, each image is resized to a 

dimension of 640x640 pixels. Histogram equalization was applied to images, to counteract variations in 

lighting conditions. After preprocessing, the dataset is augmented to increase variability and enhance model 

robustness. Techniques such as horizontal and vertical flips were used to create mirrored images, thereby 

diversifying the dataset. Random rotations, within a range of -15° to +15°, were employed to simulate various 

viewing angles and orientations of trees. Furthermore, horizontal and vertical shears, ranging from -10° to 

+10°, were implemented to account for perspective distortions. 

A pretrained model, specifically the YOLO (You Only Look Once) model, were then utilized and fine-

tuned on the preprocessed and augmented dataset. This fine-tuning process enables the model to accurately 

detect regions of tree crowns in images. The effectiveness of the predicted crowns was evaluated through 

metrics such as precision and recall. 
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Figure 2: Tree Crowns Detection Process 

3.2 Our Developed Quadruped Robot Model 

The robot’s data collection process, as illustrated in Figure 3, employs a quadruped robot to gather data 

from the ground. The robot navigates in pre-defined trails operating in a semi-autonomous manner, using 

markers named fiducials that contain information about localization and mapping. Before each mission, the 

path was recorded and stored. The robot uses a walk-stop technique to capture RGB images while moving. 

It stops approximately 20 meters from trees, to optimize the angle of view, and captures images with its front 

camera. 

The collected images were processed using the YOLO model to estimate tree species based on leaf 

volume. The procedure for detecting tree species was similar to that of tree crowns, with the added step of 

estimating species based on leaf volume. As a result, additional labels were added to the annotations, 

indicating the tree species as determined by the volume of their leaves. 

 

 

Figure 3: Robot’s Data Collection Process 

4 Results and Discussion 

This section presents the outcomes of the study, focusing on the performance evaluation of the developed 

models utilizing drone and quadruped robot technology for forest digitization. The soil moisture prediction 

model achieved high precision and recall scores of 0.983 and 0.982, respectively, on the test set. These scores 

indicate the robustness and accuracy of the model in predicting soil moisture levels across different classes, 

which include low, medium, and high moisture content. The precision and recall scores for tree crowns 

detection were 0.724 and 0.580, respectively. For tree species detection, the model achieved a precision score 

of 0.686 and recall of 0.528. Table 1 summarizes the evaluation for each model on the test set. 

Overall, the results indicate promising outcomes in soil moisture detection, showcasing the effectiveness 

of drone imagery coupled with machine learning algorithms. Accurate soil moisture assessments are pivotal 

for comprehending forest health and managing water resources efficiently. However, the performance of tree 

crowns and species detection underscores the complexity of these tasks, particularly concerning the diverse 

nature of forest ecosystems in terms of crowns structures and species diversity. This study emphasizes the 

need for developing more robust models tailored to address the intricacies of forest diversity.  

 
Table 1: Soil Moisture and Tree Crowns/Species Models Performance - Evaluation on Test Set 

 Precision Recall 

Soil Moisture  0.983 0.982 

Tree Crowns 0.724 0.580 

Tree Species  0.686 

 

0.528 
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5 Conclusions - Future Work 

This study has effectively showcased the potential of initially integrating drone and quadruped robot 

technology with advanced machine learning algorithms for forest digitization and monitoring. The soil 

moisture prediction model, with its impressive precision and recall scores, emerges as a robust tool for 

assessing forest health. While the tree crowns and species detection models did not attain the same level of 

accuracy, outlined the complexity of capturing information on tree crowns and species in diverse forest 

ecosystems.  

Future work will focus on enriching data and refining methodologies. Expanding the data collection 

process to encompass diverse forest ecosystems and seasonal variations will provide a solid foundation for 

developing robust models capable of generalizing across various forest conditions. Methodologically, efforts 

will concentrate on implementing image processing algorithms, and optimizing machine learning models. 

These enhancements aim to enhance the precision of forest monitoring tools, ensuring adaptability and 

accuracy in addressing environmental variability and the intricate dynamics of forest ecosystems. 
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Abstract 

The agriculture sector has more complicated information demands, needing retrieval-augmented 

generation (RAG) models that are advanced enough to offer precise and contextually fitting answers. This 

study puts forward a fresh method for enhancing RAG models in the field of agriculture by combining re-

ranking tactics along with in-memory computing. The strategy aims to better the importance of brought back 

documents and lessen response delay which assists real-time precise answering for varied inquiries related 

to agriculture. The research commences with a summary about RAG architectures and talks of why there is 

drive to create domain-specific optimizations for agriculture. The method suggested here uses top-level 

components like Sentence Transformer model for embedding generation, FAISS for vector search that's fast 

and a pre-trained language model to make high-quality responses. This system gets trained on an extensive 

agriculture QA dataset so it can handle various questions about managing crops, controlling pests, soil health 

and other relevant topics. For the study, to make sure the documents that are found stay relevant, they use re-

ranking methods based on zero-shot classification.  In simple terms, re-ranking means giving a score to each 

document and then rearranging them according to how closely they match with the query. The effectiveness 

of this re-ranking process is tested in many experiments which show better accuracy compared to basic 

methods. Additionally, the study uses in-memory computing with the help of FAISS to cut down retrieval 

delay and support instantaneous functioning. The procedure of memory indexing for question embeddings 

results in considerable speed enhancements compared to usual retrieval methods based on disks. The 

benchmarks show effectiveness improvements attained by using in-memory calculation, making it good for 

big-scale applications and real-time answering of questions about agriculture.  

Keywords: Agri-Data, Retrieval Augmented Generation, QA Systems, LLM, RAG 

1. Introduction 

1.1 Background on agriculture information needs and retrieval-augmented generation (RAG) 

models  

In the sector of agriculture, there is a rising need for precise and prompt information to help in decision-

making. Farmers, experts in agriculture, and those who make policies require access to knowledge that is 

relevant for tackling different difficulties like managing crops, controlling pests or ensuring soil's good 

health. The usual systems used for finding information have difficulty giving answers with appropriate 

context when asked complicated questions about farming matters. Models known as Retrieval-augmented 

generation (RAG), that make use of both retrieval and generation methods, show potential in dealing with 

this task. RAG models use a big collection of agricultural knowledge for getting back useful papers 

according to a query given, and then creating responses that make sense within the context. These models 

could change how we do things with agriculture question-answering systems by giving correct and 

complete answers to many different types of queries. Nevertheless, because agriculture sector is special in 

various ways like having diverse information needs or needing quick performance, more improvements on 

RAG models are needed for their full potential.  

1.2 Motivation for enhancing RAG models in the agriculture domain 

In general question-answering tasks, RAG models have shown good performance. However, when we 

use them for agriculture domain it is not straightforward because there are some challenges unique to this 

field. Queries related to agriculture may contain intricate ideas, terminology specific to the area and a broad 

array of subtopics like types of crops, methods for controlling pests and soil nutrient needs. To handle these 
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queries well with RAG models in the agriculture field, we must optimize them accordingly. Furthermore, 

the sector of agriculture requires quick action. For instance, a farmer may need instant responses to decide 

on certain things. In RAG models, the processes of getting back and creating should be speedy to give fast 

answers for user questions. Also, these models must be easy to scale up as more and more queries are made 

with the increasing use of digital technology in agriculture.   

1.3 Research Objective and Contributions 

This research has a main goal to have better RAG models for agriculture area. It also include re-ranking 

plans and in-memory computing, with the aim of making documents that are found more relevant and cutting 

down on response time delay. The key contributions of this research are as follows: 

a. A new method is suggested to enhance RAG models for the agriculture field by using re-ranking 

strategies and in-memory computing. 

b. Testing performance of our improved RAG model on the Agriculture QA dataset, showing marked 

enhancements in accuracy and retrieval speed compared to basic methods. 

c. Understand about the efficiency of re-ranking tactics and in-memory computing to improve RAG 

models for agriculture QA data. 

d. Advancement in the progress of RAG architectures and their use in the field of agriculture, making 

it possible for farm data easily processed within generative AI systems 

Our research aims to bridge the gap between the information needs of farmers and the available 

knowledge resources. The enhanced RAG models developed in this study have the potential to revolutionize 

agriculture question-answering systems and support data-driven decision-making in agriculture. 

1.4 Related Works 

1.4.1 Retrieval Augmented Generations 

Models with retrieval augmentation are being used in different areas. For example, they can assist in task-

oriented dialog systems where responses get produced from chosen snippets using Retrieval Augmented 

Generation (Thulke, 2021). These models merge pre-trained parametric and non-parametric memory with 

deep learning methods for language production (Lewis, 2020). When we add the strategy of retrieval, it helps 

neural generative models to perform better (Li et al., 2018). A particular method, Generation-Augmented 

Retrieval (GAR), is meant to handle open-domain queries by producing related contexts lacking external 

supervision (Mao et al., 2021). These ways are about increasing the chance of getting results that match a 

query and retrieved contexts at the same time (Tian et al., 2019). Furthermore, retrieval augmentation allows 

for the addition of data beyond parametric models which can improve general performance (Sonsbeek et al., 

2023). Also, the use of models with retrieval augmentation has shown promise in improving Out-of-

Distribution (OOD) robustness. This suggests their ability to enhance model performance (Zhang & Zhou, 

2014). Several studies have also explored the use of retrieval methods in various tasks, like generating 

common sense and understanding semantics. This shows how versatile approaches with retrieval are (Wang 

et al., 2021; Pasupat et al., 2021). These models can control generative processes by manipulating retrieval 

indices and constructing queries. There have been suggestions to distill knowledge from big generative 

models into models that retrieve information. The aim is to improve effectiveness in open-domain 

conversations (Kim et al., 2021). 

 

 

 

1.4.2 Reranking Strategies 

Re-ranking strategies are very important for improving the performance of information retrieval systems. 

Different methods have been suggested to enhance document rankings after the first retrieval process. For 

instance, (Ji et al., 2009; dealt with document re-ranking to boost the ranking of pertinent documents post-

initial retrieval (Ji et al., 2009;. In the work of (Yang et al., 2006), a fresh re-ranking method is presented that 

uses label propagation-based semi-supervised learning algorithms. This technique takes advantage of the 

internal structure existing within big document datasets (Yang et al., 2006; . For document ranking 
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refinement, there are two main approaches: indirect re-ranking with Query Expansion (QE) strategies and 

direct re-ranking on initially retrieved documents discussed by Villatoro et al., 2012. In Addition, strategies 

for re-ranking have been studied in various situations. For example, there is visual re-ranking for multi-aspect 

information retrieval (Klouche et al., 2017). A method of re-ranking was introduced that uses information 

from relevance feedback to improve rankings (Villatoro-Tello et al., 2009). Also, Teng et al. Teng et al. 

(2009) emphasized the significance of entropy-based clustering in enhancing document re-ranking, placing 

it as a step between initial retrieval and query expansion within information retrieval systems. Additionally, 

studies have shown that re-ranking algorithms are helpful in many areas. This includes re-sequencing of web 

data based on knowledge domains (Zhao & Zhang, 2019), and Ren et al. (2021) have demonstrated Passage 

Language Model (PLM)-based rerankers that use cross-encoder architecture for passage re-ranking which 

resulted in substantial improvement over traditional methods. The work of Ren et al. (2021) pointed out the 

effectivity of using document-passage graphs to re-rank search results (Bendersky & Kurland, 2008). 

1.4.3 Existing Agri-Data QA systems 

The work of Li (2023) shows a Q&A system for agricultural planting technology, using text matching 

algorithms and crop planting knowledge maps to improve precision in answering farming-related questions. 

Jain et al. (2019) present AgriBot that is an agriculture-focused question-answering system made especially 

for responding to farmer's queries. Additionally, in 2019 there was a project that concentrated on making an 

Agriculture Chatbot with the help of machine learning methods. Particularly, RNN deep learning algorithms 

were used to offer exact answers related to agriculture area. 

2 Material and Methods 

2.1 Overview of Proposed Approach 

 

The method intends to improve Retrieval-Augmented Generation (RAG) models in the agriculture field by 

combining re-ranking strategies and in-memory computing. It is developed for making the documents found 

more relevant, reducing response delay as well as delivering precise answers in real time for agriculture-

based questions.  

 

 

 
 

 

Figure 1. Proposed Model 
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2.2 Dataset and Preprocessing 

This study uses the dataset Agriculture QA English version from KisanVaan dataset. The data is a well-

rounded compilation of questions and their corresponding answers on subjects related to agriculture. The 

dataset offers various topics, like managing crops, controlling pests, and maintaining soil health making 

it perfect for training and assessing the improved RAG model. We got the dataset via HuggingFace 

datasets library which assures easy merging with other data as well as preprocessing convenience. To 

make the dataset ready for training, we began by using the SentenceTransformer model "all-mpnet-base-

v2" to create embeddings for each question. We followed these steps in preprocessing: first load dataset 

with help from datasets library, then use SentenceTransformer model on GPU for generating embeddings 

towards questions and save them to be used later during retrieval processes. Moreover, documents were 

broken into manageable pieces through RecursiveCharacterTextSplitter so that they can be retrieved at 

their best performance level. 

 

For each question in the embedding model, while Q represent set of question and fe is sentence 

transformer  given that : 

• 𝑄 is the set of questions in the Agriculture QA dataset. 

• 𝑓𝑒 is the SentenceTransformer model "all-mpnet-base-v2" used for generating embeddings. 

For each question 𝑞𝑖 in 𝑄, the embedding 𝑒𝑖 is generated as follows: 

                                                                    𝑒𝑖 = 𝑓𝑒(𝑞𝑖)                                                  (1) 

The structure of RAG model has two main parts, which are the retriever and the generator. The role 

of the retriever part is to find important documents from a big collection using input query. In this 

method, we used FAISS (Facebook AI Similarity Search), an effective vector search library for quick 

and expandable retrieval tasks that can manage large amounts of agricultural information. The generator 

part makes a fitting and contextually correct answer using the documents that have been found by the 

retriever. In this implementation, we used an already trained language model called Meta-Llama-3-8B 

which can generate good quality responses by taking advantage of context from retrieved documents. 

This component guarantees that the answers are not only pertinent but also linguistically smooth and 

enlightening. 

Re-ranking strategies were used to enhance the accuracy of documents found. The process of re-

ranking involves giving scores to these documents that have been retrieved, according to how relevant 

they are with the query. After scoring, we reorder them to put higher importance on those which are 

considered more related in content and context. Zero-shot classification was used for relevance scoring 

by applying the pre-trained model "facebook/bart-large-mnli". It has ability to evaluate each document's 

significance in relation with given query without any specific training needed for this task or function. 

This approach allows for flexible and accurate relevance assessment across diverse queries. 

The re-ranking algorithm was implemented in three steps. First, a set of candidate documents got 

from FAISS. Second, each document in the list was given a score by the zero-shot classification model. 

Finally, we rearranged all these documents based on their scores starting with most relevant ones to less 

relevant ones. This process of re-ranking guarantees that only those documents which are very related 

to the conversation will be utilized for producing final response that  will improves precision and 

appropriateness of answers. 

To lessen the delay in retrieving answers and improve real-time activity, we utilized in-memory 

computing with FAISS. We made an index of the query embeddings through FAISS, which permits 

swift vector searching. Storing these embeddings in memory has greatly cut down on time needed for 

finding related documents. The accuracy explained as follows : 

 

                                                                
 

• 𝑅 is the set of generated responses by the RAG model. 

• 𝐴 is the set of ground truth answers from the Agriculture QA dataset. 
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• 𝐼 is the indicator function, which returns 1 if its argument is true and 0 otherwise. 

The accuracy ACC is calculated as follows: 

                                                               ACC =
1

|𝑅|
∑  

|𝑅|
𝑖=1 𝐼(𝑟𝑖 = 𝑎𝑖)                                              (2) 

where 𝑟𝑖 belongs to 𝑅 and 𝑎𝑖 belongs to 𝐴. Here, |𝑅| equals |𝐴|, representing the number of generated 

responses and ground truth answers. In order to assess improvements in performance due to using 

in-memory computing, a set of benchmarking tests was performed. These compared FAISS's in-

memory retrieval with the traditional way of retrieving from disk. The benchmarking process 

measured how long it took for each method to retrieve data, using an identical group of questions 

taken from the Agriculture QA Dataset.  The retrieval time improvement factor F is calculated as 

follow :  

• 𝑇𝑑 is the average retrieval time for disk-based retrieval. 

• 𝑇𝑚 is the average retrieval time for in-memory retrieval using FAISS. 

 

 

                                                                                 𝐹 =
𝑇𝑑

𝑇𝑚
                                                       (3) 

 

3 Results and Discussion 

 
Figure 2. Comparison Results 

 

 

RAG model accuracy was measured in two different approaches: with re-ranking methods and without 

them. The model, which had been trained on the agriculture QA dataset from Kisan Vaani, was tested using 

a subset of that same dataset. For scoring the accuracy, we compared responses generated by our model to 

ground truth answers from this test set. 

The tests we did showed that the base RAG model, when re-ranking is not used, got an accuracy of 

33.33%. This matches with the other result where we added re-ranking strategy to RAG model. The inclusion 

of re-ranking methods for fine-tuning did not deliver substantial benefits in terms of precision compared 

against our starting point. This indicates that the process of re-ranking utilized in this analysis had only a 

restricted effect on fostering precision within the model's response generation ability towards queries 

centered around agriculture subjects. 

Also, this study did not completely investigate how well re-ranking strategies can bring out 

improvements. The assessment only happened on a small part of the dataset, so more tests with different 

questions and bigger sample sizes might give extra understanding into how good these strategies are. Looking 
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into other re-ranking algorithms or adjusting the re-ranking model to fit better for agriculture field might 

possibly produce better outcomes (Villatoro-Tello et al., 2009; Zhao & Zhang, 2019). 

For assessing the time needed to retrieve results, we compared two methods: one based on disk storage 

and another that uses in-memory retrieval with FAISS. In the process using disk, a file containing question 

embeddings was read to mimic getting data from storage and doing similarity search (Sun et al., 2019; Ling 

et al., 2023). Then we compared this approach with in-memory retrieval where FAISS is employed for 

indexing question embeddings and executing fast similarity searches. 

The tests to compare show how long it takes to get back a set group of questions, during many repeats. 

For the retrieval on disk, they found an average time of 0.180653 seconds needed for each go. On the other 

hand, in-memory retrieval using FAISS showed a much lower average time needed for every single go 

through. 

The contrast of in-memory retrieval with FAISS and disk-based retrieval makes clear the quicker speed 

in-memory approach offers for real-time retrieval. This reduced time for retrieving answers is very important 

to improve user experience, as it enables systems dealing with agriculture topics to give instant replies when 

users ask questions (Thenmozhi & Srimathi, 2017). The better efficiency also helps handle more queries at 

one time, making this system expandable for big deployments (Chakraborty & Bhunia, 2021). 

4 Conclusions 

4.1 Experiment Result Summary 

From the experiment's results, it was found that adding re-ranking did not significantly increase accuracy 

when compared to the basic RAG model without re-ranking. The starting point and again-ranked RAG 

models both achieved an accuracy of 33.33% on a part of agriculture QA dataset from Kisan Vaani. This 

shows that for this study's method of using re-ranking, there isn't much difference in how well it helps with 

making accurate responses for agriculture-related questions. Nevertheless, the experiments for benchmarking 

showed how superior in-memory retrieval using FAISS is for reducing retrieval latency. The average time 

required by in-memory retrieval was considerably less than that of disk-based retrieval. This shows big 

efficiency improvements achieved from combining in-memory computing with FAISS to quickly find 

similarities. 

4.2 Implications for Agriculture Question-Answering Systems 

The results found in this study give us useful understanding for creating agriculture question-answering 

systems. Although the re-ranking methods did not bring about big accuracy enhancements with the present 

model, a noticeable reduction in retrieval latency by using FAISS for in-memory computing has significant 

consequences on real-time performance. Using FAISS for in-memory retrieval can quickly reduce the time 

it takes to get information, which is a key factor that affects the user experience of agriculture question-

answering systems. By responding fast to queries from users, these systems become more helpful in 

supporting timely decision-making and daily operations for farmers. The speedy ability of retrieval also helps 

handle more queries at the same time, making it good for big scale use. Also, the combination of in-memory 

computing and RAG models gives a fresh chance for instant memory-based knowledge retrieval and 

question-answering in agriculture. By using the huge amount of agricultural data that exists, these systems 

can offer farmers immediate access to suitable information, expert suggestions, and customized advice. This 

empowers them to take knowledgeable decisions for their farming methods. 

 

4.3 Future Research Directions 

This study gives useful understanding about how re-ranking methods and in-memory computing are used 

in agriculture question-answering systems. However, there are many possible research paths to make these 

systems are more effective and easy for people to use. Firstly, trying out different re-ranking algorithms or 

adjusting the re-ranking model may provide better accuracy results. It is possible that including knowledge 

and features specific to agriculture could enhance this process. In order to evaluate the proposed approach, it 

would be beneficial to perform experiments on various query types and larger subsets of the agriculture QA 

dataset. This is important for understanding if the results can be widely applied, and to see if there are any 

shortcomings or areas needing enhancement. Utilizing user ratings, comments, or suggestions could assist in 

the growth of the agriculture question-answering system by allowing it to learn from real-world interactions. 

This way, the system can keep on improving and adapting itself to better suit.  
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To sum it up, this study shows how much in-memory computing through FAISS can boost the 

effectiveness and real-time abilities of agriculture question-answering systems. Although our re-ranking 

methods did not produce notable accuracy enhancements in the present setup, later studies might concentrate 

on improving the re-ranking method itself, carrying out broader evaluations and investigating additional 

techniques to enhance these systems' precision and usefulness. By enhancing agriculture question-answering 

technology's cutting-edge state, we seek to offer farmers prompt and precise information that contributes 

towards sustainable expansion in farming.  
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Abstract 

 

Animal manure management and field application significantly contribute to nitrogen (N) loss, leading to environmental 

impacts such as soil acidification, eutrophication, and greenhouse gas (GHG) emissions. Technologies to reduce these 

losses and impacts have been developed. The adsorption of ammonium (NH₄+) using zeolite-rich tuff is a promising 

technology for the treatment of livestock effluents among the many methods available. Due to their high cation-exchange 

capacity and molecular sieve properties, zeolite-rich tuff are strategic materials both for recovering N from livestock 

effluents and for improving the fertility of soils. Nevertheless, among the numerous species available on the market, it is 

crucial to select the natural zeolites most suitable for the process, taking into consideration not only their intrinsic 

exchange capacities, but also their distinct exchangeable ions. 

The aim of the study is to evaluate the potential application in the recovery of N from livestock effluents of three zeolite-

rich tuff selected from different geographical locations: clinoptilolite from Romania (CLP_RU), clinoptilolite from 

Turkey (CLP_TR), and chabasite from Italy (CHA_IT). For each sample, two particle size were studied namely coarse- 

and micro-sized zeolites. 

Thus, the sorption and desorption behaviour of the of zeolite-rich tuff have been investigated at 25°C by performing 

adsorption experimental batches with an NH₄Cl solution under equilibrium conditions. The initial and equilibrium 

concentrations of NH₄+ in solution were measured with a Kjeldahl apparatus while major exchangeable cations were 

determined by Inductively Coupled Plasma Mass Spectrometry. Isotherm fitting was performed with the software R and 

PUPAIM package. 

Among the tested models, the Langmuir Non-Linear Model showed the best fit with experimental data, with R² ranging 

from 0.907 to 0.998 and p-values always < 0.05. For each zeolite, an inverse relationship was observed between grain 

size and the maximum adsorption capacity (Qmax). Qmax accounted for 0.019 and 0.015 g g-1 for CLP_RU µ and g, 0.027 

and 0.019 g g-1 for CHA_It µ and g, and 0.028 to 0.016 g g-1 for CLP_RU µ and g, representing increases of 24%, 28%, 

and up to 40%, respectively. While all the zeolites showed satisfactory NH₄+ removal efficiencies, the desorption study 

highlighted high Na+ levels were released by CLP_RU, making this zeolite potentially unsuitable for livestock effluents 

treatment as elevated quantities of Na+ can be toxic to crops if discharged into the environment.  

This work provides valuable insights into the potential use of various types of zeolite-rich tuff for nitrogen (N) removal, 

highlighting the importance of considering the specific properties of these materials to achieve effective circularity in 

livestock effluent treatment technologies. 

 

Introduction 

Livestock effluents (LE) are a valuable resource due to their nutrient content, which is essential for crop production. 

However, after field application, these nutrients undergo transformative processes that lead to significant losses and 

environmental impacts (De Vries et al., 2015). Among these, nitrogen (N) is converted to nitrate (NO3
−), which can leach 

and run off into ground and surface waters. Consequently, the spreading of LE is regulated by the 'Nitrates Directive' 

(91/676/EC). 
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When the available land for the spreading is insufficient compared to the volume of the LE accumulated and its nutrient 

content, treating LE to reduce the concentration of N, mainly in the form of ammonium (NH₄+) is mandatory to meet the 

requirements of the 'Nitrates Directive'. Therefore, LE are perceived primarily as a financial constraint rather than a 

resource. While it is imperative to improve existing treatment technologies and develop new ones, it is equally important 

to face the prevailing skepticism by emphasizing the significant opportunities presented by nutrient recovery from animal 

production system (Case et al., 2017).  A wide range of treatment strategies based on different processes are available, 

and those that imply adsorption or ion exchange are particularly relevant for this purpose (De Gisi et al., 2016).  The 

zeolite-rich tuff used as adsorbent material can play a crucial role in enhancing the recycling of N while increasing social 

acceptance due to its effectiveness, absence of both chemicals and significant technical challenges (Faccini et al., 2015). 

A zeolite is a crystalline substance with a structure characterized by cavities in the form of channels and cages occupied 

by H2O molecules and extra-framework cations (Coombs et al. 1997). Thanks to this structure zeolite-rich tuff is capable 

of adsorbing positively charged ions or molecules (as NH₄+) from a solution by replacing the extra-framework cations 

present into the channels and cages. In agricultural context, NH₄+ enriched zeolite-rich tuff can be used as slow-release 

amendments reducing the high N losses that normally occurs after LE application and increasing thus fertilization 

efficiency (Faccini et al., 2018). 

Many quarries of natural zeolites are present in numerous regions of the world, with affordable costs compared to other 

adsorbents however, among the over 60 families of zeolites, is required to identify those suitable for the recovery of N 

from LE. In zeolites, adsorption is a selective process, meaning that to achieve high performance, it could be necessary 

to select materials with a good affinity to the adsorbate (in this case NH₄+) (Ferretti et al., 2020) (Galamini et al., 2020). 

At the same time, it is crucial to consider the amount and nature of the exchangeable cations, which are released into the 

treated LE by ion exchange as these can be unsuitable for the further reuse of the wastewater, once the treatment is 

complete. Na-zeolites in this sector is discouraged because excessive amounts of Na+ in the treated LE could be toxic for 

many crops. Choosing instead materials that release beneficial nutrients for plants, such as zeolites naturally rich in 

exchangeable K+ or Ca2+, is preferable. 

Therefore, the aim of this study is to investigate the interaction of three zeolites with NH₄+ and evaluate their potential 

application and feasibility in treating LE.  These materials were collected from different geographical location, namely 

Romania, Turkey and Italy, and they had a similar selling price. For all of them, the effect of different particle sizes was 

evaluated as well. Since this research marks the preliminary phase of a broader applied project, we aim to focus on the 

interaction between zeolites and NH₄+ neglecting any potential phenomena of ionic competition. For this reason, we opted 

to establish ideal conditions and conduct the experiments using a synthetic solution of NH4Cl. 

Analyzing adsorption isotherms is crucial for assessing adsorption capacity under various conditions, determining 

whether the adsorbent material is suitable for a specific application and establishing optimal adsorbent dosages. 

 

Materials and Methods   

 

The zeolites tested were a Romanian clinoptilolite (CLP_RU), Turkish clinoptilolite (CLP_TR), and Italian chabasite 

(CHA_IT). Their mineralogical composition was determined by X-ray powder diffraction (XRPD) and Rietveld 

refinement.  For each zeolite a micro-sized (< 50 µm) and coarse-sized (0.3 – 3.5 mm) particle fractions were studied, 

selected by sieving. They are indicated in the text with µ and g prior to the acronym. 

Prior to laboratory activity, all the zeolites were dried at 105 °C for 24 h to eliminate the most of water in the extra-

framework spaces. 

In order to establish ideal conditions and neglect any ionic competition, a synthetic solution of NH4Cl was used, with 

[NH₄+] of 1.50 ± 0.08 g L−1, which is plausible for many LE. 

Following Galamini et al., 2020, equilibrium batches with temperature set at 25 °C were performed to characterize 

isotherm models for the specific combination of zeolites and grain sizes. 50 ml of NH4Cl l solution were mixed with 

distinct amounts of zeolites (g) to achieve the following dose percent (w:v): 3.5, 6, 8, 10, 13, 18, 20 and 21 %.  

Mixing was conducted using an orbital shaker (711/CT) at approximately 250 rpm for 24 hours, assumed as a sufficient 

time to reach equilibrium conditions. Then, samples were centrifuged at 4000 rpm for 4 minutes to separate the solid 

phase from the supernatant. To consider the potential effect of air stripping,  and/or the adsorption onto plastic 

components, a blank was investigated as well, containing only NH4Cl which undergone the same mixing process (CRT). 

Major exchangeable cations (Ca2+, Na+, Mg2+, K+) released in the supernatant during ion exchange with NH4
+ were 

measured by ICP-MS (iCAP TQ, Thermo Fisher Scientific, Waltham, USA). 
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The initial (C0) and equilibrium (Ce) concentration of NH+
4 in solution into each supernatant were determine with a 

Kjeldahl apparatus (Kjelflex K-360, Buchi, Switzerland, Europe) coupled with an automated titration unit (Metrohm 

Titrino plus 877, Buchi). 

The NH+
4 equilibrium adsorption capacity (Qe, g g−1) was derived with Eq. 1: 

 

𝑄𝑒 =
(𝐶0 − 𝐶𝑒) × 𝑉

𝑚
 

 

where C0 and Ce are respectively the initial and equilibrium [NH+
4] (g L−1), V (L) is the volume of the NH4Cl synthetic 

solution, and m (g) is the mass of zeolite. 

Isotherm fitting was performed with the open-source software R and the PUPAIM package. 

 

Results and Discussions  

In Table 1 is shown the mineralogical composition of the geomaterials. The analysis reveals more than 50% by weight 

of zeolite minerals in all the zeolite-rich tuff.  

Table 1. Mineralogical characterization of the zeolite-rich tuffs used in this study obtained by X-Ray Diffraction (XRPD) analysis 

and Rietveld refinement method; the characterization is expressed as weight percentages. “*” indicates the zeolite minerals.  

 CLP_RU CLP_TR CHA_IT 

plagioclase 12.5 ± 2 5.4 ± 2 1.3 ± 2 

K-feldspar  7.7 ± 2 11.6 ± 3 

mica 9.2 ± 5 1.8 ± 1 1.6 ± 2 

tridymite/ cristobalite 9.0 ± 8 12.9 ± 1.1  

quartz 

calcite 

clinoptilolite* 

chabazite* 

volcanic glass 

3.4 ± 1 

1.1 ± 1 

56.0 ± 3 

 

8.8 ± 1.1 

9.6 ± 1 

0.5 ± 1 

51.4 ± 4 

 

10.7 ± 1.2 

0.9 ± 1 

 

 

63.3 ± 9 

21.3 ± 1 

 

Air stripping and/or adsorption onto plastic falcon during the experiment can be considered negligible because CRT and 

blank show the same [NH+
4]. By applying Eq. 1, the Qe values were estimated, and the best fit between the experimental 

data and the non-linear adsorption models contained in PUPAIM was investigated. 

Among the tested models, Harkins-Jura, Freundlich, and Langmuir shows the highest R2 value as reported in Table 2, 

indicating a good correlation with the experimental data. The Harkins-Jura isotherm model was initially formulated for 

gas- solid systems and assumes the possibility of multilayer adsorption on the surface of adsorbents having a 

heterogeneous pore distribution. The parameters of the model are characteristics for the adsorption behaviour of the 

adsorbent, as α indicates the amount of adsorbate particles accommodated on the surface and β relates with adsorption 

energy and the heterogeneity of the adsorption sites (Dada et al, 2021). The Freundlich isotherm stands as one of the 

earliest formulations for non-ideal and reversible adsorption. It is an empirical model based on multilayer adsorption and 

non-uniform distribution, which exhibit varying sorption energies, resulting in the occupation of sites with stronger energy 

first (Foo & Hameed, 2010). KF Freundlich indicates the adsorption capacity while n shows the intensity and favourability 

of the adsorption process (Dada et al, 2021). Langmuir isotherm is a physical model developed to describe the adsorption 

between gas molecules and solid adsorbents. It assumes only monolayer adsorption - meaning that adsorption happens 

only close to the surface, in a fixed number of identical sites with equal affinity for the adsorbate - and that the adsorption 

sites are homogeneous in terms of spatial distribution and that are equipotential. The Langmuir model therefore implies 

the existence of a maximum adsorption capacity (Qmax; g g−1) that cannot be overcome (Foo & Hameed, 2010). KL is the 

Langmuir isotherm constant (L g−1) which also relates to the energy involved in adsorption. 

The mathematical expressions of the three models described above and the statistical parameters characterizing the 

experimental adsorption isotherms are reported in Table 2. 

The Langmuir model is considered the most suitable because it shows R² values always greater than 0.90, ranging from 

0.907 to 0.998, which implies a monolayer adsorption for all the zeolite-rich tuff tested.  Micronized zeolites exhibit 
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higher adsorption capacities compared to the coarse samples, the Qmax accounted for 0.019 and 0.015 g g-1 for CLP_RU 

µ and g, 0.027 and 0.019 g g-1 for CHA_IT µ and g, and 0.028 to 0.016 g g-1 for CLP_RU µ and g, representing increases 

of 24%, 28%, and up to 40%, respectively. This evidence is likely linked to the increased specific surface of the micronized 

zeolites. 

Figure 1 reports the experimental data and the characteristic isotherm curve according to the Langmuir Model. The 

conditions of solid-liquid ratios that allow the maximum NH₄+ uptake by the zeolite is always below 6%.   

Table 2. Mathematical expressions of Harkins-Jura, Freundlich, and Langmuir isotherm models. The parameters of each experimental 

isotherm according to the model are reported below. The investigated zeolites are CLP_RU, CLP_TR and CHA_IT, both in coarse (g) 

and micro (µ) size. The equilibrium experiment was conduct at temperature of 25°C with a NH4Cl solution with [NH+
4] of 1.50 ± 0.08 

g L−1. 

 
Harkins-Jura Freundlich Langmuir 

Non-Linear 

Equation 𝑄𝑒 = (
α

β − log 𝐶𝑒
)

1
2
 𝑄𝑒 = 𝐾𝐹 ⋅ 𝐶

1/𝑛 Qe =
QmaxKL Ce
1  +  KL Ce

 

 R2 α Β R2 KF n R2 KL Qmax 

g_CLP_RU 0.779 0.031 1.789 0.868 0.009 1.700 0.907 1.461 0.015 

    μ_CLP_RU 

 

0.943 0.052 1.572 0.986 0.016 2.326 0.976 3.798 

 

0.019 

 

g_CHA_IT 0.974 0.035 0.846 0.963 0.017 1.977 0.929 3.334 0.019 

μ _CHA_IT  0.990 0.022 0.846 0.998 0.012 1.420 0.991 0.780 0.027 

          

g_CLP_TR 0.994 0.028 1.365 0.992 0.010 1.890 0.980 1.565 0.016 

μ _CLP_TR  0.970 0.020 0.898 0.958 0.011 

 

1.372 

 

0.998 0.594 

 

0.028 

 

          

 

Figure 1.  Equilibrium adsorption capacity Qe (g g-1) against equilibrium concentration Ce (g L-1). The circles show the experimental 

data obtained by mixing a solution of NH4Cl for 24 hours at 25°C with CLP_RU, CHA_IT, and CLP_TR.  

The experimental data refers to the following solid – liquid ratio: 3.50, 6, 8, 10, 13, 18, 20, 21 %. 

The dashed line shows the Langmuir isotherm with the R2 value. 
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Micronized zeolite showed higher removal efficiency compared to coarse materials, but handling micronized substances 

is more complex and leads to greater engineering challenges. Due to these operational complexities, which could make 

the application of micronized zeolites more demanding, the release of ionic species in response to the ion exchange 

process was analysed only for the coarse material. 

Figure 2 reports the concentrations values (mg L-1) of the major cations (Ca2+, K+, Mg2+, Na+)  released by the coarse 

zeolites at 3.5% and 21%. Even though all the investigated zeolite-rich tuff showed comparable NH₄+ removal 

efficiencies, the desorption study revealed that g_CLP_RU released high concentration of Na+ in the supernatant, making 

this material unsuitable for LE treatment, as elevated quantities of sodium, if discharged into the environment, can be 

toxic to crops. In contrast, g_CLP_TR and g_CHA_IT showed lower Na+ releases in favour of nutrients such as Ca2+ and 

K+.  

 

Figure 2.  Concentration values (mg L-1) of the major cations (Ca2+, K+,  Mg2+, Na+)  released by the coarse zeolites at 3.5% and 21%. 

 

 

 

 

Conclusion 

Isotherm studies regarding the interaction between three zeolite-rich tuff and NH₄+ were carried out coupled with an 

analysis of the desorption process. 
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It was found that the optimal adsorbent dosages are less than 6%. The adsorption model that best describes the behaviours 

of the samples is the Non-Linear Langmuir Model. For the same particle size, all the investigated zeolites show 

comparable NH₄+ removal efficiencies, while the micronized sizes exhibit higher adsorption capacities compared to the 

granular. However, despite all the zeolites appears to be suitable for LE treatment, further investigations taking into 

account the desorption process reveal that CLU_RU is associated with significant Na+ release, which makes this material 

unsuitable for the purpose.Further studies need to be conducted to test the materials with real LE, thus also considering 

ion competition, and varying the operating conditions.  
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Pollution of groundwater by leaching of pesticide active ingredients has become a relevant issue worldwide. The 

Lebanese agriculture has experienced excessive use of pesticide and chemical fertilizers for decades. From there, the 

pollution of groundwater by the leaching of these active ingredients has experienced an extension and is progressively 

causing worrying effects.  

Studies dealing with these issues of pesticide pollution are very rare in Lebanon. In this study, the impact of pesticide 

use on soil and groundwater contamination in Al Nabatieh Govenorate (South Lebanon) was assessed. This region is 

characterized by diverse production systems and agricultural practices. PEARL model and Geographic Information 

System were used by the study to acquire new understanding and to visualize the spatial distribution of vulnerable 

areas by introducing the treatment frequency indicator. The validation of this model was performed by comparing the 

concentration of an active material (in our case Nitrate) in four groundwater samples analyzed in the laboratory and 

the values predicted by the model.  

The results of the analysis allowed us to identify areas of high phytosanitary pressure and the most used substances in 

the study area (alfa cypermethrin, mancozeb, emamectin benzoate, methomyl and chlorpyrifos-ethyl). Results also 

allowed for the evaluation of the quality of groundwater based on the predictions of the concentrations of active 

ingredients leached at the level of the study area.  

Four active ingredients were identified as the most leached to groundwater: methomyl, chlorpyrifos-ethyl, mancozeb, 

and alfa cypermethrin. Our results of forecasting the concentrations of these pesticides annually allowed us to identify 

vulnerable zones in terms of a risk of contamination. The areas cultivated with citrus and eggplant on sandy and sandy 

clay soils were found to be sensitive to the active ingredient ethyl-chlorpyrifos (> 0.1μg / l) and alfa-cypermethrin (> 

1μg / l). Areas cultivated with lettuce on sandy and sandy clay soils were found to be sensitive to the active ingredient 

methomyl (> 1μg / l); and finally, area cultivated with cucumber on sandy soils were found to be sensitive to the active 

ingredient mancozeb with a concentration ranging between 0.1 and 1 μg / l. 

Keywords: pesticides, active material, modeling, PEARL model, soil, groundwater, agricultural practices. 

 
I- INTRODUCTION 

 

Diffuse pollution of agricultural origin is one of the main causes of soil degradation and groundwater quality whose 

preservation requires a better understanding of the interaction between agricultural pressures and the natural 

environment. Several studies conducted in Lebanon have addressed the issue of diffuse pollution excluding those from 

agricultural origin and more specifically the impact of pesticides. However, studies around the question of diffuse 

pollution from agricultural origins remain very rare. For decades, the Lebanese agriculture has experienced periods of 

excessive use of pesticides and chemical fertilizers making Lebanon at the forefront of pesticide consumers in Arab 

countries with 5.5 kg / ha (Rifai, 2013). At the level of Mediterranean countries, Lebanon is equally a very large user 

of chemical fertilizers in terms of hectare (ha) per production. Even at the international level, Lebanon is ranked 

among the highest consuming countries of the world using more than twice the average amount of fertilizer (FAO, 

2013). 

According to a study by Jean-Claude Mantigaud in 2004, 40% of fruits and vegetables in Lebanon contain pesticide 

residues exceeding the authorized standards. Another study conducted by the Lebanese University in 2009 also 

revealed the presence of pesticide residues sometimes exceeding 25 folds the international standard in some fruits and 

vegetables (Rozelier, 2011). According to Youssef et al. 2012, the existence of banned pesticides, mainly 

organochlorines such as aldrin, heptachlor epoxide and DDT (Dichlorodiphenyltrichloroethane), persists in the aquatic 

environment of southern Litani River. The same study states that DDE (Dichlorodiphenyldichloro-ethylene) and HCB 

(Hexachlorobenzene) were the most frequently detected pesticides in surface water (93.3%) and groundwater (100%). 

Similarly in 2016, a study by Chbib et al. showed a highly significant water contamination by organochlorine 

pesticides including DDT and HCH (Hexachlorocyclohexane) which have been internationally banned for decades. 
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Thousands of tons of fertilizers and pesticides are usually used on an annual basis by farmers. Some public institutions 

and local communities (municipalities) also use chemical fertilizers and pesticides for maintenance of green spaces. 

A number of these pesticides and fertilizers are responsible for the contamination of soil-groundwater system 

especially due to massive quantities and successive uses, knowing that pesticide residues could remain in the soil and 

water for periods ranging from several months to several years. 

Between 1985 and 1992, a national pesticide survey was conducted in Lebanon by the EPA (Environmental Protection 

Agency), Pesticides and Toxic Substances Office and water establishments to identify the number of drinking water 

wells that contain pesticides and nitrates on the one hand and analyze the concentration of these substances on the 

other. 

The survey, which included samples from more than 1,300 rural domestic water utilities, found that about 3.6% of 

wells contained nitrate concentrations above the federal contamination level, while more than the half contained 

nitrates above the minimum required "reporting maximum limit for nitrates ( 50 mg / L)" (Groundwater protection 

directive, EU, 2006).  

Investigations also revealed that around 0.8% of tested wells contained pesticides above the maximum level of 

contaminants. Only 10% of the wells classified as rural were actually located on farms. After careful analysis, the 

EPA estimated that, for wells that contain pesticides, a significant percentage likely contains chemical concentrations 

that exceed the federally authorized health limits. About 14.6% of the tested wells contained levels of one or more 

pesticides above the minimum reporting limit set in the survey (EPA, 1991) with the intensification of agricultural 

production in Lebanon, a new assess of the state of at concerning pesticide contamination of groundwater is highly 

needed. 

Given the above, the risk assessment of pesticides and their impact on  public health and environment is seen as 

extremely necessary to assess the sustainability of the Lebanese agriculture. From the notion of pesticide transfer at 

the base of this work, the transfer of pesticides and their dissipation in the different compartments of the natural 

environment generate negative effects on the quality of soil and groundwater and can affect food safety. As a result, 

local actors and public decision makers are becoming increasingly aware of the problems related to the diffuse 

pollution due to the use of pesticides. A question is therefore raised. Which indicator should be developed as a decision 

support tool for the assessment and management of risks related to diffuse pollution? To answer this question, we 

have developed mechanisms for the management of pesticides use and the reduction of diffuse pollution using 

modeling, with diffuse pollution as a spatial and temporal problem. 

II- METHODOLGY 
 

2.1. Model Choice 

Several models have been evaluated over time in order to simulate the fate of contaminants in the environment. These 

models make it possible to first evaluate the state of a system and, secondly, to perform a predictive evaluation of the 

effect of certain modifications in the parameters or the input data for the output variables. 

According to literature (Villeneuve et al., 1998; Rousseau et al., 2000; Gustafson, 1990), the simplest approach to 

modeling the outcome of pesticides in the environment is an undistributed empirical approach. Over the years, 68 

models have been created: 36 for the watershed-scale models and 32 for parcel-scale models. As far as risk assessment 

models for soil-related environmental pollution, several studies (Tiktak et al., 1994; Jarvis, 1994; Jarvis et al., 2000 et 

Devillers, 2005 …) have shown that soil plays a major role in the transformation of active substances in the 

environment. However, our review of literature has shown that only a few models were developed for the evaluation 

of pesticides in soil relating to agronomy. 

In the late 1980s, the PESTLA model was first developed and used to assess pesticide leaching in groundwater (Van 

den Berg et al., 1999, Boesten and Gottesburen 2000). In the Netherlands, the PESTRAS model appeared in 1994 

aiming to provide a simultaneous estimate of groundwater leaching and accumulation in the upper soil layer (Tiktak 

et al., 1994). The MACRO model was next used in Sweden and is a one-dimensional model which simulates the 

transfer of water and pesticides to the first layers of soil (Jarvis et al., 1994; Jarvis, 2000). In the United States, the 

Pesticide Root Zone Model (PRZM) was used to estimate the probability of pesticide dispersal below the crop area at 

the level of roots (Trevisan et al., 1992; Trevisan et al., 2000). This PRZM model was later modified into the Pesticide 

Leaching Model (PALMO) version and used in Germany. Both PRZM and PALMO models are widely used in the 

assessment of leaching, runoff and erosion losses. With these models however, there yet existed a limit where the 

prediction of pesticides concentration profiles in the soil remained rather risky (Klein et al., 2000). This is when the 

Pesticide Leaching at Regional and Local scale (PEARL) model was built in the Netherlands in 2002. PEARL is a 

one-dimensional model that aims to assess the risk of pesticides at the level of the environment, especially in the soil 

and at the plot scale. 
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The PEARL model is one of the models which goes beyond the simple mathematical modelling and is considered as 

a real decision support tool for assessing the effect of management practices on soil and water quality. PEARL, using 

the Richards equation, conducts a more detailed description of hydrological data (Tiktak et al., 2002) and has already 

been validated for both water and soil components as well as for the transfer of active ingredients beyond the root 

zone. An advantage also lies in the ability to apply the model to different scales from small parcels up to larger 

catchment or regional levels. Additionally, the model predicts the risk of soil pollution by pesticides and thus provides 

an opportunity to guide farmers in selecting better farming practices. It should be noted that the PEARL model 

accounts, on one hand, for all physical factors of a studied territory such as climatic data, soil type, irrigation, treatment 

date and others as well as, on the other hand, for the methods in which pesticides are applied by farmers such as surface 

spraying, incorporation or injection into the soil. Yet, PEARL also considers the effects of moisture content and soil 

depth on the fate of pesticides. In particular, this model predicts the lost quantities of an active ingredient in the 

environment and especially at soil and groundwater levels. 

2.2. The Study Area 

Nabatiyeh governorate is 1,052 km2, divided into four districts that are largest in South Lebanon: Bent Jbeil, Hasbaya, 

Marjaayoun and Nabatiyeh. The governorate is in the far south of Lebanon, bordered from the north by Mount of 

Rihan and Jezzine whereas as by Litany River valley from the east and south (fig. 1).  

 

Figure 1: Location of the study area - Nabatiyeh governorate in South Lebanon (source: CNRS database, 

2019, realized by: F. Kanj, 2024). 

This territory is marked by a strong interaction between diversified socio-economic activities (agricultural, trade ...) 

and is characterized by agricultural, environmental and socio-economic issues as well. 

2.3.  The Soil 

According to the 2004 agriculture atlas and at the level of the study area, we note that: 

- The soil texture is the variable which plays a determining role in the leaching of active ingredients in 

groundwater. 

- Nabatyeh region is composed of ten soil types each of which is composed of 3 horizons. The maximum depth 

reaches 155 cm (based on data collected from national remote sensing center) and the pH varies between 6.5 

and 7.2 depending on the soil type. 

 

2.4.  The Climate 

The average annual temperature in Nabatiyeh region is around 18.7C. The average annual rainfall is 852 mm and the 

variation in the annual temperature is around 14.4C. The driest month is July, with almost no rainfall, August is 

considered the warmest month of the year with an average temperature of almost 25.7C. January is the coldest, the 

precipitation reaches its peak with an average 215mm, having an average temperature of 11.3C. (“Nabatiyeh 

Topography and Agriculture Cdr).  

The variation of temperature and precipitation is very clear between 2017 and 2021. The yearly temperature change 

in Nabatiyeh region where the mean temperature in 2017 was 17.4°C to increase in 2020 and 2021 to achieve 18.1°C.  
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Figure 2: Yearly temperature between 1979 and 2020. 

 
As for the precipitation, the observed peaks of mean precipitation also decreased from 906 mm in 2003 to 630 mm in 2021.  

 

 

Figure 3: Yearly precipitation between 1979 and 2022. 

 

2.5. Cultivations and Land Use 

Crops in the study area are distributed as 68% permanent and 32% seasonal. Land use is mainly characterized by the 

predominance of olive trees (49.49%), followed by cereals (18.18%), industrial crops (12.12%), fruit trees (9.9%), 

vegetable crops (7.7%) and fodder crops (1%) (fig. 3).  
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Figure 4: Land use in the study area. (Source: Census report, MoA, 2010). 

 
Based on the above, it becomes evident how the study area is characterized by diverse production systems, soil, climate 

and land use. The strong concentration of the abovementioned crops inevitably leads to the question of agricultural 

practices being implemented by farmers in the region and especially to the methods in which fertilizers and pesticide 

products are being used. 

 

2.6. Expression of the Used Indicator: Treatment Frequency Indicator (TFI) 

The TFI indicator allows the evaluation of the pressure exerted by pesticides on each plot (Champeaux et al., 2006). 

It is expressed as the number of registered doses per ha applied to a certain plot during a cropping season. For each 

realized treatment per plot, the normalized quantity is obtained by dividing the actual dose applied per ha, issued from 

the survey, by the approved dose per ha of that product for the concerned crop: 

 
 

𝑇𝐹𝐼 𝑝𝑟𝑜𝑑𝑢𝑐𝑡/ℎ𝑎 =
Applied dose/ha

Approved dose/ℎ𝑎
 

 

𝑇𝐹𝐼 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  ∑ 𝑇𝐹𝐼 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 × 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑖𝑒𝑙𝑑 

𝑇𝐹𝐼 𝑓𝑖𝑒𝑙𝑑 =  ∑ 𝑇𝐹𝐼 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 

2.7.  Used Data 

Table 1 summarizes the needed material and data used to develop this study. 

Table 1: Used Material 

Used information  Software  

1- Soil data: texture, soil type, conductivity, infiltration rate, horizon, 

organic matter content, pH (CNRS, National Center for Remote 

Sensing). 

2- Agricultural Atlas (MOA, 2014). 

3- Climate data: 20-year rainfall, solar energy, evapotranspiration, wind 

speed, humidity, minimum and maximum temperature (Nabatyeh 

topography and Agriculture Cdr, 2022). 

4- Diagnostic data collected from 150 farmers in 2023 regarding farmers' 

practices, inputs: active ingredient, registered dose, number of 

treatments, target. 

5- TFI calculations allowed the identification of the highest pesticide 

consuming cultures and the most used active ingredients.  

1- PEARL model. 

  

2.8.  Applied Methodology 
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The methodology used is based on the prediction of leached active ingredients mostly used in the study 

area and their impact on the quality of groundwater while accounting for the types of crops and soils, using 

the PEARL model. 

The database was established based on bibliographic research of agricultural activities characterizing the 

study area, previous studies conducted on that same area (Khoury et al., 1975), interviews with experts and 

local stakeholders (agricultural engineers, agricultural advisers, head of the agricultural center, etc.) and 

direct surveys of farmers (Figure 5). Data analysis was conducted following the classification of  

agricultural holdings through a structural typology according to the stratified production system and spatial 

distribution. After the selection of holdings, areas with high phytosanitary pressure were identified by 

calculating the Treatment Frequency Indicator (TFI) per crop and per ha at the territorial level. 

Accordingly, high pesticide-consuming crops were identified based on calculations of TFIs quartiles per 

ha and per territory, as well as the mostly used pesticides which in turn reflect the applied active ingredients 

per crop and therefore those most consuming pesticides in our territory. 
 
 

 

Figure 5: Conceptual diagram of the methodology (Kanj F., 2023) 

 
After identifying active ingredients, data was collected for the most pesticide-consuming crops and 

frequently applied active substances so that to feed the PEARL model. The latter was therefore used to 

investigate the impact of these pesticides while accounting for physical factors of the territory on different 

components of the environment and specifically on groundwater pollution. Noted PEARL model take into 

consideration the first meter depth of soil.  

These results can be mapped in GIS and analyzed at the scale of the Nabatyeh region but in our stage we 

will limited to identified the crops with high risk of active ingredients  leaching and which require 

emergency intervention.  

To consider that our results are valid, it was necessary to validate the model with an active material that is 

easy to analyze in the laboratory. This active ingredient is Nitrate. We have taken four samples of well 

water located in Bekaa area to assess the quality of this water and whether the water is contaminated or 

not. Likewise, we entered the model input data for the region of these samples in order to compare the 

results of predicted and the laboratory results. The table below describes the results of two analyses: 
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Table 2: Comparison between Nitrate concentration in groundwater based on laboratory results and Nitrate 

concentration predicted by PEARL model.  

Sites Nitrate concentration in water 

(laboratory analysis) (mg/l) 

Nitrate concentration predicted by 

PEARL Model (mg/l) 

Zahle Berdawni 1 7.63 8.0115 

Zahle Berdawni 2  11.18 11.962 

Moualka 1 60.5 63.525 

Moualaka 2  9.26 9.630 
 

 

 

Figure 6: Representation of Nitrate concentration in groundwater based on laboratory results and Nitrate 

concentration predicted by PEARL model. 

 
Based on the results in figure 6 and table 2, we can note the model prediction was considered reasonably 

accurate for most model results and the model prediction error was considered acceptable (4 - 6%).  

 
III- RESULTS 

The obtained results and analyzed elements corresponding to the different spatial zones of the study area 

highlighted the diversity of farms that characterize agriculture in that territory. Different strategies and 

tactics have been adapted to the structure of cultivation, soil and climate conditions, and thus the hydro-

agricultural development. 
 

3.1. Leached active ingredients at groundwater level 

Leaching of active substances was studied so that to analyze the diffusion of pesticides in the water section of soil and 

its subsequent possibility of contaminating groundwater. Several factors can affect the vertical transfer of pesticides 

into the soil such as surface preparation, structure, water content, solubility of each substance and important external 

factors as application time and rain. 

This is why we had to study the leaching of each active ingredient per soil type and per culture since their behavior 

differs from one culture to another. Once the active ingredients with a high percentage of dissipation by leaching were 

identified along with their treated cultures, the simulation of these active ingredients were repeated by soil type and 

by culture followed by the retrieval of leached quantities (μg/l) of each ingredient per soil type. 

The characteristics of active substances with a high percentage of dissipation are represented in table 2 below:  

Table 2: Characteristics of the active ingredients (Source: FOOTPRINT database) 

Actives substances  Koc
1 Log Koc

2 DT50
3 Interpretation 

Methomyl  25.2 1.4 7 Mobile and easily degradable 

Mancozeb 997.5 1.33 1358 Mobile and slightly degradable 
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Chlorpyrifos ethyl  395 2.59 385 Fairly mobile and slightly degradable 

Alfa cypermethrin  889 2.9 91 Fairly mobile and fairly degradable 

Dimethoate  30.1 1.47 3 Mobile and easily degradable 

Proquinazid  12850 4.1 60 Barely mobile and slightly degradable 

Glyphosate  1424 3.1 32 Slightly mobile and fairly degradable 
       1: Soil organic carbon sorption coefficient of the pesticide, 2: Soil sorption coefficient, 3: Pesticide half-life.  

According to the characteristics of the active ingredients, the soils are thus more susceptible to their leaching (transfer 

to groundwater). For example, methomyl and mancozeb are much less sensitive than proquinazid and glyphosate. 

Indeed, when the retention coefficient of organic matter is very low (case of methomyl with a Kom of 3.36 dm3.kg-1) 

or when the half-life is relatively high (case of flutriafol with a DT50 of 1350 days), the active ingredient is more 

rapidly leached because it is less retained by the organic matter of the soil (as the case of methomyl) or degrades less 

quickly and therefore remains available in the soil to be possibly leached during precipitation or during irrigation. 

When the retention coefficient of an active ingredient over soil organic matter is very high and when coupled with a 

low half-life, as the case for glyphosate, then the pesticide concentration becomes more or less low (1633 dm3. kg-1 

and DT50 of 32 days), whereby the concentration of the leached pesticide is similarly low (<0.01 μg.l-1). The pesticide 

in this case is strongly retained by organic matter in the soil (since its Log Koc is elevated) and is more rapidly degraded 

(DT50 of 32 days). In addition, only methomyl, mancozeb, chlorpyrifos-ethyl and alfa cypermethrin allow to 

distinguish between the relatively contrasted regions from the perspective of soil sensitivity to the leaching of 

pesticides. This is why it would be interesting to develop the work based on these four active ingredients. The 

combination of the PEARL model results and soil type in the study area allowed the representation of 

leaching of each active ingredient (Figure 6). This results therefore helps in identifying specific areas at risk 

of contamination with each of the active ingredients. According to the European directive n°80/778/EEC , 

the groundwater contamination threshold for a single substance is around 0.5 μg.l -1. However, for 

organophosphorus, which is the case of Chlorpyrifos-etyl, that threshold is of the order of 0.1 μg.l-1. Amounts 

leached at levels higher than 1 μg.l-1 after one year of application were identified in areas cultivated with lettuce for 

methomyl in addition to areas cultivated with citrus and eggplants for alfa-cypermethrin. This rate indicates that 

groundwater quality is contaminated.  Leached amounts between 0.1 and 1 μg.l-1 after one year of application 

were identified in most areas cultivated by cucumber for the mancozeb. This rate indicates that groundwater 

quality is poor but not contaminated. However, it is important to note that our analysis did not consider 

previous years since farmers have no traceability and do not record the application of used pesticides. 

 

3.2. Discussions  

Based on the above findings, the strong spatial contrast observed in the study region in terms of leached active 

ingredients (methomyl, mancozeb, chlorpyrifos-ethyl and alfa-cypermethrin) shows a positive correlation with the 

sand content and negative correlation with the clay content on one hand, and with the hydraulic conductivity on the 

other. 

In fact, for methomyl for example, an increase in leached concentrations with the increase in soil sand content (1.362 

μg.l-1 for sandy soil) is observed. In addition, with the variation of water balance (mm/year) from one zone to another 

in the study area, the concentrations of leached pesticides is noticed to decrease with the increase in the soil organic 

matter content which, together with the clay proportion of the soil, play an adsorbent (retention) role for pesticides. 

Nevertheless, the residual pesticides (methomyl and mancozeb) after the onset of agricultural activities in the 

Nabatyeh region (spring) is notably sensitive to the amount of water (irrigation or precipitation) and soil type, during 

which PEARL predicts higher levels of leached pesticides than others. This confirms that the fraction of pesticides 

which percolates deep is extremely sensitive to the amount of water due to irrigation especially in the period 

immediately following the application of the product. Significant irrigation practices events that directly follow 

pesticide applications are particularly involved in the transfer of pesticides to groundwater, especially with a coarse 

texture such as sandy soil. 

It should also be noted that the soil pH is an important factor in determining the fate of certain pesticides. Certain 

pesticides exhibit sorption behaviors directly dependent on soil pH, with acidic pH (<5) leading to low retention of 

leachate whereas pH greater 5 leads to a higher retention. The soil pH in our study area is between 6.5 and 7.2, that it 

can be noted the pH has no influence on our results. 

Moreover, it is important to emphasize that the results of leached pesticide concentrations that have been realized in 

the study represent the sensitivity of only the first meter depth of soil. Hence, these are not global risk related to the 

use of pesticides. At the level of the Nabatyeh region, and to consider that the representation of the concentration of 

the active ingredients (methomyl, mancozeb, chlorpyrifos-ethyl and alfa cypermethrin) as results with the purpose of 

an overall decision-making tool, it is relevant to consider a probability threshold which covers a large part of the risk. 
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This probability threshold may encompass the 80th spatial percentile of leached pesticide concentrations, which 

accordingly means that 80% of the spatial variability is covered (FOCUS 2000, FOCUS 2009). This 80th percentile 

value is considered as the reference value in the decision-making process. In our case, and in the context of protecting 

groundwater vis-à-vis the contamination with pesticides, i.e. to consider water as potable, the concentration of a single 

pesticide must not exceed 0.1 μg.l-1. If the 80th percentile of a leached pesticide concentration is above this target value 

of 0.1 μg.l-1, then one can assume that the soil is susceptible to leaching of that pesticide in question. In concrete terms, 

we therefore look at whether 80% of these variabilities have a leached pesticide concentration below the 0.1 μg.l -1 

limit concentration for groundwater. We thus tolerate that 20% cases exceed this limit. For the soil types spread in the 

study area, we estimated the concentrations of the studied pesticides that are leached, while considering the 80% of 

the variables predicted by PEARL for each type of soil (Table 3).  

Table 3: 80th  percentile of pesticide concentrations leached in the soil type (source: developed by 

Kanj F., 2016-2017). 

Active substance 80th 

percentile - 

Sandy (μg/l)  

80th 

percentile – 

Silty-clay 

(μg/l) 

80th 

percentile- 

Sandy clay-

loam (μg/l) 

80th 

percentile 

Sandy-clay 

(μg/l) 

80th 

percentile 

Clay (μg/l) 

Alfa cypermethrin 0.70816 0.71096 0.71424 0.71952 0.70752 

Chlorpyrifos-ethyl 0.254 0.069992 0.15856 0.000023936 0.02712 

Mancozeb 0.32472 0.013128 0.08488 1.26E-09 1.184 

Methomyl 0.9984 0.8288 0.9144 0.3996 0.7496 

 

These results show that the leached concentration of Alfa cypermethrin and methomyl in any type of soil is much 

greater than 0.1 μg.l-1 which reflects a high risk of groundwater contamination. Considering their physico-chemical 

characteristics and since alfa cypermethrin is quite mobile and fairly degradable while methomyl is mobile and easily 

degradable (Table 1), then, over time, groundwater contamination risks will be higher with alfa cypermethrin than 

with methomyl. 

While the leached concentration of chlorpyrifos ethyl and mancozeb differs from one soil to another and is in direct 

relation to their physico-chemical characteristics, then:  

- Leached Chlorpyrifos-ethyl concentration in silty clay, sandy clay and clay is <0.1 μg.l-1 which shows that 

the risk of contamination is lower than in sandy and sandy clay soil where the concentration is> 0.1 μg.l-1 

- While that of flutriafol in silty clay, sandy clay loam and sand clay soil is < μg.l-1 which reflects a lower risk 

of contamination than in sandy and clay soil. 

Conclusion 

The aim of this work is to identify the least and most vulnerable zones in terms of the leaching of active pesticides 

ingredients and to demonstrate the application of a unidimensional risk assessment model for pesticides, the PEARL 

model. The crosscutting of various factors as agricultural practices, pedological, agronomic and climatic data used in 

the model for the predicting of quantities of active material leached show that soils, at the level of the study area, are 

sensitive to the transfer of methomyl substances, mancozeb, chlorpyrifos-ethyl and alfa cypermethrin to groundwater. 

The results indicate that areas cultivated with citrus and eggplant on sandy and sandy clay soils are particularly 

sensitive to the active ingredients ethyl-chlorpyrifos (concentrations > 0.1 μg/l) and alpha-cypermethrin 

(concentrations > 1 μg/l). Additionally, areas cultivated with lettuce on sandy and sandy clay soils are sensitive to the 

active ingredient methomyl (concentrations > 1 μg/l). Lastly, areas cultivated with cucumber on sandy soils are 

sensitive to the active ingredient mancozeb, with concentrations ranging between 0.1 and 1 μg/l. 

These results will therefore enable decision-makers to better implement actions based on the acquired understanding 

of polluted areas, the products involved and the estimated risk rate by the concentration levels. 

In addition, the tools used in this study could help in building a collective project thanks to the introduced 

understanding provided by the representations. These could thereby benefit users and stakeholders working in the 

management and use of ecosystem in utilizing its dynamics and interactions between regulated use and behavior of 

local actors.  
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It should be finally noted that this work consists of the first attempt performed at the level of the Lebanese territory in 

terms of risk assessment modeling of the transfer of pesticides at the levels of the soil and groundwater.  

Limits of the model include having a simulation sensitivity at only 1-meter-deep from the ground level and covering 

only one year in duration. This is why more improvements can be introduced to enrich the scientific contribution of 

this work and to develop the tool into a more reliable and more generic form. These could include: 

- Validating predicted results by collecting onsite soil and groundwater samples from areas identified with 

concentrations above the limit threshold. 

- Extending the duration of the study over several years to assess the state of soil and groundwater quality at 

the territorial level, as affected by the as usual business and the sustainable practices. 

- Running the simulation with other active ingredients and assessing the risks of these substances on various 

compartments of the environment, including food safety. 
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Abstract 

Precision agriculture relies on data that is translated into management prescriptions. Soil mapping 

allows fields to be divided into homogeneous management zones and then site-specific inputs and labour 

can be allocated. Soil compaction is an important factor to consider, as it affects several soil and crop 

processes, including water infiltration rates, root development and water availability to crops. In this study, 

a new prototype of a fully digitised commercial subsoiler (Jympa, Castellserà, Spain) has been developed in 

the framework of the CULTISENSOR project. The machine was equipped with a GNSS system and oil 

pressure sensors, as well as an ultrasonic sensor to monitor the working height. A control unit developed by 

Waatic (Abrera, Spain) is capable of storing the data read at each point of the plot, allowing the oil pressure 

of the whole system to be traced in real time and digital maps of soil resistance (MPa) to be generated. In 

this context, an evaluation of the system's performance was carried out on a commercial plot. On the one 

hand, the data provided by the prototype was evaluated concerning the spatial structure of the data. On the 

other hand, the prototype was compared with satellite based canopy maps and the EM38-MK2 

electromagnetic soil sensor (Geonics, Canada) was also used to produce maps of apparent electrical 

conductivity (ECa). These maps were used to assess the spatial variability of the soil and to compare its 

distribution with that generated by the prototype subsoiler. The results showed that the prototype is capable 

of delivering geospatially structured data, and soil maps match in high degree the canopy maps generated 

using satellite imagery. It was not observed a good matching with the EM38-MK2 sensor maps. This study 

has served to carry out a first validation of the prototype developed in the CULTISENSOR project and to 

propose new adjustments to be conducted to improve the validity and reliability of the soil maps. 

 

Keywords: Soil mapping, Machinery, Telemetry, Soil Compaction, Precision Agriculture. 

1. Introduction 

Crop yield variability within a field depends, among others, on soil properties and environmental 

conditions. Soil heterogeneity within a plot is linked to the type of soil, topography and in-field 

management strategies (Khan et al. 2023). In order to implement crop and soil management strategies 

based on precision agriculture concepts, a sufficient amount of reliable data is required to determine the 

spatial variability at field level. The traditional method of exploring field soil variation is through grid 

sampling, which is time-consuming, labour-intensive, and costly (Oliver and Webster, 2014). New 

technological advancements and developments in digital soil mapping have allowed real-time measurement 

of soil properties with proximal sensors.  

Soil compaction is one of the most important physical properties affecting the health of the soil in 

agriculture. It has impact on seed emergence, root development, water infiltration and soil water holding 

capacity, among others. Soil compaction is related to soil mechanical resistance, and its estimation with 

field sensors has been broadly studied to assess its variability in agricultural fields (Rockström et al., 1999; 

Gaston et al., 2001; Raper et al., 2005; Chung et al., 2006; Topakci et al., 2010). Kostic et al. (2016) used a 

soil tillage resistance sensor (Kostic et al. 2014) and compared the variability maps against different soil 

parameters sampled in the field. They concluded that the strongest correlation was found between soil 

resistance and cone penetration resistance, indicator of soil compaction. Understanding and mapping soil 

compaction open the possibility of variable depth soil management (Hanquet et al., 2004), impacting on 

different factors such as the reduced soil perturbation, improved crop yield, and increasing soil 

management sustainability from the environmental and economic point of view.  

The use of existing machinery, fitted with sensors to monitor soil condition is one objectives of the 
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national project CULTISENSOR (AEI-010500-2023-242). The idea behind the project lays on being able 

to determine and map the spatial variability of soil resistance while the traditional soil preparation activities 

are carried out in field crops. After being achieved the first milestone of the project, consisting on the 

implementation of an oil pressure sensor and a control unit on a commercial subsoiler, this study aims at 

assessing the possibilities of this new prototype, and to validate the spatial structure and the data coherence 

captured.     

2. Materials and Methods  

2.1. Test site 

The experiment was conducted on a 0.89 ha commercial field located in Castellserà (Lleida, Spain, 

41.756740º N, 0.993165º E). The soil type is Calcaric Regosol (WRB, 2014) and the topography of the plot 

can be considered completely flat with a slope of less than 1% (Figure 1). This soil type is characterized by 

a good drainage, with medium to fine textures, absence of coarse elements and presence of calcium 

carbonate nodes. In this plot, different irrigated crop rotations of cereal and alfalfa have been cultivated 

during the last years, with preceding crop of corn in 2023, and the experiment was carried out in January 

2024 when there was not crop cultivated in the field. Prior to any cultivation, the deep layers of soil are 

broken using a subsoiler, and chisel plowing is used to prepare the seed bed. 

 

 

Figure 1. Commercial plot used for the experiment 

2.2. Field measurements 

Three different measurements were conducted in the trial plot. On the one hand, the soil resistance 

sensor developed in the CULTISENSOR, second, the canopy vigour was extracted using satellite imagery 

from the study area and, finally, the apparent soil electrical conductivity was determined with an 

electromagnetic sensor.  

2.2.1. Real-time soil resistance measurement system  

A commercial subsoiler model POLARIS-7 (Jympa 1971, Lleida, Spain) was used as the basis for the 

development of the real-time soil resistance measurement prototype (Figure 2). This implement is used for 

decompressing and breaking the subsoil to oxygenate it, to favour the filtration of the water and the 

development of the roots. The subsoiler was fitted with a set of sensors to capture the working data in real-

time, a Global Navigation Satellite System (GNSS) to establish the coordinates of each data point recorded, 

and a commercial controlling unit (WAATIC, Abrera, Spain) that was storing the data and providing live 

visualization of the telemetry. The system was designed to monitor the oil pressure (MPa) of the whole 

hydraulic system managing all the arms of the subsoiler. For this, a pressure sensor was installed in the 

hydraulic circuit of the machine, as well as a temperature sensor to monitor the temperature of the oil in the 

circuit, and an ultrasonic sensor was used to measure the working height of the machine with respect to the 
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ground. The experimental field work was done using a 200 horse power tractor driving at 5 km h-1 with the 

subsoiler working at constant depth defined as 0.5 m, and the information provided by the sensors were 

recorded at a frequency of 1 Hz along with the GNSS coordinates. Once the field work was finalized, a 

GeoJSON file was generated containing the date and time of the recorded point, the latitude and longitude 

(decimal degrees), the oil pressure (MPa) and the real working speed recorded by the GNSS (km h -1). The 

output data was interpolated block kriging using local semivariograms with search radius of 25 m and a 

raster map for the oil pressure was generated (considered as soil resistance to traction). The central co-

ordinates of the satellite image pixels covering the study area were used as the grid points for variable 

interpolation. 

 

 

Figure 2. Detail of the soil resistance monitoring prototype developed, the control unit and the user 

interface 

2.2.2. Satellite based imagery  

Satellite imagery was used to determine de canopy vigour in the field and assess the spatial variability 

of the crop response to soil characteristics and agricultural management practices. Given the small size of 

the plot, high spatial resolution Super Dove nano-satellite (Planet Labs Inc.) was used. Super Dove nano-

satellites offer nearly daily imagery in monitoring mode at 3 m pixel-1 and with eight spectral bands in the 

range of VIS-NIR. An image was collected at the end of March 2023 coinciding with the maximum 

vegetation growth of the previous crop before the subsoiling process with the prototype was conducted. 

With the multispectral image, the Normalized Differential Vegetation Index (NDVI) was calculated 

combining the bands in the red and near infrared regions of the spectrum. The NDVI pixels were classified 

into two classes, class 1 for low vigour and 2 for high vigour, using the K-means clustering function in the 

QGIS plugin Attribute Based Clustering.  

2.2.3. Apparent soil electrical conductivity 

Apparent soil electrical conductivity (ECa) has been widely used for estimating soil properties such as 

salinity, water content and texture. The electromagnetic induction sensor used for sampling ECa in this trial 

was the Geonics EM38-MK2 (Geonics Ltd., Mississauga, Ontario, Canada). The EM38-MK2 has two 

receiver coils spaced at 0.5 m and 1 m from the transmitter coil. The transmitter coil is powered by an 

alternating current, creating a magnetic field that changes over time within the earth. This magnetic field 

induces current to flow through the soil, producing a secondary magnetic field. The intensity of this 

secondary electromagnetic field is directly linked to the electrical conductivity of the soil. The sensors was 

passed throughout the entire plot at different transects separated approximately 10 m between them. The 

resulting file obtained contained the latitude and longitude of each reading and the measured ECa at 0.5 and 
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1 m deep. For mapping ECa, a similar process than the methodology used to generate the oil pressure maps 

was implemented interpolating by block kriging to the central co-ordinates of the satellite image pixels 

covering the study area. 

2.3. Data analysis 

The database used to compare the different sensing techniques consisted on a grid file containing the 

information from each of the technologies used to sample the variability of the field, meaning the soil 

resistance sampling prototype (oil pressure in MPa), the NDVI, and the ECa at 0.5 and 1 m depth. The grid 

was established based on the pixel size and location of the satellite image, and every cell contained the data 

for each of the four parameters sampled. 

Two different assessments were made. First, an analysis of the spatial structure of the data acquired by 

the soil resistance sampling prototype was conducted by studying the local variability reflected by the 

global semivariogram (Oliver, 2010). Furthermore, the Cambardella Index (CI) was used to determine the 

spatial dependency of the data (Cambardella et al., 1994). The CI was calculated from the nugget and sill 

averages of the local semivariogram after the local kriging interpolations of the oil pressure data.  

A second assessment consisted on comparing the interpolated maps of each of the measurement sources 

used. For this, a k-means classification into two clusters (given the size of the plot) was made, and the 

clustered maps were compared against each other using the software Map Comparison Kit (MCK version 

3.2.3 http://mck.riks.nl/). To compare the map pairs, two statistics were employed: the FC and the KI. The 

FC (fraction correct), which represents the percentage of agreement, is calculated by dividing the number 

of equal cells in both maps by the total number of cells in the map. The Kappa index of agreement, on the 

other hand, is based on a contingency table that summarizes the cross-distribution of categories across the 

two maps.  

3. Results and Discussion 

3.1. Spatial structure of soil resistance data 

Results showed that the data obtained by the prototype developed in the CULTISENSOR project is able 

to determine the soil resistance linked to the pressure of the hydraulic circuit in the subsoiler. The first 

question raised was whether the data would be randomly distributed, not showing the soil variability 

inherent trends, or if the soil resistance would show some kind of geospatial trend. According to the global 

semivariogram calculated, it was seen that there existed a spatial dependency (autocorrelation) between the 

data generated using the soil resistance prototype sensor (Figure 3). The nugget value of the semivariogram 

revealed that there exists and certain variability in the data in close distances, something that has also been 

reported by other authors when working with agricultural data (Sandonís-Pozo et al., 2022). 

The Cambardella Index resulted in 29.7% being considered a moderate-high spatial autocorrelation of 

the soil resistance prototype data. This indicates that the spatial structure of the sampled points is consistent 

and not randomly distributed in the field. 

The interpolated map depicts the subsoil physical properties with very high detail while representing the 

spatial trends, and offers a fast and easy to use estimation of soil condition along the plot. 
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Figure 3. Data points measured by the soil resistance prototype sensor (left) and global semivariogram with 

an exponential fitting model (right) 

3.2. Comparison with other sensors 

3.2.1. NDVI 

When comparing the soil resistance clustered map generated using the sensing prototype with the 

clustered NDVI canopy map, it was found that the FC value of 0.82 while the KI parameter was 

significantly lower (0.63). FC is a method which only considers the percentage of change of pixels; on the 

contrary, the KI is based on a contingency table that summarizes the cross-distribution of categories over 

the two maps. The KI tends to be more restrictive than FC (Visser & De Nijs, 2006). The map comparison 

yielded a moderate-to-high concordance between the prototype based map and the satellite based NDVI 

map, providing evidences that the prototype is able to measure the soil resistance with a reliable spatial 

distribution of the data. 

3.2.2. EM38 

The map comparison of the interpolated soil resistance versus the ECa at 0.5 and 1 m respectively, did 

not show significant concordance between them. For ECa at 0.5 m deep, the FC was 0.48 while the KI was 

negative (-0.01). Similar results were seen for ECa measeured at the depth of 1 m, with slightly lower FC 

(0.38) and KI (-0.28). The initial hypothesis was that the value of ECa would correlate in some degree with 

soil porosity and to some extent to the compaction of the soil, but the data obtained revealed that ECa is 

being dominated by other parameters in the soil (e.g. salinity, water availability, etc.). 

4. Conclusions 

This study showed that a commercial subsoiler can be digitalized using different sensors and electronics 

to provide on-the-go mapping of soil resistance in field crops. The results showed that the data recorded 

keeps a certain degree of autocorrelation which provides confidence about the reliability of the information 

registered. Furthermore, the soil resistance maps generated were observed to match in high degree the 

spatial patterns estimated in the canopy by means of satellite based NDVI maps. Combination of NDVI and 

soil resistance maps (surface and subsurface layers of the soil-plant continuum) make possible site specific 

soil amendments and actions such as application of organic matter, drainage systems, etc. Future work will 

be focused on collecting soil samples with a digital penetrometer in specific areas of the field and relating 

the measures with the oil pressure of the subsoiler to establish relationships between the two measures. 
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Abstract 

To ensure optimal water use efficiency in drip irrigation, it is imperative to assess the hydraulic 

performance of the system. Hence, this study evaluated and compared the hydraulic performance of two 

locally available low-cost drip irrigation kits in the Philippines (denoted as Drip Kit A and Drip Kit B) under 

falling head conditions, simulating actual field conditions in which the water level in the tank decreases 

during operation. Built upon a previous study by Martinez et al. (2022) that focused on the hydraulic 

performance of low-cost gravity-fed drip irrigation kits under constant head conditions, this study employed 

the same drip kit components but under falling head conditions of 4.3 m to 4.1 m, 4.1 m to 3.9 m, and 3.9 m 

to 3.7 m. Results revealed a decrease in emitter discharge rates as the operating head falls. For both drip kits, 

Christiansen’s coefficient of uniformity (CU), emission uniformity (EU), and coefficient of variation (CV) 

varied from 91.89 to 96.02, 84.13 to 92.19, and 0.08 to 0.15, respectively. Also, statistical analysis indicated 

that varying the operating heads did not significantly affect (α=5%) the CU, EU, and CV of both drip kits. 

Moreover, Drip Kit A (0.53 to 0.57 lph) demonstrated higher emitter discharges compared to Drip Kit B 

(0.52 to 0.54 lph), establishing Drip Kit A’s superior performance. The CU and EU during the falling head 

test did not deviate far from the constant head test. In terms of design and operation, the factors to be 

considered in relation to emitter discharge are irrigation period, water supply, and wetting area. 

Keywords: drip irrigation, hydraulic performance evaluation, falling head 

1. Introduction 

Drip irrigation is the most efficient water and nutrient delivery system for growing crops. It delivers water 

and nutrients directly to the plant’s root zone in the right amount at the right time, so each plant gets exactly 

what it needs when it needs it, to grow optimally. Farmers can increase yields while using less water, 

fertilizer, energy, and even crop protection products by using drip irrigation. Water and nutrients are delivered 

across the field in pipes called ‘dripperlines’ featuring smaller units known as ‘drippers’. Each dripper emits 

drops containing water and fertilizers, resulting in the uniform application of water and nutrients directly to 

each plant's root zone, across an entire field (Netafim, 2024).  

Drip irrigation technology has undergone significant advancements, resulting in the development of sub-

membrane drip irrigation, subsurface drip irrigation, aerated drip irrigation, and other irrigation technologies. 

Overall, drip irrigation technologies have played an essential role in enhancing crop yield and quality and 

promoting efficient water resource management (Yang et al., 2023).  

One of the major drawbacks of drip irrigation is its high investment costs; thus, it is mainly used in high-

value commercial crop production. However, its water use efficiency is very high compared to other irrigation 

methods (Brouwer et al., 1985). Emitter discharge variation and water distribution uniformity are the 

commonly used parameters in evaluating the performance of a drip irrigation system. Water distribution 

uniformity, in particular, uses the emitter discharge value to compute the uniformity indices. There have been 

several studies that assessed a drip irrigation system’s performance based on its water distribution uniformity 

and variation (Zellman, 2016; Yavuz et al., 2010; Zhang et al., 2017) taking into account the occurrence of 

emitter clogging (Barragan et al., 2006; Bralts et al., 1981; Almajeed and Alabas, 2013), manufacturing 

variations (Ganda, 2005), pressure losses (Balenzon, 2006), gravity-fed drip irrigation system in crop 

production (Dela Cruz, 2004), and performance evaluation as affected by water heads and length of laterals 

(Mashandudze et al., 2015). 
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This study was a continuation of the research of Martinez et al. (2022) on the hydraulic performance 

evaluation of low-cost gravity-fed drip irrigation systems. In this study, the hydraulic performance of two 

locally available low-cost gravity-fed drip irrigation systems was evaluated under falling head conditions. 

The falling head condition simulates the actual field drip system operation wherein the water level inside the 

tank descends, without refilling, during the irrigation operation. 

2. Materials and Methods  

2.1. Drip Irrigation Experimental Layout and Setup  

The experiment was conducted using the same locally available low-cost gravity-fed drip irrigation kits 

used in the study of Martinez et al. (2022). Similarly, the two (2) kits were referred to in this study as Drip 

Kit A and Drip Kit B. Both kits were designed to irrigate a 200 m2 plot and each kit was composed of a 1000-

L intermediate bulk container (IBC) tank, 14×20-m lateral lines equally spaced at 0.75 m, and a 10-m 

submain line. Table 1 shows the list of components and specifications of both drip irrigation kits. 

Table 1. Specifications of the drip irrigation kits used in the study (Martinez et al., 2022).  

Components Drip Kit A Drip Kit B 

Main and 

submain line 

LLDPE hose, 32-mm outer 

diameter, 2-mm wall thickness 

LLDPE hose, 25-mm outer 

diameter, 2.5-mm wall thickness 

Lateral line 

and emitter 

Non-pressure compensating thin-

walled drip line with cascade 

labyrinth emitter, 30-cm spacing, 

17-mm nominal diameter, 1.0 lph 

Non-pressure compensating thin-

walled drip line with cascade 

labyrinth emitter, 30-cm spacing, 

17-mm nominal diameter, 1.0 lph 

Valve 32-mm PVC ball valve, 

female/female 

25-mm PVC ball valve, 

female/female 

Screen filter 130 microns 125 microns 

Main-submain 

line fittings 

32-mm compression fittings: 

1 pc equal tee 

1 pc female adapter 

1 pc male adapter 

2 pcs equal elbow 

2 pcs end cap 

25-mm compression fittings: 

1 pc equal tee 

1 pc female adapter 

1 pc male adapter 

2 pcs equal elbow 

2 pcs end cap 

Lateral line 

fittings 

16-mm PE: 

14 pcs start connector 

14 pcs end line 

16-mm PE: 

14 pcs start connector 

14 pcs end line 

Package Pricea $200.00 $140.00 
a The drip kits contain additional parts but the approximate price will not significantly vary. The 

package does not include the IBC tank and tank stand. 

 

Each drip irrigation kit was installed using the end-feed layout as shown in Figure 1. With an end-feed 

layout, the IBC tank supplies water to only one end of the lateral lines through the submain line. The main 

line divides the submain line, at the center, into two (2) equal parts and it connects the IBC tank to the 

submain line. After laying out, the submain and lateral lines were leveled with respect to the junction of the 

main and submain lines. This was done to eliminate the effect of slope in testing the drip irrigation kits. As 

presented in Figure 2, the IBC tank was installed in the manner that the top of the tank is at 4.5 m above the 

main and submain line junction levels. The tank was also marked at 3.7 m, 3.9 m, 4.1 m, and 4.3 m for the 

three (3) falling head setups to be tested – (1) 4.3 m to 4.1 m, (2) 4.1 m to 3.9 m, and (3) 3.9 m to 3.7 m. 
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Figure 1. Drip irrigation layout showing the selected sampling emitters in the performance testing 

(Martinez et al., 2022). 

 

   
 

Figure 2. Falling hydraulic head setup used in the study. 

 

2.2. Data Collection and Emitter Discharge Rate Calculation 

For the sampling, 308 emitters out of a total of 926 emitters in the setup were selected. For each falling 

operating head setup, three (3) trials of emitter discharge measurements were conducted. The location of each 

sampling emitter was identified according to its lateral line and position in the lateral line. The lateral lines 

are labeled with numbers 1 to 14 whereas the positions of the sampling emitters on the lateral lines are labeled 

with letters A to V as shown in Figure 1.  

Given the considerable number of data to be gathered, the gravimetric method was employed to determine 

the discharge rate of each sampling emitter. Collecting the water discharge during the trials was done using 

pre-weighed 300 mL melamine cups. The total time for the water to descend in the IBC tank according to the 

falling operating head setup being tested was also recorded. After each trial, the mass of each cup containing 

the collected water from the sampling emitter was measured using a digital weighing scale.  Assuming that 

the density of water is 1.0 g/cm3, the emitter discharge rate was computed using Eq (1): 

 

 𝑞 =
3

50

𝑚𝑡−𝑚𝑐

𝑡
 (1) 
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where q is the individual sampling emitter discharge in lph; mt is the total mass of the cup and collected water 

discharge in g; mc is the total mass of the cup in g; and t is time in minutes.  

The resulting emitter discharge rate values were then analyzed and used to generate mathematical models 

to describe the relationship of the falling operating head to the average emitter discharge rate for Drip Kit A 

and Drip Kit B. Additionally, the emitter discharge rate variation along the lateral line for both drip irrigation 

kits was also examined. 

2.3. Water Distribution Uniformity 

The water distribution uniformity of the systems/kits was computed using the following 

performance metrics: 

2.3.1. Coefficient of Uniformity, CU (Christiansen, 1942)  

 

 𝐶𝑈 =  (1 −
∑ |𝑞𝑖−𝑀|𝑛

𝑖=1

∑ 𝑞𝑛
𝑖=1

) × 100 (2) 

 

where CU is the coefficient of uniformity in %; 𝑛 is the number of observed emitter discharge rate values; 

𝑞𝑖 is the individual emitter discharge rate in lph; and M is the average of emitter discharge rate values 

computed as 
1

𝑛
∑ 𝑞𝑖

𝑛
𝑖=1  in lph.  

Table 2. Drip irrigation system uniformity classification based on uniformity coefficient.  

Uniformity coefficient, CU (%) Classification 

>90 Excellent 

90-80 Good 

80-70 Fair 

70-60 Poor 

<60 Unacceptable 

       Source: ASAE Standards EP458 (1996)  

 

2.3.2. Emission Uniformity, EU (Keller and Bliesner, 1990)  

 

 𝐸𝑈 =  (
𝑞LQ

𝑀
) × 100 (3) 

 

where EU is the emission uniformity in %; qLQ is the average of the lowest quarter of the emitter 

discharge rate values in lph; and M is the average of the emitter discharge rate values in lph. 

Table 3. Drip irrigation system uniformity classification based on emission uniformity. 

Emission Uniformity, EU (%) Classification 

94 - 100 Excellent 

81 - 87 Good 

65 - 75 Fair 

56 - 62 Poor 

< 50 Unacceptable 

      Source: ASAE Standards EP458 (1996) 

Note: The discontinuities in the EU scale cater to the 95% confidence limits of the measures and 

these tend to be high for low uniformities. 
 

2.3.3.  Coefficient of Variation, CV (Al-Amoud, 1995)  

 

 𝐶𝑉 =  
𝜎

𝑀
× 100 (4) 
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where CV is the coefficient of variation; σ is the standard deviation of the emitter discharge rates in lph; 

and M is the average of the emitter discharge rate values in lph. 

Table 4. Drip irrigation system classification based on the coefficient of variation. 

Coefficient of Variation, CV Classification  

<0.1 Excellent 

0.1 – 0.2 Very Good 

0.2 – 0.3 Acceptable 

0.3 – 0.4 Low 

>0.4 Unacceptable 

 

3. Results and Discussion 

3.1. Effect of Operating Head on Emitter Discharge 

For all head settings, the emitter discharge of Drip Kit A is relatively higher compared to Drip Kit 

B (Table 5). The highest average emitter discharge was 0.57 lph at 4.3 to 4.1 m head from Drip Kit A, 

while the lowest average emitter discharge was 0.52 lph at 3.9 to 3.7 m head from Drip Kit B. The emitter 

discharge values were within the values obtained during the constant head test conducted by Martinez et 

al. (2022). In the constant head test, the average emitter discharge of Drip Kit A was 0.56 lph at 3.5 m 

head, 0.58 lph at 4.0 m head, and 0.59 lph at 4.5 m head. Moreover, the average emitter discharge of 

Drip Kit B was 0.52 lph at 3.5 m head, 0.56 lph at 4.0 m head. and 0.59 lph at 4.5 m head (Martinez et 

al., 2022). In general, the emitter discharge decreases with decreasing operating head (Figure 3). 
 

Table 5. Minimum, average, and maximum emitter discharge values of the drip kits under falling operating 

heads.  

 

Head, m 

Average Emitter Discharge, lph 

Drip Kit A Drip Kit B 

Minimum Average Maximum Minimum Average Maximum 

4.3 to 4.1 0.43 0.57 0.62 0.04 0.54 0.59 

4.1 to 3.9 0.34 0.55 0.60 0.06 0.53 0.58 

3.9 to 3.7 0.36 0.53 0.59 0.07 0.52 0.58 
 

 
 

Figure 3. Box plot of emitter discharge (lph) at different falling operating heads (m). 
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Regression analysis was performed to express the relationship of the average emitter discharge to 

the operating heads for each drip kit using Equation 1 (Figure 4). Results showed a strong relationship 

between the average emitter discharge and operating pressure head for both drip kits, as shown in Table 

6. 
 

 
 
Figure 4. Relationship between average emitter discharge and falling operating head for 

the drip kits.  

 

Table 6. Linear regression models for average emitter discharge as a function of falling operating head. 

Drip Kit Linear Regression Model  R2 

A q = -0.0206H+0.5927 0.99 

B q = -0.0119H+0.5519 0.99 

 Note: q is the average emitter discharge in lph and H is the falling operating pressure head in m. 

3.2. Effect of Emitter Distance Along the Lateral on Emitter Discharge 

It is also important to examine the variability of the emitter discharge along the laterals to check the 

water distribution. The average emitter discharge along the laterals was plotted against its distance for 

each operating head for the two drip kits as presented in Figure 5. It could be observed that emitter 

discharge along the lateral varies widely in relation to the drip kit and operating head. The result of the 

constant head test of Martinez et al. (2022) showed a relatively defined trend for emitter discharge. It 

could be observed that the emitter discharge of Drip Kit A showed a significant trend as presented in the 

results of the regression analysis of the emitter discharge with its distance in Table 7. The R2 values 

obtained from the varying head test (Table 7) were way below the values obtained from the constant 

head test (Martinez et al., 2022). For Drip Kit A, the emitter discharge along the lateral increases at 4.3 

to 4.1 m head while emitter discharge decreases at 4.1 to 3.9 m and 3.9 to 3.7 m heads. 
 

 

 

 

 

 

0,45

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,65

4.3 to 4.1 4.1 to 3.9 3.9 to 3.7

A
v
er

ag
e 

E
m

it
te

r 
D

is
ch

ar
g
e 

R
at

e,
 l

p
h

Falling Operating Head, m

Drip Kit A Drip Kit B

AgEng 2024 Proceedings

663



 

 
 
Figure 5. Emitter discharge variation along the lateral at different operating heads. 

 

Table 7. Linear regression models for the average emitter discharge along the lateral line at different falling 

operating heads. 

Head, m 
Drip Kit A Drip Kit B 

Linear Regression R2 Linear Regression R2 

4.3 to 4.1 Y = 8.02×10-4 X + 0.56 0.26 Y = -4.22×10-5 X + 0.54 0.00 

4.1 to 3.9 Y = -1.18×10-4 X + 0.56 0.38 Y = -3.49×10-4 X + 0.53 0.03 

3.9 to 3.7 Y = -8.43×10-4 X + 0.54 0.29 Y = -1.20×10-3 X + 0.53 0.15 

Note: Y is the individual emitter discharge rate in lph and X is the distance of the emitter along the lateral line 

from the submain line in m. 
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3.3. Analysis of Water Distribution Uniformity 

Table 8 shows the computed CU, EU, and CV of the two locally available drip kits used in the study. 

Generally, the EU has lower values compared to the CU. Drip Kit A yielded better water distribution 

uniformity (CU: 96.02% to 94.56%; EU: 89.53% to 89.67%; CV: 0.08 to 0.09). On the other hand, Drip 

Kit B yielded better water distribution uniformity during the constant head test (Martinez et al., 2022). 

Based on the classifications shown in Tables 2 and 3, both drip kits exhibited excellent overall 

performance in terms of CU. Drip Kit A exhibited excellent performance in terms of EU while Drip Kit 

B showed good performance.  

 

Table 8. Coefficient of uniformity, emission uniformity, and coefficient of variation of Drip Kits A and B 

at different falling operating heads.  

Head, m 
Drip Kit A Drip Kit B 

CU, % EU, % CV CU, % EU, % CV 

4.3 to 4.1 94.56 89.67 0.09 91.89 84.13 0.15 

4.1 to 3.9 96.02 92.19 0.08 92.47 85.58 0.15 

3.9 to 3.7 94.98 89.53 0.09 93.23 86.71 0.14 
 

Using the Shapiro-Wilk test of normality, it was found that the data gathered for both drip kits did 

not follow the normal distribution. Hence, to validate whether the CU, EU, and CV values significantly 

differ on operating heads, the Kruskal-Wallis H test was employed with a 95% confidence level. The 

statistical test showed that CU (H(2) = 3.47, p = 0.18), EU (H(2) = 2.76, p = 0.25), and CV (H(2) = 1.42, 

p = 0 .49) of Drip Kit A are not significantly different for the operating falling heads, i.e., changing the 

operating heads will not influence the CU, EU, and CV values for Drip Kit A.  Likewise, the CU (H(2) = 

1.69, p = 0.43), EU (H(2) = 1.07, p = 0.59), and CV (H(2) = 2.49, p = 0.29) of Drip Kit B also showed 

similar results. 

4. Summary and Conclusion 

The CU and EU obtained during the falling head test did not deviate far from those measured during the 

constant head test. For all head settings, the emitter discharge of Drip Kit A is relatively higher compared to 

Drip Kit B. Emitter discharge along the lateral varies widely in relation to the drip kit and the operating head. 

For this study, both drip kits exhibited excellent overall performance in terms of CU. Drip Kit A exhibited 

excellent performance in terms of EU and good performance for Drip Kit B. In terms of design and operation, 

the factors to be considered in relation to emitter discharge are irrigation period, water supply, and wetting 

area.  
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Abstract 

To assess the expected needs for Decision Support Systems (DSS) related to Greenhouse Gas (GHG) 

emissions in global livestock production at the farm level, the perspectives of stakeholders were sought. 

Direct communication with stakeholder parties in various countries was established to explore their 

experiences with existing GHG-based DSS at the farm scale. Collecting this information was crucial to 

understanding the current demand for integrating GHG and ammonia emissions estimation into the decision-

making process at the farm scale across different countries. Additionally, it aimed to evaluate and present the 

potential for utilizing these DSS at the farm scale in the near future. Understanding the requirements of 

potential users can offer valuable insights to developers of emissions-based decision support tools, enabling 

them to improve existing tools and align them better with users' needs. The majority of respondents were 

livestock farmers' advisors (73 out of 109), followed by livestock farmers (23 respondents), inventory 

compilers (9 respondents), and authority officials/policymakers (4 respondents). The survey respondents 

represented various countries, including Greece, Poland, Germany, France, and Chile. While most 

stakeholders who responded were aware of software-based DS tools, less than half of them actually used 

such tools. Furthermore, even fewer respondents reported using software-based DS tools that estimate GHG 

and ammonia emissions at the livestock farm level to incorporate emission reduction in decision-making. 

Although the adoption of farm-scale emission-based DSS in livestock farming is limited, it is clear that 

farmers who embrace technological developments are aware of the potential environmental impact of their 

farms. In fact, 87% of respondents expressed interest in being informed about software-based DS tools that 

estimate and utilize GHG and ammonia emissions in decision-making. Around 60% of stakeholders 

expressed a willingness to participate in a future consultation process for developing software-based DS tools 

that estimate and incorporate GHG and ammonia emissions in decision-making. This highlights the need for 

continued development and promotion of such tools across all participating countries  

Keywords: Greenhouse Gas Emissions, Ammonia Emissions, Stakeholders’ Opinion, Decision Support 

Systems, Livestock Farming 

1. Introduction 

Software-based farm-scale Decision Support Systems (DSSs) centered on greenhouse gas (GHG) 

emissions, become increasingly important due to the need of the farming systems to reduce their GHG 

emissions (e.g. Alexandropoulos et al., 2023). Usability, design, and credibility are key factors in maintaining 

the ongoing use of such DSSs. Recent efforts focused on bridging the gap between farmers' experience and 

DSS utilization, by developing stakeholder-oriented systems (Lundström & Lindblom, 2018; 

Krzywoszynska, 2016; Mackrell et al., 2009). Recognizing and leveraging farmers' experience is essential 

for enhancing agricultural practices towards sustainability (Lundström & Lindblom; Mackrell et al. 2009). 

Successful farming requires diverse skills encompassing crop production knowledge, financial planning, 

organizational proficiency, and compliance with compliance with regulations(Mackrell et al. 2009). While 

cutting-edge agricultural technology offers benefits, there are growing concerns towards science-based 

intervention principles, known as the 'transfer-of-technology' push, particularly among potential DSS end-

users (Mackrell et al. 2009; Kuhlmann and Brodersen, 2001; Lynch and Gregor, 2004). 

The active engagement of stakeholders in the evaluation and development phases of agricultural Decision 

Support Systems (DSSs) has been examined by various studies in the last 20 years (Carberry et al., 2002; 

Nelson et al., 2002; Van Meensel et al., 2012; Reiter et al., 2019). The participation of farmers (e.g. the use, 

the development of DSSs etc) and stakeholders was suggested to significantly enhance research outcomes, 

ensuring that they effectively align with the participants’ expectations (Carberry et al., 2002). Adopting a 

participatory approach aims to overcome the challenges related to the unique cases of decision-makers 
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(Nelson et al., 2002). Additionally, the involvement of stakeholders in a DSS development process via 

knowledge exchange between participants and developers, is expected to make this process more efficient 

(Reed, 2008). A key parameter of the success of the stakeholders’ participation is to include suitable 

stakeholders (e.g. expertise, public accepted, respected) from diverse groups (Voinov and Gaddis, 2008).  

Thus, comprehension of the potential users’ needs would further be of assistance to the developers of 

emissions-based decision support tools in order to further improve the existing tools and better meet these 

needs. This paper aspires to address this objective by using questionnaires tailor-made for various interested 

parties from the livestock production sector across various European countries and Chile. In this work, the 

questionnaires and the responses from a quantitative and qualitative point of view will be reported, both at 

the individual country level and at the cumulative level of all participating partner countries. The results from 

the responses are collected and briefly discussed and useful conclusions are drawn regarding the willingness 

of the stakeholders to participate in the process of the improvement of existing emission-based decision 

support tools. 

2. Materials and Methods 

The aim of the questionnaires was to collect insights from stakeholders involved in the livestock 

production sector about the DSSs they currently utilize. We primarily focused on on the use of GHG and 

ammonia emissions estimation on the decision-making process but also on the needs of the various 

stakeholder groups to know the size of the GHG and ammonia emissions at the farm level. 

Forming simple online questionnaires from the emission-based DSS developer point of view, was 

considered a comfortable way of extracting information from the stakeholders of interest, as these could be 

easily translated to different languages and distributed to stakeholders either electronically (via emails) or via 

short-duration interviews. 

The relevant stakeholder groups surveyed included: 

• Livestock farmers 

• Advisors to livestock farmers 

• Authorities / Policy makers 

• National Inventory Compilers 

The basic principles followed when developing the tailor-made questionnaires were the following: 

• Completion of the questionnaire in a short amount of time and development of questionnaires to 

be answered in maximum 10 minutes to avoid receiving incomplete questionnaires or no 

questionnaires answered. 

• Use of easily comprehensive and direct language, targeting all educational levels (especially 

when referring to livestock farmers) and avoiding misunderstanding of questions. 

• Considering the time limitation, the questions need to perfectly fit the research objectives. 

• Using questions which also include other types of farm-scale computer-based DS tools for 

livestock farm management to differentiate between these tools and the emission-based DS tools 

of interest. 

• Preparation of the relevant questions’ list for each stakeholder group. 

To develop the questionnaires, previous work found in the scientific literature and targeting stakeholders’ 

behaviour when using decision support systems was used  (e.g. Cheung et al., 2016; Howitt & McManus, 

2012; Lundström & Lindblom, 2018; Mackrell et al., 2009; N. Georgantzis, 2019; Reiter et al., 2019). 

Additionally, two tools were employed for visualizing and finalizing the questionnaires: 

• Building a questionnaire tree using XMind, a software specifically aiming at the development 

of decision trees. This facilitated visualizing different answer options and the subsequent 

questions linked to the respondents' answers. 

• Finalizing and testing the questionnaires using Google Forms' templates, which allowed for easy 

distribution and management of the received responses. 
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3. Results 

3.1.  Livestock Farmers 

The country with the highest representation of livestock farmers was Greece, accounting for 15 out of 23 

responses. The livestock farmers approached and those who responded to the questionnaire appear to belong 

to a relatively young demographic, mostly 50 years old or younger (Figure 1), with a high level of education. 

While software-based decision support (DS) tools are familiar to these farmers (Figure 2), only a minority of 

them actually utilize them, with 6 respondents indicating positive usage (Figure 3). Among those who 

reported using such tools, half are new users. The most common applications cited for these tools include 

animal and farm management. 

The majority of livestock farmers who use these tools learned about them through other farmers or 

cooperatives they are associated with, suggesting a level of trust among peers. This reliance on peer 

endorsement indicates that farmers are unlikely to adopt such tools without first witnessing their benefits 

demonstrated by colleagues. Improved animal and farm management, particularly for farms with larger 

livestock populations, emerged as the primary motivation for utilizing DS tools. 

Accessibility through devices, PCs, and the internet is the preferred method of accessing these DS tools 

among respondents. A combination of graphical and textual data presentation is considered most convenient 

by farmers for receiving and interpreting information output from these tools. The frequency of usage varies 

depending on the application. Most of the farmers who responded use DS tools on a daily basis. 

Interestingly, all farmers using DS tools were aware of the greenhouse gas (GHG) and ammonia emissions 

from their farms, yet none reported using these tools to estimate such emissions. The lack of emission 

estimation features in DS tools, despite their technological advancement, is not surprising and seems to be 

common among respondents from all countries. However, the majority of respondents expressed interest in 

learning about and actively participating in the development of software-based DS tools that can estimate 

GHG and ammonia emissions at the farm level, if properly informed and invited (Figure 4). 

Furthermore, reasons for not adopting software-based DS tools include cost constraints, perceived lack 

of benefits, and the elevated time requirements associated with their use. 

 

 

Figure 1. Groups of ages of the livestock farmers that 

responded to the questionnaire. 

 

Figure 2. Awareness of the livestock farmers on 

software-based decision support tools for more 

efficient farm management. 
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Figure 3. Use of software-based decision support tools for 

farm management by the livestock farmers. 

 

Figure 4. Interest of the livestock farmers in getting 

actively involved in the consultation process during the 

development of a software-based DS tool that estimates 

GHG and ammonia emissions at the farm level. 

3.2. Farmer’s Advisors 

Livestock farmers’ advisors constitute the largest group of respondents in the surveys conducted for this 

deliverable. Polish advisors participated the most, accounting for 58 out of 72 responses. The majority of 

respondents were aged over 26 (Figure 5) and possessed a high level of education, which not surprising given 

the required skills for this profession. Most advisors (68 out of 72 responses) were aware of software-based 

Decision Support (DS) tools for enhancing livestock farm management efficiency (Figure 6). However, less 

than half of them (27 out of 68) currently utilize such tools for providing advice (Figure 7), indicating a 

prevalent lack of trust among advisors regarding the DS tools’ usefulness and efficiency. 

Additionally, it was observed that 40% of respondents offer advice across diverse farming systems, 

including variations in size, livestock numbers, and production methods (conventional vs. organic). 

Furthermore, the majority of DS tool users have employed them for advising farmers for five years or less, 

suggesting recent widespread adoption of marketing and promotion efforts targeting livestock farmers’ 

advisors. 

The most common applications of software-based DS tools among respondents were financial 

management, nutrient management and fertilization, farm management, and animal management. 

Conversely, tools for emission and sustainability assessment were utilized by only a small fraction of 

respondents. 

The decision to adopt DS tools was primarily motivated by factors such as work facilitation, necessity, 

and enhanced data recording. Improving environmental performance emerged as a key focus area for 

advisors, although only a minority use tools specifically designed for emission and sustainability assessment. 

Nevertheless, more than half of DS tool users provide advice on greenhouse gas and ammonia emissions to 

livestock farmers. 

The majority of livestock farmers’ advisors use DS tools infrequently, preferably receiving information 

output in a combination of text and graphical formats. They express interest in accessing such tools via the 

internet and personal computers. Additionally, nearly 85% of respondents are keen to learn more about DS 

tools estimating GHG and ammonia emissions at the farm level. 

Around half of the advisors expressed interest in actively participating in the development of DS tools for 

estimating GHG and ammonia emissions, particularly if informed and invited (Figure 8). However, reasons 

for not participating include lack of time and expertise. 

Finally, reasons for not using DS tools related to GHG and ammonia emissions include lack of awareness 

about their existence or the emissions from livestock farming, as well as the perception that such tools are 

not beneficial. 
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Figure 5. Groups of ages of the livestock farmers’ advisors 

that responded to the questionnaire. 

 

Figure 6. Awareness of the farmers’ advisors on software-

based decision support tools for more efficient farm 

management. 

 

Figure 7. Use of software-based decision support tools for 

farm management by the livestock farmers’ advisors. 

 

Figure 8. Interest of the livestock farmers’ advisors in 

getting actively involved in the consultation process during 

the development of a software-based DS tool that estimates 

GHG and ammonia emissions at the farm level. 

3.3. Inventory compilers 

The second lowest response number was recorded from national inventory compilers, totalling 9 

responses overall. Germany and Austria emerged as the most represented countries with 5 respondents each. 

The vast majority of these compilers (8 out of 9) expressed unawareness of software-based DS tools designed 

to enhance inventory compilation efficiency (Figure 9). This indicates a current lack of popularity for such 

tools among the responding inventory compilers. Even among those aware of these tools, none utilized them 

for compiling livestock farm emissions inventories. However, all respondents expressed interest in learning 
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Presently, the majority of inventory compilers (7 responses) are primarily engaged in compiling GHG 

emission inventories, while work on ammonia, nitrogen oxides, particulate matter, and NMVOCs inventories 

is deemed of lower priority. It follows logically that none of the respondents use software-based decision 

support tools for estimating greenhouse gas and ammonia emissions from livestock farming. Most 

respondents believe that livestock farmers are uninformed about the GHG and ammonia emissions from their 

farms. However, an equal number (6 responses) also stated that livestock farmers receive national-scale 

advice on reducing GHG emissions from their farms (Figure 10). 

Approximately half of the respondents indicated the existence of national-scale regulations forcing 
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originating from European Union member states (Figure 11). Likewise, the same number reported the 
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development of software-based DS tools estimating GHG and ammonia emissions at the farm level (Figure 

12). However, a smaller proportion would be available to participate in such a consultation process, especially 

if it commenced in 2022, primarily due to time constraints. 

 

 

Figure 9. Awareness of national inventory compilers on 

software-based decision support tools for more efficient 

farm management. 

 

Figure 10. Responses of national inventory compilers 

regarding their opinions on whether livestock farmers are 

provided advice at the national scale for the reduction of 

greenhouse gas emissions from their farms. 

 

Figure 11. Responses of national inventory compilers 

regarding the existing regulations at the national scale 

forcing livestock farmers to reduce greenhouse gas 

emissions from their farms. 

 

Figure 12. Availability of national inventory compilers for 

participating in a consultation process for the development 

of a DS tool which considers GHG and ammonia emissions 

at the farm-level in the decision-making. 

3.4. Authorities / Policy makers 
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(4 responses in total). Most of the responses came from Chile (3 out of 4). None of the respondents was aware 

of existing software-based DS tools for more efficient management of livestock farms. However, all of them 

would be interested in getting informed about software-based DS tools that estimate GHG and ammonia 

emissions at the livestock farm level and all of them would further be interested in getting actively involved 

in the consultation process during the development of a software-based decision support tool (livestock farm 

scale) which estimates GHG emissions. Finally, all of them would be willing to participate in such 

consultation initiatives in case they are informed and invited. 

4. Discussion 

Livestock farmers’ advisors constituted the largest respondent group (73 out of 109 responses), followed 

by livestock farmers (23 respondents), inventory compilers (9 respondents), and authority officials/policy 
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advisors from Poland, reflecting a significant representation of Polish advisors' perspectives in the collected 

data. Greek livestock farmers predominated within the livestock farmers' stakeholder group (15 out of 23 

responses), while national inventory compilers from Germany and Austria were prominent within their 

category (5 out of 9 responses), and policy makers/authority officials from Chile represented their respective 

group (3 out of 4 responses). 

It's worth noting that the directly involved stakeholder groups, particularly livestock farmers and advisors, 

tend to have higher levels of education. This suggests an increased likelihood of interest in exploring and 

testing emerging technologies such as software-based decision support tools for enhancing farm management 

practices. 

A majority of respondents (88 out of 109) were aware of software-based decision support tools. However, 

the actual users of such tools comprised less than half of those aware of their existence (33 out of 88 

responses). Even fewer respondents reported using software-based tools specifically for estimating GHG and 

ammonia emissions at the farm level for integration into decision-making processes (5 out of 33 responses, 

all from livestock farmers' advisors in various participating countries). Nonetheless, livestock farmers' 

advisors, who play a crucial role in advising on emission reduction strategies, expressed a high level of 

concern regarding improving the environmental performance of livestock farms, despite not being able to 

precisely estimate emissions. 

Regarding awareness of emissions among stakeholders, most livestock farmers' advisors believed that 

livestock farmers are aware of GHG and ammonia emissions from their farms, whereas most inventory 

compilers reported the opposite. However, it can be inferred that farmers already using decision support tools 

are more likely aware of their farms' environmental impact. 

Most national inventory compilers from EU member states reported the existence of national-scale 

regulations mandating livestock farmers to reduce greenhouse gas and ammonia emissions, along with 

incentives and advice provided at the national level for this purpose. 

Importantly, around 87% of responding stakeholders expressed interest in being informed about software-

based decision support tools that estimate and utilize GHG and ammonia emissions in decision-making 

processes. Moreover, approximately 60% of these stakeholders expressed willingness to actively participate 

in the consultation process during the development of such tools, provided they are informed and invited. 

5. Conclusions 

This work aimed to understand the views and needs of potential users regarding software tools for 

estimating and reducing greenhouse gas (GHG) and ammonia emissions in their decision-making processes. 

Specifically, four stakeholder groups were targeted: livestock farmers, livestock farmers’ advisors, national 

inventory compilers, and authority officials/policy makers. Each group received a tailored questionnaire. 

The findings highlighted the need for further development and promotion of software-based decision 

support tools that estimate and utilize GHG and ammonia emissions in decision-making processes across all 

participating countries in the survey. Such efforts would be particularly beneficial for all stakeholder groups 

involved. 
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Abstract 

To meet national and global air quality and climate change policies, it is essential to equip the agricultural 

sector with farm-level decision support tools for gaseous emissions. Developing these tools presents a 

significant challenge, as their reliability must be ensured through the incorporation of the latest 

methodologies and calibration using precise case study data. To address this issue, the authors modified and 

updated a previous version of a tool designed to estimate greenhouse gas emissions, and ammonia emissions. 

This resulted in the development of a Prototype Livestock Farm-scale Gas Emission-based Decision Support 

Tool (PDST). The tool's modification includes the integration of the most up-to-date estimation 

methodologies, such as IPCC, EMEP/EEA, UNECE, and ASAE. To assess its efficacy, both the PDST and 

the older version were used for one commercial farm in Greece and in Poland. Both case studies refer to 

intensive systems, with deep litter housing and dunghill manure storage. To demonstrate the differences 

between the PDST and the older version, two scenarios were defined for each case study. The first scenario 

includes the older version with the already embedded agroecological zone data, while the second scenario 

uses the PDST with specific climate data from Greece and Poland. The use of the PDST resulted in a 

reduction in annual emissions per kg of raw milk produced. This was due to the modifications made to gas 

emission estimation methodologies, such as the estimation of volatile solids, various emission factor (EF) 

values (e.g. ammonia EF for housing and ammonia and nitrous oxide EF for external manure storage), the 

methane conversion factor, as well as other parameter values, such as feedstuff, livestock breeds, and external 

manure storage types. The PDST shows promising potential for providing gas emission estimates from dairy 

farms in Greece and Poland, according to the latest emission inventory methodologies. 

Keywords: Greenhouse Gas Emissions, Ammonia emissions, Farm-scale, Prototype Tool Development, 

Dairy Cattle Farming 

1. Introduction 

The livestock sector is a major contributor to global greenhouse gas (GHG) emissions (Hörtenhuber et 

al., 2022). These emissions include the direct release of carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N2O), as well as the indirect N2O emissions after the conversion of ammonia (NH3) and different 

nitrogen (N) compounds (Rotz et al., 2018). Several production activities on a farm have the potential to 

generate greenhouse gas emissions. Feeding practices and feed digestion as well as animal housing, manure 

handling (removal, storage and field application) and soil management practices all drive these emissions 

(Rotz et al., 2018). 

Assessment and reduction of the GHG emissions from livestock farming is crucial for addressing global 

climate change (Kipling et al., 2021). Quantification of GHG emissions is facilitated through the use of 

computer-based decision support (DS) tools (Rotz et al., 2018), which must yield dependable results for 

effective action. The effectiveness of these tools hinges on incorporating the latest emission estimation 

methodologies and relevant parameter values to ensure reliable emission estimates (Rose, 2018). 

A Prototype Decision Support Tool (PDST), based on the FarmAC v.1.8 model (FarmAC, 2024), was 

launched to address the need for a comprehensive farm-level DSS that incorporates cutting-edge 

methodologies for compiling gas emission inventories. The PDST improves upon its predecessor by offering 

refined estimates of GHG and other nitrogenous emissions, such as NH3 and nitrogen oxides (NOx), at the 

farm level. 

The objective of this paper is to present the validation procedure of the PDST, by employing data collected 

from two commercial, intensive dairy cattle farming systems (one located in Greece and one in Poland) and 

comparing the PDST’s direct and indirect GHG emission outputs for these systems with the corresponding 
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outputs of its predecessor but also with findings from the existing literature for similar dairy cattle production 

systems. 

2. Materials and Methods  

2.1. Modifications to the code 

The PDST builds upon the C# code of FarmAC v1.8 model (FarmAC, 2024), incorporating adjustments 

tailored to dairy cattle farming systems. These enhancements are related to the integration of the most recent 

guidelines for inventory compilation, as established by the Intergovernmental Panel on Climate Change 

(IPCC) (IPCC, 2019) and the European Monitoring and Evaluation Programme (EMEP) of the European 

Environment Agency (EEA) (EMEP/EEA, 2023), as well as information from guidance documents (UNECE, 

2015) and other standards (ASAE, 2005).  

Revisions in the FarmAC algorithmic architecture include: 

• Tailoring of existing agroecological zones to also reflect the Hellenic and Polish climatic conditions. 

The climate data related to Greece and Poland were retrieved from the CEDA archive Database 

(CEDA, 2023), following the recommendations of IPCC (2019). 

• Adjusting the empirical models and underlying algorithms used for refined emission estimation. 

• Integration of additional parameters, such as feed types and livestock breeds. 

Advancements in the PDST’s coding framework were executed in two stages: 

• A thorough audit of the default systemic values and parameters encoded within the FarmAC 

framework.  

• Modification of empirical models and computational algorithms for emission estimation regarding 

volatile solids and enteric methane emissions from cattle. 

2.2. Integration of case studies 

Data were collected from two commercial, intensive dairy cattle systems, one in Greece and one in Poland, 

using templates for environmental impact assessment via Life Cycle Analysis (LCA). Only livestock-related 

inputs were necessary to run the tools for the Greek case study, while both livestock and crop-related inputs 

were necessary for the Polish case study. The Greek case study involves data collected in December 2021, 

while the Polish case study in November 2021. Additionally, projects such as Feedipedia (Feedipedia, 2023) 

and Feed Tables (Feed Tables, 2023) were consulted to determine the dry matter content per feed component. 

Furthermore, in the Polish case study, the daily nitrogen excretion per animal (ASAE, 2005) was utilized to 

estimate the amount of nitrogen in the cattle manure applied per hectare as organic fertilizer, after having 

subtracted the nitrogen emission flows at the cattle housing and manure storage stages. The total nitrogen 

application per hectare was estimated after having considered the synthetic fertilizer’s NPK content.  

To apply the PDST to these cattle production systems, a two-step approach was employed for utilizing 

the collected data: 

• Initially, baseline estimates for GHG and NH3 emissions were derived using the FarmAC model and 

the data collected. 

• Subsequently, to refine the PDST output, additional agroecological zones were developed to integrate 

climate data for Greece and Poland, as well as refined emission factors and other parameters. 

Additionally, to compute energy-corrected milk (ECM) and fat/protein-corrected milk (FPCM) (Mc Geough 

et al., 2012; Gislon et al, 2020), Eq. (1) and (2) were utilized: 

ECM = (0.25 × Total Milk Production) + (12.2 × Total Milk Fat Production) + (7.7 × Total Milk Protein Production) 

   (1) 

FPCM = Total Milk Production × ((0.1266 × Total Milk Fat Production) + (0.0776 × Total Milk Protein Production) 

+ 0.2534)    (2) 

ECM and FPCM were computed to compare the emission results of the present study with relevant 

scientific literature results. 

An allocation factor was applied to distribute the emissions to milk production, as the dairy cattle farms 

produced both raw milk and cattle live-weight, according to Eq. (3) (IDF, 2015).  

Milk Allocation Factor = 1 – 6.04 * (total kg of live weight sold per year / total kg of FCPM produced per year) (3) 
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3. Results and Discussion 

3.1. Inputs 

The inputs utilized for scenario definition in both FarmAC and the PDST can be categorized as: 

• Livestock-related: number of animals, breed (e.g., Holstein, Jersey), growth stage (e.g., calves, heifers, 

dairy cows, young bulls), feed types and dry matter content of ration (kg), housing type, and manure 

storage type. 

• Climate-related: selection of the agroecological zone corresponding to the country of interest. 

• Crop-related: soil type, start and end date of crop production, area surface (ha), irrigation development 

(yes/no), and yield of each cultivated crop (kg). 

• Fertilizers: type and amount (kg) of fertilizer, nitrogen applied per hectare (kg), application method. 

3.1.1. Polish case study 

In Tables 1 and 2, the livestock-related and crop-related inputs of the Polish dairy farm are shown, 

respectively. The total farm size is 90ha. It covers 80ha of utilized agricultural land, along with an additional 

hectare designated as woodland. 38% of this agricultural land is used for fodder production. Various crops 

are also cultivated such as maize, rye, oats, barley, meadows, and alfalfa. The herd size is based on the 

average daily number of animals (Holstein dairy cattle). In 2021, the farm produced a total of 432,000 litres 

of milk (8,640 litres per cow on average). The cattle live-weight production is minimal, as the young bulls 

(n=20) are sold at a low average weight (50 kg), while the cull cows (n=5) at 650kg. The allocation factor to 

raw milk was estimated to be 0.94. 

Table 1. Livestock-related inputs (dairy cows) in the Polish case study. 

Cattle sub-category / Size 

(heads) 

Diet component / Dry matter (kg 

/ day) 

Housing 

type 

External manure storage 

type 

Dairy cows (lactating) 

/ 50 

Maize silage / 9.74 

Grass silage / 5.39 

DDGS (wheat and corn) / 1.35 

Molasses/ 0.26 

Vitamins / 0.35 

Deep litter Dunghill, no cover 

Heifers and dairy cows (dry) 

/ 4 

Maize silage / 2.19 

DDGS (wheat and corn) / 0.45 

Sugar pulp / 0.44 

Grass hay / 0.91 

Deep litter Dunghill, no cover 

Table 2. Crop-related inputs for the Polish case study. 

Crop 

Duration of 

cultivation 

(days) 

Soil 

typ

e 

Area 

(ha) 

Irrigati

on 

Fertilizer 

type 

Applie

d N 

(kg/ha

)  

Applicat

ion 

method 

Yield (kg) 

Maize 161 

Cla

y 

Loa

m 

65 No 

Solid 

manure 

3298.3

7 

Spreadin

g 
65000 

     
Urine 5497.2

8 

Spraying 
 

     
Urea 207 Spreadin

g 
 

Rye 91 

Cla

y 

Loa

m 

4 Yes 

Ammonium 

nitrate 
67 

Spreadin

g 
6000 

     
Urea 92 Spreadin

g 
 

 Winter 

Barley 
71 

Cla

y 

Loa

m 

6 No - - - 4000 
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Oats 184 

Cla

y 

Loa

m 

6 No - - - 4000 

Grass - 

alfalfa 

Permanent 

cultivation 

Cla

y 

Loa

m 

12 Νο 
Superphosp

hate 
0 

Spreadin

g 
19000  

Grass 
Permanent 

cultivation 

Cla

y 

Loa

m 

47.5 No 
Solid 

manure 

1649.1

9 

Spreadin

g 
22500 

3.1.2. Greek case study 

Table 3 includes information about the livestock-related inputs of the Greek case study. The dairy 

enterprise occupies 0.6ha of the total farm area. As in the Polish case study, the herd size reflects the average 

number of cattle present daily. In 2021, the farm achieved a milk yield of 3,094,000 litres, averaging 8,840 

litres per cow. In addition, the farm sold an important quantity of cattle live-weight, including 60 cull cows 

(650kg each), 7 bulls in mature weight (850kg each), 75 young bulls (450kg each) and 20 male calves (50kg 

each). The allocation factor to raw milk was estimated to be 0.86.  

Table 3. Livestock-related inputs (dairy cows) in the Greek case study. 

Cattle sub-category / Size 

(heads) 

Diet component / Dry matter (kg / 

day) 

Housing 

type 

External manure storage 

type 

Dairy cows (lactating) 

/ 350 

Maize grain, dried, conventional / 5.67 

Soybean meal 48, transformed in 

Europe / 3.39 

Regulator, balancer / 0.29 

Sodium chloride / 0.11 

Calcium carbonate (<63µm) / 0.11 

Alfalfa hay, conventional / 0.89 

Oat hay / 0.89 

Maize silage, conventional / 3.25 

Deep litter Dunghill, no cover 

Dairy cows (dry) (2 months)) 

/ 10  

Maize grain, dried, conventional / 1.55 

Soybean meal 48, transformed in 

Europe / 0.53 

Regulator, balancer / 0.21 

Sodium chloride / 0,03 

Calcium carbonate (<63µm) / 0.03 

Alfalfa hay, conventional / 0.89 

Oat hay / 0.89 

Maize silage, conventional / 3.25 

Deep litter Dunghill, no cover 

3.2. Product and emission outputs 

In Table 4, the annual milk production (kg) as well as the estimated annual ECM (kg) and FPCM (kg) for 

the Polish and Greek dairy cattle farms (PDCF and GDCF) are shown. 

Table 4. Annual milk production (kg) of the two dairy cattle farms (Greek and Polish). 

Dairy cattle farming 

system 

Milk 

production  

Energy corrected milk 

(ECM)  

Fat and Protein corrected milk 

(FPCM)  

PDCF 432,000 439,269.83 446,446.08 

GDCF 3,094,000 3,332,374.53 3,387,001.8 

 

Table 5 shows a reduction in all direct and indirect GHG emissions from the various sources when 

comparing the PDST with its predecessor and for both the PDCF and the GDCF, except for the direct CH4 

emissions from the PDCF where the PDCF showed a higher value. Total on-farm GHG emissions encompass 

combined direct and indirect emissions from both livestock and crop production. However, to facilitate the 

comparison between the emissions from the PDCF and the GDCF and the literature, livestock-related 

emissions (including direct enteric CH4, direct CH4 from manure, direct N2O from manure, indirect N2O due 
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to NH3 from housing and indirect N2O due to NH3 from manure) were separately presented. 

Table 5. Product and emission outputs of the two dairy cattle farms (Greek and Polish) as provided by the PDST and 

its predecessor. 

Annual product (kg) and GHG emissions (tn 

CO2eq) 

PDCF - 

CAEZ1  

PDCF - 

PAEZ2 

GDCF - 

MAEZ3 

GDCF - 

GAEZ4 

Direct enteric CH4 193.23 198.12 1191.68 1158.66 

Direct CH4 from manure (housing and storage) 34.9 71.6 619.44 500.26 

Direct N2O from manure (housing and storage) 142.31 102.57 3282.82 957.15 

Direct N2O from field application of synthetic 

fertilizers and manure 

1066.6 710.41   

Direct CO2 from crop fields 18.03 18.03   

Change in C stored in soil -480.1 -304.35   

Total direct GHG emissions 974.91 796.38 5093.93 2616.07 

Indirect N2O, due to NH3 from housing 33.79 13.71 852.71 133.8 

Indirect N2O, due to NH3 from manure storage 135.28 25.1 3411.99 244.29 

Indirect N2O, due to NH3 from field application of 

manure 

18.06 12.93   

Indirect N2O, due to NH3 from field application of 

synthetic fertilizers 

12.11 5.7   

Indirect N2O, due to N leaching 425.72 405.47   

Total indirect GHG emissions 624.95 462.9 4264.69 378.09 

Total farm-level GHG emissions (direct + indirect) 

allocated to raw milk 

1535.87  1183.72 8048.42 2574.98 

Total livestock-related GHG emissions (direct + 

indirect) allocated to raw milk 

 507.14 386.3 8048.42 2574.98 

Farm-level GHG emissions (kg CO2eq/kg raw 

milk (ECM; FPCM)) 

3.5; 3.44 2.7; 2.6 2.42; 2.38 0.77; 0.76 

Livestock-related GHG emissions (kg CO2eq/kg 

raw milk (ECM; FPCM)) 

1.16; 1.14 0.88; 0.8 2.42; 2.38 0.77; 0.76 

1Polish Dairy Cattle Farm – Continental Agroecological Zone, as implemented in the FarmAC v.1.8 model; 2Polish 

Dairy Cattle Farm – Polish Agroecological Zone, as implemented in the PDST; 3Greek Dairy Cattle Farm – 

Mediterranean Agroecological Zone, as implemented in the FarmAC v.1.8 model; 4Greek Dairy Cattle Farm – Greek 

Agroecological Zone, as implemented in the PDST. 

 

The effects on the estimated GHG emissions noticed in Table 5 were based on the implemented 

modifications: 

• CH4 from enteric fermentation: It was estimated using the IPCC Tier 2 methodology, with the 

predecessor tool considering a global warming potential (GWP100) for biogenic CH4 equal to 37.3 

kg CO2eq/kg, while the PDST equal to 27.2 kg CO2eq/kg (Foster et al., 2021). 

• CH4 from manure (housing and storage): The use of the PDST shows lower emissions in the GDCF 

and higher emissions in the PDCF due to changes in carbon flows’ estimation methods. Additionally, 

the methane conversion factor (MCF) was increased from 0.02 to 0.21 (deep bedding >1 month) and 

from 0.04 to 0.225 (deep bedding >1 month and solid storage, for similar duration) for the Polish and 

Greek case studies, respectively, since the climate parameters in the PDST were updated considering 

both in-house and external manure storage for both PDCF and GDCF. 

• Direct N2O from manure (housing and storage): It was lower in the PDST even if the emission factor 

of N2O doubled (0.005 to 0.01 kg N2O-N / kg Nitrogen excreted), and the GWP100 of N2O decreased 

(from 416.4 to 273 kg CO2eq/kg). 

• Direct N2O from field application: Discrepancies arise from different climate data in the two tool 

versions and the modification in the GWP100 of N2O. 

• Indirect N2O due to NH3 from housing: The differences between the tool versions, can be explained 

by the increased housing emission factor for NH3 (from 0.12 to 0.16 kg NH3-N/kg ammonium in 

housing) and the decrease in the GWP100 of N2O. 

• Indirect N2O due to NH3 from manure storage: The lower value in the PDST is attributed to a decrease 

in the emission factor value for manure storage (from 0.544 to 0.32 kg NH3-N/kg ammonium in 

storage) and the decrease in the GWP100 of N2O. 
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• Indirect N2O after field application of fertilizers: This variation results from the change in the emission 

factor of leached NO3-N (from 0.0075 to 0.0112 kg N2O-N emitted/kg NH3-N emitted) and the 

decrease in the GWP100 of N2O. 

It is important to note that in the PDST the estimation of CH4 emissions from manure management conforms 

to the updated IPCC guidelines (e.g. MCF integration for the existing manure management systems, revised 

emission factors for both direct and indirect GHG emissions), whereas its predecessor calculated manure 

carbon flows, based on degradable, non-degradable and humic carbon. Moreover, in the previous version of 

the tool, carbon degradation and organic nitrogen degradation of manure were interconnected.  

3.3. Use of literature findings to confirm the PDST’s efficiency 

For GDCF system, the old version and PDST yielded 2.42 and 0.77 kg CO2eq/kg of ECM and 2.38 and 

0.76 kg CO2eq/kg of FPCM, respectively. Both sets of values are deemed valid in the context of the Greek 

case study, with the PDST aligning more closely with literature ranges for similar farming systems. 

For the PDCF, the old version and the PDST generated 3.5 and 2.7 kg CO2-eq/kg of ECM and 3.44 and 

2.65 kg CO2eq/kg of FPCM, respectively. Excluding crop-related GHG emissions, livestock emissions were 

1.16 and 0.88 kg CO2eq/kg of ECM and 1.14 and 0.87 CO2eq/kg of FPCM, respectively. Although the results 

for the PDCF were higher than for the GDCF, they also fall within the range of literature results, with the 

PDST again yielding results closer to the literature findings for similar systems.  

Various studies highlighted emission values for non-pasture scenarios, aligning with this study's context. 

For instance, a Danish study (Kristensen et al., 2011) reported emissions ranging from 0.97 to 1.56 kg 

CO2eq/kg ECM for conventional farms (with 0-23% pasture), while on-farm emissions excluding fossil fuels 

ranged from 0.73 to 1.03 kg CO2-eq/kg ECM. Similarly, a non-grazing farm in Quebec, Canada (Mc Geough 

et al., 2012), found on-farm GHG emissions of 0.92 kg CO2eq/kg FPCM, with direct livestock-related 

emissions (enteric CH4, manure CH4, manure N2O) totalling 0.59 kg CO2eq/kg FPCM. In another LCA study 

encompassing Danish, German, and Italian farms (Guerci et al., 2013), non-grazing farms exhibited 

emissions ranging from 1.11 to 1.91 kg CO2eq/kg ECM, with livestock-related emissions ranging from 0.89 

to 1.64 kg CO2eq/kg ECM. Additionally, Hagemann et al. (2011) found that a forage-based farm in Germany 

emitted 1.19 kg CO2eq/kg ECM, with livestock-related emissions totalling 0.833 kg CO2eq/kg ECM.  

Overall, a range of GHG emissions for non-grazing farms, spanning from 0.59 to 2.35 kg CO2eq/kg ECM 

is provided in the available literature. 

3.4. Future improvements 

Instead of relying on the already available mean values for each agro-ecological zone, the PDST could 

be further customized by incorporating specific climate, livestock, feeding, manure management, housing, 

crop, and fertilizer data from individual countries. This approach would enhance the quality of the results of 

the PDST and the relevance to local conditions. In an updated version of the PDST, an advisory module could 

be integrated, providing targeted emission mitigation options related to cattle housing and manure 

management. While the tool currently uses extensive parameters and functions for managing diverse data, 

the trajectory for decision support tools is trending towards simplification without sacrificing reliability 

(Rotz, 2018). Consequently, the PDST’s future development should prioritize a user-friendly interface to 

enhance its appeal and facilitate broader adoption. 

4. Conclusions 

This study examines the development and validation of a prototype decision support tool (PDST) for on-

farm GHG emissions’ assessment, based on the latest version of the FarmAC model and integrating real data 

from two dairy cattle farms in different countries (Poland and Greece). The PDST incorporates parameters 

such as emission factors and climate data and the latest emissions estimation methodologies. The input data 

were reviewed and adjusted to align with the producers' reported production levels and ensure balanced cattle 

growth. The estimated GHG emission values of both case studies agreed with findings from existing literature 

for similar farming systems. The PDST exhibited in general lower emission values than its predecessor for 

both farms due to modifications in the estimation methods of GHG emissions from manure management and 

enteric fermentation and the use of updated climate data and adjusted livestock and feed parameters. The 

agreement of the derived GHG emission results with the international literature and the fact that their 

deviation from the previous version of the tool is explainable suggest that the PDST is valid for estimating 

gaseous emissions at the level of the dairy cattle farm, enhancing its practical application for stakeholders in 
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Poland and Greece. 
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Abstract 

Agroecology is an important approach to address modern challenges in agriculture, such as climate 

change, soil degradation, and food insecurity. Digitalisation can support agroecology by enabling farmers to 

work more precisely, efficiently, and sustainably. Digital technologies can help farmers to collect and analyze 

data on soil health, weather patterns, and crop yields, which can inform decision-making and improve 

resource management. However, it is important to align digitalisation and agroecology to ensure that it 

supports a transformation agenda towards sustainable and equitable food systems. D4AgEcol, a Horizon 

Europe funded research project, aims to provide knowledge for the transition to agroecological farming by 

identifying appropriate digital tools and technologies. To facilitate its aim, a platform in the form of a web 

application was developed in the scope of the D4AgEcol project. Through D4AgEcol project’s web platform, 

agricultural stakeholders can derive information related to the use of digital tools and technologies in the 

context of agroecology from research articles, research projects and commercial products. In these categories, 

the visitors of the D4AgEcol platform can find useful information on the farming systems that can be used, 

characteristics, and the social, economic and environmental impacts they have on the various farming sectors. 

More than 500 records belonging to the aforementioned categories can be found on the platform which were 

identified through extensive search and screening in relevant online databases as well as on commercial 

websites. The D4AgEcol platform will contribute to the farming sector by enhancing the knowledge of 

farmers and other stakeholders on the ways that digital tools and technologies can be utilized in the context 

of agroecology to promote increased agricultural productivity, improved resource efficiency, increased 

environmental protection, and mitigation of climate change impacts. Ultimately, the D4AgEcol platform 

aims to contribute to the adoption of more resilient and sustainable agricultural practices by farmers and other 

agricultural stakeholders. 

Keywords: agroecology, smart farming technologies, digitalisation, web platform, Horizon Europe project 

1. Introduction 

Agroecology is an integrative approach that applies ecological concepts and principles to the design and 

management of sustainable agricultural systems. It emphasizes the dynamics between biophysical and 

socioeconomic processes and components of agroecosystems. The importance of agroecology lies in its 

potential to deliver sustainable food production, enhance biodiversity, recycle nutrients, improve soil fertility, 

and sustain the livelihoods of billions of people worldwide, particularly smallholder farmers. The complexity 

of interactions in agroecological systems demands comprehensive management strategies that consider the 

multifunctional aspects of agriculture, integrating crop production, animal husbandry, and forest conservation 

(Ewert et al., 2023). 

The burgeoning need for digital tools in agroecology arises from the necessity to navigate and optimize 

these multifaceted systems efficiently. Digital technologies in agriculture have revolutionized the way 

farmers monitor crop health, manage pest outbreaks, and utilize inputs such as water and fertilizers 

judiciously, reducing waste and environmental footprint. The deployment of digital tools such as terrestrial 

robots, Unmanned Aerials Vehicles (UAVs), Farm Management Information Systems (FMIS), Internet of 

Things (IoT) systems, multispectral cameras have provided a digital backbone for precision agriculture 

practices, enabling real-time data collection and analysis for decision-making. These systems have 

contributed significantly to enhancing the efficiency of crop production through improved monitoring and 

targeting of inputs (Burns et al., 2022). Accordingly, in livestock farming, digital tools are critical in 
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monitoring animal health and welfare, optimizing feeding strategies, and ensuring efficient resource 

utilization. Technologies such as automated feeders, health monitoring wearables, and data management 

systems can lead to improved animal health outcomes and productivity while reducing labor requirements 

and environmental impacts (Gómez et al., 2021). 

Thus, the adoption of digital tools across these diverse farming systems is essential for advancing 

agroecology. They provide the necessary data and models to inform sustainable practice and policy, foster 

resilience in food systems, and ultimately contribute to the health of the planet and its inhabitants. By 

harnessing the power of digital tools, agroecology can evolve to meet the global challenges of food security, 

environmental sustainability, and climate change adaptation (Ajena et al., 2022).  

By giving farmers access to a multitude of tools and information that can improve their production, 

efficiency, and sustainability, web-based knowledge platforms hold the potential to completely transform the 

agriculture industry. The platforms can increase market accessibility, strengthen agricultural extension 

services, empower farmers, encourage environmental sustainability, and build their capability (Ong et al., 

2024; Lagos-Ortiz et al., 2020). 

In this context, the EU-funded D4AgEcol project will show the potential of digitalisation as an enabler 

for agroecological farming systems in Europe. One of the main outputs of the project was the production of 

the D4AgEcol platform to increase awareness among agricultural stakeholders about digital tools that can be 

utilized in agroecology. Thus, the main objective of this study is to present the specification and 

characteristics of the D4AgEcol platform, which will include existing and emerging digital tools that are used 

in crop and livestock farming and can be used for the purposes of agroecology. 

2. Materials and Methods  

The work consisted of three steps: (i) collection of data; (ii) data screening and aggregation; and (iii) 

platform implementation. 

2.1. Collection of data 

Three different sources were utilized for the collection of digital tools, namely research articles, research 

projects and commercial products. Specifically, relevant digital tools were identified through research articles 

that were retrieved through the Web of Science database 

(https://www.webofscience.com/wos/woscc/advanced-search). For this purpose, a query was placed to the 

search engine to identify relevant digital tools that can contribute to agroecology. The query consisted of 

digital tools identified in review articles, FAO’s ten elements of agroecology, and the farming systems that 

were under study (open agriculture, livestock farming, and agro-forestry).  

A similar approach was also followed for the mapping of the research projects. More specifically, the 

CORDIS search engine (https://cordis.europa.eu/search/en) was used to identify finished relevant Horizon 

2020 projects due to the fact that they are well documented in the database compared to research projects 

from previous programmes. 

To map the commercial solutions that can be used in agroecology, data from web search and relevant 

databases, such as smartAKIS and 4D4F, were utilized during June 2023.  

2.2. Data screening and aggregation  

After the data collection process, the research articles and projects were mapped by utilizing the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. PRISMA is an 

evidence-based minimum set of items for reporting in systematic reviews and meta-analyses (Moher et al., 

2010). Thus, the final number of suitable articles and projects that were evaluated in depth for this study were 

305 and 90, respectively. These were added to the initial 107 solutions that were identified from web search 

and relevant databases. The selected digital tools were classified accordingly to address the topics of the 

project (digitalization, farming systems, agroecology). The categorization of the research articles was based 

on various review articles that addressed relevant topics (Akhigbe et al., 2021; Balafoutis et al., 2017; Gómez 

et al., 2021; Ramil Brick et al., 2022). Additionally, the digital tools were assessed in terms of their 

technology readiness level to existing (TRL8-9) and emerging (TRL5-7). The detailed classification is 

presented in Error! Reference source not found.1. 
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Table 1. Classification of the digital tools under the different topics. 
Classes Options Classes Options 

Farming System Agriculture 

Livestock Farming 

Agro-forestry 

Platform Satellite 

UAV 

UGV 

Crewed Ground Vehicles 

Stationary 

Wearable 

Mobile Ground 

Crewed Aerial Vehicles 

Farming Type Arable Crops 

Vegetable Crops 

Orchard Crops 

Vineyards 

Ruminants 

Poultry 

Pigs 

Sensors  Hyperspectral 

Multispectral 

Thermal 

RGB/RGB-D 

LIDAR 

Weather Station 

RFID/Eid 

Rumen Bolus 

Accelerometer 

Load Cell 

Sound Sensor 

Flow Meter 

Temperature Sensor 

Weight Sensor 

Soil Sensor 

Dendrometer 

Stem Water Potential Sensor 

NIRS 

Smart Collar 

Smart Trap 

Synthetic Aperture Radar 

GNSS 

Soil Electrical Conductivity 

Sensor 

Canopy Sensor 

Fluorescence 

Nitrate Sensor 

Water Quality Sensor 

Ground Penetratitng Radar 

Soil Cutting Resistance 

Sensor 

Electronic Plate Meter 

Smart Feeder 

Force Plate 

Moocal Device 

pH Sensor 

Leg Sensor 

Milk Meter 

Milk Sensor 

Farming System 

Type 

Conventional 

Organic 

Integrated Management 

Software Software 

FMIS 

DSS 

Social Platform 

Digital Marketplace 

Operation Type Land Preparation 

Irrigation 

Fertilization 

Pest Control 

Weeding 

Harvest 

Monitoring 

Marketing 

Technology Readiness 

Level 

Existing (TRL8-9) 

Emerging (TRL5-7) 
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Classes Options Classes Options 

Breeding 

Feeding 

Animal Health care 

Dairy production 

Egg production 

Meat Production 

Application Type Guidance/Steering 

Recording/Monitoring/Map

ping 

Reacting/VRA/control 

Information/Knowledge 

Sharing 

  

2.3. Platform implementation  

Based on the information collected from the research articles, the research projects, the commercial 

products and the collected impact, a relational database was designed to be used for the development of the 

online platform.  

The MariaDB (10.3.39-MariaDB-0ubuntu0.20.04.2 - https://mariadb.org/) database management system 

was used for the storage of the related data, while PHP (version 8.3 - https://www.php.net/) programming 

language and specifically the Laravel framework (version 11 - https://laravel.com/) was used for the 

development of the backend of the platform. To better facilitate the data collection process, initially, the 

relevant datasets were processed in an online excel sheet that was later migrated/seeded into the designed 

database. 

Early in the development process a set of wireframes of the platform were developed to depict how the 

user interface shall function. To better understand the user needs  and design effective and valuable 

wireframes,  other similar and successful platforms from relevant research projects were identified and 

analyzed (e.g., Fairshare, Smart-AKIS). Through this process, useful characteristics were identified that 

could be an asset to the D4AgEcol platform. Additionally, the visual identity of the project as implemented 

by the official website was considered and accounted for during the user interface design. 

 The user interface of the online platform was developed using the ReactJS framework (https://react.dev/). 

React is one of the most popular frontend JavaScript frameworks, suitable for creating modern and interactive 

web applications. It is highly supported by all major web browsers (i.e. Firefox, Chrome, Edge) and its 

especially known for its rendering and code reuse capabilities. 

3. Results and Discussion 

3.1. Data screening and aggregation  

In total, 304 research articles, 90 research projects and 107 commercial products were identified to refer 

to digital tools that can be applied in agroecology. These digital tools can be applied in various sectors 

(agriculture, livestock farming and agro-forestry) to address specific needs in various operations (e.g., 

weeding, spraying, fertilization, irrigation). Moreover, these digital tools may refer to terrestrial or aerial 

robots, smart implements, FMIS, online tools, multispectral and thermal cameras, market places and other 

covering different needs. 

As it is presented in Figure 1, most of the digital tools that were included in the database are related to 

agriculture (91.7% from research articles, 86.7% from research projects and 72.9%) while digital tools related 

to livestock farming and agro-forestry presented significant lower percentages.  
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(a) (b) 

 
(c) 

Figure 2. Digital tools percentages per farming system for (a) research articles; (b) research projects; and 

(c) commercial products 

 

3.2. Platform implementation  

The Entity Relationship Diagram (ERD) of the designed database is illustrated in Figure 2. This diagram 

visually presents all of the main entities and the relationships among them, indicating the cardinalities and 

constraints that govern the interactions between different entities. In the scope of the D4AgEcol platform the 

main entities include the users, the research projects, the commercial products and the research articles, 

where, the relationships consist of tables/properties such as platforms, farming types, application types and 

more. 

 

 

Figure 2. D4AgEcol platform Entity Relationship Diagram (ERD). 
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Wireframes of the platform were developed to depict the user interface of the platform by analysing other 

similar platforms from other research projects (e.g., Fairshare, Smart-AKIS) to identify useful characteristics 

that could be used in the development of the D4AgEcol platform. Then, the wireframes were presented to 

the consortium for fine-tuning. Specifically, the wireframes included the landing page, the catalog and the 

profile card (Figure 3).  

 

Figure 3. Wireframes of the D4AgEcol Platform. 

 

Based on the aforementioned information, the user interface of the platform was developed using the 

ReactJS framework. The landing page, the catalogue and the profile card pages of the D4AgEcol platform 

are presented below (Figure 4). A dedicated menu item will be placed to the projects official website, 

navigating visitors to the D4AgEcol platform (https://d4agecol.eu). 

 

   
(a) (b) (c) 

Figure 4. (a) The lading page; (b) the catalogues and (c) the profile card of the D4AgEcol Platform. 
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Additionally, D4AgEcol users are able to register with the online platform and submit information 

(research publications, research projects, and commercial items) on digital tools for agroecology. There are 

multiple tiers of users, each with varied access permissions. Specifically, admin users have full access to the 

platform's records and are able to monitor and publish them, as well as assign records for review. The 

reviewers are able to upload, review, and publish material, whilst the other users are able to post information 

that then can be allocated to reviewers by admin users (Figure 5). 

 

 
  

 

(a) (b) 

 

(c) 

Figure 5. Pages for uploading information for (a) research articles; (b) research projects and (c) 

commercial products. 

4. Conclusions 

The D4AgEcol platform is a useful tool for agricultural stakeholders to help in the collection of 

information on digital tools that could be used for the purposes of agroecology. The platform is "self-

sustainable" because its increased awareness of its presence among key stakeholders would result in 

additional inputs. Through this first solid foundation and implementation of a methodology to collect valid 

innovative and useful records on information of digital tools, the platform is effective for its overarching 

goal. The D4AgEcol platform is used jointly with other communication and dissemination tools and activities 

to increase awareness among agricultural and non-agricultural stakeholders about the benefits of digital tools 

in agroecology. 
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Abstract 

The current work presents the main concept and preliminary actions from the LIFE AgrOassis project. 

The project proposes nature-based solutions and circular economy approaches for combating desertification 

within degraded agroecosystems of Cyprus and Greece (Thessaly and Crete). Co-funded by the European 

Union LIFE program, LIFE AgrOassis project started in 2022 and will continue until 2026. The main land 

management interventions focus on changing soil management by promoting minimum tillage, no-tillage, 

mulching and compost application as well as introducing hedgerow structures on the most vulnerable parts 

of the fields. Through the above soil management interventions, the project aims to revert soil degradation 

and upgrade soil quality by improving the soil structure, preventing soil erosion, enriching soil carbon, 

preserving soil water, enhancing soil fertility, and promoting soil biodiversity. Combined with the 

hedgerow’s beneficial impacts on microclimate, windborne erosion, and local biodiversity, the interventions 

are expected to support the ecosystem services within the prone to desertification farmlands. On the other 

hand, the fixation of CO2 into soil carbon pools, the CO2 sequestration into woody tissues on the hedgerows, 

along with the avoidance of carbon losses from uncontrolled green waste disposal and the reduction of GHGs 

emissions through fossil fuel savings from minimum and no-tillage are expected to contribute towards 

climate change mitigation. Finally, the use of compost is expected to promote the circular economy concept 

within the agro-sector community. Through the exploitation of a multi partner, multi actor approach, the 

LIFE AgrOassis project aims to mobilize the primary food production sector towards close-to-market 

solutions on sustainable solutions and seeks to identify and remove obstacles related to inappropriate 

governance and policies, that obstruct the implementation of the EU’s Green Deal Agenda. 

Keywords: Conservation agriculture, no-tillage, mulching, hedgerows, compost.  

1. Land desertification in Cyprus and Greece 

Agriculture is highly exposed to climate change, as farming activities directly depend on climatic 

conditions. The IPCC projections for the Mediterranean basin are alarming, particularly for the Eastern 

Mediterranean and the Middle East, and show increased temperature, decreased annual rainfall, increased 
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drought risk and high heat stress. The result will be decreased crop yields and decreased land availability for 

crop cultivation (Giannakopoulos 2009; Lelieveld et al 2016). The projected increased periods of drought 

will act as the limiting factor for agroecosystems and farming practices.  Drought reduces plant productivity, 

biodiversity and soil cover making drylands vulnerable to soil erosion and land degradation. 

Intensive agricultural practices like frequent and deep soil tillage can accelerate land degradation through 

several processes like soil erosion, compaction, losses in soil organic matter (SOM) and other. As a result, 

soil quality and productivity is deteriorating and the landscape and biodiversity can be seriously damaged as 

the desertification accelerates. Agricultural soils in Cyprus and Greece have generally low SOM, poor soil 

structure and small water infiltration rates. They are therefore highly vulnerable to wind/water erosion and 

prone to desertification.  

One of the most important quality indicators for desertification is the low soil organic matter (SOM) of 

degraded fields, and actions to combat desertification and degradation of agricultural soils often aim to 

increase SOM level. Increasing the SOM in agricultural fields, directly increases their water storage capacity, 

creates a healthy habitat for beneficial soil bacteria and other biodiversity, captures carbon and makes the 

soils more resilient for withstanding climate change. The predominant land management practices however 

in cereals and olive groves include both extensive and intensive tillage to combat weeds, a practice which 

increases the loss of SOM, accelerates erosion and degrades the soil structure and quality. Furthermore, cereal 

farmers in Cyprus attempt to maximize straw production for use as animal feed by strip mowing the crop 

during harvesting. Thus, very little plant residue is left on the field to promote mulching, soil protection and 

carbon enriching. More worthy, farmers in Cyprus practice tillage after the cereal harvest (or in Olive groves 

many times during the year) so the ground remains exposed during the greatest part of the dry season 

permitting the acceleration of the desertification processes. On bare ground temperatures higher than 55 oC 

may occur in lowlands of Cyprus during the driest part of the year (Hadjimitsis et al. 2013), which further 

reduces soil moisture, soil microorganism activity and nutrient recycling; a process that urgently needs to be 

reversed for combating desertification. 

2. The LIFE AgrOassis approach   

The LIFE AgrOassis project targets on nature-based solutions that handle the problem of desertification 

and create conditions that will reverse the process by helping agricultural systems to become adapted to the 

new climate regime. The project focuses both on seasonal and permanent crops at the two countries. Seasonal 

crops include mainly cereals but other crops like legumes, maize and cotton are expected to be exploited in 

the frame of the regular regional rotations. The targeted permanent crop is olives.  

Treatments and techniques to halt and reverse the process of land degradation and desertification relay 

on protecting topsoil. For example, if the ground in summer remains covered by plant residue it may 

significantly reduce topsoil temperature (e.g. up to 15oC) and increase soil moisture (by ca. 20%; as measured 

by Christofi 2020 in Cyprus). Plant shade can have the similar effect, while plant roots and mulching can 

secure soil from wind and runoff erosion. Plants adapted to drought can even reverse the progress of 

desertification by increasing SOM, providing additional benefits by supporting the conservation of 

biodiversity and re-stabilising lost ecosystem services for the agroecosystem, by improving water retention 

and enhancing carbon sequestration. 

2.1. Conservational tillage practices 

Conservation tillage practices including minimum tillage, no-tillage and mulching eliminate soil organic 

carbon losses and promote soil carbon sequestration. According to Gonzalez-Sanchez et al. (2018) the 

application of conservation agriculture practices in Cyprus and Greece has the potential to increase soil 

carbon by 0.81 tons per ha and year.  Conservation agriculture includes no-tillage as a core element, but other 

studies in Greece and Spain has also shown the even reduced tillage can provide comparable benefits (at least 

60% of no-till) by preventing carbon losses from the soil and improving SOM, especially under the 

Mediterranean conditions (Gemtos et al., 2002. Garcia et al., 2015, Goula et al., 2020). Considering that the 

project will focus primarily on poor soils with a baseline carbon content lower than 14g/kg for arable farms 

and less than 23g/kg in orchards, an increase in SOM at the end of the project by 30% is reasonably 

anticipated. Furthermore, an improvement in summer topsoil water holding capacity by 30% is also expected 

from retaining the mulch. This will also cause a decrease in soil surface temperature by 15-20oC due to 
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ground shading (Hadjimitsis et al. 2013). Additionally, the no-tilling or conservation tilling techniques will 

also secure better ground structure and prevent erosion, enhance the soil organic carbon, rainfall infiltration 

and soil moisture, to produce an increase by 30% in microbial and invertebrate biodiversity. LIFE AgrOassis 

capitalizes on the long-time experience of University of Thessaly in Conservation Agriculture systems and 

the special equipment for no-tillage planting owned by the Laboratory of Farm Mechanization to provide the 

initiatives for a wider adoption in Thessaly and the opportunities for the dissemination of the knowledge in 

Cyprus (Figure 1).  

 

 
Figure 1. No-tillage sowing of winter wheat in pilot farms in Thessaly on Nov. 2023. 

2.2. Hedgerow installation 

Hedgerow installation in degraded agricultural land is expected to slow down or even halt soil erosion 

processes especially on steep farmlands by providing a physical obstacle to water runoff and facilitating 

infiltration of rainwater and ground aquifer recharging. Through dead plant biomass and stabilisation of field 

soil an increase in SOM is also anticipated in the neighbouring area. In addition, a greater amount of carbon 

will be sequestered from the atmosphere and stored in the woody biomass assisting that way to climate change 

mitigation. Local shading is expected to reduce ground temperature during summer and retain soil moisture. 

The altered condition will provide refugia for biodiversity and assist with natural pest control and pollination. 

LIFE AgrOassis capitalize on the lessons learnt from past and ongoing agro-ecosystem restoration 

attempts in Cyprus (e.g. Life Rizoelia 2017; Blackgold 2021) to overcome high levels of plant establishment 

failure. Novel ecological engineering techniques are employed combining the specialized production in 

nurseries using planting tubes that permit deep root development of stress adapted plant species that can act 

as ecological facilitators (Figure 2). These are combined with soil bio-stimulants and stress alleviating 

products (water retaining minerals e.g. attapulgite), while supported in the field by the ecological traits of 

nitrogen fixing soil covering plants. Such innovative techniques, methods and approaches are designed to 

assist the survival of shrubs and trees under harsh conditions and are expected to improve plants resistance 

to abiotic stresses, increase nutrient/moisture acquisition and thus facilitate productivity (Figure 3).  

The plant species are selected by four key criteria. They are plants that: (a) act as ecological facilitators 

(i.e. plants that prepare the area for other plants to become established), (b) offer fire resistance, (c) provide 

an extra opportunity to improve the farmers income from fruits and other tradable products (e.g. Ceratonia 

siliqua, Morus nigra, Lavandula officinalis and other) and (d) set the stage for farmers to become engaged 

in carbon farming.  
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Figure 2. Plant nursery for hedgerow seedlings at the premises of MARE-DF in Cyprus. Plants are prepared 

with the special protocol.  

 

 
Figure 3. Hedgerow installation on Dec. 23 in Cyprus 

2.3. Composting 

The application of compost into degraded soils can considerably accelerate the increase in SOM (Daoyuan 

Wang et. al. 2022). At the same time its production and application permit carbon from organic waste to be 

captured before it is emitted back into the atmosphere. However, this practice is not common in Cyprus and 

Greece and rarely is linked with the agricultural sector, despite the abundance of organic waste from pruning 

or other practices (e.g. municipal and industrial wastes). Although there is no specific data available, 

municipal green waste on Cyprus is conservatively estimated at 20.000 tonnes. The kick-starting compost 

production actions of the project in Cyprus is expected to further demonstrate the special tools to improve 

soil conditions and combat desertification. A low cost, special machine for compost turning were constructed 

for the purposes of the project and is operating at the premises of ARI (Figure 4). 
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Figure 4. Composting of green waste prunings at the premises of MARE-ARI in Cyprus.  

3. Aims and objectives. 

LIFE AgrOassis aim through a wide range of actions and initiatives to reduce the negative impacts of 

desertification and assist the adaptation to climate change for Cyprus and Greece, the two most southeasterly 

countries in EU. Both are exposed severely to desertification risks and the preformed actions are expected to 

leverage the adaptation of resilient agriculture schemes in the agri-food sector. In particular, the main 

objectives of the project aim to: 

• Intergrade a total of 500 ha of arable crops and orchards, prone to desertification in Cyprus 

(350ha) and Greece (100ha in Thessaly and 50 ha in Crete) into a resilient management system 

utilizing mulching, minimum tillage and no-tillage practices. Specifically for Thessaly, 85ha 

will be converted to minimum tillage and 15ha into a no-tillage system.  

• Install 30 km of hedgerows with different plant species in Cyprus and 3 km in Thessaly and 

Crete. A total of 6.000 trees and 12.000 shrubs are scheduled to be planted in burnt and/or 

degraded agricultural land in Cyprus and another 600 trees and 1200 shrubs in Thessaly and 

Crete by the end of the project. Another 1000 ha of neighbouring farmland is expected to become 

benefited from the hedgerows in terms of microclimate change, biodiversity improvement and 

protection from windborne soil erosion, 

• Produce totally 2600 m3 of compost obtained from shredded green/garden and chicken waste at 

two partners premises in Cyprus and spread the material at 10 ha per year on farmers’ selected 

fields to substitute the mineral fertilizers.  

• Identify and remove obstacles related to inappropriate governance and policies, that obstruct the 

implementation of the EU’s Green Deal Agenda and the aim to reach climate neutrality by 2050. 

The project will provide additional remote sensing means to government and authorities to 

monitor land cover and discriminate mulching techniques from abandoned fields.  

• Promote educational activities in both countries for at least 800 farmers, students and 

stakeholders on how to effectively combat desertification and how this can be turned into profit 

(Figure 5). 

• Mobilize the agricultural sector in Cyprus towards a circular economy market scheme by kick-

starting compost production through the creation of two pilot facilities, one based on municipal 

waste and the other on pruning from fire-affected plant biomass and chicken manure. 

• Shift farmer attitude from compliance to performance by rewarding farmers for managing and 

storing carbon in the soil, for improving soil nutrients availability, for reducing emissions and 

increasing soil water retention.  

• Engage at least 2.000 farmers, stakeholders and policy makers, in the three project areas and 

disseminate to over 45.000 directly interested recipients (farmers/consultants/academics) the 
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progress and outcome of LIFE AgrOassis. 

• Provide the foundation for large scale replication of such successful technical and policy related 

solutions and promote conservation agriculture adaptation by integrating related objectives into 

agricultural policies with a catalytic role not only in Cyprus and Greece, but also in other EU 

regions prone to desertification. 

 

 
Figure 5. Farmers enrolment campaign in Cyprus (Nikosia) and Greece (Thessaly) during 2023. 

4. Impact monitoring and reporting 

The impacts of the scheduled actions will be registered through systematic records, measurements, and 

monitoring.  

• The changes in soil quality will be identified by measurements in SOM, water permeability and 

soil water content, soil temperature, soil ground cover, dry bulk density, penetration resistance, 

water-stable aggregates and soil microbial activity.  

• Hedgerow installation will be qualified by monitoring the plant survival and growth with 

vegetation indices obtained with drones. 

• Effects on crop yields (grain /straw) will be estimated by harvesting separately each field and 

weighting the total production. In the case of availability of harvesters with yield monitors, yield 

maps will be produced. Grain quality parameters like protein content, hectoliter weight, yellow 

index etc will also be recorded. 

• The economic impacts will be assessed through detailed registration of all the farm inputs by 

delivering predefined questionnaires to the farmers and collecting the yield results after each 

year harvest. 

• The environmental impacts will be assessed by calculating the carbon fixation into the soil and 

the carbon sequestration into the woody biomass of the hedgerows. Emission reductions from 

energy and fertilizers conservations will be also quantified. MRV tools (Measuring, Reporting 

and Verifying) like the CoolFarmTool will be utilized for that scope. And the impacts will be 

expressed into CO2 equivalents.  

• Impact on Ecosystem Services will be assessed by applying a standard methodology for 

monitoring key species for biodiversity. The monitoring will cover the conservational tillage 

fields at a distance of at least 500m away from the established hedgerows to document their 

effect on mobile animal taxa (insects, reptiles, and birds). 

• Socio economic impact will be estimated by assessing key indicators as economic performance, 

market uptake, replication/transfer, jobs created, expected revenues, awareness rising and 

behavioural change.  

5. Project consortium 

The LIFE AgrOassis project brings together a complementary and high-quality consortium in terms of 

expertise and actors engaged in agriculture in Greece and Cyprus from all sectors (private, public, academia, 

NGOs). Each organization is assigned discrete and prescribed roles in the consortium that help achieve the 

overall objectives. The Ministry of Agriculture, Rural Development and Environment of Cyprus (MARE) 

participates in the project with its Research Institute and three of its departments namely that of Agriculture, 
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Environment and Forests. 

• The Agricultural Research Institute (MARE-ARI) conducts research on plant and animal 

production problems in Cyprus. MARE-ARI is the co-ordinator of the project and also leads the 

work package for sustainable production of the compost and its application on degraded soils.  

• The Department of Agriculture (MARE-DA) implements the legislative and regulatory acquis 

which falls within its competence for fulfilment of Cyprus’ obligations to the EU. Its role to the 

project is to suggest to the farmers new applicable measures in order to adapt to climate change 

and reduce the effects from it and to contribute to the science policy dialogue. 

• The Department of Environment (MARE-DE) is the coordinating body for Cyprus 

government programmes for the protection of the environment. It is assigned to assist on the 

impact monitoring and evaluation and contribute to the science policy dialogue. 

• The Department of Forests (MARE-DF) manages the state forest land and implements 

national forest legislation and policy in Cyprus. It leads resilient hedgerow installation in Cyprus. 

• The Open University of Cyprus (OUC) is a public institution in Cyprus that leads the 

corresponding actions for biodiversity monitoring as well as the monitoring of the project’s 

impact on biodiversity changes. 

• The Mediterranean Agronomic Institute of Chania (MAICh) is a constituent Institute of the 

International Centre of Advanced Mediterranean Agronomic Studies (CIHEAM). The role of 

MAICh will be mainly in the education dissemination activities regarding the project outcomes. 

• The Department of Agriculture, Crop Production & Rural Environment (UTH-DACPRE) 

of University of Thessaly has a long-term experience with conservational practices in 

agriculture. It will lead the replication activities of conservational tillage and hedgerow 

installation in Greece. 

• The KES Research Centre (KESRC) is a non-profit research organization that conduct 

independently fundamental and industrial research and disseminates the results through teaching 

and publications. It has a core role to the project by organizing the preparatory actions, 

scheduling the project implementation plan and assisting on the education and dissemination 

activities. 

• The Union of Cypriot farmers (EKA) is a farmer association consisting of more than 6000 

members. The role of the association is to encourage uptake and implement the project best 

practices and assist in policy formation. 

• The Paradisiotis Ltd (PRD) is one of the largest companies in the field of poultry grower and 

trader of poultry, meat, fish, feed, etc. in Cyprus. The partner will participate in the compost 

production. 

• The TOEV Tavropos (TOEV) is a local organization with more than 8000 members in Karditsa 

Thessaly with main objective the management and improvement of the irrigation facilities. The 

main role of the partner is to enable its members to implement the conservation tillage and 

hedgerow actions in Thessaly.  

• The Municipality of Sitia (MoS) manages the Sitia Geopark, and among its actions is the 

protection of the environment. The role of MoS will be mainly in replicating in olive orchards 

in Crete the mulching and hedgerow actions carried out in Cyprus 

• The Laona Foundation (Laona) is a non-profit organization which supports the Laona 

agrotourism initiative. It has been assigned the project management and the support of the 

dissemination and communication actions. 

 Besides the individual roles, the project establishes an efficient intercommunication plan to assist the 

effective collaboration among the partners and facilitate the performance of the multidisciplinary roles.  

6. Ambitions 

By its end, the LIFE AgrOassis aims to have laid the foundation for four close-to-market solutions 

through: 

1. Sustainable Soil Management Practices that permit cutting costs, carbon farming and higher 
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yields 

2. Specialized production of stress adapted plants in nurseries that permit marketing new types of 

resilient plant seedlings 

3. Resilient hedgerow installation that permits carbon farming and promote ecosystem services 

4. Sustainable production of compost that permits marketing substitutes for conventional fertilizers 

and promotes carbon farming 
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Abstract 

In response to pressing challenges faced by European agriculture such as biodiversity loss, pollution 

reduction, climate change, and the urgency to adapt to market dynamics amid ageing rural populations and 

labour shortages, there is a need to explore the transformative potential of digital tools and technology in 

fostering more sustainable agriculture. 

Within the framework of the EU and UKRI funded Horizon Europe Coordination and Support Action, 

Digitalisation for Agroecology (D4AgEcol), a consortium comprising twelve partners from eight European 

countries, is actively investigating the potentials, barriers, and pathways for utilising digitalisation to enhance 

European agriculture, particularly through the lens of agroecology. 

The ongoing project employs Digital Tool Scoping Workshops to engage farmers and stakeholders in the 

analysis of technologies such as virtual fencing, robots in arable farming, weed detection tools, and livestock 

health sensors. The workshops include an analysis of the compatibility of the selected technologies with the 

concept of agroecology, as well as the adoption potential among target groups of farmers. To date, these 

workshops, conducted in the UK, Denmark, Germany, Finland and Greece have involved more than 100 

participants, including farmers, advisors, researchers, technology specialists, and other stakeholders. 

Preliminary results from the workshops reveal promising opportunities for the analysed technologies, yet 

underscore challenges related to profitability and compliance with the agroecology concept. These include 

potential impacts on agroecological principles, in ways perhaps not planned during the development of the 

assessed digital tools. The consortium acknowledges the need for further analysis and stakeholder 

engagement across participating countries and aims to develop a roadmap that paves the way for the 

harmonious integration of agroecology and digitalisation in European agriculture. 

 

Keywords: Multi-actor approach, policy roadmaps, adoption, digital tool scoping workshop, co-creation  

1. Introduction 

The transition towards sustainable agriculture in compliance with the concept of agroecology is one of 

the major challenges of European agriculture. Digitalisation can be a key enabler for achieving sustainable 

agricultural and food systems in Europe. However, there is limited available knowledge about how digital 

tools and technologies can facilitate this process. The concept of agroecology is currently dominating the 

discourse on the future of sustainable agriculture. While agroecology has been regarded as an area of 

scientific inquiry in the past, it is now also seen as a movement or a policy framework which shall address 

current problems in agriculture (Wezel et al., 2009). The Food and Agriculture Organisation of the United 

Nations (FAO, 2018) published a set of 10 elements of agroecology to guide the transformation to large-scale 

sustainable agriculture. These elements are being widely adopted and accepted by many stakeholders 

worldwide. 
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Digital tools and technologies can help address specific challenges in agriculture, which also enable 

agroecology and more sustainable farming (Rozenstein et al., 2024). For example, Spykman et al. (2023) 

highlighted how small robots can assist organic farmers in managing labour shortages for weed control in 

sugar beet cultivation. Additionally, the incorporation of robots into arable farming can yield environmental 

and social benefits (Spykman et al., 2021). In animal husbandry, digital tools and technologies are being 

widely used to monitor animal health (van Erp-van der Kooij and Rutter, 2020). For example, automated 

milking systems contribute to higher labour productivity and improved animal welfare (Cogato et al. 2021).  

However, the adoption of technologies alone will not contribute to agroecology per-se, but rather, it needs 

a tailored framing by actors and stakeholders to develop agriculture towards agroecology (Tataridas and 

Freitas, 2024). Thus, there is a need to assess the potential impact of new digital tools and technologies on 

agroecology, which helps navigate the transition towards agroecology. In order to support this task the EU 

and UKRI funded Coordination and Support Action, “Digitalisation for Agroecology (D4AgEcol)” is 

investigating the potentials, barriers, and pathways for utilising digitalisation to enable agroecology in 

Europe. The consortium of eight European countries has coordinated Digital Tool Scoping Workshops to 

engage farmers and stakeholders in the analysis of technologies like virtual fencing, robots in arable farming, 

weed detection tools, and animal health sensors. Furthermore, roadmaps to guide action in science, policy, 

and the society are being developed (Landi et al., 2023). 

2. Materials and Methods  

In order to contribute information for actors and stakeholders on digital tools and technologies, the 

consortium has developed an online platformproviding an overview of available digital technologies which 

can contribute to agroecology. Furthermore, D4AgEcol developed a framework to simultaneously investigate 

the impact of digital tools and technologies on agroecology and their adoption by farmers (Figure 1). The 

framework, referred to as Digital Tool Scoping Workshops (DTSW), consists of structured analyses of 

specific technologies in collaboration with farmers, stakeholder and experts on digitalisation and 

agroecology. Where appropriate, this is supported through the preliminary analysis of the impacts of the 

digital technology on economic and environmental outcomes (e.g. Maritan et al. 2023, Maritan et al. 2024a, 

Maritan et a. 2024b). The consortium has identified 10 technologies (e.g., robot applications, sensors in 

animal husbandry, site-specific fertilizer application and prognostic models/decision support tools), which 

are being investigated within the DTSW framework. At the time of writing, most of the workshops have been 

completed. 

 

Figure 1 Digital Tool Scoping Workshop framework: Multi-actor approach designed to assess the 

agroecological implications of a specific digital technology simultaneously to the quantification of the 

potential peak adoption and time to peak adoption of the technology in a specific region. 
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The analysis of the potential impact of the technologies are investigated in a world-cafe format based on 

indicators developed by the D4AgEcol consortium (Moroder et al., 2024). In parallel, a group of farmers 

analyse the adoption potential of the innovation based on expected financial capacities of the farmers and 

their specific attitudes following the ADOPT procedure (Kuehne et al. 2017). At the end of the DTSW,  the 

results of the two groups are exchanged to enable the co-design of outcomes in a joint session.   

3. Results and Discussion 

Preliminary results of the DTSWs showed that the potential of digital tools and technologies to enable 

agroecology substantially depends on the technology under investigation. For example, mechanical weeding 

robots can support the viability of organic farming systems, especially where there is limited availability of 

workers for manual weed control. However, the analysis of a specific weeding robot (e.g., FD20) showed 

that this technology possesses some drawbacks that limit its adoption potential. For example, high costs and 

low operating speeds appear to hamper the adoption of weeding robots in arable systems (Maritan et al., 

2023). Furthermore, among other factors, a low degree of trialability and high complexity in handling the 

technology hamper its adoption. For a sound understanding of the impacts of this technology on agroecology, 

the available knowledge is too limited to confidently understand its impact on the complex aspects of 

agroecology. Similar insights have also been discovered with other technologies. In general, when digital 

technologies are targeted to sustainable but rarely used practices such as crop robots suited for strip 

intercropping, the result is a double innovation that further demotivates adoption of agroecologically 

desirable digital tools. In other words, the process of agroecological digitalisation should start from 

technically unchallenging and more widespread tools and practices. Specific downsides of technologies have 

to be kept in focus to ensure the potential positive effects of digital tools and technologies are realised. 

4. Conclusions 

Digital tools and technologies can make a contribution to agroecology. However, available knowledge of 

the effects of specific tools and technologies on agroecology is limited, This in turn makes it difficult to steer 

the development of agroecological practices within European agriculture. The DTSWs have illustrated the 

potentials and downsides of a limited range of selected technologies. There is currently wide scope for 

producing more evidence for the complex interactions between different farming systems, digital tools and 

agroecological principles. Building on the experience matured during the DTSWs, the D4AgEcol consortium 

will further interact with stakeholders and policymakers to identify key barriers to the widespread adoption 

of agroecological farming in Europe.   
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Abstract 

Soil erosion control requires the soil to be covered with plant residues / organic material (>30% soil cover) 

and therefore no-till, min-till or mulch-till in combination with cover crops are necessary. Typically, no-till, 

min-till and mulch-till with or without cover crops require the use of a non-selective herbicide (e.g.: 

Glyphosate) before planting corn to reach good germination and perfect plant growth. The European Green 

Deal and the Farm-to-Fork strategy require a reduction of pesticide resp. herbicide use as well as a maximal 

control of erosion. To solve this conflict of goals a project was conducted to investigate the possibilities and 

limits of different measures to mechanically terminate cover crops to reduce the use of herbicides as well as 

ensures high erosion control. 

Field trials on two locations have been conducted over four years. Three factors and their combinations 

have been investigated: The factors were catch crop / cover crop (4 variants), methods of termination (3 

variants), and herbicide strategy (3 variants). All 36 factor combinations have been repeated 4 times and 

randomised at each location. Corn germination, soil coverage, weed coverage, plant height, and corn yield 

have been measured and statistically analysed. 

The investigations showed that there are measures and options to reduce the use of herbicides and 

optimize erosion control at the same time without significantly reducing the yield. This includes the 

cultivation of winter cover crops, which offer better erosion control in spring and the use of a knife roller / 

roller crimper or mulching mower to terminate them. The study has shown that good field emergence and 

yields can be achieved without seedbed preparation and without the use of a non-selective herbicide. Shallow 

seedbed preparation (mulch-tillage) increased corn yields significantly but also reduced erosion control 

clearly.  

Therefore, the recommendation is to establish dense and lush (hardy) cover crops, even if there is only a 

small risk of erosion, but also to be able to reduce herbicide use. In dry years or dry regions, it can be difficult 

to establish optimal cover crop stocks. They must be free of weeds and volunteer grains, that terminating 

with a roller crimper or mulching mower and reduced herbicide use brings the desired success. 

 

Keywords: Corn production, erosion control, herbicide reduction, conservation tillage. 

1. Introduction 

In Bavaria and many other Western European Regions, alongside winter wheat, maize is a main crop and 

is grown in almost all locations. However, in addition to its many advantages, maize has one decisive 

disadvantage. Because it is sown late in the spring and the rows do not close until June, it is particularly 

exposed to erosion during the heavy rain and critical thunderstorm periods in late spring and early summer. 

To prevent soil erosion in row crops, an optimal soil structure and a soil cover of >30% organic material is 

required. These conditions can usually only be achieved with mulch tillage with gentle or completely without 

seedbed preparation ("direct sowing"). To control the old weeds, either a non-selective herbicide is applied 

and/or mechanical tillage is carried out before sowing. In the context of further EU efforts to reduce the use 

of chemical pesticides and against the background of the controversial discussion about the further 

authorisation of the active ingredient glyphosate, alternative strategies are required to control old weeds 

especially in mulch tillage (preferably completely without seedbed preparation). 

2. Materials and Methods  

The Bavarian State Research Centre for Agriculture conducted research into such alternatives in a project 

from 2019-2022 funded by the Bavarian State Ministry of Food, Agriculture, Forestry and Tourism. 
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Following a comprehensive preliminary trial, promising variants were selected and compared with standard 

methods. The factors "catch crop / cover crop" (freezing mixture, winter turnip rape, winter peas and winter 

incarnate clover + winter vetches), "cover crop treatment" (knife roller / roller crimper, mulcher, mulcher + 

power harrow) and "herbicide strategy" (untreated/control, maize herbicide, non-selective herbicide + maize 

herbicide) were investigated in a comprehensive, randomised large plot trial (plot size 30 m x 3 m) at 2 

locations with 144 plots each. 

Table 1. Factors of the field trials 2019-2022. 

Factor Variants Abbreviation 

Catch crop / Cover crop GeoVital MS100 A (freezing mixture) MSA 

 Winter turnip rape seed RUE 

 Winter peas EFB 

 Winter incarnate clover + winter vetches TAR 

Treatment / Tillage Knife roller / Roller crimper MW 

 Mulcher MU 

 Mulcher + power harrow KE 

Herbicide strategy Control (without any herbicide) UK 

 Non-selective herbicide + maize herbicide GLY 

 Maize herbicide SH 

 

The selected catch crops / cover crops were sown after the cereal harvest on two dates (GeoVital MS100A 

and winter turnip rapeseed in early August; winter peas and winter incarnate clover + winter vetches in late 

August). In the spring before maize sowing, these were terminated (knife roller, mulcher) and then either the 

maize was sown directly without tillage (with well-equipped precision seed drills suitable for mulch sowing) 

or, in one variant, the soil was tilled beforehand with a power harrow after mulching (Figure 1). In the variant 

“non-selective herbicide + maize herbicide), the respective catch crop was treated before the maize was sown 

with a non-selective herbicide. The individual herbicide application took place after field emergence. During 

the entire vegetation period, various parameters were recorded, and assessments carried out. Finally, a plot 

of grain maize was harvested (core threshing) with yield and moisture determination. 

 

   

 

Figure 1. left: Knife roller / roller crimper in winter peas, middle: Mulcher in winter turnip rape, right: 

Power harrow after mulcher in Geo Vital MS 100A. 

3. Results and Discussion 

In the following, the results are broken down into the 3 factors described above (table 1). Figure 2 (Factor 

‘Cover crop / catch crop’), for example, shows the degree of soil cover broken down by the 4 individual catch 

crops. Each bar contains all values of the respective plots with this one catch crop, regardless of whether with 

or without weed control and regardless of whether with knife roller, mulcher or mulcher + power harrow. 

The same applies to the two other factors ‘treatment’ (Figure 3) and ‘herbicide strategy’ (Figure 4). 

3.1. Soil cover with organic material 

The first parameter determined after maize sowing was the degree of soil cover with the catch crop / cover 

crop mulch. Here there were some clear differences with regard to the catch crop. The degree of soil cover 

AgEng 2024 Proceedings

703



was significantly lowest at around 42% after the freezing catch crop / cover crop (Figure 2). 

 
Figure 2. Soil cover with organic material after corn planting depending on cover crop / catch crop. 

 

It was slightly higher for the turnips, which began to grow again in early spring and were able to provide 

slightly more material than the dead MS 100 A at the time of flowering. At a good 63% and 61% respectively, 

the value was 10% higher for the two legumes, which also continue to grow in spring (albeit much later than 

the turnips) and only really take off from May onwards. This increase (the wait until flowering) had to be 

paid for by sowing maize around 3 - 4 weeks later than the two legumes. Due to the somewhat later sowing 

of the two legumes in October as a catch crop, the crop failure rate was generally lower, but the erosion 

protection in autumn and winter was also significantly lower than with the turnips and MS 100 A.  

The tillage factor (Figure. 3) before maize sowing also had an enormous effect on the degree of soil cover 

in some cases. Compared to cultivation with the roller crimper / knife roller (69%) or the mulcher (65%), the 

average degree of soil cover after using the power harrow was only just under 30%.  

 
Figure 3. Soil cover with organic material after corn planting depending on treatment. 
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The crop protection factor also had an effect on the degree of soil cover (Figure 4). The use of a non-

selective herbicide (e.g.: Glyphosate) on the catch crops reduced the degree of coverage by around 10% 

points to an average of 48% for all glyphosate plots. The (early) application stops the growth of the catch 

crops, causing the material to die and become brittle. 

 
Figure 4. Soil cover with organic material after corn planting depending on herbicide strategy. 

 

In addition, Figure 5 shows the soil cover of selected factor combinations to illustrate the interaction of 

cover crop / catch crop, the treatment or way of termination and the herbicide strategy. 

 

 
 

Figure 5. Soil cover of selected factor combinations. 

AgEng 2024 Proceedings

705



3.2. Field emergence 

There were slight differences in field emergence for the cover crop / catch crop factor. Turnip rape showed 

a significantly positive result. This may be due to the fact that the turnips were easier to cultivate than the 

lush and tough legumes. In addition, they showed better volunteer grain suppression, which also had a 

positive effect on cultivation and thus field emergence. There was no difference in field emergence between 

the maize after the knife roller and mulcher, but the maize field emergence after the roundabout harrow was 

around 10% points better. The use of herbicides also improved field emergence by around 10%, as this 

obviously reduced or eliminated weed competition on the maize. Results for selected factor combinations are 

shown in Figure 6. 

 

 

Figure 6. Field emergence of selected factor combinations. 

3.3. Weed suppression and residual weed  

The good soil cover of the two legumes also had a positive effect on weed suppression (measured in the 

residual weed cover after the herbicide treatments). At around 20% for the legumes, this was significantly 

lower than for the turnips (29%) and the MS 100 A (38%) (Figure 7).  

 
Figure 7. Weed suppression and residual weeds depending on cover crop / catch crops. 
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The cultivation of the catch crops and in particular the soil cultivation with the power harrow also had an 

influence on weed suppression and residual weed cover (Figure 8).  

 
Figure 8. Weed suppression and residual weeds depending on treatment / tillage. 

 

While the effect on catch crops, volunteer cereals and old weeds was limited in terms of destruction or 

resprouting by the knife roller (but also largely by the mulcher), the power harrow was able to achieve good 

effects here. The mulcher was at least able to kill off the flowering peas and turnips when working at a 

shallow depth. Without soil intervention (mulcher, knife roller), the maize herbicide applied often hit the 

robust ‘old weed’ and the effect was correspondingly moderate (as can be seen from a residual weed coverage 

of approx. 30%). After cultivation with the power harrow, it was mainly newly germinating weed (in the 

cotyledon stadium) against which the maize herbicide was more successful (residual weed coverage approx. 

20%). Broken down according to the herbicide factor, the following picture emerged (Figure 9).  

 

Figure 9. Weed suppression and residual weeds depending on herbicide strategy. 

 

When a non-selective herbicide (e.g.: glyphosate) was applied to the catch crops, the residual weed 

coverage in maize was only 0.8% on average. The non-selective herbicide was able to eliminate not only the 

overwintering catch crop, but also the old weeds and volunteer cereals (even without tillage). Newly 

germinating weeds in maize were thus well controlled. Without it, weed coverage increased to 9.3% in the 

pure post-emergence variant. In the untreated maize control plots, an average of 70.8% of the soil was covered 

with weeds (volunteer cereals, living catch crop). Results for selected factor combinations are shown in 

Figure 10. 
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Figure 10. Weed suppression and residual weeds of selected factor combinations. 

3.4. Grain maize yield 

In addition to the expected results, there was also a surprise in terms of grain maize yield. For example, 

the yield after the catch crops peas (9.7 Mg/ha on average across all varieties) was significantly highest, 

although the maize could only be sown delayed in mid to late May. Due to the generally warmer temperatures 

in May, the late-sown maize was able to germinate very quickly and grow without interruption (usually no 

more cold phase). The early-sown maize after the turnip rape (8.9 Mg/ha) and the MS 100 A (8.3 Mg/ha) 

was significantly lower in yield on average. The very good yielding varieties (power harrow + herbicide 

and/or glyphosate) of MS 100 A could not raise the average of all plots as much, as the untreated controls in 

particular were very poor. This can be explained by the high degree of weed cover in or with the freezing 

catch crop. The knife roller and mulcher also had hardly any reducing influence on the weed occurrence and 

thus also on the yield. The soil loosening and warming effect explains why the average yield of all variants 

was around 1.5 Mg/ha higher with the powere harrow. The influence of herbicide use on yield was also 

clearly significant. In the untreated plots, the yield averaged a good 7.0 Mg/ha, with herbicide a good 9.4 

Mg/ha and with additional glyphosate in the catch crop a good 10.1 Mg/ha. Results for selected factor 

combinations are shown in Figure 11. 

 

 
Figure 11. Corn yield of selected factor combinations. 
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4. Conclusions 

The results have shown that there are many ways to reduce the use of pesticides and at the same time 

optimise erosion control without jeopardising yields too much. These include the cultivation of non-freezing 

catch crops, which can offer significantly more erosion protection and good weed suppression in spring 

thanks to a denser mulch layer. 

The starting point, even before the maize is planted, is the selection of a suitable catch crop / cover crop. 

There were already clear differences in the growth in autumn. While the two earlier sown and faster growing 

catch crops already formed a dense stand in autumn, the later sown crops (e.g.: winter peas and winter 

incarnate clover + winter vetches) did not grow properly until (late) spring, but then formed better (later!) 

erosion protection. The additional and later tillage for sowing (at the beginning of October) resulted in less 

volunteer cereals.  

Tillage before maize sowing also had an influence on the degree of soil cover. Although the mulcher 

shredded the material much more than the knife roller, the differences in the degree of soil cover were small. 

In contrast, the additional use of the power harrow significantly reduced the value. As the non-selective 

herbicide also had a clearly negative influence on the ground cover, it is not advisable to use it on an already 

poor catch crop. This is because, on the one hand, the non-selective herbicide immediately stops the growth 

of the catch crop and there is less emergence for maize sowing. On the other hand, treated plants - the 

subsequent mulch material - degrade more quickly and crumble more easily during cultivation. The time of 

treatment should therefore be as close as possible to maize sowing. Another contradiction can arise here with 

non-overwintering catch crops, some of which are heavily interspersed with volunteer cereals that can only 

be controlled by (intensive) tillage or a non-selective herbicide. 

The results thus emphasise the importance of a well-growing, lush catch crop that is as free of weeds and 

volunteer cereals as possible and the associated dense mulch cover. The use of a non-selective herbicide 

would allow a reduction or omission of tillage, as volunteer cereals, weeds and further growing catch crops 

are reliably terminated. For direct sowing or mulch sowing, the omission of glyphosate means that an 

important component will be missing, which in many cases will be replaced by increased tillage. The study 

has again shown that good field emergence and yields can be achieved with tillage. However, erosion 

protection decreases very quickly. The recommendation is therefore to use dense and lush (winter-hardy) 

catch crops, especially where there is a risk of erosion, but also to reduce the use of crop protection products. 

In dry years or regions, it can be quite difficult to establish optimal catch crop stands. These must be as free 

of weeds and volunteer cereals as possible so that (reduced) cultivation with a knife roller or mulcher can 

bring the desired success. Only with shallow and less intensive tillage are soil cover rates of over 30% 

possible with very good catch crop stands. 
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Abstract 

Agricultural photovoltaic systems (APV) integrate crop production with energy production from 

photovoltaic technology. However, the effect of reducing solar radiation on fruit quality under the panels is 

still uncertain. This study investigates the impact of solar panels on fruit quality in an experimental agrivoltaic 

greenhouse located in Spain. The experimental design incorporates two high-value crops, dragon fruit and 

fig crop, under different support configurations, with three varieties of dragon fruit and one of figs. The fruits 

were harvested at their commercial harvesting stage, weighed, colour-evaluated, and analysed for mechanical 

firmness and soluble solid content. The results for dragon fruit showed a significant effect of the variety and 

significant lower sugar content and R-B colour components for fruits collected from the areas without solar 

panels. These outcomes suggest a potentially advantageous impact of solar panel coverage on dragon fruit 

quality. On the other hand, the results for fig crop showed that high-density coverage of solar panels 

significantly reduced fruit weight and productivity, whereas half-density coverage in a chessboard pattern 

resulted in a moderate reduction of weight without altering sugar content but reducing firmness. These results 

are promising for efficiently combining solar panels and agricultural production in greenhouses. 

 

Keywords: Agrivoltaic, Dragon Fruit, ultra-intensive fig tree, circularity production, photovoltaic 

technology, data-driven agriculture. 

1. Introduction 

The agrivoltaic, or agricultural photovoltaic systems (APV), concept was early mentioned by Goetsberger 

and Zastrow (1982). However, after a period of declining interest over the past three decades, attention 

towards APV reignited in the early 21st century. This renewed interest was stimulated by advances in 

technology and cost-effectiveness of photovoltaic (PV) systems, resulting in a significant global increase in 

APV applications and research (Magarelli et al., 2024; Trommsdoff et al., 2022; UNEF, 2023). APV 

represents a promising solution for reducing the current reliance on energy-importing nations and mitigating 

the impacts of climate change, as well as promoting social cohesion by energetic communities in rural areas 

(UNEF, 2023). These systems offer solutions for promoting renewable energy and enhancing the 

sustainability of food production. Chalgynbayeva et al. (2023) propose APV as a means to alleviate drought 

stress on crops, thereby reducing water requirements and environmental strain while increasing food output. 

According to Dupraz et al. (2011), there exist two types of APV systems. The first type involves splitting 

the land area into two parts, one devoted to food production and the other to PV production (ground-mounted 

PV). This type of separated production may be considered the dominant scheme till 2011 (Dupraz et al., 

2011; Kuemmel et al., 1998). The second type combines photovoltaic parks and food production on the same 

land unit to enhance their integration. Photovoltaic panels can be configured in three different setups (Ali & 

Victoria, 2023).  The first configuration is the optimal tilted PV system, where PVs are fixed at some angle 

(commonly 20o-30o) for the optimisation of solar radiation. The second is the horizontal single-axis tracking 

PV system, which can help the crops in physiologically sensible moments, such as flowering or sprouting 

(Ali & Victoria, 2023; Magarelli et al., 2024), as well as enhance electricity production since the panels track 

the azimuth angle to obtain the maximum solar radiation. The third configuration is the vertical bifacial PV 

system, where the panels are vertically set on a north-south orientation, leaving some sides oriented to the 

west and others to the east. Additionally, PV systems can vary in their density (Dupraz et al., 2011). Half-

density PV feature a spatial distribution of panels to optimise solar radiation while minimising PV energy 
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loss yielding about 36 W/m2, whereas Full-density PV optimise the panel spacing for an energy production 

of about 72 W/m2. According to Trommsdoff et al. (2022), the investment cost depends on the APV 

configuration, with substructure, surface preparation, and installation being the main capital expenditures 

compared to ground traditional solar parks.  

The shade generated in PV parks influences crop yield (Dupraz et al., 2011; Marrou et al., 2013; 

Trommsdoff et al., 2022). In particular, yield reduction depends on the type of crop, as some crops have more 

requirements in sunlight than others, such as C4 plants (Ali & Victoria, 2023; UNEF, 2023). APV offers a 

significant potential for high-value crops (vineyards, tree crops or horticulture). However, it can result in 

biomass reduction for apple orchards, and yield reductions in general (Juillon et al., 2022). A decrease in 

photoassimilates produces a limitation in fruit size, and thus important economic losses. However, not all 

plants behave similarly under shading conditions, so each case should be studied for each specific situation 

(Trommsdoff et al., 2022). On the other hand, some advantages have been related to APV systems. Shading 

reduces the hydric stress, leading to lower irrigation requirements and more favourable tree water status. In 

addition, PV structures protect the crop from hail, freezing damage, solar damage and fruit cracking due to 

rain (Ali & Victoria, 2023; Ramos-Fuentes et al., 2023; Trommsdoff et al., 2022; UNEF, 2023).  

Fruit quality assessment is crucial to respond to market and consumer demands. Firmness, soluble solid 

content (SSC), acidity, and colour are the main postharvest parameters that generally determine fruit quality 

(Pereira et al., 2017). Fruits can be sorted according to quality through postharvest parameters and market 

requirements. There are limited results regarding the impact of PV shading on fruit quality within APV 

systems (Magarelli et al., 2024). Following Trommsdoff et al. (2022), viticulture can take advantage of PV-

shading in arid and high-irradiance countries, since high solar radiation in vineyards provokes an increase of 

sugar content in grapes, resulting in a high alcohol content. However, in the case of apple orchards, PV 

shading produced a reduction in fruit size (Juillion et al., 2022). The objective of this article is to study the 

impact of three configurations of solar panels on dragon fruit and figs, with the purpose of confirming the 

suitability of APV for these two high-value crops. 

2. Materials and Methods  

An experimental APV greenhouse located in Valencia, Spain (39o 22’ 31.1’’; -0o 30’ 58.0’’), was divided 

into two sections with dragon fruit and fig crops. The dragon fruit section comprises three different varieties 

(Nevada, Purple, and Thai) randomly planted in four rows (Table 1), under alternating rows of solar panels 

mounted in the ceiling according to Figure 1. The plants were planted in the greenhouse in February 2023, 

when they were one year old. The plant spacing is 0.6 m between plants and variable between rows according 

to Fig. 1. Dragon fruit branches were supported by a trellised structure built with metallic shafts and wires. 

Dragon fruits must be manually pollinated with a specific tool by pollen of a different variety to avoid self-

pollination (cross-pollination). This task is essential for maintaining high-quality fruits and proper yield 

production. 

 

Table 1. Number of plants in each row per variety (Fig. 1).  

Row V.  Purple V. Thai V. Nevada APV Total Plants 

1 7 5 10 Under PV 23 

2 

3 

4 

6 

7 

6 

7 

6 

5 

7 

6 

3 

Under PV 

Under PV 

Open 

20 

20 

14 

Total Plants 26 23 26  77 

AgEng 2024 Proceedings

711



 

Figure 1. Dragon Fruit setup: open and (blue) full-density PV area; green plants correspond to Purple 

variety, magenta plants are Thai variety, and yellow plants are Nevada variety. 

 

In the trellised intensive fig crop, only variety B. Turkey was planted in February 2023 (Table 2), with 

100 % coverage of solar panels (Full-Density), 50 % coverage (Half-Density), and no solar panels (Control), 

distributed according to Figure 2. The plants were arranged in nine rows (23 plants per row), with a separation 

of 0.4 m between plants and 2-2.5 m between rows (Figure 2). The crop was pruned with three main branches 

per plant to ensure the proper production of figs in the 2023 season. 

 

Figure 2. Intensive fig production: half-density PV (orange) and full-density PV (blue). 
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Table 2. Number of plants per row and row spacing. *: Control with PV partially influenced by FD 

Row Number Fig plants APV Row spacing (cm) 

1 23 Full-Density 130 

2 

3 

4 

5 

6 

7 

8 

9 

23 

23 

23 

23 

23 

23 

23 

23 

Full-Density 

PV-influenced* 

PV-influenced* 

Half-Density 

Half-Density 

Control 

Control 

Half-Density 

250 

270 

250 

200 

250 

260 

250 

250 

250 

Total Plants 207    

 

Drip irrigation with common fertilisers in the water (fertigation) was used according to local 

recommendations for both crops. The fruits were harvested according to their commercial ripeness stage. 

After harvesting, the fruits were carried to the laboratory for postharvest quality analysis. All the dragon 

fruits collected in the experimental greenhouse were tested, as well as a sample of 235 figs, for weight, colour, 

destructive mechanical firmness, and soluble solid content. Weight was measured using a digital balance 

(Mettler Toledo AL104, Im Langacher, Greifensee, Switzerland). Mechanical fruit firmness was measured 

with a universal stress-strain machine (IBTH 2730, Ibertest, Madrid, Spain), keeping a speed of 1.7 ms−1 at 

three points of the equatorial area, using a 0.008 m probe for flesh firmness and a 0.001 mm rod for skin 

firmness, making three repetitions per test and fruit. Fruit soluble solid content was determined with a digital 

refractometer (Atago PAL-3; Atago Co., Tokyo, Japan). For measuring colour in dragon fruit, an image 

analysis prototype (www.Greenvision.com) was used to assess fruit external R, G and B colour components. 

Fruit diameters were also measured for fig crops.  

3. Results and Discussion 

3.1. Dragon Fruit  

A two-way ANOVA analysis was developed to study the effect of variety and row on the measured 

variables. For the weight, both factors significantly affected the size of the fruits (Figure 3), which was 

significantly higher for the Thai variety. Row 1 (under full panel coverage) produced fruits with significantly 

lower sizes (average 295.3 g compared to 365 g for the other rows). In terms of production, it was larger for 

rows 2 and 3, which experienced partial shading from PV panels, unlike row 1 (highest shading from panels) 

and row 4 (control), which were adversely affected by either excessive shading or exposure to sunlight. For 

the skin and flesh mechanical firmness, however, both factors significantly affected the firmness of the fruits 

(Figure 4), which was significantly lower for the Thai variety. Row number 1 (completely covered by solar 

panels) yielded fruits with significantly lower firmness. Only the variety had a significant effect on sugar 

content, as fruits from the Thai variety showed a higher sugar content, as plotted in Figure 5. The colour 

analysis showed that the red component was affected by the variety and the row. Fruits from row 4 without 

any panel coverage had a significant decrease in red component. This result (Figure 6) shows the capability 

of solar panels to effectively reduce the solar radiation in sensitive crops, such as dragon fruits.  
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Figure 3. Interaction analysis on weight (g) (two-way ANOVA) for variety and row. 

 

 
 

Figure 4. Interaction analysis of the effect of variety and row on skin mechanical firmness (N/mm). 

 

 

Figure 5. Interaction analysis of the effect of variety and row on soluble solid content (° Brix). 

 

W
e
ig

h
t 

(g
)

Variety

230

330

430

530

630

NEVADA PURPLE THAI

Row
1
2
3
4

S
k
in

 m
e
c
h

a
n

ic
a
l 

fi
rm

n
e
s
s
 (

N
/m

m
)

Variety

17

19

21

23

25

27

29

NEVADA PURPLE THAI

Row
1
2
3
4

S
o

lu
b

le
 s

o
li

d
 c

o
n

te
n

t 
(º

 B
ri

x
)

Variety

12

13

14

15

16

17

NEVADA PURPLE THAI

Row
1
2
3
4

AgEng 2024 Proceedings

714



 

Figure 6. Interaction analysis of the effect of variety and row on red colour component. 

 

Figure 7. Crop productivity map of dragon fruit (weight of fruit per plant) in 2023 season. 

The yield map of Figure 7 evidences that row 1, which experienced a major shading, and row 4, which is 

fully open, exhibit lower fruit production compared to rows 2 and 3. This pattern suggests that shading from 

PV installations influences fruit yield by reducing fruit weight. Conversely, the absence of PV panels in row 

4 also correlates with lower fruit production due to a less optimised growth environment when compared to 

rows 2 and 3, which benefit from an intermediate balance of shade and sunlight. 

3.2. Fig Crop 

The fig fruits produced under the full-density (FD) coverage area had significantly lower weight, 

production and size, as indicate in Figure 9. The FD setup even affected neighbouring rows 3 and 4, initially 

set as open-air control, because of cast shade (Fig. 9). In order to account for such influence, the statistical 

R
 C

o
lo

u
r 

C
o

o
rd

in
a
te

Variety

27

30

33

36

39

42

45

NEVADA PURPLE THAI

Row
1
2
3
4

AgEng 2024 Proceedings

715



analysis considered the two control sections (open air) separately, resulting in four independent production 

areas: FD, HD, Control, and PV-influenced, where the latter represents open-air rows influenced by 

neighbouring full-coverage section. With this division of rows, there were statistical differences among the 

control and half-density categories as represented in Figure 8. Fig trees, having high solar radiation 

requirements, reduced productivity even under partial shading. 
 

 

Figure 8. Average and LSD (95 %) total production (g) in the figs greenhouse.  

 

The analysis of fig production per treatment revealed the highest yield for the control section, followed 

by half-density and PV-influenced with similar outcomes, being full-density significantly lower, and 

therefore unviable.  As shown in Figure 9, productivity increases from row 1 to row 7. The first rows, having 

significant shading (FD), experienced a drastic reduction in productivity. Despite being uncovered, rows 3 

and 4 did not achieve the high degree of productivity reached by rows 7 and 8, also uncovered, due to their 

proximity to the full-covered area (FD). Rows 5, 6, and 9 set under a semi-covered panel distribution in a 

chessboard arrangement (HD) yielded intermediate productivity levels, whereas fully uncovered rows 7 and 

8 (control) had the highest productivity, as represented in Figure 9, with row 7 receiving the highest radiation 

and thus reaching the best productivity. In number of fruits, however, rows 7 and 8 did not show statistical 

differences. Related to fruit firmness and sugar content, no significant effect was found. The colour analysis 

of figs showed confusing results related to Cielab coordinates. This fact could be due to the difficulty in 

selecting the appropriate number of representative measuring points compared to the procedure followed 

with dragon fruits.  
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Figure 9. Yield map of fig productivity (weight of fruit per plant) for 2023 season (0.45 m per cell). 

4. Conclusions 

The findings of these preliminary study on the impact of solar panel shading on two distinct crops, dragon 

fruit and figs, showed the potential of agrivoltaic system for certain crops in particular. In relation to dragon 

fruit, the presence of full-density solar panels had a significant impact on the crop, resulting in reduced fruit 

size, production and weight. However, the absence of coverage also reduced the red colour component of 

fruits, a crucial market-quality attribute in dragon fruit. In fig crops, half-density solar panels showed a 

moderate reduction of fruit size when compared to the major reduction observed under full-density solar 

panels, demonstrating that production under half-density arrangements could be profitable as long as the loss 

in fig yield is counterweighted by the production of electricity by the half-density panel arrangement. Overall, 

both crops offered a promising alternative for a shared use of agricultural land in the context of a regenerative 

agriculture. 
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Abstract 

The aWISH project (HEurope, grant nr. 101060818) aims to perform large-scale automated monitoring 

of animal-based indicators at slaughterhouses in order to obtain information about animal welfare on farm, 

during transport and at slaughter of broilers and grower-finisher pigs. The project is centred around six 

European pilots where technologies are developed, tested and validated. Each pilot consists of a 

slaughterhouse, in cooperation with a local research partner, associated farms and various technology 

providers. The pig pilots are located in Austria, the Netherlands, Serbia and Spain, while the broiler pilots 

are situated in France and Poland. Different technologies have been selected to measure a range of welfare 

indicators for pigs (ear lesions, skin lesions, tail length, tail lesions, blood parameters, stress vocalisation, 

tear staining, stunning effectiveness, environmental parameters, body weight, lung lesions, liver lesions, food 

consumption, meat quality) and broilers (hock burn, footpad lesions, catching damage, back scratches, stress 

vocalisations, activity, stunning effectiveness, environmental parameters, on-farm welfare assessment). 

These technologies are installed mainly in the slaughterhouse, but some are also installed on-farm, in the 

transport truck or obtained via human observations supported by digital tools (for ex. smartphone 

applications). They include mostly vision and sound-based systems with a technology readiness level (TRL) 

from 2 to 9. The data collected in the pilots will be used to provide feedback to farmers, transporters, catching 

teams (for broilers) and slaughterhouses. A data platform and online user interface have been developed for 

this purpose that will allow a clear view of individual indicator levels as well as the aggregate welfare scores 

per stage of production (on-farm, depopulation, transportation, slaughter). The data will also be further used 

in the aWISH project to document animal welfare improvements, to investigate the socio-economic and 

environmental impact of welfare-improving initiatives and to create best practice guides. This project will 

therefore make a significant contribution to the objective assessment of welfare of pigs and broilers across 

Europe and potentially world-wide.  

Keywords: animal welfare, automation, precision livestock farming, slaughterhouse 
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1. Introduction 

Despite many initiatives by the livestock sector, research organisations and welfare legislation, it still 

remains a challenge to reconcile the societal and moral demand for high animal welfare (AW) with other 

aspects of sustainable livestock production. Still today, 82% of Europeans think that farm animals should be 

better protected than they are currently (European Commission, 2015). Broiler and pig productions are the 

main concern of EU citizens (Martelli, 2009), but these livestock sectors are also the main meat-producing 

industries in the EU and worldwide. Considerable AW problems persist during all stages of production (on 

farm, loading & transport, unloading & slaughter) for both pigs and broilers, to the extent that the social 

acceptance of these industries is being questioned by an increasingly large number of citizens. The welfare 

of farm animals is regulated by EU legislation on farm, during transport and at slaughter. However, in 

addition to these regulations, which contain mainly resource-based measures, AW can also be measured 

through animal-based indicators that assess the outcomes of management impact on the animals themselves, 

regardless of the conditions in which they are kept (EFSA, 2012). Animal-based measures are now recognised 

as a better and more direct methodology to assess AW when compared to resource-based measures (Whay 

et al., 2005). This has resulted in the development of novel outcome-based welfare assessment protocols, 

pioneered by the Welfare Quality® protocol first (Blokhuis et al., 2010) or AWIN® later (Wickens, 2015), 

to mention the most notorious ones. An instrument is needed for monitoring livestock welfare in an objective 

and practical way. The Welfare Quality® and other protocols, like AWIN® do this to a certain extent, but it 

is very labour-intensive and does not assess each phase in the production chain.  

To evaluate a large number of animals, slaughterhouses are suitable places to carry out these assessments, 

as the animals are brought in from various farms, which allows for high labour efficiency (Knage-Rasmussen 

et al., 2015; Van Staaveren et al., 2017). In addition, biosecurity is better guaranteed in this way. However, 

monitoring at the slaughterhouse has the limit of being retrospective, so AW improvements are no longer 

possible for this slaughter batch, but for the next batch. Pigs and broilers have frequent rotation of batches 

however, so feedback can be given frequently. According to Grandin (2017), there are two categories of 

animal welfare indicators (AWI) that can be assessed at a slaughterhouse: 1) acute or traumatic conditions 

that recently occurred and are associated with loading or transport, such as bruises, dead animals, fresh 

injuries, non-ambulatory animals, and 2) long-term chronic conditions which were present before animals 

were loaded for transport, such as lameness, shoulder sores in pigs, breast blisters on chickens, neglected 

injuries, necrotic prolapses. Each slaughterhouse has a system for quality control, including AW, for which 

the AW officers employed by the slaughterhouses are responsible. Furthermore, controls to verify 

compliance with legislation is carried out by official veterinarians (Berg, 2013). They inspect the animals at 

all slaughter stages: at unloading (e.g. fit-for-slaughter assessment), at lairage and at the stunning area (where 

stunning effectiveness is assessed), followed by the bleeding procedures. However, systematic, reliable and 

adequate monitoring of outcome-indicators of all animals by humans is almost impossible without slowing 

down the line speed. Limited or biased sampling, observer differences and subjective judgements hamper the 

use of such human-based assessments for motivating actors to take corrective actions or for justifying 

premium prices or access to quality labels (Giammarino et al., 2021; Maegher, 2009). These limitations can 

now be overcome by the rapid developments in technology and artificial intelligence (AI).  

Many Precision Livestock Farming (PLF) technologies are commercially available in pigs (Gómez et al., 

2021), such as load cells to measure body weight and feed intake, flowmeters to measure water intake, 

cameras to register animal behavior and activity, microphones to detect animal sounds like coughs. In 

broilers, not a lot of technologies are yet commercialized, only to monitor weight, activity and distribution 

of birds. Most of those techniques, however, were mainly developed for monitoring the production 

characteristics of the animals during rearing (Rowe et al., 2019). However, the monitoring of AW during 

depopulation, transport and pre-slaughter phase is of great importance. Unfortunately, such monitoring 

technologies are only scarce in scientific literature. Souza et al. (2018) studied the potential use of carcass 

condemnation data of broiler chicken slaughterhouses as indicators in an AW monitoring program. In a 

German slaughterhouse, a monitoring system consisting of five cameras was implemented successfully for 

the AWI ear and tail lesions in fattening pigs (Blömke et al., 2020). Video cameras also exist to monitor 

unloading, handling, and stunning (Grandin, 2017). In addition to the technical development, precise 

descriptions of AWI, their threshold values and how they relate to the welfare of animals are essential. New 

technologies and algorithms ought to be validated before they are launched on the market (Gómez et al., 

2021) and lots of them remain at the proof of concept stage. Validation entails checking the system 

performance by quantifying the prediction accuracy, sensitivity and specificity relative to the gold (or silver) 
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standard using data other than the training dataset (Wieringa, 2014).  

Different stakeholders, such as producers, consumers, retail, governmental bodies and scientists, state 

that AW is important, but they vary in the extent to which economic considerations align with AW concerns. 

Overall, stakeholders agree that a sustainable monitoring system is needed (Bracke et al., 2005). Therefore, 

the aWISH project was initiated to develop validated and automated monitoring systems, with a complete 

platform of data-analyses, benchmarking per production type and direct feedback to the actors involved, 

supported by the entire sectors. Thus, the main objective of the aWISH project is to develop and offer the 

capacity to evaluate and improve the welfare of meat-producing livestock throughout Europe via automated 

monitoring of animal-based welfare indicators at the slaughterhouse in order to give feedback and advice on 

best practices to those responsible for the various stages of production (farmer, catching team, transporter, 

slaughterhouse). This approach will be developed and evaluated in close collaboration with all actors 

involved, from primary producers up to policy makers and citizens. 

2. Materials and Methods  

2.1. Project methodology 

The Horizon Europe aWISH project (grant nr. 101060818) has started on 1st of November 2022, and will 

last four years. The project consortium consists of 28 partners from 11 European countries. This project aims 

to build the capacity to improve farm AW at large scale as effectively and efficiently as possible. This 

aspiration is reflected in the focus on broiler and pig production, and in the methodological approach of the 

whole project. Figure 1 depicts the key concept of aWISH with the following main components: 

(1) AWI Catalogue: AWI measured with automated technologies at slaughterhouses (SH), routine and 

existing data sources will be collated and published in an AWI Catalogue; 

(2) aWISH Data Platform and feedback tool: a centralized data platform that generates feedback and 

benchmarking visualisations for the various actors in the production chain will be created;  

(3) Integrated AW assessment: a spontaneous intervention study will evaluate the impact of the entire 

feedback loop on AW; risk and success factors will be identified at farm, chain, regional and national level. 

(4) Best Practice Guides (BPGs): guidelines for best practices will be created to improve AW, incl. results 

of impact assessment on environmental and socio-economic level of these best practices; 

(5) Supporting mechanisms: stakeholder engagement will be initiated incl. expert panel, lean multi-actor 

approach and piloting activities, and a multi-dimensional impact assessment of proposed BPs (AW, socio-

economic and environmental assessment). 

 

 

Figure 1. Key concepts in the aWISH project. 
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2.2. Pilots 

Besides these key concepts, the core of the project is formed by six pilots across Europe, that consist of multi-

disciplinary teams with a SH in the lead and a local scientific partner as co-lead. Furthermore, the teams 

include technology providers, researchers, and end-users incl. integrators, meat processors, and their 

supplying farmers and transporters. These pilots develop and test the novel AW monitoring technologies, test 

the aWISH feedback loop (use the aWISH data platform and activate actors in their supplying chain) and 

collect data and insights for the aWISH results.  

The six pilots implemented within the aWISH project represent various regions of the European Union 

(EU), including both Member States and Associated Countries (Table 1, Figure 2). Four first phase pilots 

were engaged in technology data collection activities within the first year of the project. The second phase 

pilots will finalize installation of the new technologies towards the end of the 2nd year. The primary aim of 

the second phase pilots is to expand the scope of piloting efforts and geographical reach of developed aWISH 

solutions. This phase will ameliorate validating technologies and data collection procedures while integrating 

innovative technologies into the process. The broiler pilots will be each other’s validation site.  

 

Table 1. List of animals, leading companies and location of each aWISH pilot. 

Pilot 1 Species Lead Scientific lead Location 

Pilot 1 Pigs Vion Food Utrecht University The Netherlands (NL) 

Pilot 2 Pigs Selección Batallé Autonomous University of 

Barcelona 

Spain (ES) 

Pilot 3 Broilers Plukon Food Group ITAVI  France (FR) 

Pilot 4 Broilers Plukon Food Group Institute of Genetics and Animal 

Biotechnology 

Poland (PL) 

Pilot 5 Pigs Großfurtner University of Veterinary 

Medicine Vienna 

Austria (AT) 

Pilot 6 Pigs Carnex DOO BioSense Institute Serbia (RS) 

1Four 1st phase pilots (Pilot 1-4) were engaged in technology data collection activities within the first year 

of the project. The 2nd phase pilots (Pilot 5-6) will finish installation of the new technologies towards the 

end of the second year. 

 

 

Figure 2. Map of the aWISH pilot locations. 
 

 

 

 

  

Pilot 2 

Pilot 6 

Pilot 3 

Pilot 1 Pilot 4 

Pilot 5 
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2.3. Technologies used to measure AWI 

Technologies that will be developed by the project partners include: 

(1) Novel technologies with interesting potential (TRL 2-3) for the measurement of AWI, incl. tear 

staining, lung and liver lesions monitoring, loin bruises and long-term stress levels for pigs, and stunning 

effectiveness and scratches on the back for broilers.  

(2) Technologies with a proof of concept validated in experimental conditions (TRL ≥4). Often these 

technologies build upon previous developments (sometimes from other fields or other species), but have not 

yet been validated in operational environment.  

(3) Already significantly developed technological solutions (TRL ≥7). These technologies are already 

used and sufficiently developed, and will be used as a data source in the project.  

In addition, some of the pilot sites have already installed other technologies or are in the process of developing 

other technologies at the SH, or on farms or trucks delivering livestock to the SH.  

2.4. Data platform 

Data collected from the pilots’ production chains (automated technologies in SH, relevant existing data, 

routinely collected data, regional data sources, on-farm/transport sensors, etc.) will be stored in the secure 

storage of the aWISH data platform that will enable linking all relevant AW data. This will feed the research 

and development activities in the project. Moreover, a web-portal will be developed for the operators in the 

production chain, so that they can receive automatic and immediate feedback of the collected AWI that relate 

to their part of the production chain via a user-friendly graphical user interface (GUI). The feedback will 

provide early warning, longitudinal company trends and benchmarking. 

3. Results and Discussion 

3.1. Pilot status and installed technologies 

The project has currently implemented 18 novel installations in the four 1st phase pilots and 1 novel 

installation in pilot 5, as shown in Table 2. For the 2nd phase pilots, pilot 5 and 6, more installations will be 

done in a later stage of the project. The status of the technologies at the start of the project was TRL 2-8 

(mean 3.7), which was after 18 months of the project already increased to TRL 2-9 (mean 5.3). Most novel 

installations are in the SH, at various areas covering both the live animals and the stunning, bleeding and 

processing areas.  

In addition to these systems installed during the aWISH project, also data of eight existing systems will 

be used. These measure the following additional parameters: 

• Pig behavior inside the pen, barn climate, feeding behaviour (pig farm) 

• Overall welfare evaluation, barn climate and performances (broiler farm) 

• CO2, temperature, humidity (truck) 

• Pig behaviour and handling at unloading (SH) 

• Tail length of pig (SH) 

• pH and meat quality (SH) 

• Back fat and muscle depth across the carcass (SH) 

• Back fat and muscle depth locally (SH) 

In total, a large number of welfare indicators for pigs (ear lesions, skin lesions, tail length, tail lesions, 

blood parameters, stress vocalisation, tear staining, stunning effectiveness, environmental parameters, body 

weight, lung lesions, liver lesions, food consumption, meat quality) and broilers (hock burn, footpad lesions, 

catching damage, back scratches, stress vocalisations, activity, stunning effectiveness, environmental 

parameters, on-farm welfare assessment) is being collected.  
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Table 2. Current technology installations performed, incl. current TRL levels. 

Pilot  Tech. 

Provider 

Technology name Location What is measured/ 

monitored 

TRL 

1 CLK 

GmbH 

PigInspector SH  

(after bleeding area) 

Ear lesions, tail lesions, 

tail length and skin 

lesions on the back 

4-9 

1 FBN STREMODO SH (lairage)  Stress vocalizations 4 

1 FBN IGFBPs SH  

(bleeding area) 

Stress level in 

exsanguination blood 

3 

2 Wel2be Stunning 

effectiveness for 

pigs 

SH  

(bleeding area) 

Corneal reflex 

assessment – stunning 

effectiveness 

5 

2 Wel2be Tear staining 

sensor 

SH 

(after bleeding area) 

Surface of tear staining 2 

2 Innotech 

Vision 

Lesion Detect 

(lungs/ liver) 

SH  

(viscera remove area) 

Pulmonary and liver 

health monitoring 

2 

2 Innotech 

Vision 

Enviro Detect Farm Barn climate monitoring 6-7 

2 Innotech 

Vision 

Weight Detect Farm Weight predicting via 

camera 

6-7 

3 CLK ChickenCheck 

Footpad 

SH  

(after cutting of feet) 

Footpad lesions 9 

3 CLK ChickenCheck 

Hockburn 

SH  

(after plucking) 

Hockburns 9 

3 Wel2be Stunning 

effectiveness for 

broilers 

SH 

(after stunning) 

Movement of broilers 

after stunning – stunning 

effectiveness 

2 

3 ITAVI EBENE® Farm On-farm overall welfare 

assessment 

9 

3 ITAVI Environmental 

monitoring  

Transport Heat stress detection 5 

3 ITAVI EBroilerTrack 

image 

Farm Individual broiler 

activity on farm 

5 

3 ITAVI EBroilerTrack 

sound 

SH  

(lairage) 

Vocalization related to 

stress in the lairage area 

5 

4 CLK ChickenCheck 

Footpad 

SH  

(after cutting of feet) 

Footpad lesions 9 

4 CLK ChickenCheck  

Hockburn 

SH  

(after plucking) 

Hockburns 9 

4 CLK ChickenCheck 

CatchDamage 

SH  

(after plucking) 

Catch damage on wings, 

breast, legs; 

scratches on the back 

2-4 

4 ITAVI EBENE® Farm  On-farm overall welfare 

assessment 

9 

5 CLK PigInspector SH  

(after bleeding area) 

Ear lesions, tail lesions, 

tail length and skin 

lesions on the back 

4-9 

3.2. Insights 

Key insights encountered during pilot implementation so far are: 

• Monitoring the most critical aspects of AWI within SHs was predominantly manual, indicating a 

substantial technical gap in automation. 

• Small SHs face significant challenges due to the individual nature of their infrastructure, hindering the 

seamless integration of technologies, particularly in digitizing routine processes. 
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• The reliability of obtained results hinges on proper validation procedures, which requires allocating 

sufficient resources for algorithm development and validation. 

• Clear and detailed upfront discussions and agreements significantly reduce ambiguities and 

misunderstandings throughout project or process execution. 

• Effective awareness campaigns on AW assessment at SHs are crucial for progress, but the sensitivity 

of the topic elicits diverse reactions. 

3.3. Data platform status 

For the data platform, the requirements and architecture has been defined. The dataset type, size, frequency 

and specifics of the different technologies and other data sources have been analysed. Different user roles 

were set-up, with different access rules for production chain stakeholders, technical partners, researchers and 

external parties. Besides the different data platform component interactions, also a demo version of the data 

platform and web-app was made available to the aWISH partners and further defined through questionnaires 

and workshops. Figure 3 shows one of the mock-ups of the web app. 

 

 

Figure 3. The envisaged aWISH web application home page (demo mock-up). 

3.4. Future work 

Future work will focus on the increased and standardized data collection from each of the systems 

installed at the pilots, as well as validation work for several of these systems in collaboration between the 

technology providers and researchers. The collected and validated data will then become available for the 

aWISH feedback loop through the data platform. Every pilot will have farmers, catching teams and 

transporters that will test the feedback loop using their own data. These same chain actors will also deliver 

data for the spontaneous intervention study to assess animal welfare improvements. Alongside, a socio-

economic and environmental impact assessment will be done and the best practice guides will be developed. 

For the multi-actor approach of the project, the aWISH expert panel will deliver further input for the project 

in order to deliver a maximum impact for industry, policy makers and society by large.  
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4. Conclusions 

The aWISH project has started with installing technologies (19 novel installations) of various technology 

readiness levels (TRL 2-9) in order to monitor the welfare of broiler chickens and growing-finishing pigs via 

animal-based welfare indicators. These installations are spread throughout Europe, in six pilots. Most of the 

technologies measure animal welfare indicators on the live animals or carcasses in various areas of the 

slaughterhouses, but some also rely on on-farm measurements. In some transportation trucks, existing sensors 

are being used. Besides these installations, the first steps are made in the development of a data platform and 

graphical user interface through a web-app that will be used by farmers, catching teams, transporters and 

slaughterhouses to get individualized data and advice on best practices for improved animal welfare.  
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Abstract 

For high-poverty households of rural areas in the South Pacific Mexico, agroecological systems 

integrated with small-scale aquaculture provide not only food for own consumption but the possibilities of 

generating an extra income by selling excess production. These production systems face similar problems 

related to water scarcity and droughts as bigger-scale farms, but the consequences are bigger due to their 

vulnerability. In this paper we report results of incorporating aquaponics in rural, small-scale agroecological 

systems in order to reduce vulnerability as an adaptation strategy to Climate Change. Engineering allows 

achieving a reduced-cost system, operating an integrated production model that is easy to learn and respects 

traditions and cultural habits of farmers. For example, the aquaponics ´plant or vegetable (or group of them) 

to be reared, are decided by the own farmers according to their needs and traditions, reusing available material 

and in some cases incorporating models of rain-water collection. In general they are low-technique, very 

practical from the engineering point of view.  

Complementing this innovative, small-scale rural production model, in the marketing chain the 

agroecological, tilapia and aquaponics products are directly offered by the farmers to their final clients 

(usually in short-chain or last-mile markets) using digitalization and the platform AUAKAN. The impacts of 

these systems in multilevel poverty were evaluated (at farmers households’ level), proving the benefits of 

incorporating these models. 

Keywords: Agroecological systems, aquaponics, rural farming, poverty 

1. Introduction 

In Mexico, tilapia is the second most produced species in aquaculture, and almost 60% of tilapia farming 

operations are micro farms with earth ponds, circular plastic tanks, or floating cages, with annual productions 

lower than 0.5 ton/year (Martínez-Cordero et al., 2021). The characteristics of these farms are in accordance 

with the FAO description of AREL in Latin America (Flores Nava, 2013) which include (i) self-employment, 

full time in aquaculture or complemented with other jobs; (ii) limited access to key production inputs; and 

(iii) low household income that may not be sufficient to maintain food security. Specifically in the southern 

Pacific region of Mexico, it has been documented that micro and small-scale tilapia farms contribute to 

poverty reduction. However, the income of tank and pond farmers is lower compared to that of floating cage 

farmers.(Martinez-Cordero and Sanchez-Zazueta, 2022).  

   

Integrated agriculture-aquaculture (IAA) is a good example of successful agroecology. Even when 

agroecology does not target a specific aquaculture model, for aquaculture systems, transition towards 

agroecology allows to bring solutions to some of the constraints that current production models are facing 

(Halwart et al., 2019). For aquaponic farming, the aquaponic principle which combines aquaculture and plant 

production saving resources, is applied (Baganz et al., 2021). The incorporation of aquaponic farming in 

micro tilapia farms in México represents an opportunity to develop an agroecology system from an 

aquaculture one. Several models of aquaponic farming have been proposed going from large commercial to 

micro sustenance systems, from high technology to low technology systems, and from intensive to semi-

intensive production systems. From aquaculture transition to agroecology, one of the food system change 

levels proposed by Gliessman,(2016) is the system redesign which can be done through, participatory, and 

change-oriented research and action.  
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2. Materials and Methods  

 

A participatory action intervention was performed to implement semi-intensive aquaponic systems on micro 

tilapia farms. Identification of interested micro tilapia producers into aquaponic systems was done via the 

aquatic health committees of Guerrero and Oaxaca states (COSAEG and COSIA, respectively). The 

interested tilapia farmers were invited to participate in a workshop where the aquaponic system, its principles 

and component’s function were explained by a member of the research group. Posteriorly, they identified 

local available materials that can be used to implement the each one of the aquaponic system components. 

The producers with interest in implementing a semi-intensive aquaponic system in its farm provide 

information regarding the tank size, culture density, cycle length, initial and final weight. With the 

information received a basic semi-intensive aquaponic model was proposed. The aquaponic model was 

designed to work as semi-intesive system in wich initially, fish management will be maintained as usual and 

adjustments were done to fit the model within the specific farm context. The model was sent to the interested 

producers, and they provide feedback to conclude with a final model that was developed for each farm trough 

participatory design.  

System implementation was carried out by the farmers with technical support using a combination of their 

own resources and some material provided by the research group. Technical capacitation on aquaponics was 

also provided onsite and virtually for system management, plant fertilization and pest prevention.  

3. Results and Discussion 

Three producers began the implementation of the aquaponic system in different zones of Oaxaca state, each 

one according to their context (Figure 1).  

 

 
Figure 1. Installation and capacitation of aquaponic systems with local and reused materials on micro tilapia 

farms of Oaxaca distributed in the regions a) Papaloapan, b) Mixteca and c) Istmo.   
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The design and implementation of the aquaponic systems through participatory co-design and action allowed 

to have a better understanding an accounting of the unique circumstances of farmers and the local system 

that needs to be changed (Lacombe et al., 2018). This facilitates the utilization of locally available, cost-free, 

or reused materials, such as discarded fiberglass containers in the Papaloapan region, 'laja' rocks in the 

Mixteca, and sandy soil in the Istmo. This understanding will assist farmers in comprehending the functioning 

of their own cropping system and in future redesign efforts (Toffolini et al., 2017).  

Regarding plant production, based on their context, the producers ask for specific plants for culturing in the 

aquaponic system. A common characteristic among the producers' requests for aquaponic plants was their 

preference for those with high local demand but low supply, often resulting in high prices or scarcity. In the 

case of the Papaloapan region, producers ask for aromatic herbs used in the region for cooking. According 

to the tilapia producers, these plants are grown in some home gardens within the community. Nevertheless, 

the market needs to be supplied by external sellers. In the Mixteca and Istmo region the producers were 

interested primarily into lettuce production; the principal reason is that in both communities the lettuce supply 

is low. In the case of the farm located in the Mixteca, there are restaurants where the lettuce is consumed, 

and it is common to travel 45 km to the nearest market to supply it. In the community where the Istmo farm 

is located, an external seller supplies lettuce only once a week, and the demand is not satisfied. In the three 

cases, the sharing of knowledge, specifically the producers' knowledge related to markets and institutions, 

was essential for the co-creation of the new agroecology system (FAO, 2024). 

As an example, description of the aquaponic system in the Istmo region is presented. The farm has three 

plastic tanks for tilapia culture, one of which (4 m diameter) was linked to the aquaponic system. The system 

components are the tilapia tank (28 m3), one Mechanical filter for solids removal (200 L), one bacterial 

biofilter (200 L), three hydroponic beds (3m2) and a reservoir for water recirculation (450 L) (Figure 2).  

 

 

 
 

 

Figure 2. Diagram of the aquaponic model proposed by the research group. a) Fish tank, b) Mechanical 

filter, c) Second mechanical filter and biological filter, d) Hydroponic beds, e) Reservoir.  

 

The construction of the system was carried out by the tilapia producers with assistance of the research group.  

The producers use two 200L recycled plastic barrels as solid filter and biofilter, volcanic rock as media for 

bacteria fixation, plumbing material bought close to the farm community, local sandy soil for the hydroponic 

beds structure, plastic liner for the impermeabilization of the hydroponic bed, a solar pump for water 

recirculation (provided by COSIA) and water tank as reservoir. To protect the hydroponic beds and plants a 

shade net house was constructed using local material (Figure 3).  

Gravity Flow                                            Pumped flow                                               

AgEng 2024 Proceedings

729



 
Figure 3. Aquaponic system implemented through co-design and participatory action in the state of Oaxaca, 

México.  

 

The implemented system will enable the production of 45 – 56 lettuces every week, with the producers' plans 

to increase aquaponic lettuce production as their expertise in aquaponics grows. 

 

Commercialization and Socioeconomic Impacts 

 

In two complementary topics of the research project, technology and innovation is also transferred to the 

small-scale producers for the commercialization of their products. A joint digitalization-omnichannel 

approach was constructed with the small farmers, developing a portfolio of contents to reach their final 

consumers, in usually short-chain or last-mile markets. The work was based on identifying local uses of 

digitalization and cellular phones, in order to be more efficient, tanking into account that in many of these 

rural areas, connectivity is a challenge. 

Although the approach has raised interest among farmers and consumers, we recognize that its successful 

implementation requires a sustained presence of both supply and demand agents in the omnichannel. Since 

these small farmers depend on different economic activities for the household income -where aquaculture 

and aquaponics are only two of the possible activities-, assigning time to this digital/omnichannel approach 

must be based on a clearly-perceived benefit in terms of income. 

Finally, the socioeconomic impacts of these multiple elements of engineering, technology and innovation 

transfer at the small scale enterprise (SME) were evaluated. It is already documented (Martínez Cordero and 

Sánchez, 2022) that the small-scale tilapia project has a positive impact on multi-level poverty in rural areas. 

In a continuation of this research, we will test whether this positive impact is increased when other production 

activities like aquaponics or agroecology are incorporated, whose set-up require adaptation of engineering 

models usually developed for bigger scales. At the territory and mainly for this SMEs, this joint development 

of production activities means the continuation of traditional production -many times cultural-inherited- and 

resilience of both farmers and their communities. 
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4. Conclusions 

The project is focused on technology and innovation transfer to small-scale tilapia aquaculturists in the 

south Pacific States of Mexico. Aquaponics, digitalization/omnichannel, added-value to tilapia, were the 

main activities for this approach. From the engineering point of view, designing a cost-effective 

tilapia/aquaponics/agroecological system is a challenge since at this scale of producers, every farm has 

different characteristics, and the production model has to be designed accordingly.  
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Abstract 

The use of microorganisms has proven to be a promising technique in agriculture, providing greater 

efficiency in the use of water and nutrients by crops. The study focused on the use of microorganisms 

Bacillus subtilis (strain ATCC 23858) and Burkholderia seminalis (strain TC3.4.2R3) and the evaluation 

of the effects of inoculation on the growth of cherry tomato (Solanum lycopersicum var. cerasiforme) in 

a protected environment. Adopted a randomized block design (DBC) with three treatments: i) Bacillus 

subtilis ATCC 23858, ii) Burkholderia seminalis TC3.4.2R3, and iii) without inoculation (SI). Eight 

blocks were used in the experiment. Morphometric parameters were measured at 15 and 30 days after 

sowing (DAS). Parameters evaluated included germination rate, emergency germination speed, water 

content foliar, and morphometric analyses. At 15 DAS Burkholderia seminalis showed higher 

germination rates compared to the non-inoculated treatment and Bacillus subtilis resulted in greater plant 

and root height compared to the non-inoculated treatment. At 30 DAS Bacillus subtilis and Burkholderia 

seminalis inoculations led to statistically significant differences in emergence speed index (IVE), fresh 

mass (MFPA), dry mass (MSPA), and root length (CR). Inoculation with Bacillus subtilis and 

Burkholderia seminalis demonstrated the potential to promote plant growth, increase productivity, and 

improve the quality of fruits. The study suggests that these bioinoculants can be used in sustainable 

agricultural management. 

Keywords: bioinoculant, BPCP, solanaceae, Tomato, main component analysis. 

1. Introduction 

Growers have been pursuing sustainability by employing biological inputs to control pests and 

diseases while promoting plant growth. Therefore, the use of bioinputs has gained prominence, as they 

act as bioinsecticides or biofertilizers, promoting plant health and development and ensuring higher crop 

productivity (Khatoon et al., 2020; Basu et al., 2021) and fruit quality (Rouphael and Colla, 2018). The 

use of plant growth-promoting bacteria (PGPB) stands out, as they can mitigate impacts caused by biotic 

and abiotic stressors (Alcantara and Porto, 2019). 

Tomato belongs to the Solanaceae family and is one of the most consumed and popular vegetables 

worldwide (Cardoso et al., 2018). Due to its widespread cultivation, especially in protected environments 

(Silva et al., 2023), crop management strategies focus on minimizing the impacts of pathogens, pests, 

and/or abiotic stressors such as water deficit and salinity. The use of inoculants in tomato production 

aims to increase crop productivity, fruit resistance, antioxidant activity, and the concentration of 

secondary metabolites (Zulfiqar et al., 2020). 

Among the bacteria used to produce commercial inoculants based on PGPB, the genus Bacillus stands 

out, composed of rod-shaped, spore-forming bacteria, members of the Firmicutes phylum, especially the 

non-pathogenic species Bacillus subtilis, commonly found in soils. The efficacy among strains can vary 

significantly; therefore, although there are commercial inoculants of Bacillus subtilis, the ATCC 23858 

strain has not yet been tested for this purpose. Some bacteria live inside plants and colonize the interior 

of the host plant without causing diseases, referred to as endophytic, such as the species Burkholderia 

seminalis. This species associates with different plants such as Arabidopsis, Chinese cabbage, Chinese 

amaranth, lettuce, rice, sugarcane, maize, and onion, promoting plant growth and production (Araújo et 

al., 2016; Hwang et al., 2021). The Burkholderia seminalis TC3.4.2R3 strain, isolated endophytically 

from sugarcane roots and associated with promoting plant growth, is recognized for its ability to produce 

bioactive molecules to control the development of the phytopathogenic fungus Fusarium oxysporum and 

the bacterium Burkholderia gladioli (Araújo et al., 2016; Araújo et al., 2017). 

The objective of this study was to evaluate the impact of microbial inoculation with Bacillus subtilis 

AgEng 2024 Proceedings

732



strain ATCC 23858 and Burkholderia seminalis strain TC3.4.2R3 on cherry tomato in a protected 

environment and examine the influence on plant growth parameters compared to the non-inoculation 

treatment. Additionally, we discuss the potential of microbial inoculation as a sustainable and efficient 

technique for crop management in protected environments. 

2. Materials and Methods  

2.1. Experimental site 

The experiment was conducted from April and October 2022 in a greenhouse located in the 

experimental area of the Goiano Federal Institute of Education, Science and Technology (IF Goiano – 

Campus Ceres), located in Ceres, Goiás, Brazil (15°21’02” S latitude, 49°35’55” W longitude, and 564 

m of altitude). The region’s climate was classified as Aw (tropical savannah climate with dry winter 

characteristics) according to the Köppen-Geiger classification (Peel et al., 2007). 

The temperature and relative humidity inside the greenhouse were recorded using a weather station 

(Vantage Pro 2; Davis; Hayward, CA, USA). The recorded minimum and maximum air temperatures 

were 8.8 and 38.6°C, respectively, and the relative humidity ranged from 41.4 to 85.6%. The average 

temperature and relative humidity values throughout the study were 23.4 °C and 62.4%, respectively. 

2.2. In vitro germination of tomato seeds 

For the germination test, a randomized block design was adopted, with three treatments, consisting 

of inoculation with i) Bacillus subtilis ATCC 23858, ii) Burkholderia seminalis TC3.4.2R3, and iii) a 

control non-inoculation (NI), across eight blocks. 

The inoculum was standardized to an optical density of 1.0 at 600 nm in a spectrophotometer (Double 

Beam UV-Visible model GTA-101; Global Analyzer, Calgary, Canada) to achieve a final concentration 

of 109 Colony Forming Units (CFU) mL-1. 

The cherry tomato seeds were microbiolized with the bacterial suspensions for 20 minutes, at a ratio 

of 1 mL of bioinoculant per g of seed, in a laminar fume hood. For the non-inoculation treatment, the 

seeds were soaked in sterile nutrient broth under the same conditions. 

Fifty seeds per block were evaluated, totaling 400 seeds per treatment. The seeds were moistened on 

sterile blotting paper at a 1:2.5 ratio (w/v) - one gram of blotting paper to 2.5 mL of sterile distilled water. 

The moistened blotting paper was placed in Gerbox germination boxes, which were incubated at 25 ºC 

for 14 days in a B.O.D. incubator without a photoperiod (Brazil, 2009). The germination rate was 

determined at the end of the incubation period (number of normal seedlings x 100) / 50). 

2.3. Greenhouse cultivation 

A randomized block design was adopted, with three treatments, consisting of inoculation with i) 

Bacillus subtilis ATCC 23858, ii) Burkholderia seminalis TC3.4.2R3, and iii) a control non-inoculation 

(NI), with eight blocks. Each experimental plot consisted of eight plants. 

The spacing used was 0.7 m between plants, 0.7 m between rows, and 1 m between double rows, 

equivalent to a population of 20,408 plants per hectare. Cherry tomato seeds were disinfected and 

microbiolized. After that, sowing was carried out in expanded polystyrene trays with 128 cells (Isoeste, 

Castanhal, PA, Brazil). The trays contained substrate (Topstrato HA; Genfértil, Provaso, Industrial, and 

Commercial of Organic Fertilizers, Mogi Mirim, São Paulo, Brazil), composed of pine bark and peat, 

vermiculite, NPK Fertilizer (fraction 14.16.18), potassium nitrate, and simple superphosphate (fertilizer 

obtained by adding acids to rocks, containing 18% phosphorus, 16% calcium and 10% sulfur). 

At 15 days after sowing (DAS), the emergence speed index (Popinigis, 1985) and morphometric 

analyses of the seedlings were determined. Other seedlings were replanted into 200 cm³ containers filled 

with the same substrate. Here, reinoculation was performed by drenching the base of the plant with 5 mL 

of a bacterial suspension (109 CFU ml-1). The treatment non-inoculation received 5 mL of sterile nutrient 

broth.  

After transplanting, the plants were reinoculated by drenching the base with 10 mL of bacterial 

suspension (109 CFU mL-1). New inoculations were carried out every two weeks until 120 DAT. The 

treatment non-inoculation received sterile nutrient broth under the same conditions. 

Before transplanting, the moisture of the substrates contained in the pots was raised to the pot capacity 

(0.37 m3 m-3) (Casaroli and De Jong Van Lier, 2008; Agbna et al., 2017; Oliveira et al., 2021) and daily 
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irrigations replenished the water volume necessary to return to this parameter. 

A drip irrigation system was used, using self-compensating button-type drippers featuring a flow rate 

of 2 L h-1. Irrigation was controlled by an automated system described by Campos et al. (2021), which 

collected and processed data from soil moisture sensors (10HS; METER Group, Pullman, WA, USA). 

The sensors underwent specific calibration for the substrate, according to the methodology described by 

Cobos and Chambers (2010). 

An automated system took sensor readings every 30 minutes, and when the volumetric water content 

of the substrate dropped below the threshold (0.37 m3 m-3), the irrigation system automatically activated 

the solenoid valves (HVF-100; Rain Bird, Azuza, CA, USA), which remained open for 60 seconds, which 

applied a water volume of 33 mL, equivalent to an irrigation depth of 0.60 mm. 

2.4. Experimental analyses 

The morphometric analyses were conducted at 15 and 30 DAS (days after sowing), assessing plant 

height, stem diameter, and length of root with the help of a digital caliper (King Tools, Pompéia, SP, 

Brazil). At 30 DAS, the number of leaves and root volume were also evaluated using the graduated 

cylinder method (Basso, 1999). 

The biomass production analysis was carried out at 15 and 30 DAS, determining the shoot fresh 

weight and root fresh weight, shoot dry weight, and root dry weight. The fresh weight was kept in a 

forced air circulation oven for 72 hours at 65 °C. 

The relative growth rate (RGR) was determined according to Magalhães (1985), using Equation (1). 

RGR = ln (RDW30 + SDW30) – ln (RDW15 + SDW15)) / (T30 – T15)                                               (1) 

where ln = natural logarithm; T15 = time of biometric analysis in seedlings (15 days); T30 = time of 

biometric analysis in saplings (30 days); SDW15 = shoot dry weight (SDW) at 15 DAS; SDW30 = shoot 

dry weight (SDW) at 30 DAS; RDW15 = root dry weight (RDW) at 15 DAS; RDW30 = root dry weight 

(RDW) at 30 DAS. 

Six leaf discs of 6 mm diameter each were used to determine the relative water content. After their 

initial weighing, the leaf discs were soaked in distilled water and stored in a refrigerator for 6 hours. They 

were then weighed again to determine the turgid weight and placed in a forced-air circulation oven at 80 

°C for 24 hours to determine the dry weight. The leaf water content (LWC) was determined according to 

Equation (2) by Smart and Bingham (1974): 

LWC = ((FM – DM) / (TM – DM)) × 100                                                                                               (2) 

where LWC = leaf water content (%); FM = Fresh weight of leaf discs (mg); DM = Dry weight of 

leaf discs (mg); TM = Turgid mass of leaf discs (mg). 

The data were tabulated and analyzed with the Shapiro-Wilk test for normality of data (5%) to verify 

homoscedasticity followed by the analysis of variance (ANOVA) with the F test. Significant variables 

were compared using Tukey’s test for mean comparison at the 5% and 1% significance levels. All 

analyses were performed using R Statistical software (version R 3.3.0+ for Windows; R Core Team, 

2023). 

3. Results 

3.1. Tomato seed germination in vitro 

Inoculation was significant for the germination test (P < 0.05) (Table 1). Seeds inoculated with 

Burkholderia seminalis TC3.4.2R3 showed higher germination rates (P < 0.05), at 72.5%, followed by 

seeds inoculated with Bacillus subtilis ATCC 23858 at 67.5%, and the non-inoculation treatment at 

61.0% (Table 1). 

 

Table 1. Cherry tomato germination rate after microbiolization. 

Microbiolization Germination (%) 

Non-inoculation 61.0 ± 10.09 b 

Bacillus subtilis 67.5 ± 7.01 ab 

Burkholderia seminalis 7.5 ± 7.91 a 

S.V. p-value 

Microbiolization 0.0433* 

C.V. (%) 12.23 
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*Significant at the 5% level using the Tukey test; **Significant at the 1% Tukey test level; nsNot 

significant; S.V.: source of variation; C.V. (%): coefficient of variation. 

3.2. Greenhouse cultivation 

Inoculation was significant for the emergence speed index (P < 0.01) (Table 2). Seeds inoculated with 

Bacillus subtilis ATCC 23858 and Burkholderia seminalis TC3.4.2R3 showed higher emergence speed 

indices, 6.77 and 6.54, respectively (P < 0.01), not statistically different from each other, but differing 

from the non-inoculation treatment (3.61), demonstrating that inoculation promotes tomato growth by 

accelerating seedling emergence. 

 

Table 2. Emergence speed index of cherry tomatoes after microbiolization. 

Microbiolization Emergence Speed Index 

Non-inoculation 3.61 ± 0.66 b 

Bacillus subtilis 6.77 ± 1.24 a 

Burkholderia seminalis 6.54 ± 1.03 a 

S.V. p-value 

Microbiolization 0.0042** 

C.V. (%) 18.35 

*Significant at the 5% level using the Tukey test; **Significant at the 1% Tukey test level; nsNot 

significant; S.V.: source of variation; C.V. (%): coefficient of variation. 

 

Seedlings from microbiolized seeds produced more dry weight and had greater root length at 15 DAS 

(P<0.01) (Table 3). 

 

Table 3. Stem diameter, plant height, shoot fresh weight, shoot dry weight, length radicle, root fresh 

weight and root dry weight of seedlings at 15 DAS. 

Microbiolization 

Stem 

Diameter 
Plant Height 

Shoot Fresh 

Weight 

Shoot Dry 

Weight 

mm mg 

Non-inoculation 0.67 ± 0.14 a 20.65 ± 4.65 a 10.69 ± 1.32 a 1.65 ± 0.29 a 

Bacillus subtilis 0.78 ± 0.08 a 21.37 ± 2.60 a 10.91 ± 1.21 a 1.80 ± 0.49 a 

Burkholderia seminalis 0.81 ± 0.29 a 22.04 ± 3.96 a 10.37 ± 1.62 a 1.73 ± 0.29 a 

S.V. p-values 

Microbiolization 0.4033ns 0.7567ns 0.7805ns 0.7381ns 

C.V. (%) 27.32 17.28 14.46 21.77 

Microbiolization 
Length Radicle 

Root Fresh 

Weight 

Root Dry 

Weight 

mm mg       

Non-inoculation 25.31 ± 7.02 c 6.43 ± 1.33 a 0.60 ± 0.20 b 

Bacillus subtilis 57.77 ± 4.62 a 13.10 ± 1.825 a 1.02 ± 0.13 a 

Burkholderia seminalis 39.19 ± 9.09 b 8.70 ± 1.52 a 0.72 ± 0.29 b 

S.V. p-values 

Microbiolization <0.001** 0.4298ns <0.001** 

C.V. (%) 17.00 106.92 21.03 

*Significant at the 5% level using the Tukey test; **Significant at the 1% Tukey test level; nsNot 

significant; S.V.: source of variation; C.V. (%): coefficient of variation. 

 

As observed in Table 3, seedlings from seeds inoculated with Bacillus subtilis ATCC 23858 showed 

1.02 mg of root dry weight, which was 70% higher than the non-inoculation treatment (0.60 mg). 

Additionally, a greater root length was observed (57.57 mm), being 1.47 times higher than the treatment 

inoculated with Burkholderia seminalis TC3.4.2R3 (39.19 mm) and 2.28 times higher than the non-

inoculation treatment (25.31 mm) (Figure 4). Inoculation with Burkholderia seminalis TC3.4.2R3 

compared to the non-inoculation treatment increased root length by 1.55 times. 
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Figure 1. Radicle length of cherry tomato seedlings, non-inoculation (NI), 

inoculated with Bacillus subtilis ATCC 23858 (BA) and Burkholderia 

seminalis TC3.4.2R3 (BU). 

 

At 30 DAS, inoculation with Bacillus subtilis ATCC 23858 and Burkholderia seminalis TC3.4.2R3 

resulted in higher dry and fresh shoot and root mass and longer root length (Table 4). Root volume at 30 

DAS was not affected by inoculation with Bacillus subtilis ATCC 23858 and Burkholderia seminalis 

TC3.4.2R3. The plant height of those inoculated with Bacillus subtilis ATCC 23858 was higher than that 

of plants inoculated with Burkholderia seminalis TC3.4.2R3 and non-inoculation plants. 

 

 
Table 4. Stem diameter, plant height, root length, root volume, number of leaves, shoot fresh weight, 

root fresh weight, shoot dry weight and root dry weight of the plants at 30 DAS. 

Microbiolization 

Stem 

Diameter 
Plant Height Root Length Root Volume 

Number of 

Leaves 

mm   cm3  

Non-inoculation 3.47 ± 0.68 a 18.06 ± 2.85 b 9.16 ± 2.81 b 1.63 ± 0.74 a 4.11 ± 0.64 a 

Bacillus subtilis 3.62 ± 0.22 a 19.99 ± 3.28 a 18.84 ± 4.17 a 2.38 ± 0.38 a 
3.89 ± 0.53 

ab 

Burkholderia seminalis 3.17 ± 0.34 b 16.10 ± 2.89 c 14.38 ± 2.54 a 2.25 ± 0.71 a 3.73 ± 0.76 b 

S.V. p-values 

Microbiolization <0.001** <0.001** <0.001** 0.1832ns <0.001** 

C.V. (%) 10.94 17.90 24.17 39.37 16.82 

Microbiolization 

Shoot Fresh 

Weight 

Root Fresh 

Weight 

Shoot Dry 

Weight 

Root Dry 

Weight 
 

g   

Non-inoculation 2.07 ± 0.91 b 0.52 ± 0.40 b 0.13 ± 0.08 b 0.03 ± 0.03 b  

Bacillus subtilis 4.67 ± 1.28 a 1.49 ± 0.53 a 0.45 ± 0.12 a 0.10 ± 0.04 a  

Burkholderia seminalis 4.03 ± 0.55 a 1.38 ± 1.01 ab 0.33 ± 0.11 a 0.07 ± 0.04 ab  

S.V. p-values 

Microbiolization <0.001** 0.0358* <0.001** 0.0077**  

C.V. (%) 26.93 64.17 42.89 54.73  

**Significant at the 1% Tukey test level; nsNot significant; S.V.: source of variation; C.V. (%): coefficient 

of variation. 

 

As observed in Table 4, Bacillus subtilis ATCC 23858 exhibited a root length of 18.84 cm, which 

was 1.31 times higher than the Burkholderia seminalis TC3.4.2R3-inoculated treatment (14.38 cm) and 

2.05 times higher than the non-inoculation treatment (9.16 cm) (Figure 2). Inoculation with Burkholderia 

seminalis TC3.4.2R3 compared to the non-inoculation treatment increased root length by 1.57 times. 
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Figure 2. Roots of tomato seedlings in the treatments non-inoculation 

(NI), inoculated with Burkholderia seminalis TC3.4.2R3 (BU), and 

Bacillus subtilis ATCC 23858 (BA). 

4. Discussion 

4.1. Seed germination of tomato in vitro 

Inoculation with Burkholderia seminalis TC3.4.2R3 and Bacillus subtilis ATCC 23858 promoted an 

increase in cherry tomato germination rate. Seed germination depends on embryo viability and dormancy 

breakage from environmental conditions (Luna-Martínez et al., 2013). Plant growth-promoting bacteria 

can influence dormancy breakage, as the reduction in ethylene levels due to the activity of ACC 

deaminase enzyme from bacteria present in the seed increases germination, along with the production of 

indole-3-acetic acid, which stimulates cell division to promote embryo growth (Glick et al., 2007; Jalili 

et al., 2009). Seed germination is also directly related to the production of abscisic acid, ethylene, 

gibberellins, auxins, and cytokinins (Miransari and Smith, 2014). These compounds are produced by 

bacteria of the genus Bacillus (Wagi and Ahmed, 2019). 

4.2. Greenhouse cultivation 

The emergence speed index of seeds inoculated with Bacillus subtilis and Burkholderia seminalis 

demonstrates that inoculation promotes tomato growth, accelerating seedling emergence compared to the 

non-inoculation treatment. 

Different authors have demonstrated that seed microbiolization enables an increase in seed vigor and, 

consequently, seedling vigor, as well as accelerates seedling emergence, due to the production of 

phytohormones (e.g., auxins, gibberellins, and cytokinins) (Ibanhes Neto et al., 2021; Junges et al., 2016). 

The initial growth of cherry tomatoes was increased by inoculation with Bacillus subtilis ATCC 

23858 and Burkholderia seminalis TC3.4.2R3. The use of these bacteria in cherry tomato production 

resulted in significant increases in fresh and dry plant mass and root length, demonstrating the potential 

of using PGPB under the study conditions. 

Inoculation of seeds with the microorganisms promoted the growth of seedlings with longer root 

length and increased dry weight production (P<0.01), as observed in Table 3. Cendales et al. (2017) 

found that the Bacillus subtilis GIBI 200 strain promotes the growth of tomato seedlings at 37 days old, 

leading to significant increases in stem and root length and fresh weight (p<0.05). The results are similar 

to those described by other authors who have also demonstrated Bacillus strain inoculation positive effect 

on tomato plant growth (Lagunas-Lagunas et al., 2001; Luna Martinez et al., 2013). 

Inoculation of plant growth-promoting microorganisms, especially from the genus Bacillus and 

Burkholderia, aids in seed germination, promoting radicle growth, inducing the formation of root hairs, 

increasing the number of lateral and adventitious roots (Romagna et al., 2019), enlarging root volume 

and surface area (Tallapragada et al., 2015), enhancing plant height, and increasing fresh and dry weight 

production of both root and shoot (Tripti et al., 2017; Kumar et al., 2020). 

Inoculation with Bacillus subtilis ATCC 23858 or Burkholderia seminalis TC3.4.2R3 promotes 

increased growth rate with higher biomass accumulation in the initial phase of cherry tomato (Figure 6), 

highlighting that the use of biostimulants in seeds can enhance germination and emergence, as well as 
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promote greater vigor and plant growth. However, the mechanisms involved in these stages and their 

interaction with the plant (genome, enzymatic activity, among others) still need to be identified (Silva et 

al., 2021). 

5. Conclusions 

The study demonstrates the promising impact of inoculation with Bacillus subtilis strain ATCC 23858 

and Burkholderia seminalis strain TC3.4.2R3 on cherry tomato plants in a protected environment. The 

results indicate that Burkholderia seminalis positively influences the germination rate, while Bacillus 

subtilis contributes to increased plant height and root mass. Overall, the findings underscore the potential 

benefits of employing specific Bacillus subtilis and Burkholderia seminalis strains in cultivating cherry 

tomatoes in protected environments. This approach promotes plant growth, and emphasizes sustainable 

and efficient crop management through using microorganisms in agriculture. The study encourages 

further exploration and adoption of microbial inoculation techniques as a viable strategy for enhancing 

agricultural practices and achieving more resource-efficient and sustainable crop production. 
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Abstract 

The integration of vegetation in buildings can increase the environmental sustainability of urban 

contexts as well as produce other relevant unquantifiable effects. Vegetation can be applied both on the 

exterior side of the buildings’ envelope and inside, in different ways and layouts. Green façades are a 

specific kind of vertical greening for buildings consisting of plants covering vertical walls of buildings. The 

presence of vegetation on the envelope positively affects the building’s thermal and acoustic performance, 

air quality, aesthetics, with relevant consequences in terms of energy and cost savings and human well-

being. Until now, research has focused mainly on vertical greening systems applied to the exterior side of 

the buildings, but indoor applications deserve attention as well. This is the reason behind the present 

research: assessing the physical functioning of an indoor green façade. To this end, an experimental 

prototype of an indoor greening system was designed and realized to be monitored, at the University of 

Bari. The prototype consists of a sealed chamber, with evergreen plants, properly equipped with sensors for 

collecting air, soil and plant parameters, needed for studying the system functioning. The database created 

with the collected data enables investigations of the green façade behaviour and effects. A better 

understanding of this green technology, allowing for informed design and knowledge of induced effects, 

can promote the spread of indoor green façades. 

Keywords: Urban agriculture, Green façade, Evapotranspiration, Canopy temperature, Heat transfer. 

1. Introduction 

The uncontrolled urban sprawl is resulting in various undesired problems worldwide. The main can be 

considered the lack of green spaces, the environmental pollution and the intense energy and resources 

consumption. The scarcity of natural elements has recently been particularly emphasised by researchers as 

an element linking the problems of urban contexts and, at the same time, nature-based solutions have been 

identified as the key to achieving ecological goals (Al-Kayiem et al., 2020). This consideration has been 

behind the promotion of studies and the implementation of different types of green infrastructures (GIs). As 

cities do not offer many horizontal free areas for the introduction of green elements, the vertical surfaces of 

buildings have increasingly been considered for the implementation of GIs in the form of vertical greenery 

systems (VGSs). VGSs mainly relate to green walls (GWs), realized according to two main technical 

solutions, the living walls (LWs) and the green façades (GFs) (Blanco and Convertino, 2023; Irga et al., 

2023; Pérez et al., 2011). LWs and GFs each have their own engineering specifications, relating to 

construction system, plant types and maintenance methods. Available research demonstrated that VGSs 

provide numerous advantages in terms of increased sustainability to the whole environment and specifically 

to the urban context. These include mitigation of the urban heat island effect, increased energy efficiency, 

noise reduction, improved air quality and aesthetics. 

While VGSs applied on the external side of the building’s envelope have been more investigated, 

applied and have attracted more attention, the indoor VGSs (iVGSs) applications are more recent and still 

need to be studied in depth (Ghazalli et al., 2019). The integration of vegetation inside buildings deserves 

particular attention due to the potential benefits this can provide and also considering that people spend, on 

average, more than 80% of their time indoors (Klepeis et al., 2001; Wang et al., 2016). Indoor living 

environments must have specific microclimatic conditions and quality characteristics, often lacking. 

Buildings rooms are often polluted due to the presence of huge quantity of synthetic materials inside, as 

well as the constructive materials themselves, as natural materials are increasingly being replaced by 

artificial ones. This often leads to the presence of hazardous gases indoors. The dreariness and greyness of 

many living and working environments are other aspects to be considered. 

With reference to these issues and the requirements that indoor environments must have, iVGSs can 

make valuable contributions to improving the quality of indoor environments. Vegetation can contribute to 

regulating air humidity and temperature inside (De Lucia et al., 2021; Fernández-Cañero et al., 2012; 
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Kazemi et al., 2020; Shao et al., 2021). Noise can be reduced too (Davis et al., 2017; Scamoni et al., 2022). 

Plants inside buildings can be a phytoremediation solution for reducing the concentration of CO2, volatile 

organic compounds, particulate matter, and dust levels, by filtering, absorbing and retaining particles (Pettit 

et al., 2017; Shao et al., 2021; Suárez-Cáceres and Pérez-Urrestarazu, 2021). Relevant aspects are also 

those related to the enhanced aesthetics and, in turn, to the increased psychological and biological comfort 

of the indoor environments (Han et al., 2022). Even electronic equipment can benefit from presence of 

plants, in particular from the dust reduction and the limitation of its accumulation on components and 

clogging of air intakes. Improved quality of buildings rooms leads to increased comfort conditions for the 

occupants in terms of health, well-being, and productivity. Visual and physical contact with vegetation can 

reduce stress and increase resistance to illness. The presence of plants can improve recovery of patients in 

hospital rooms (Dijkstra et al., 2008). At school and in working environments, the greenery can improve 

morale, productivity, and limit absenteeism (Gray, 2018; Mangone et al., 2017; Pichlhöfer et al., 2021). 

Overall, a greener environment is a more user-friendly environment (Ghazalli et al., 2018). 

Regarding constructive technologies, similarly to external VGSs, iVGSs can have different 

configurations, as LWs, consisting of modular cultivated panels, or GFs, with climbing or cascading plants 

grown in pots. A specific classification for iVGSs, mainly related to their phytoremediation function, is that 

distinguishing between passive and active systems, the latter also referred to as breathing walls (Abdo and 

Huynh, 2021; Irga et al., 2018; Soreanu et al., 2013). In passive systems, realized mainly as potted plant 

systems, biofiltration occurs by the simple diffusion of polluted air through the green component. In the 

breathing walls, having mainly the LW configuration, mechanical ventilation is used to force air passing 

through substrate, planting bed, rhizosphere, and foliage, being purified and providing natural cooling. 

Compared to passive systems, active iVGS are more focused on increasing indoor thermal comfort and 

improving air quality, thus reducing the building energy demand for air conditioning and treating. Active 

systems can also be combined with heating, ventilation and air conditioning (HVAC) equipment to increase 

the efficiency in providing comfortable thermal environment and air quality (Meng et al., 2022). An 

important aspect to consider in the realization of iVGSs is the radiation. It frequently happens that these 

green systems are placed in areas of the building where they provide a greater aesthetic impact, such as 

corridors or conference rooms, but that do not guarantee adequate solar radiation for the plants. 

Consequently, iVGSs are often provided with artificial lighting to maintain plant health and activity and 

lighting systems have to be properly selected taking into account the intensity and quality of radiation 

provided (Dominici et al., 2021; Kaltsidi et al., 2020). The functioning of the iVGS depends on the plant 

species as well. Thus, the plant selection should take into account indoor parameters as temperature, 

humidity, radiation, but also water, nutrient and medium and often indoor conditions are less favourable 

than outdoor conditions for plants. The installation method and the location are other driving factors in the 

plant selection (Wang et al., 2016). Several plants, with different characteristics, have been tested showing 

different induced effects in terms of thermal regulation and specific pollutants removed (Bandehali et al., 

2021; Irga et al., 2018; Pettit et al., 2017; Pichlhöfer et al., 2021; Wang et al., 2016). 

Based on the above considerations, it is clear that iVGSs represent a great opportunity for improving 

physical and non-physical aspects of the indoor living environments. To obtain the maximum quantifiable 

benefits from iVGSs application, their physical functioning has to be known in depth. This can allow their 

informed design and realization and promote their integration in buildings as well. This research aims at 

studying the behaviour and the induced effects of an iVGS, in the form of a potted GF, in a real scale 

application. The paper reports the first step of this experimental study and relates to the initial designing 

and assembling phases. An active system inserted into a sealed chamber is described. This prototype, 

properly integrated with sensors, will allow the physical data recording and monitoring and the collected 

data will help investigating the system functioning. Aim of the research is studying plants behaviour in 

relation with environmental conditions also using sensors for plants status monitoring. Results will be used 

to build a model describing the system functioning as an air conditioning system. The experimental set up 

is not unmodifiable, but it could be also provided with other sensors to analyse further relevant parameters. 

Having data on a long-term and real scale iVGS application will contribute to enrich the knowledge of 

iVGSs and promote their spread into new and existing buildings.  

2. System design  

The experimental prototype of iVGS was designed to be realized at the Department of Soil, Plant and 
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Food Sciences (Di.S.S.P.A.) of the University of Bari, Italy. The system was thought to be placed at the end 

of a corridor, on the first floor of the oldest part of the department building, overlooked by offices and 

laboratories. The corridor is 2.40 m wide and has the axis northeast-southwest oriented. In addition to three 

large windows on one long side, on the short side facing southwest where the prototype will be placed, the 

corridor is provided with a large glass door that makes the area of the system position well lit. 

The first step in the experimentation was the design of the system. The construction characteristics, 

plant species and equipment to be implemented were carefully studied. The system components were 

bought, and the assembling phase is ongoing. 

2.1. Constructive characteristics 

Based on the objective of the test, i.e. analysing the heat and gas exchanges taking place in the system, 

it was decided to design a closed system. The designed prototype consists of a sealed chamber, having a 

rectangular plan, with dimensions of 2.00 m x 0.60 m and 2.00 m high (Figure 1). 

 

 

Figure 1. 3D views of the designed prototype. 

 

The prototype was designed with a light steel structure. The envelope was thought to be made of opaque 

steel plates as for the inferior and superior horizontal parts. 

The lateral envelope was designed in smooth transparent polystyrene sheets having thickness of 2.5 

mm. The radiometric characteristics of the polystyrene sheets were evaluated at the laboratory of 

Di.S.S.P.A. at the University of Bari to assess its suitability for the test purpose. The sheets spectral direct 

transmissivity in the solar wavelength range (200‒2500 nm) was measured by a double beam UV-VIS-NIR 

spectrophotometer (Lambda 950, Perkin Elmer Instruments, Norwalk, CT, USA). Measurements were 

performed in steps of 10 nm using radiation with a direct perpendicular incidence. The spectral total and 

diffuse transmissivity and reflectivity were measured through an integrating sphere (diameter 100 mm) 

used as receiver of the spectrophotometer, with a double beam comparative method. The spectral 

transmissivity and reflectivity in the longwave infrared (LWIR) range (2500‒25000 nm) were measured by 

a FT-IR spectrophotometer (1760 X, Perkin Elmer Instruments, Norwalk, CT, USA) in steps of 4 cm -1. The 

spectral transmissivity was measured using radiation with a direct perpendicular incidence; reflectivity was 

measured at near normal incidence (10°). Five samples (40 mm x 40 mm) were used to perform 

transmissivity and reflectivity measurements both in the solar and in the LWIR range. The radiometric 

coefficients in the solar wavelength range (200‒2500 nm) and in the PAR range (400‒700 nm) were 

calculated as the weighted average value of the spectral transmissivity using the spectral distribution of the 

solar radiation at ground level as a weighting function (Vox et al., 2005). The transmissivity coefficients in 
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the LWIR range were calculated as average values of the spectral transmissivity in the wavelength range 

from 7500 nm to 12500 nm. The polystyrene sheets showed total solar transmissivity and reflectivity equal 

to 85.6% and 9.9% respectively, and a LWIR emissivity of 94.2%. 

The access to the inside of the chamber, necessary to manage plants and equipment, is allowed through 

double-leaf door on one long side of the prototype. The chamber was perfectly sealed at joints and provided 

with wheels at the vertical supports and under the door leaves to ease prototype movement and door 

opening. 

The two lateral short sides of the prototype were designed having two holes, one each, in the middle of 

the polystyrene sheets. These holes are needed to let air in and out of the chamber and to control airflow 

parameters. Through interposed aluminium tubes these holes connect the chamber to two white polystyrene 

boxes, one on each side, having holes on the opposite sides and specifically designed and equipped to 

measure inlet and outlet air temperature, relative humidity, speed, and direction. The box placed at the air 

inlet side is also provided with a fan to push air into the chamber and enable air exchange cycles. 

2.2. Vegetation 

The green component of the system is made of plants. Ornamental evergreen plants suitable for indoor 

environments were selected and specifically plants of Syngonium podophyllum. These plants have 

decorative foliage that develops aerial roots and leaves, lobed in shape, that become especially large as they 

grow. As the plants age, they become climbing and drooping, with stems that can reach up to two meters in 

length, so these are particularly suited to the purpose of indoor GF. The optimal mean temperature to grow 

these plants is in the range 18‒20 °C, while they do not tolerate temperature lower than 13 °C. Thus, in the 

Mediterranean climate context of the experimental test, these plants can be cultivated only indoor. 

Moreover, Syngonium plants need radiation, but not direct solar radiation, and air exchanges, but not cold 

air currents. These characteristics also make this species particularly suited to the study purpose and were 

taken into account in the prototype design as well. As for irrigation, these plants need moist soil and 

abundant watering especially in spring and summer. Therefore, an automated irrigation system will be 

designed and implemented as well. 

The Syngonium plants of 20 cm were bought in mid-September 2023 and transplanted in bigger pots on 

26 September (Figure 2). Since then, the plants have been watered manually and periodically fertilized with 

a NPK 7-5-5 fertiliser solution with boron, copper, iron, manganese, and zinc. 

 

 

 

 
(a)  (b) 

Figure 2. Syngonium plant before (a) and after transplanting (b). 

2.3. Equipment 

The system design also concerned several sensors to allow the system parameters recording and 

monitoring. Recorded data are useful to assess the physical behaviour of the green system. 

The recording equipment is made of a data logger (CR1000, Campbell, Logan, USA) and sensors for 

parameters detection. The following sensors were selected to be included in the experimental set up: 

HygroClip-S3 sensors (Rotronic, Zurich, Switzerland) to measure air temperature and relative humidity; 

Apogee SI 400 radiometers (Logan, UT, USA) for canopy temperature; a pyranometer PIR02 (Geoves 

s.n.c., Conegliano, Italy) to measure solar radiation in the wavelength range 0.3‒3 mm; ultrasonic 

anemometers (ATMOS 22, METER Group, Inc., Pullman, WA, USA) for measuring air velocity and 
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direction; ECH2O 10HS sensors (METER Group, Inc., Pullman, WA, USA) for detecting soil volumetric 

water content; load cells (Scaime, Juvigny, France) placed under two plants pots to measure plants 

evapotranspiration rate through the pot-plant system weight variation (Figure 3). The parameters 

measurement frequence is 60 s; data are averaged and recorded by the data logger every 15 min. The 

equipment has been tested and its final layout, showing sensor types and positions, is reported in Figure 4. 

By assembling all the components, the structure, the plants and the equipment, the starting 

configuration of the experimental prototype was realized (Figure 5), with the possibility of further 

development and refinement. 

 

 

 

 

 

 

 

 
(a)  (b)  (c)  (d) 

Figure 3. Set up equipment: datalogger (a), sensors for measuring solar radiation, canopy temperature and 

soil water content (b), air temperature and relative humidity and air speed and direction (c), load cell under 

the plant pot (d). 

 

Figure 4. Equipment layout. 

 

 

 

Figure 5. Views of the realized prototype. 
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3. Conclusions 

Given that, nowadays, most people live in urban context and that the greatest part of their time is passed 

inside buildings, providing comfortable indoor living environments is imperative. Greenery systems 

integrated within buildings areas can be a proper valid solution to achieve this aim. Specific applications 

are the indoor vertical greenery systems, able to provide physical and non-physical benefits to the buildings 

occupants. 

This study is the first step of a research on an indoor vertical greenery. It refers to the design of an 

active green façade to be realized as a sealed chamber in a building corridor of the University of Bari. The 

constructive characteristics of the system were carefully defined. The plant species, an evergreen 

ornamental one, was selected and several plants have been grown in pots. The equipment, needed to make 

the system work and to measure and monitor the main physical parameters was designed as well. Once 

fully assembled, this system will allow the investigation of its physical behaviour and the collection of 

several data. The obtained database will be precious for analysing the occurring heat and gaseous 

exchanges, building a model describing the indoor greenery system functioning, thus allowing their better 

comprehension. Moreover, the designed system could be integrated with other sensors for detecting other 

important parameters and extending the study. The enhanced knowledge this research aims to providing 

about the indoor greenery systems will make their design and application more informed and optimized. 

Ultimately, this could give an important input to the spread of such green technology. 
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Abstract 

Growing vegetables in controlled environmental agriculture (CEA) systems has contributed significantly in recent years 

to increasing local production within urban areas, providing consumers with fresh vegetables. The use of artificial 

lighting during cultivation in these systems promotes plant growth by providing them with the required daily amount of 

photosynthetic photon flux density (PPFD) and at the same time enables precise planning of the harvest time from the 

moment of sowing. One category of cultivation in CEA systems is that of microgreens, where seedlings are consumed 

just a few days after sprouting. Cultivation takes place on shelves, utilizing artificial lighting to provide the necessary 

energy to the seedlings. The purpose of this experiment was to investigate whether lighting facilitates faster germination 

of cabbage and arugula seeds, and if any specific spectrum has a better effect on them. The seeds were placed under 9 

different light spectra for photoperiods of 4, 8 and 16 hours daily. The spectra studied were in the range of UV, blue, 

green, orange, red, farred, combination of blue-red, combination of blue-red-farred and a full spectrum cool-white LED. 

The results of the experiments showed that lighting has a positive effect in terms of time and the percentage of seeds 

that germinate, compared to their germination in the dark. The seedlings grown had different morphological 

characteristics under different spectra and a different amount of biomass was produced under the different lighting 

treatments. Production can be increased by using combinations of lighting during cultivation. An initial exposure of 

seeds to the spectrum with the highest germination rates increases the number of produced seedlings, while exposure to 

the lighting spectrum that produced the most biomass subsequently increases the quantity of the final yield. 

Keywords: microgreens, seeds, control-environmental agriculture, lighting, germination 

 

1. Introduction 

The cultivation of plants in closed and controlled environments has seen significant growth in recent years. This 

method primarily employs hydroponic systems and vertical farming on shelves, which maximizes production per unit 

area. By consistently providing optimal environmental conditions, these systems enhance production by promoting 

faster plant growth and allowing for denser planting within the same space (Rajan et al., 2019). Microgreens are a 

relatively new specialty crop that is gaining momentum in the global market (Lanoue et al., 2022). They are tender 

seedlings, mostly derived from vegetable seeds, and are harvested once the cotyledons have fully developed, usually 

before the first true leaves appear (Zhang et al., 2021). As a result, their cultivation period ranges from about 7 days to 

three weeks. Due to their short shelf life post-harvest, local cultivation near consumption points is the most effective 

strategy (Cowden et al., 2023). The ever-increasing demand and high market value have made microgreen cultivation 

very attractive to producers. Microgreens are primarily used to enhance the nutritional value and flavor of food. Several 

studies have shown that microgreens contain high concentrations of antioxidant compounds, such as polyphenols, 

carotenoids, and ascorbic acid (Lerner et al., 2024; Shibaeva et al., 2022; Maru et al., 2024). 

Key factors for enhancing microgreen production include seed germination, robust seedling growth, and the 

appropriate quality and quantity of lighting. Cultivation mainly uses LED lamps, with either a full spectrum or a 

targeted spectrum, depending on the specific needs of each crop (Toscano et al., 2021). Within the broad spectrum of 

solar radiation, the range that plants use for growth falls between 400-700 nm and is known as Photosynthetically 

Active Radiation (PAR). However, wavelengths outside this range can also influence plant growth and seed 

germination (Rengasamy et al., 2022). Plants have evolved mechanisms to detect light's quality, quantity, duration, and 

direction. These mechanisms, known as photoreceptors, are proteins that include cryptochromes, phytochromes, and 

phototropins. These photoreceptors regulate various genes and their responses to different light spectra (Wong et al., 

2020). 
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Similarly, seeds receive the stimulus of light and germination is promoted in smaller seeds before they penetrate 

deep into the soil, or germination is avoided if they are in a place where the required light conditions are not met (Bu et 

al., 2017). Light is one of the most important factors for seed germination as it initiates stimulation by breaking the 

dormancy period and activating the seed germination process (Foschi et al., 2022). Some seeds germinate in the dark, 

others need a certain amount of light, while others germinate equally well in both darkness and light (Vatistas et al., 

2024; Bu et al., 2017). 

Enhanced microgreen production relies on healthy seeds with high germination rates. The aim of this study is to 

investigate whether different light spectra influence seed germination rates and if faster germination can be achieved 

with a specific spectrum or lighting treatment. The species studied were cabbage and arugula seeds, which are widely 

cultivated microgreens. The objective is to find better lighting management practices to increase overall production 

yield. 

2. Material and Methods 

2.1. Seedling growth for germination comparison 

The studied leafy greens were cabbage (Brassica oleracea var. capitate) and arugula (Eruca vesicaria ssp. sativa), 

and their growth took place in a growth chamber with controllable conditions. The temperature inside the growth 

chamber varied between 19-21 oC during the day and 16-18 oC during the night. Twenty seeds from each plant were 

placed in small square plastic containers (12x12x5 cm) and absorbent paper saturated with water was used as a 

substrate. The relative humidity in the growth area varied between 80% and 90% and was maintained at these levels by 

using a transparent film to cover the containers. 

2.2. Photoperiods and different spectra 

An initial sowing was conducted under dark conditions to compare its effect on seed germination. The experiments 

were conducted with photoperiods of 4, 8, and 16 hours, and using 9 different light spectra. The studied spectra were 1) 

UV (peak 364nm), 2) blue (peak 448nm), 3) green (peak 516nm), 4) orange (peak 594nm), 5) red (peak 630), 6) farred 

(peak 729nm), 7) combination of blue and red, 8) combination of blue-red-farred and 9) cool-white LED. Each light 

treatment had duration of 7 days (168 hours). The intensity of each spectrum was measured in photosynthetic photon 

flux density (PPFD) units using a spectroradiometer (UPRTEK PG200N). The peak point of each spectrum was 

measured also with the spectroradiometer. PPFD units was equal to 30 μmol/m2/s for each spectra, except UV which 

was equal to 0,29 μmol/m2/s. 

 

Table  1. Abbreviations of experiments. 

 

2.3. Microgreens production 

Microgreens were cultivated in plastic containers with holes at the bottom, placed above another plastic container to 

collect irrigation water. The soil used as a substrate consisted of composed of peat, plant residues, and organic fertilizer. 

For both plants studied, a quantity of 0.85 grams of seeds was used per container. The cultivation of microgreens was 

carried out using three different methods for each plant. In the first case, seeds were placed in darkness for 3 days and 

 Spectra 

Photoperiod UV Blue Green Orange Red Farred 
Blue-

Red 

Blue-

Red-

Farred 

Cool-

White 

4 hours 4hUV 4hB 4hG 4hOr 4hR 4hFR 4hBR 4hBRFR 4hCW 

8 hours 8hUV 8hB 8hG 8hOr 8hR 8hFR 8hBR 8hBRFR 8hCW 

16 hours 16hUV 16hB 16hG 16hOr 16hR 16hFR 16hBR 16hBRFR 16hCW 
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then exposed to artificial lighting with a blue-red-far-red spectrum for 16 hours photoperiod, for both plants. In the 

second case, they were directly placed under the aforementioned lighting treatment. This lighting combination was 

chosen because it produced seedlings with the highest dry:fress weight (DW:FW)  biomass ratio, for both plants. In the 

third case, for cabbage, seeds were placed under blue spectrum lighting for 5 days and for 16 hours photoperiod and 

then under 16 hours of blue-red-far-red spectrum, while for arugula, the initial lighting was 8 hours under green 

spectrum for 5 days also. The selection of the initial lighting treatment was based on the treatment that gave the highest 

final percentage of germination and root development in a shorter period of time. The intensity of the growth spectrum 

was 120 μmol/m2/s. The overall cultivation of microgreens lasted 12 days from seeding to harvest. 

2.4. Measurements and Analysis 

The initial measurements involved recording the number of seeds that developed roots and the time it took after 

sowing to grow the first observed root. Next, the number of seeds that developed shoots was recorded. At the end of 

each treatment the developed shoots and leaves were collected and weighed in order to measure their fresh biomass. 

The fresh biomass was placed in a drying oven for 24 hours at 80 oC, and then the dry biomass was weighed. Finally, 

the ratio of dry to fresh biomass was calculated. This procedure was carried out both for the seedlings grown during the 

comparison of different spectra, and for the microgreens grown in the next stage of the experiment. 

The weighing for each treatment was conducted based on the biomass produced by the seeds that successfully 

developed a shoot. Therefore, the mass diagrams generated represent the total biomass produced per container and per 

20 seeds. Descriptive analysis was employed for the comparison of the produced biomasses, utilizing the SPSS 

statistical package. 

 

3. Results and Discussion 

The germination percentages for cabbage seeds under each lighting treatment, as well as in dark conditions, are 

presented in Table 2. Additionally, Table 2 presents the percentages of seeds that developed a shoot by the end of the 

treatment period (168 hours), as well as the time required for the first root development to be observed under each 

lighting condition. 

Table  2. Percentages of root-shoot development and first root appearance, for all lighting treatments of cabbage. 
 4 hours 8 hours 16 hours 

 Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Dark    10 5 96    

UV 30 25 72 55 45 72 10 10 72 

Blue 10 10 96 25 25 72 55 55 72 

Green 25 25 96 45 15 48 25 20 96 

Orange 35 30 72 25 10 72 40 40 72 

Red 10 5 72 30 15 96 35 30 72 

Farred 25 25 48 30 15 96 15 10 72 

BR 20 15 72 45 20 72 25 25 72 

BRFR 35 35 72 20 20 72 15 5 120 

CoolWhite 15 10 72 50 35 72 25 25 72 

 

As shown in Table 2, the lowest germination percentage observed was 10%. This resulted from the treatment in dark 

conditions, with the Blue and Red spectrum at 4 hours of photoperiod, and at 16 hours for the UV spectrum. The 

highest rates were observed in the treatments 8hUV and 16hB, equal to 55%. At 4 hours of photoperiod, the 

germination percentages ranged from 10% (Blue, Red) to 35% (Orange, BRFR). At 8 hours photoperiod ranges from 

20% (BRFR) to 55% (UV) and at 16 hours from 10% (UV) to 55% (Blue). The percentages of seeds that managed to 

develop a shoot ranged from 5% (Red) to 35% (BRFR) for the 4-hour photoperiod, from 10% (Orange) to 45% (UV) 
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for the 8-hour photoperiod, and from 10% (UV) to 55% (Blue) for the 16-hour photoperiod. The dark treatment also 

gave a low rate of shoot development, as expected from the low germination rate obtained, equal to 5%. Regarding root 

development time, the shortest duration was observed in the 4hFR and 8hGr treatments, at 48 hours, while the most 

delayed root development occurred at 120 hours in the 16hBRFR treatment. 

The results indicate that lighting yields significantly better results compared to dark conditions for cabbage seeds. 

Among the studied photoperiods, Orange and BRFR lighting were more efficient for short photoperiods, UV for 

medium durations, while blue lighting demonstrates greater efficiency for longer photoperiods. 

 

 
Figure 1. Fresh weight (FW), dry weight (DW) and ratio of fresh weight to dry weigh (FW:DW) of seedlings biomass 

produced from each lighting treatment of cabbage seeds. Biomass corresponds to the total produced by those of the 20 

seeds that developed a shoot in each treatment. 

As can be seen from the diagrams in Figure 1, the values in the produced biomasses of cabbage seedlings exhibit 

several differences both between the spectra and between the different exposures of the seedlings to the same lighting 

spectrum. The highest fresh biomass was produced in the 16hB treatment, measuring 232.1 mg, which also had the 

highest percentage of developed seedlings. In contrast, the lowest amount of fresh biomass was produced in the 16hUV 

treatment, measuring 22.4 mg.  

Seedlings grown under low photoperiods exhibited increased shoot length, suggesting the occurrence of 

scotomorphogenesis, where seedlings elongate to reach light. Consequently, the lowest ratio of dry to fresh biomass was 

observed in almost all spectra for the 4-hour photoperiod. With increasing photoperiod, the length of the developed 

seedlings decreased by almost half compared to those exposed to 4 hours of light. The DW:FW biomass ratios were 

higher in longer photoperiods, indicating an increase in dry biomass and, consequently, an increase in biochemical 

reactions within the plant. Specifically, the highest dry biomass was produced in the 16hB treatment, measuring 33 mg, 

followed by the 16hOr treatment, which produced 17.6 mg. High values were also observed with the B-R and Cool 

White spectra, each yielding 15.5 mg of dry biomass under the 16-hour photoperiod. The lowest dry biomass 

production was observed in the 16hUV treatment, measuring 1.6 mg, with only 10% developed shoots. 

Dry-to-fresh biomass ratios ranged from 0.05 for the 4hG treatment to 0.18 for the 16hBRFR treatment. High ratios 

were also observed for the 8hBRFR treatment at 0.17, the 16hCW treatment at 0.16, and the 16hBR and 16hB 

treatments, both at 0.14. 

Table  3. Percentages of root-shoot development and first root appearance, for all lighting treatments of arugula. 
 4 hours 8 hours 16 hours 

 Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Root 

(%) 

Shoot 

(%) 

1st root 

(h) 

Dark    65 55 48    
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UV 65 65 24 70 60 24 75 60 24 

Blue 70 70 24 75 25 24 70 50 24 

Green 75 75 24 90 75 24 70 70 24 

Orange 75 65 24 65 50 24 75 65 24 

Red 70 65 24 85 70 24 65 55 24 

Farred 75 70 24 60 50 24 85 80 24 

BR 65 65 24 70 70 24 75 55 24 

BRFR 70 70 24 75 75 24 60 60 24 

CoolWhite 85 65 24 70 60 24 50 25 24 

 

As Table 3 indicates, the lowest percentage of arugula seed germination was observed in the 16hCW treatment, at 

50%. Next lower percentage was for the same photoperiod and the BRFR spectrum, and for 8hFR treatment, equal to 

60%. In all other treatments, germination percentages ranged from 65% to 90%. Specifically, at the 4-hour photoperiod, 

the percentages were 65% (UV, BR), the lowest, and 85% (Cool White), the highest. In the 8-hour photoperiod, the 

percentages ranged from 60% (Farred) to 90% (Green), which is the highest percent of all treatments, while at 16 hours 

they ranged from 50% (CoolWhite) to 85% (Far Red). Corresponding percentages of shoot growth ranged from 65% 

(UV, Orange, Red, BR, Cool White)), for most of the 4-hour photoperiod lighting spectra, to 75% (Green). In the 8-

hour photoperiod, the 4hB treatment presented a fairly low percentage, equal to 25%, while for the rest of the spectrum, 

the percentages ranged from 50% (Orange, Farred) to 75% (Green, BRFR). Also, for the 16-hour photoperiod and Cool 

White lighting, a low percentage equal to 25% was observed, while for the rest of the spectrum, the percentages ranged 

from 50% (Blue) to 80% (Far Red). The corresponding figure for growth in the dark was 55%. For all the lighting 

treatments studied, the first root development was observed within the first 24 hours, while in the dark, root 

development was observed after 48 hours. 

Based on the germination results, lighting significantly enhances the speed of root growth compared to darkness. 

Overall, germination rates are high in most of lighting treatments. Specifically, Green spectrum for 8 hours proves to be 

the most efficient, while Cool White spectrum performs optimally under shorter photoperiods (4 hours). Additionally, 

Farred spectrum shows increasing efficiency with longer photoperiods, reaching peak effectiveness at 16 hours. 
 

 

Figure 2. Fresh weight (FW), dry weight (DW) and ratio of fresh weight to dry weigh (FW:DW) of seedlings biomass 

produced from each lighting treatment of arugula seeds. Biomass corresponds to the total produced by those of the 20 

seeds that developed a shoot in each treatment. 

Arugula seedlings, similar to cabbage seedlings, developed longer shoots under low photoperiods and shorter shoots 

under a 16-hour photoperiod. The lowest value of fresh biomass was observed in the 16hCW treatment, measuring 45.7 
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mg, which also had the lowest dry biomass at 5.7 mg. The highest fresh biomass was produced in the 8hG treatment, 

measuring 190.5 mg, which also had the highest percentage of germination. The highest production of dry biomass 

occurred in the 16hBRFR treatment, measuring 18.12 mg, and this treatment also exhibited the highest ratio of dry to 

fresh biomass at 0.15. High values of dry biomass were also observed in treatments 8hR, at 16.66 mg, and 8hBR, at 

16.94 mg. The remaining dry biomass values, apart from those mentioned above, ranged from 8.3 mg (16hUV) to 15.68 

mg (16hFR). The highest DW:FW biomass ratios were observed for all spectra at the 16-hour photoperiod, ranging 

from 0.09 (Green spectrum) to 0.15 (BRFR spectrum). 

Table  4. Produced microgreen biomasses of cabbage and arugula for the three investigated methods. 

 Cabbage Arugula 

 FW (mg) DW(mg) DW:FW FW (g) DW(g) DW:FW 

1st method 1455 139 0.096 9.75 1.2 0.123 

2nd method 1615 148 0.092 9.74 1.26 0.129 

3rd method 2189 173 0.079 10.93 1.46 0.134 
1st method is the same for both cabbage and arugula: 3 days in darkness followed by 9 days in 16hBRFR treatment. 

2nd method is the same for both cabbage and arugula: 16hBRFR treatment from the beginning and for 12 days. 
3rd method: for cabbage was 5 days in 16hB treatment followed by 7 days in 16hBRFR treatment and for arugula was 5 days in 8hG treatment 

followed by 16hBRFR treatment. 

Table 4 presents the values for cabbage and arugula microgreens grown using three different methods. For cabbage, 

the first method with initial exposure to darkness,  yielded the least fresh and dry biomass, while the third method, with 

initial exposure to lighting spectrum with the highest percentage of germination, resulted in the highest production of 

both fresh and dry biomass. The fresh biomass produced in the third method was 50.44% higher than that of the first 

method and 35.54% higher than that of the second method. The corresponding percentages for the dry biomass 

produced were 24.46% and 16.9% respectively. The ratio of DW:FW biomass for the third method was the lowest 

observed among the three, equal to 0.079.  

In the case of arugula, the third method also yielded higher results compared to the other two, with the highest ratio 

of DW:FW biomass, equal to 0.134. The produced fresh biomass measured 10.93 g, which was 12.1% higher than that 

of the first method and 12.21% higher than that of the second method. Similarly, the dry biomass was 1.46 g, 

representing a 21.7% increase compared to the first method and a 15.9% increase compared to the second method. 

4. Conclusions 

According to the results of the present study, initiating lighting from the beginning of sowing has positive effects on 

the seed germination for both cabbage and arugula. By using an appropriate spectrum and photoperiod, an increase in 

the germination rate can be achieved, as well as a reduction in the germination time of the seeds. Specifically, the 

treatment involving a 16-hour photoperiod with a blue spectrum demonstrated higher results for cabbage, with root and 

shoot growth reaching 55%. As for arugula, optimal results were observed in the treatment with an 8-hour photoperiod 

using a green light spectrum, resulting in root development in 90% of the seeds and shoot development in 75%. 

After germination, the biomass of the seedlings is significantly influenced by the quality of the lighting they are 

exposed to. The combination of Blue-Red and Farred spectra, along with a 16-hour photoperiod, resulted in the highest 

dry-to-fresh biomass ratios for both plants studied. Pre-treating seeds with suitable lighting can significantly increase 

the percentage of seedlings that develop, while subsequent exposure to appropriate lighting can notably enhance final 

production. According to the results, different seeds respond differently to light spectra and photoperiods, highlighting 

the need for tailored and individualized treatments for each species. 
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Abstract 

The Plants in ambient conditions are subject to dealing with biotic and abiotic stresses. Water deficit, being an 

abiotic stress, causes changes in plants that make them respond in several ways, such as reduced growth, leaf 

senescence and lower fruit growth rate, production of Reactive Oxygen Species (ROS), caused by a deficiency in the 

dissipation of energy due to impaired photosynthesis. The application of silicon becomes an alternative to mitigate the 

effects of this stress on plants, being deposited in the cell wall, providing rigidity, and increasing the plant's defense 

enzymes. The study aimed to understand the morphological, physical, and post-harvest responses of mini watermelon 

according to different soil humidity associated with the foliar application of silicon. The study was conducted in a 

greenhouse using the mini watermelon cv. Sugar Baby. The experimental design was in randomized blocks, in a 3x2 

factorial scheme, with three water tensions in the soil (-35 kPa without water deficit, -50 kPa moderate water deficit, 

and -65 KPa severe water deficit) and two doses of foliar Si (0 and 1.5 g L-1), with four repetitions. The variables plant 

length, stem diameter and shoot dry mass, root dry mass, total soluble carbohydrates, proline, gas exchange, and post-

harvest analyses were analyzed. There was a significant difference for the variables (p>0.05), but there was no 

interaction between tension and Si. Proline levels were not statistically significant. The water deficit promoted shorter 

plant length, aerial part dry mass, root dry mass and Si provided greater stem diameter. For biochemical variables, 

water deficit caused a higher carbohydrate content in the leaf and lower gas exchange rates. Si influenced skin thickness 

and average fruit weight. Thus, SI proves to be a strategy for cultivating mini watermelon in conditions of deficient 

water application.  

Keywords: sustainability, irrigation management, efficient use of water, plant nutrition, micronutrient 

1. Introduction 

Plants under environmental conditions are subject to dealing with biotic and abiotic stresses. Water deficit, being 

a possible abiotic stress, causes changes in plants that make them respond in several ways (SELEIMAN, et al., 2021). 

At a visual level, reduced growth, leaf senescence, and lower fruit growth rate (VOLSCHENK, 2021). And at the 

molecular level, where the plant produces Reactive Oxygen Species (ROS), caused by a deficiency in energy 

dissipation due to impaired photosynthesis (MILLER et al., 2010). Blum (2011) says that water deficit occurs when 

the water supply is less than the crop's demand. To mitigate the effects of water deficit on plants, an alternative is the 

use of silicon (Si), which, associated with water stress, provides a lower rate of transpiration, but at levels that do not 

affect cellular metabolism and rather help with the efficiency of water use. water through the plant (MAJUMDAR and 

PRAKASH, 2020). In addition to structural benefits such as deposition in the cell wall, providing rigidity, Si acts in 

conjunction with the antioxidant system, contributing to its increase and protecting the plant from oxidative stress (SHI 

et al., 2016). 

The benefits of Si have been highlighted over the years, and despite not being considered essential, it has been 

recognized as a relevant nutrient for several crops, playing an important role in adverse situations that the plant may 

experience, such as biotic and abiotic stresses, which trigger morphological and physiological changes. Furthermore, 

another benefit is that nutrition with silicon can reduce the use of fungicides and pesticides (KOVÁCS et al., 2022). 

Epstein (1994) already said that Si is an anomalous element, due to its non-essentiality, however, when available to 

the plant, it presents advantages for it. 

Watermelon cv. Sugar Baby (Citrullus lanatus) is a vegetable-fruit belonging to the cucurbitaceae family, which 

requires a large amount of water during its cycle. In the initial stages with 2 to 3 true leaves and when the first flowers 

and fruits appear, it consumes around 170ml and 250ml of water per day, respectively in each phase 

(KHURRAMOVNA and OGLI, 2022). This vegetable-fruit is grown mainly in semi-arid regions around the world. 

Counting on the help of irrigation during times of greater water deficiency, its production is sustained (MELO et al., 

2020). Thus, aiming to reduce the amount of water used and thinking about the scenario of water variations, this 

research aimed to understand the morphological, physical, and post-harvest responses of mini watermelon according 

to different soil humidity associated with the foliar application of silicon. 
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2. Materials and Methods  

The research was conducted in two cycles cultivating the watermelon cv. Sugar Baby (Citrullus lanatus) in a 

greenhouse located at (16º59’61”23 S e 49º27’99”06 W). The experimental unit consisted of cultivation in 3-liter pots, 

filled with soil samples with the following attributes: fertility;; pH= 5.3, P (Mehl)= 1.5 mg dm-3 , H + Al= 1.9 cmolc 

dm-3, K= 77 mg dm-3, Ca= 280 mg dm-3, Mg= 60.75 mg dm-3, matter organic: 1.2 , and cation exchange capacity 

(CEC)= 4.0 cmolc dm-3; and physical composition of 43% sand, 15% de silt and 42% clay. After homogenizing the 

soil, sowing took place directly in the pots and the water deficit began when the plants reached the 3rd definitive leaf. 

The experiment was designed in randomized blocks with treatments arranged in a 3 x 2 factorial scheme, 

corresponding to three water tensions in the soil: -35, -50 and -65 kPa and presence or absence of Si applied to the 

leaves: 0.0 (control) and 1.5 g L-1. Irrigation was carried out by drip, starting when the soil water potential reached -

35, -50 and -65 kPa and ending when the potential reached -15, -25 and -35 kPa respectively. Being maintained 

throughout the crop cycle.  

Biometric analyzes were carried out based on the standardization of plants at the vegetative stage (30 Days After 

Emergence). Plant height was measured from the base of the plant to the apex of the main stem, using a tape measure, 

and the diameter of the stem was measured at the base of the plant using a manual caliper (BEZERRA, 2017). Other 

parameters such as dry mass of the aerial part (stem and leaves) and dry mass of the root were measured by collecting 

3 plants from each plot, drying them in an oven at 65º C until constant mass (CAMPAGNOL et al., 2012). 

The post-harvest analyzes carried out were number of fruits per plant (NFP); average fruit weight (AFW); shell 

thickness (ST); pulp thickness (PT); fruit length (FL) and diameter (FD), hydrogen potential (Ph) and Soluble Solids 

(BRIXº). The NFP was obtained by adding the number of fruits in each plot divided by the number of plants in the 

plot. The AFW was measured by weighing all the fruits individually on a digital scale, which were then added together 

and divided by the number of fruits harvested, Ribeiro (2015). The thickness of the peel comprises the region that goes 

from the epidermis to the transition zone of pulp color (white-red) and was measured with a manual caliper, as well as 

the thickness of the pulp from the transition zone (white-red) to the center of the fruit (SILVA, et al., 2017). The length 

and diameter were measured with a manual caliper, including measurements from the peduncle to the apex of the fruit 

and the middle part of the fruit (SILVA, 2014). pH was measured following the Adolfo Lutz Institute methodology 

(1985). While Brixº was measured from watermelon juice in a digital refractometer (NRB-01, Next Instrumentos).  

The data were subjected to Tukey mean test analysis at 5% probability using the AgroEstat® statistical software. 

3. Results and Discussion 

Tables 1 and 2 present the results of the analysis of variance for the variables plant length, stem diameter, shoot 

dry mass (SDM) and root dry mass (RDM), respectively, for the first and second cycle. Table 3 presents the results of 

post-harvest analyses. 

 

Tabela 1. ANOVA summary of the biometric variables of the first cycle, that is, plant length (m), stem diameter 

(mm), Shoot Dry Mass (SDM) and Root Dry Mass (MSR). 

Treatment Biometric Analyzes 

Plant Lenght (m) Stem Diameter (mm) DM (g) RDM (g) 

Water tension in the soil (kPa) 

-35 2.32a 6.16a 73.91a 3.97a 

-50 1.99b 5.86a 68.67a 2.92b 

-65 2.00b 5.86a 38.98b 1.41c 

F 6.94** 1.33ns 44.23** 38.41** 

Doses of Si (g L -1)  

0.0 1.86b 5.73a 56.45b 2.48b 

1.5 2.35a 6.19b 64.59a 3.06a 

F 33.96** 6.98* 6.20* 6.00** 

Interaction kPa x Si 

F 1.43ns 2.28ns 3,49ns 0.26ns 

Overall Average 2.10 5.96 60.52 2.77 

CV 9.7 7.12 13.23 21.17 

(*) Significant at 5% by F test; (**) significant at 1% by F test; (ns) not significant at 5% by F test. Values followed 

by different lowercase letters in the same column differ significantly at 0.05. 

No significant effect was observed in the interaction of soil water tension and Si application on all biometric 

variables in both cultivation cycles. Length, shoot dry mass and root dry mass showed significant effects in the first 

cycle for water tension and Si demonstrated effects on all biometric parameters. In the second cycle, the analysis 

indicated significant effects of voltage variation on all biometric parameters, while the presence of silicon (Si) did not 
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demonstrate any influence on these effects. It is observed that the growth in length was directly proportional to water 

availability. Furthermore, there was a significant increase in plant length when Si was applied, resulting in a percentage 

increase of 27.71% compared to plants without silicon. However, in the second cycle, only tension was shown to 

influence the length of the plants, with the highest tensions (-35kPa and -50 kPa) being responsible for the greatest 

lengths. 

 

Tabela 2. ANOVA summary of the biometric variables of the first cycle, that is, plant length (m), stem diameter (mm), 

Shoot Dry Mass (SDM) and Root Dry Mass (MSR). 

Treatment Biometric Analyzes 

Plant Lenght (m) Stem Diameter (mm) DM (g) RDM (g) 

Water tension in the soil (kPa) 

-35 1.44a 

1.29a 

0.95b 

11.50** 

5.85a 54.39a 1.20a 

-50 5.47a 51.35a 1.00 

-65 4.18b 27.11b 0.81 

F 47.08** 38.81** 5.41* 

Doses of Si (g L -1)  

0.0 1.14a 

1.31a 

4.21ns 

5.02a 41.51a 1.04a 

1.5 5.31a 47.06a 0.97a 

F 3.59ns 4.01ns 0.54ns 

Interaction kPa x Si 

F 0.11ns 

1.22 

17.03 

1.09ns 0.72ns 1,60 

Overall Average 5.17 44.29 1,00 

CV 6.95 15.32 23,64ns 

(*) Significant at 5% by F test; (**) significant at 1% by F test; (ns) not significant at 5% by F test. Values followed 

by different lowercase letters in the same column differ significantly at 0.05. 

For stem diameter, the significant effect was expressed in the treatment with Si application, in the first cycle, 

obtaining an increase of 8.02% in relation to the treatment without Si application. In the second cycle, the variable that 

affected the increase in diameter was tension, with the -65 kPa tension being the one that resulted in the smallest 

diameter of the stem. That is, the presence of Si in the second cycle, possibly due to the accumulation of phytoliths 

along the cell wall, reduced the effect of water deficit. This fact was evidenced by Yan et al. (2021) and Lux et al., 

(2020) who confirmed the deposition of Si throughout the endodermis of the rice root, consequently the water deficit 

led to the accumulation of Si in the endodermis and cell wall as a response to the stress suffered by the plant. 

The dry weight of the shoot was influenced by tension, showing that the increase in water deficit resulted in a 

reduction in the dry weight of the shoot. Plants with the application of silicon (Si) had a significant increase of 14.40% 

in dry weight, compared to plants without Si, in the first cycle. Si treatments were shown to significantly attenuate the 

reduction in MSPA and MSR loss in response to the increase in water deficit. Corroborating Wang et al. (2015), in 

cucumber plants, where they found a higher proportion of root: shoot in plants that had Si applied, also suggesting that 

the greater water absorption was due to the addition of Si. Souri et al. (2021) reports studies carried out in which they 

believe that the greater turgor of cells is due to the binding of Si to hemicelluloses in plant cell walls. This fact explains 

the high correlation of these variables where the plant changes its root structures to absorb a greater amount of water 

(STROCK et al., 2020). For the variable root dry mass, the different water potentials differed from each other, with 

the highest and lowest root values, respectively, at a tension of -35 kPa and the lowest value at a tension of -65kPa. 

The Si dose provided an increase in root dry weight. However, for the second cycle, as occurred with MSPA, the dry 

mass of the root was influenced only by water tension, obtaining lower dry mass at the tension of -65kPa. 

Average fruit weight reduced significantly in response to the deficit, compared to the control treatment (-35 kPa). 

The same happened for the Si dose, where the dose influenced the average weight, increasing the value at a dose of 

1.5 g L-1. For the average values of shell thickness, there was an interaction between tension and Si dose. The 

availability of water provided a higher value of shell thickness at a tension of -65 kPa with Si application, but the 

deficit treatment was equivalent to the treatment control. As for pulp thickness, only the different tensions had an 

influence, presenting significantly higher values for the control treatment (-35 kPa), however, statistically both the 

moderate tension and the deficit tension presented similar results, showing an equality in these treatments. The tension 

with the greatest deficit (-65 kPa) did not show a significant difference when compared to the moderate tension of -50 

kPa for the evaluations of fruit diameter and length. The control treatment (-35 kPa) showed a higher value of fruit 

length and diameter. 
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Tabela 3. ANOVA summary of the postharvest parameters, number of fruits per plant (NFP), average fruit weight 

(AFW), shell thickness (ST); pulp thickness (PT); fruit length (FL) and diameter (FD), hydrogen potential (Ph) and 

Soluble Solids (BRIXº) and e texture (Text). 

Treatment Postharvest Parameters 

NFP PMF EC EP CF DF pH Brixº Text  

Water tension in the soil (kPa) 

-35 2.25a 0.40a 6.20a 41.08a 94.50a 99.67a 6.88a 6.81a 12.14a   

-50 2.25a 0.21b 4.45b 31.84b 69.58b 76.09b 6.56ab 6.20a 9.87a   

-65 2.12a 0.15c 5.62ab 30.09b 68.67b 77.92b 6.33b 4.96b 10.92a   

F 0.05ns 82.79** 4.77* 9.27** 53.92** 21.18** 5.37* 19.39** 2.99ns   

Doses of Si (g L -1) 

0.0 2.33a 0.23b 4.80b 33.83a 76.27a 84.02a 6.55a 6.06a 11.17a   

1.5 2.08a 0.28a 6.04a 35.38a 78.89a 85.10a 6.53a 5.92a 10.78a   

F 0.41ns 10.85** 6.80* 0.53ns 1.29ns 0.11ns 0.88ns 0.34ns 0.25ns   

 Interaction kPa x Si 

F 0.14ns 0.03ns 5.26* 0.16ns 1.74ns 0.19ns 0.25ns 3.37 ns 0.08ns   

Overall Average 2.20 0.25 5.42 34.60 77.58 84.56 6.59 5.99 10.98   

CV (%) 43.42 15.70 18.47 13.07 7.27 9.53 4.41 8.74 16.91   

(*) Significant at 5% by F test; (**) significant at 1% by F test; (ns) not significant at 5% by F test. Values followed 

by different lowercase letters in the same column differ significantly at 0.05. 

Average fruit weight reduced significantly in response to the deficit, compared to the control treatment (-35 kPa). 

The same happened for the Si dose, where the dose influenced the average weight, increasing the value at a dose of 

1.5 g L-1. For the average values of shell thickness, there was an interaction between tension and Si dose. The 

availability of water provided a higher value of shell thickness at a tension of -65 kPa with Si application, but the 

deficit treatment was equivalent to the treatment control. As for pulp thickness, only the different tensions had an 

influence, presenting significantly higher values for the control treatment (-35 kPa), however, statistically both the 

moderate tension and the deficit tension presented similar results, showing an equality in these treatments. The tension 

with the greatest deficit (-65 kPa) did not show a significant difference when compared to the moderate tension of -50 

kPa for the evaluations of fruit diameter and length. The control treatment (-35 kPa) showed a higher value of fruit 

length and diameter. 

Si applied via foliar was accumulated in greater quantities in the control treatment, but its effects were widely 

expressed in the deficit treatments. The deficit reduced the accumulation of this element in the aerial part of the plants, 

but treatments containing Si were shown to attenuate the effects of water deficit. Si influenced PMF and EC, these 

factors were probably affected by the addition of phytoliths, as was the case with the increase in stem diameter. Kovács 

et al. (2022) states that accumulation occurs beyond the primary cortex of the root, in the epidermis of the leaf, but 

also in the pericarp of the fruit. Mitani et al. (2011) also confirmed the accumulation of this element in the skin of 

pumpkin fruits, indicating better post-harvest quality. 

4. Conclusions 

The water tension in the soil affects plant development and the quality of watermelon cv. Sugar Baby (Citrullus 

lanatus) fruits. 

The application of silicon promotes beneficial effects due to lack of water during cultivation. 
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Abstract 

Peat is a bedding material regularly used in Dutch broiler farms. It has a relatively low pH due to humid 

compounds/acids produced by soil bacteria under low oxygen levels, which may potentially reduce ammonia 

emissions. A study was conducted in experimental broiler houses with fast-growing broilers (Ross 308) to 

determine the potential of peat bedding in reducing ammonia emissions in broiler production compared with 

wood shavings, the mixture of wood shavings and peat, and straw pellets bedding, with attention to litter 

characteristics, animal production and animal welfare (footpad lesions and hock dermatitis). Measurements 

were done with 42,800 broilers during two rounds from September 2022 to February 2023. Results showed 

that peat had an ammonia emission of 12.81 (g animal place-1 year-1), which was significantly (P < 0.001) 

higher than wood shaving (4.75 g animal place-1 year-1). The bedding material had no influence on the 

production performance (body weight, growth rate, feed conversion ratio, mortality) of broilers and the final 

litter composition (total N, ammonium N, P, K, ash, dry matter content, pH). However, broilers kept on peat 

bedding had fewer footpad lesions and hock dermatitis than broilers kept on wood shavings. It can be 

concluded that peat as a bedding material cannot reduce ammonia emissions from broiler houses compared 

with wood shavings, probably due to the drier and more friable litter, but it can improve animal welfare. 

Keywords: Broiler, peat, wood shaving, ammonia emission 

1. Introduction 

In Europe, various materials are used as bedding in broiler houses and wood shaving is one of the most 

common materials. Since the poultry industry constantly seeks methods to enhance animal welfare, peat is 

regularly used as bedding materials in the Netherlands in recent years since it can reduce the incidence of 

footpad lesions (Kaukonen et al., 2017). As the need to reduce ammonia emissions in broiler husbandry 

grows, the idea arose that peat as a litter material could potentially reduce ammonia emissions from broiler 

houses. Peat has a relatively low pH of 3.5 to 4.2 due to humid compounds/acids produced by soil bacteria 

under low oxygen levels (Agroveen, 2022a; 2002b). This can shift the ammonia–ammonium) equilibrium 

towards ammonium, which is non-volatile, potentially reducing the evaporation of ammonia from the 

bedding material and thus the ammonia emission from the broiler house. It is also claimed that peat has a 

higher absorbent capacity of water, brings a lower incidence of footpad lesions and a better indoor air quality 

compared with wood shavings (Agroveen, 2022a; 2002b). A study was conducted to determine the potential 

of peat bedding in reducing ammonia emissions, compared with wood shavings, straw pellets and a 

combination of wood shavings and peat. Furthermore, the effects of bedding materials on personal dust 

(PM10) exposure, technical performance of the broilers, footpad lesions, hock dermatitis, litter quality and 

composition were studied. 

2. Materials and Methods  

2.1. General design 

The study was conducted in two experimental broiler barns (barn ABCD and barn E) of the Experimental 

Poultry Centre in Geel, Belgium from September 2022 to February 2023. A total number of 42,800 day-old 

fast-growing broilers (Ross 308) were housed with a density of 20.4 animals/m2 for 40 days for two 
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production rounds. Four types of bedding materials were applied across the rooms (randomly assigned): 

wood shavings (WS, control, 1.0 kg/m2), peat (PE, 1.5 kg/m2), straw pellets (SP, 1.5 kg/m2), the mixture of 

wood shavings and peat (WS+PE, 0.5 kg/m2 + 0.75 kg/m2).  

Barn ABCD consists of 4 mechanically ventilated rooms (A, B, C and D) of 300 m2 (length 18.75 m, 

width 16 m). Each room is divided into 4 pens of 75 m2, separated by fences. Barn E comprises 8 

mechanically ventilated rooms (E1 to E8). Each room covers 112.5 m2 (length 18.75 m, width 6 m) and is 

divided into 2 pens of 56.25 m2, separated by fences.  

In barn ABCD, only peat and wood shavings were compared (2 rooms * 2 rounds = 4 replicates per 

bedding material). In barn E, all four beddings were compared (2 rooms * 2 rounds = 4 replicates per litter 

type). Therefore, wood shavings and peat were replicated 8 times in total, while straw pellets and the mixture 

of wood shavings and peat were replicated 4 times. Aerial, litter, and animal variables were measured by 

different methods throughout the production rounds on multiple days (summary in Table 1).  

Table 1. Variables and measurement methods. 

Variable  Measurement method Unit  Days (0-40)1  

Emission     

NH3 Wet chemical method; Dräger 

Polytron P8100 sensor; FTIR6 

analyser (Gasmet CX4000) 

ppm Continuously2 

25, 31 (1st round); 11, 18, 25, 34 

(2nd round)3 

CO2  Lung method; Vaisala GMP252 (0-

5000 ppm) sensor; FTIR analyser 

(Gasmet CX4000) 

ppm Continuously4 

25, 31 (1st round); 11, 18, 25, 34 

(2nd round)5 

Personal PM10 exposure DustTrak™ II Aerosol Monitor mg m-3 21, 25, 28, 32, 35 (1st round); 

11, 18, 22, 25, 34, 36 (2nd 

round) 

Environmental condition    

Temperature  Vaisala HMP60 sensor for barn 

ABCD; Fancom temperature sensor 

standard for barn E 

oC Continuously 

Relative humidity  Vaisala HMP60 sensor for barn 

ABCD; Fancom RV sensor RHM.2 / 

RHO.2 for barn E  

% Continuously 

Ventilation rate Fan-wheel anemometers (Fancom 

ATM35 and ATM80), CO2 mass 

balance method  

m3 h-1 Continuously  

Bird performance     

Mortality (MRT) Visual inspection, counting % Daily  

Body weight  Automatic weighing device g Daily  

Average end body weight 

(weighing of all birds delivered 

to slaughterhouse, BW) 

Manual weighing g 40 

Total body weight growth 

(BWG) 

Calculation g 40 

Average daily feed 

consumption (ADFC) 

Feed weighing system kg d-1 room-

1 

Daily 

Average daily water 

consumption (ADWC) 

Water meter L d-1 room-1 Daily 

Water:feed ratio (WFR) Calculation  - - 

Daily body weight growth rate 

(dBWG) 

Calculation  g d-1 - 

Feed conversion ratio (FCR) Calculation - - 

Footpad lesions  Visual observation, scoring Score  31, 39 (1st round); 32, 39 (2nd 

round) 

Hock dermatitis Visual observation, scoring Score  31, 39 (1st round); 32, 39 (2nd 

round) 

Litter characteristic     

Dry matter (DM) content Oven-drying, weighing g kg-1 Weekly  

Total nitrogen content NEN-7434 g kg-1 40 

Ammoniacal content NEN-7438 g kg-1 40 
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P content NEN-7435 g kg-1 40 

K content NEN-7436 g kg-1 40 

Ash content NEN-7432 - 40 

pH pH meter - Weekly 

Thickness  Meter cm Weekly 

Floor and litter temperature  Infrared thermometer oC Weekly 

Friability  Visual observation, scoring Score  6, 13, 20, 27, 34, 38 (1st cycle); 

14, 21, 28, 35, 39 (2nd round) 

Wetness  Visual observation, scoring Score  6, 13, 20, 27, 34, 38 (1st cycle); 

14, 21, 28, 35, 39 (2nd round) 
1 Days: Numbers refer to measurement days for two production rounds, otherwise: measurement frequency. 

2 This frequency applies to the Dräger Polytron P8100 sensor and the FTIR Gasmet CX4000 analyser. 

3 Measurement days apply for the wet chemical method. 

4 This frequency applies to the Vaisala GMP252 (0-5000 ppm) sensor; and FTIR Gasmet CX4000 analyser. 

5 Measurement days apply for the lung method.  

6 Fourier Transform Infrared Spectroscopy (FTIR) 

2.2. Animals and management 

In barn ABCD, 6,120 one-day-old broilers (Ross 308, as hatched) were placed per room (24,480 in total, 

1,530 broilers per pen) and in rooms of barn E, 2,300 were placed (18,400 in total, 1,150 broilers per pen). 

The broilers originated from a parent stock of 48 (round 1) and 42 (round 2) weeks of age and were obtained 

from a commercial hatchery (Belgabroed, Merksplas, Belgium). Broilers were delivered to the 

slaughterhouse at 40 days of age, at a live weight of approximately 2.6 to 2.8 kg. Broilers had ad libitum 

access to feed and drinking water. Thinning was done on day 33 (estimated body weight around 2.1 kg, 

male/female were taken randomly) by taking out 1,280 (20.9%) broilers from each room of barn ABCD, 560 

(24.3%) from each room of barn E for round 1, and 1,280 (20.9%) from each room of barn ABCD and 576 

(25.0%) from each room of barn E for round 2.  

All the rooms were pre-heated to 32 oC three days before the broilers arrived to ensure sufficient dryness 

of the bedding materials (around 85%), especially for peat. Ambient temperature was gradually reduced from 

34 oC upon arrival to 20 oC until 40 d. The minimum ventilation rate was set at 1.5 m3 h-1 per kg live weight 

on day 0 and gradually decreased to 0.7 m3 h-1 per kg live weight on day 20, until the end of the trials. The 

ventilation rates increased automatically by a climate computer based on the expected weight development 

and climate inside. When a production round ended, litter was removed and barns were cleaned (wet) and 

disinfected.  

2.3. Measurements of variables 

2.3.1. Ammonia and carbon dioxide concentration 

The ammonia concentration was measured using three methods: wet chemical method (background, room 

E3 and E4), Dräger sensor (all rooms in barn ABCD, room E3 and E4) and FTIR sensor (background, room 

E1 – E8). Dräger and FTIR measurements were calibrated by the wet chemical method for emission 

calculation. 

Carbon dioxide concentrations were measured by: lung method (background, room E3 and E4), Vaisala 

sensor (all rooms in barn ABCD, room E3 and E4) and FTIR sensor (room E1 – E8). Vaisala and FTIR 

measurements were calibrated by the lung method for ventilation rate calculation. 

2.3.2. Litter characteristics  

Litter quality in each room was assessed by a panel of two persons. Friability and wetness were scored 

visually based on a 1 - 10 point scale (van Harn et al., 2017). 

Litter samples were taken every week (100 g litter per sample for day 0, 6/7, 13/14 and 250 g for day 

20/21, 27/28, 34, 38/39). Three samples per pen (near drinking line, feeding line and in-between) were taken 

in 8 out of 16 pens in barn ABCD and 16 pens in barn E (24+48=72 samples per measurement day). Samples 

were dried in an oven at 105 oC for 24 h to determine the dry matter content of the litter (weighed before and 

after oven-drying).  
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At the end of this study, representative samples of the litter were taken. In contrast to the weekly dry 

matter samples, the 6 - 8 samples per room were pooled into one representative sample per (climate) room 

(= treatment). These pooled samples were frozen (-20 oC) and transported to the lab for analysis.  

2.3.3. Footpad lesions and hock dermatitis 

Occurrence and severity of footpad lesions and hock dermatitis were determined before thinning and 

slaughter by an experienced assessor according to the Welfare Quality (WQ) assessment protocol for poultry 

(Welfare Quality®, 2009). Footpad dermatitis and hock dermatitis were scored on a scale from 0 (no lesions) 

to 4 (severe lesions on the foot or hock). 40 animals (20 males/20 females) per pen (in total 24 pens, 8 pens 

from barn ABCD and 16 pens from barn E) were randomly chosen for assessment. 

2.4. Data processing and statistical analysis 

The ventilation rates in barn E were determined directly by fan-wheel anemometers and the ventilation 

rates in barn ABCD were calculated by the CO2 mass balance method (CIGR, 2002). 

The ammonia emission rate E (g per animal place per year) was calculated by the following equation: 

 

𝐸 = ([𝑁𝐻3]𝑜𝑢𝑡𝑙𝑒𝑡 − [𝑁𝐻3]𝑖𝑛𝑙𝑒𝑡) ∗ β ∗ 𝑉′ ∗
24 ℎ𝑜𝑢𝑟𝑠

1 𝑑𝑎𝑦
∗

365 𝑑𝑎𝑦𝑠

1 𝑦𝑒𝑎𝑟
∗

1𝑔

1000𝑚𝑔
∗ 0.82 (1) 

where:  

• [NH3]outlet = NH3 concentration at the outlet of the barn (ppm)  

• [NH3]inlet = NH3 concentration at the inlet of the barn (ppm) 

• β = coefficient of conversion from ppm to mg m-3 for NH3 gas at a certain temperature 

• V’ = ventilation rate (m3 h-1 per animal place) 

• 0.82 (40/49) = vacancy factor  

The experimental unit was each room. All measurements were considered statistically independent. The 

statistical analysis were performed using R (version 4.3.2; R Core Team, 2021) and Genstat (VSN, 2022). 

Bedding material types were identified as the main effect and the barn types as the random effect. The 

normality of the data was checked with the Shapiro-Wilk test. When the data was normally distributed, 

unbalanced one-way ANOVA was performed. In case of a significant effect, the Bonferroni post-hoc test 

was used to determine the significant differences between groups. When the data was not normally distributed 

(non-parametric data), the data was converted to a logarithmic scale. All differences were declared 

statistically significant at a P-value < 0.05. Results are reported as least square means and standard error 

MEAN ± SE. 

3. Results and discussion 

3.1. Litter quality and litter composition 

Figure 1 presents the friability and wetness of the litter. Peat had significantly higher friability scores than 

wood shavings on day 20-21, indicating more friable litter (better litter quality). On day 34-35, peat and straw 

pellets had higher friability scores than wood shavings. From day 27-28 and on, 70% - 90% of the litter was 

caked. Moreover, the litter was wet and could be pressed into ball shapes. No interactions between barns and 

bedding materials were found. 

Table 2 shows the average litter DM content, litter pH, litter thickness, litter and floor temperature. Peat 

and the mixture of wood shavings and peat litter had a higher DM on day 6-7 compared with day 0, because 

fresh peat has relatively higher moisture and the room temperature caused the moisture to evaporate and the 

litter to dry. After that, all groups had a similar trend with no significant effects observed. The DM remained 

75% to 80% from day 6-7 to day 13-14 and then dropped drastically to 55% on day 20-21. After that, it 

slightly decreased until the end of the round to around 50%. The litter thickness increased as the broilers aged 

and the excreta accumulated. The litter layer in barn E was thicker than in barn ABCD. The litter pH increased 

from day 6-7 until day 20-21 (from 5 to 7) and then decreased until the end of the trial (5.5). The litter and 

floor temperature increased from day 13-14 (26 oC) to day 27-28 (28 oC) and then decreased until day 38-39 
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(27 oC). The rooms in barn ABCD had higher floor and litter temperatures than the rooms in barn E. 

Table 3 shows the litter composition on day 40. Bedding materials did not have any significant effects on 

litter composition. The litter pH in barn E was higher than in barn ABCD. No interactions between barns and 

bedding materials were found. 

 
Figure 1. Average scores of friability and wetness on different days 

 

Table 2. Average DM, pH, thickness, litter and floor temperature. 

Variable  Barn 

ABCD  

Barn E  WS  PE  SP  WS+PE  P-value 

(bedding) 

P-value 

(barn) 

P-value 

(bedding*barn) 

DM content 61.47% ± 

1.72% 

61.22% 

± 1.28% 

59.78% 

± 1.81% 

62.11% 

± 1.81% 

62.93% ± 

2.43% 

61.66% 

± 2.43% 

0.715 0.746 0.976 

pH 5.85 ± 

0.11 

6.15 ± 

0.08 

5.96 ± 

0.12 

6.03 ± 

0.12 

6.48 ± 

0.16 

6.16 ± 

0.16 

0.028 0.182 0.396 

Thickness  3.13 ± 

0.24b 

3.97 ± 

0.18a 

3.53 ± 

0.25 

3.79 ± 

0.25 

4.18 ± 

0.33 

3.96 ± 

0.33 

0.243 0.021 0.865 

Temperature 

(oC) 

27.19 ± 

0.21a 

26.55 ± 

0.16b 

26.52 ± 

0.23 

26.97 ± 

0.23 

26.56 ± 

0.30 

26.62 ± 

0.30 

0.571 0.030 0.136 

Floor 

temperature 

(oC) 

27.45 ± 

0.25a 

26.69 ± 

0.19b 

26.75 ± 

0.26 

27.12 ± 

0.26 

26.78 ± 

0.35 

26.65 ± 

0.35 

0.596 0.032 0.301 

a-b Values between barns and beddings with different superscripts have significant differences (P<0.05). 

 

Table 3. Average litter composition. 
Variable  Barn 

ABCD 

(n=8) 

Barn E 

(n=16) 

WS 

(n=8) 

PE 

(n=8) 

SP (n=4) WS+P

E (n=4) 

P-value 

(bedding

) 

P-value 

(barn) 

P-value 

(bedding

*barn) 

Total-N (g/kg) 24.08 ± 

0.55 

22.89 ± 

0.41 

22.98 ± 

0.58 

23.25 ± 

0.58 

23.28 ± 

0.78 

23.54 ± 

0.78 

0.669 0.135 0.263 

Ammonium-N 

(g/kg) 

2.36 ± 

0.12 

2.48 ± 

0.09 

2.23 ± 

0.13 

2.68 ± 

0.13 

2.28 ± 

0.17 

2.58 ± 

0.17 

0.052 0.507 0.574 

P-content (g/kg) 2.81 ± 

0.10 

2.89 ± 

0.07 

2.83 ± 

0.11 

2.90 ± 

0.11 

2.86 ± 

0.14 

2.91 ± 

0.14 

0.903 0.521 0.598 

K-content (g/kg) 12.98 ± 

0.28 

13.08 ± 

0.21 

12.79 ± 

0.30 

13.31 ± 

0.30 

13.10 ± 

0.40 

13.07 ± 

0.40 

0.548 0.783 0.602 

Dry matter 

content (g/kg) 

488.7 ± 

11.16 

488.5 ± 

8.32 

482.6 ± 

11.76 

488.8 ± 

11.76 

493.9 ± 

15.78 

500.2 ± 

15.78 

0.745 0.892 0.361 

Ash content  60.73 ± 

2.04 

60.93 ± 

1.52 

60.38 ± 

2.15 

60.16 ± 

2.15 

61.25 ± 

2.88 

64.17 ± 

2.88 

0.700 0.800 0.329 

pH 5.05 ± 

0.04b 

5.19 ± 

0.03a 

5.10 ± 

0.04 

5.21 ± 

0.04 

5.16 ± 

0.06 

5.20 ± 

0.06 

 0.218 0.011 0.663 
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a-b Values between barns and beddings with different superscripts have significant differences (P<0.05). 

3.2. Personal dust (PM10) exposure 

Figure 2 shows the personal exposure to PM10 and Table 4 shows the average personal PM10 exposure 

over the measured moments. The PM10 concentrations went up from day 10 (around 0.5 mg/m3) until day 

24-25 (around 1.1 mg/m3) and then dropped slightly (around 0.9 mg/m3). This could be caused by the poor 

litter quality (less friable litter) in the late days of the period and therefore less (fine) dust (see section 3.1). 

Significant differences were observed only on day 10, where peat (0.751 mg/m3) caused higher PM10 

exposure than wood shavings (0.317 mg/m3). The average PM10 concentrations (Table 4) were below the 

values of common Dutch broiler barns (1.931 mg/m3, Winkel et al., 2015). The PM10 concentrations in rooms 

with peat (0.996 mg/m3) and straw pellets (1.017 mg/m3) were 32% and 35% higher respectively than in 

rooms with wood shaving (0.753 mg/m3). No interactions between barns and bedding materials were found. 

 
Figure 2. PM10 concentration (mg m-3). Standard errors were presented in the error bars. 

 

Table 4. Average PM10 concentration (mg m-3). 

Variable  Barn 

ABCD 

(n=44) 

Barn E 

(n=88) 

WS 

(n=44) 

PE 

(n=44) 

SP 

(n=22) 

WS+PE 

(n=22) 

P-value 

(bedding) 

P-

value 

(barn) 

P-value 

(bedding

*barn) 

PM10 

concentration 

(mg m-3) 

0.920 ± 

0.053 

0.881 ± 

0.032 

0.753 ± 

0.043b 

0.996 ± 

0.043a 

1.017 ± 

0.085a 

0.863 ± 

0.085ab 

<0.001 0.965 0.693 

a-b Values between barns and beddings with different superscripts have significant differences (P<0.05). 

3.3. Ammonia emission 

Figure 3 (left) shows the linear regression fit for the NH3 concentrations measured by the wet chemical 

method (reference), FTIR (y1, in blue) and Dräger (y2, in red) sensors. Dräger had a better estimate of the 

ammonia concentration (y = 0.27 + 1.01*x, R2 = 94.9%) than FTIR (y = 0.04 + 0.91*x, R2 = 95.6%). One 

data point in round 1 was discarded because condensation was observed in the tubes of the wet chemical 

method, which led to an unrealistic lower ammonia concentration (outlier). It is important to mention that 

noticeable differences were observed in a few replicates (max/min values = from 1 to 10) of the wet chemical 

method. Figure 3 (right) shows the linear regression fit for ammonia concentration (ppm) measured by FTIR 

(x) and Dräger (y). The two-tailed paired t-test showed there are significant differences between the two 

methods (P < 0.001). Periodical recalibrations are essential for both Dräger and FTIR sensors. 

Table 5 shows the average ammonia concentration and emission rate per barn and bedding material. On 

average, barn ABCD had a similar ammonia concentration to barn E. No interactions between barns and 

bedding materials were found. Peat had an ammonia emission rate of 12.81 g per year per animal place, 

which was 2.7 times as high as wood shavings (4.75 g per year per animal place). Both barns ABCD and 
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barn E have a category between E 5.15 and E 5.100 (E 5 Diercategorie Vleeskuikens, n.d.). However, the 

ammonia emission rates were significantly lower than the emission factors: 21 and 68 g per year per animal 

place for E 5.15 and E 5.100, respectively (E 5 Diercategorie Vleeskuikens, n.d.). This could be related to 

the poor litter quality and the low dry matter content (see section 3.1). From day 27-28 and on, more than 

70% of the litter was caked and the wet litter could be pressed ball-shaped due to the high moisture. It was 

demonstrated that the crust formed on the top litter layer and a low litter friability (caked litter) can slow 

down ammonia volatilization (Brink et al., 2022). It was found that the ammonia formation from the litter 

decreases when the dry matter content is higher than 80% or lower than 60% (Groot Koerkamp et al., 2000), 

which could also explain why such low amounts of ammonia were observed. Additionally, peat has a rather 

high moisture content, and it tends to keep the moisture it absorbs. Therefore, the preheating should be carried 

out thoroughly. 

 

Figure 3. Left: Linear regression fit for the NH3 concentrations (ppm) measured by the wet chemical 

method (x), FTIR (y1, in blue), Dräger (y2, in red). Right: Linear regression fit for ammonia concentration 

(ppm) measured by FTIR (x) and Dräger (y). 

 

Table 5. Ammonia concentrations and emissions. 

Variable  Barn 

ABCD 

(n=8) 

Barn E 

(n=16) 

WS 

(n=8) 

PE 

(n=8) 

SP (n=4) WS+PE 

(n=4) 

P-value 

(bedding) 

P-value 

(barn) 

P-value 

(bedding

*barn) 

Ventilation rate (m3 

h-1 animal-1) 

1.231 ± 

0.111 

1.267 ± 

0.082 

1.234 ± 

0.117 

1.272 ± 

0.117 

1.294 ± 

0.157 

1.253 ± 

0.157 

0.991 0.831 0.881 

Ammonia 

concentration 

(ppm) 

1.693 ± 

0.154 

1.302 ± 

0.115 

0.969 ± 

0.162b 

1.829 ± 

0.162a 

1.486 ± 

0.217ab 

1.318 ± 

0.217ab 

0.005 0.058 0.547 

Ammonia emission 

rate (g animal 

place-1 year-1) 

9.095 ± 

1.119 

8.875 ± 

0.834 

4.748 ± 

1.179b 

12.811 

± 1.179a 

9.947 ± 

1.582ab 

8.814 ± 

1.582ab 

<0.001 0.768 0.646 

a-b Values between barns and beddings with different superscripts have significant differences (P<0.05). 

3.4. Zootechnical performance 

Table 6 shows the average zootechnical performance over the two production rounds. The bedding 

materials did not affect the overall zootechnical performance of broilers from 0 - 40 days. The broilers in 

barn ABCD had lower average daily water consumption and water:food ratio than broilers in barn E. No 

interactions between barns and bedding materials were found. 

Table 6. Average zootechnical performance. 
Treatment   ADFC ADWC WFR BW BWG dBWG FCR MRT 

Barn ABCD (n=8) 95.4 ± 

0.7 

164.0 ± 

1.2b 

1.72 ± 

0.01b 

2521 ± 

15 

2476 ± 15 61.9 ± 0.4 1.541 ± 

0.012 

2.2 ± 0.5 

Barn E (n=16) 94.7 ± 

0.5 

168.5 ± 

0.9a 

1.78 ± 

0.01a 

2524 ± 

11 

2481 ± 11 62.0 ± 0.3 1.527 ± 

0.009 

3.1 ± 0.3 

WS (n=8) 95.2 ± 

0.8 

166.2 ± 

1.3 

1.75 ± 

0.01 

2529 ± 

160 

2486 ± 16 62.2 ± 0.4 1.532 ± 

0.013 

2.4 ± 0.5 
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PE (n=8) 94.7 ± 

0.8 

167.2 ± 

1.3 

1.77 ± 

0.01 

2521 ± 

16 

2476 ± 16 61.9 ± 0.4 1.530 ± 

0.013 

2.6 ± 0.5 

SP (n=4) 93.8 ± 

1.0 

167.1 ± 

1.7 

1.78 ± 

0.01 

2500 ± 

21 

2457 ± 21 61.4 ± 0.5 1.527 ± 

0.017 

4.3 ± 0.7 

WS+PE (n=4) 95.7 ± 

1.0 

171.6 ± 

1.7 

1.79 ± 

0.01 

2537 ± 

21 

2492 ± 21 62.3 ± 0.5 1.536 ± 

0.017 

3.5 ± 0.7 

P-value (bedding) 0.559 0.250 0.169 0.572 0.586 0.586 0.982 0.110 

P-value (barn) 0.482 0.005 <0.001 0.747 0.714 0.714 0.377 0.485 

P-value 

(bedding*barn) 

0.537 0.888 0.475 0.400 0.424 0.424 0.980 0.878 

a-b Values between barns and beddings with different superscripts have significant differences (P<0.05). 

3.5. Footpad lesions and hock dermatitis 

Figure 4 presents the average percentage per footpad lesion score class (left) and per hock dermatitis score 

class on day 31-32 and day 39 of age. The incidence and severity of footpad lesions and hock dermatitis 

increased as the broilers aged. Severe footpad lesions occurred more often when the broilers reached 

slaughter age. On day 31-32 and day 39, broilers kept on wood shavings had a higher incidence and severity 

of footpad lesions than broilers kept on peat. On day 39, broilers reared on wood shavings had a higher 

incidence and severity of hock dermatitis than broilers kept on straw pellets. Overall, broilers reared on wood 

shavings had the worst animal welfare. On day 39, more hock dermatitis was observed in barn ABCD than 

in barn E. No interactions between barns and bedding materials were found.  

 

  
Figure 4. Average percentage of footpad lesion (left) and hock dermatitis (right) scores on day 31-32 

and day 39. 

4. Conclusions 

From this study, it can be concluded that: 

• The ammonia emission rate of broilers kept on peat litter was significantly higher than broilers kept 

on wood shavings (12.81 and 4.75 g per year per animal place, respectively).  

• Peat (0.996 mg/m3) and straw pellets (1.017 mg/m3) caused higher personal bound PM10 

concentrations than wood shavings (0.753 mg/m3). 

• Peat bedding was more friable compared with wood shavings on day 20-21 and day 34-35 (better 

litter quality). 

• Bedding materials did not influence the overall litter DM content, litter pH, litter layer thickness, 

litter and floor temperature, final litter composition (total N, ammonium N, P, K, DM, ash, pH) and 

the zootechnical performance of broilers. 

• For animal welfare, peat had a lower incidence and severity of footpad lesions compared with wood 

shavings on day 31-32. Bedding types did not influence the incidence and severity of hock 

dermatitis. On day 39, peat, straw pellets and the mixture had less incidence and severity of footpad 

lesions than wood shavings. Straw pellets reduced the incidence and severity of hock dermatitis 

compared with wood shavings. 
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Abstract 

Corrugated steel silos are widely used to store all types of agricultural and industrial materials due to their 

excellent structural performance and resistance to buckling. Occasionally, commercial silos are designed with 

an eccentric hopper to facilitate the handling or flow of bulk solids stored during the discharge process. 

However, the eccentricity of the hopper can cause an asymmetry in the normal pressure distribution around 

the silo walls during discharge. This study investigates the normal and tangential forces on the walls of a 

corrugated steel silo to store biomass wood pellets with centred and off-centre hoppers by performing 

simulations with EDEM 2022.3 software, based on the Discrete Element Method (DEM). A model silo with 

corrugated steel walls, a square cross section (0.75 m in height and 0.45 m width and length) and two different 

bottom configurations (a pyramidal hopper with a centred outlet and a 100% eccentric hopper) was used to 

validate the numerical models. Depth and wavelength of corrugations were 13 mm and 75 mm, respectively. 

Cylindrical wood pine pellets of 6 mm diameter and average length of 14.7 mm (±6 mm) were used as 

granular material to fill the silo. The walls pressures and the discharge rate during the emptying operation 

were investigated in this study. The DEM results during discharge indicate that when the hopper was 

eccentric, the pressure on the far side of the eccentric discharge location was higher than on the nearest side. 

The DEM simulations, properly validated, can also be used to explore the effects of geometrical parameters, 

such as the corrugation dimensions, wall friction coefficient or particle size, amongst others, on pressures 

and material flow pattern. 

Keywords: Silo, Discrete Element Method, DEM, Corrugated wall, Eccentric discharge. 

 

1. Introduction 

Steel silos are a widely used storage solution in agricultural facilities or food industries to store granular 

materials such as cereals, animal feed, fertilisers, or biomass, among others. The use of solid biomass 

(firewood, wood chips, sawdust, shavings, briquettes, or pellets, among some other options) for energy 

production has grown significantly in recent years, as part of a global strategy to reduce dependence on fossil 

fuels (Pradhan et al., 2018). In this context, the use of wood pellets as biofuel is rapidly increasing worldwide, 

reaching a global production of more than 46 million tons in 2022 (Geelen et al., 2023). 

The use of corrugated steel sheets by silo manufacturers (Figure 1) is a common technical choice, given 

the higher bending stiffness and buckling resistance offered by this solution compared with a smooth steel 

sheet of a similar thickness (Wiącek et al., 2021). 

 

Figure 1. Corrugated silos in a livestock farm. 
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However, the geometry of the corrugation determines the existing friction between the stored material 

and the silo walls, thus conditioning the pressures exerted, as well as the discharge rate and the flow of the 

particles during silo emptying. The European standard EN 1991-4 (CEN, 2006), based on previous 

experimental studies, proposes an empirical formula to evaluate the effective coefficient of friction between 

the stored material and the corrugated wall by a weighted average of the tangent of the angle of internal 

friction of the stored granular material (tan ϕi) and the coefficient of friction of the stored solid against a 

smooth steel surface (μw). The influence of both factors depends on a geometric parameter called ‘wall 

contact factor’ (aw), which depends on the geometry of the wall sheeting profile, although a general value of 

0.2 is recommended for sinusoidal walls regardless of the geometry. However, such a simplification does not 

consider influencing parameters such as the relationship between the size of the particles and the height of 

the corrugation, whose detailed influence on the friction mechanism requires further studies (Gallego et al., 

2019; Grabowski et al., 2021). 

The presence of hoppers in silos also determines the flow of granular particles and the value of the 

pressures exerted by the stored material against the walls during discharge (Vidal et al., 2006). Commercial 

silos are occasionally designed with an eccentric hopper, which leads to an asymmetry in the pressures 

generated, with possible local buckling effects (Sadowski and Rotter, 2011). 

The Discrete Element Method (DEM) has been successfully used to simulate the flow of disaggregated 

solids inside silos and to determine the forces exerted by the particles against the walls in the filling and 

emptying processes (Goda et al., 2005; González-Montellano et al., 2012; Kobyłka and Molenda, 2014; 

Ramírez-Gómez, 2020). The aim of this work is to exploit the advantages offered by the discrete element 

method for the analysis of corrugated sheet walls in centred and off-centred hopper silos. Using Altair EDEM 

2022 software, a silo with corrugated sheet walls and two different hopper configurations (centred and 

eccentric) containing wood pellets has been modelled to compare the pressures exerted by the stored material, 

the effective friction against the walls, and the discharge rates produced in both cases. To validate the 

numerical models, an experimental silo instrumented with load cells at different positions was also build. 

 

2. Materials and Methods 

EDEM 2022.3 software, based on the discrete element method (DEM), was used to develop the numerical 

simulations. The Hertz-Mindlin contact model, with viscous damping and slip in the tangential direction of 

the contact, was used to simulate the forces occurring during the physical collision between the particles or 

between the particles and the silo walls. The wood pellets were randomly generated at the top of the silo at a 

constant rate of 1.5 kg/s until they fill the entire volume of the silo, which required approximately 260,000 

particles and a total mass of 107.8 kg of material. It was verified that the total kinetic energy of the system 

at the end of the filling phase was less than 10-8 J, to ensure the static condition of the particles before starting 

the discharge. Time integration was carried out by using the Euler method, adopting a time step of 1.3·10-5 s 

(i.e., 20% of the Rayleigh time step) to guarantee the robustness of the calculations and to avoid large 

fluctuations in the results of the subsequent calculation steps. The time interval used to save data was 0.2 s 

to reduce the size of the files generated. Pine wood pellets were simulated using the multi-spheres method. 

Five different types of particles were used, matching the particle size distribution measured experimentally 

(Figure 2). 

 

Figure 2. Discrete element model of the silo. Left: centred hopper silo, and right 100% eccentric hopper silo.  
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The mechanical properties of the materials and the particle-particle and particle-wall interaction 

properties required for the DEM simulations are shown in Table 1. 

Table 1. Properties of the materials used in DEM simulations. 

Mechanical properties of materials 

Material 
Solids density 

(kg/m3) 

Young's 

modulus (MPa) 

Poisson’s 

ratio 

Wood pellets 1100 7330 0.4 

Galvanised steel walls 7850 210000 0.3 

Polymethylmethacrylate walls (PMMA) 1190 3150 0.4 

Interaction properties contemplated in the models 

Materials interacting 
Coefficient of 

restitution 

Coefficient of 

static friction  

Coefficient of 

rolling friction  

particle-to-particle 0.62 0.4 0.02 

particle-to-wall (steel sheet) 0.5 0.26 0.01 

particle-wall (PMMA) 0.67 0.4 0.01 

An experimental prototype of a square-section silo with the same dimensions as the one used in the 

computational research was used to validate the numerical results (Figure 3). The side walls of the silo 

prototype were made from a commercial galvanised corrugated steel sheet profile, with a corrugation depth of 

13 mm and wavelength of 75 mm, and its front and rear walls were manufactured from transparent polymethyl 

methacrylate (PMMA) to visualise the flow of the bulk material during emptying. The experimental silo is 

equipped with beam-type sensors to monitor the weight of the stored bulk material and the forces exerted by 

it against the walls. Two different bottom configurations were used for silo discharge: (i) a pyramidal hopper 

with a centric outlet and (ii) an oblique hopper with an eccentricity of 100%, with a 60 x 60 mm2 square section 

outlet in both cases. 

     

Figure 3. Experimental silo used to validate the numerical models. 
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The granular material used in the experimental assays was cylindrically shaped pine wood pellets 6mm 

in diameter (±0.1 mm) and variable length (14.7 mm ±6 mm), having experimentally determined physical and 

mechanical properties as shown in Table 2 (Gallego et al., 2020).  

Table 2. Mechanical properties of biomass pellets used in this research. 

Parameter Value 

Bulk solid density [kg/m3] 680 

Angle of repose [º] 40.5 

Angle of internal friction [º] 39.5 

Coefficient of friction (with a smooth steel sheet) 0.3 

Moisture [%] 6.5 

Modulus of elasticity [MPa] 21.3 

Poisson's ratio 0.13 

 

Seven repetitions of each test were carried out to guarantee the repeatability of the experimental assays 

and to be able to perform a statistical analysis of the results. 

 

3. Results and Discussion 

3.1. Experimental validation of the numerical models 

The aim of the experimental validation process was to determine whether the DEM models were able to 

reliably predict the bulk solid density of the stored material at the end of the filling phase and the discharge 

rate obtained in the laboratory tests. Table 3 shows a comparison of the values of the different parameters 

obtained in the simulations and in the experimental tests conducted. As can be seen, the differences for the 

bulk density of the stored material (1%) and the average mass flow rate during discharge (3.4-8.7%) are 

minor, indicating a reasonably good fit between the numerical models and the experimental tests. 

Table 3. Mean values of different parameters obtained in computer simulations versus experimental tests. 

Parameter 

Centred hopper Eccentric hopper (100%) 

DEM 
Exp. 

tests 
Diff. DEM 

Exp. 

Tests 
Diff. 

Bulk solid density (kg/m3) at the end 

of the filling stage 
687 680 1.0% 687 680 1.0% 

Total time required for discharge 

(s) 
225 217 3.7% 174 188 7.4% 

Average mass flow rate during 

discharge (kg/s)  
0.477 0.494 3.4% 0.620 0.571 8.7% 

 

Table 4 shows the evolution of the experimental and numerical values of the mass flow rate at different 

intervals of the total discharge time (T). The experimentally measured and computer-calculated values are 

quite close for the different time intervals, with both the numerical models and the experimental tests showing 

a certain reduction in the discharge rate as the emptying process progressed. 

Table 4. Evolution of the mean flow rates (kg/s) at different intervals of the complete discharge process. 

Discharge 

interval 

Centric hopper Eccentric hopper (100%) 

DEM Experimental tests DEM Experimental tests 

0 T - 0.25 T 0.495 0.518 0.621 0.609 

0.25 T - 0.50 T 0.486 0.505 0.626 0.592 

0.5 T - 0.75 T 0.468 0.480 0.622 0.586 

0.75 – 1.0 T 0.460 0.470 0.614 0.476 

 

3.2. Pressures on the silo walls, effective wall friction coefficients, and discharge rates predicted 

by the Discrete Element Models 

Figure 4 shows the pressures exerted by the wood pellets on the corrugated walls on two 15x15 cm2 

panels located at a height of 25 cm above the transition of the vertical section of the silo with the hopper. In 
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the case of a silo with an eccentric hopper, panel 1 is the one located on the wall closest to the hopper outlet, 

and panel 2 is the one furthest away from it. 

As can be seen, in the centred hopper silo, the normal and tangential pressure curves are similar for both 

walls, while in the case of the eccentric hopper silo, significant differences exist between both walls during 

the emptying of the silo. In that case, higher pressures were recorded on the wall that is most distant from the 

outlet than on the wall that is closest to the outlet. This may be explained by the lower mobility of the granular 

material on the opposite side to the hopper outlet. 

  

 

Figure 4. Pressures exerted by the wood pellets on the corrugated sheet metal walls of the model silo. 

 

Figure 5 shows the evolution of the effective wall friction coefficients (µeff) at positions 1 and 2 during 

filling and discharge for both simulated silos. As can be seen, the curves corresponding to the effective wall 

friction coefficient during filling are very similar in all cases. However, differences are found during 

emptying. In the centred hopper silo, the two corrugated walls (1 and 2) show a similar behaviour, with higher 

values of µeff than those recorded during filling for the same height of stored material. Meanwhile, in the case 

of the eccentric hopper silo, differences were found in the behaviour of the wall closest to and most distant 

from the outlet. In the most distant wall, the µeff values were very similar to those recorded during filling and 

slightly lower than those obtained in the centred hopper silo. However, on the wall closest to the outlet, there 

is a significant drop in the effective wall friction coefficient. Maximum values were obtained in any case 

when the silo was completely full of granular material (h=H). 

AgEng 2024 Proceedings

772



 

Figure 5. Effective wall friction coefficients 

Figure 6 shows the evolution of the discharge rate or the mass flow index (MIF) for both bottom 

configurations studied. As can be seen, the registered discharge rate value was quite stable throughout the 

entire emptying process in both cases, with a slight decrease as the discharge progresses (Table 4). The 

discharge rate took higher values in the silo with an eccentric hopper compared to the centred hopper silo 

(0.620 vs. 0.477 kg/s), which also resulted in a faster emptying (174 vs. 225 s). This behaviour was also 

noticed in the experimental tests. 

 

Figure 6. Discharge rate on the silo predicted by the DEM models. 

 

4. Conclusions 

In the present work, discrete element models have been developed to analyse the pressures, effective wall 

friction coefficients and the discharge rates in two similar corrugated steel silos with a centred and an 

eccentric hopper, containing wood pellets. The main conclusions derived from the research are the following: 

• DEM models have been validated through experimental tests in a silo prototype of similar dimensions 

based on the density of the stored material at the end of the filling phase and the average mass flow rate 

during the discharge, obtaining a reasonably good fit, with differences of less than 1 and 8.7 %, respectively. 

• The presence of an eccentric outlet hopper affects the normal and tangential pressures recorded on the 

walls of the silo during emptying, resulting in an increase in the wall most distant from the outlet and a 

reduction in the opposite wall, compared to the case of the centred hopper silo. 

• The effective wall friction coefficients predicted by the DEM models for the discharge differ depending 

on whether the silo has a centred or an eccentric hopper. In the second case, a reduction in effective friction 

was observed on both walls, especially on the wall most distant from the outlet. 

• The presence of an eccentric hopper affects the discharge rate, producing an increase in the mass flow 

rate of around 30%. The higher mass flow rate also means a shorter emptying time (174 vs. 225 s.) in that 

case.
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ABSTRACT 

Effective ventilation is crucial for the well-being and productivity of poultry in response to the growing global 

demand for poultry products. Properly designed and managed ventilation systems aid to remove contaminants and 

maintain uniform environmental conditions, benefiting both animals and workers in poultry houses. Computational 

fluid dynamics (CFD) modeling has become an essential tool in designing and evaluating ventilation systems, offering 

control over influencing factors and cost-effective solutions to address indoor environmental challenges in poultry 

housing. Through CFD simulations, airflow patterns within the poultry house will be analyzed to pinpoint areas for 

potential enhancement.  A detailed 3D model of the poultry house and ventilation system is created within the CFD 

software with various simulation scenarios which are defined, considering different parameters like air inlet and outlet 

locations, fan settings, and environmental conditions. The process iterates until an optimal configuration is achieved, 

ensuring improved indoor air quality and enhanced poultry well-being and productivity. The simulation results 

indicated a moderately even temperature distribution but uneven air velocity in the baseline poultry house due to 

natural ventilation. Other results present the mass fraction distribution of ammonia (NH3), humidity, and carbon 

dioxide (CO2) for both systems and variations in air velocity and ammonia concentration in the baseline system. The 

analysis and comparison of the baseline and optimised poultry house ventilation systems reveal significant 

improvements with the optimised system. 

Keywords: ventilation, computational fluid dynamics (CFD), simulation, poultry 

1. Introduction 

Effective ventilation systems play a pivotal role in creating a healthier and more productive environment for both 

animals and human occupants by addressing indoor air quality issues. Studies, such as those by Cao et al. (2023), 

emphasize the importance of ventilation in preventing respiratory issues and other health problems in poultry. Ensuring 

uniform indoor environmental conditions through proper airflow distribution helps remove humidity, particulate matter, 

and gases, fostering a healthier environment. Also, Glatz et al. (2013) highlight that inadequate ventilation can lead to a 

buildup of harmful gases like ammonia and carbon dioxide, negatively affecting bird health and productivity. Studies 

like those by Lewis and Both (2022) support the idea that uniform airflow can mitigate risks associated with 

temperature hotspots and pollutant concentrations in poultry houses. People widely acknowledge the importance of 

ensuring uniform indoor environmental conditions in livestock housing. Proper airflow distribution facilitates the 

removal of humidity, particulate matter, and gases, thereby fostering a healthier and more productive environment for 

both animals and human occupants. Moreover, airflow patterns decisively influence the uniformity of key indoor 

environmental parameters such as temperature, contaminant levels, and humidity. Scientific literature, including the 

work by Lewus and Both (2022), has reported that uniform airflow can mitigate the risks associated with hotspots of 

high temperature or pollutant concentration, which can otherwise lead to stress and reduced productivity in poultry. 

The adoption of computational fluid dynamics (CFD) in agricultural engineering has facilitated the modeling of 

airflow fields and the prediction of ventilation system performance, enabling comprehensive design and evaluation 

processes. In CFD simulations, precise control over influencing factors provides information about how airflow 

changes in the computational domain while keeping costs and time to a minimum (Van Wagenberg et al., 2004). By 

visualizing and optimizing ventilation systems, researchers and engineers can ensure uniform air distribution, manage 

heat loads effectively, and maintain optimal humidity levels. Natural ventilation is a primary method to control 

humidity, temperature, and carbon dioxide concentration inside enclosures such as greenhouses and poultry houses 

(Lee and Short, 2000). Natural ventilation is the most effective among passive cooling techniques in lowering high air 

temperatures inside greenhouses (Rasheed et al., 2019). The main advantage of CFD lies not only in the prediction of 

the ventilation rate but also of the airflow pattern, temperature, and humidity distribution inside an enclosure (Choi et 

al., 2023). Experimental studies have pointed out the impact of vent configurations on airflow patterns, particularly 

when natural ventilation is the main source of air exchange between an enclosure and the external environment. 

The present study aims to leverage CFD simulation techniques to optimized ventilation poultry housing, focusing on 

enhancing air quality, reducing energy consumption, and optimizing system performance for maximum efficiency and 

effectiveness. A computational fluid dynamics (CFD) program (FLUENT 19.0, ANSYS, New York, NY, USA) was 

used to analyze temperature and humidity distribution within the simulated poultry house. The study aims to enhance 

productivity and welfare in poultry farming operations, contributing to more sustainable agricultural practices. We 

expect the findings to provide practical solutions for real-world implementation, aiding poultry farmers in maintaining 

healthier flocks and achieving better economic outcomes. 
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2. Materials and Methods 

The experimental poultry house comprises a four-walled structure constructed with 22 mm concrete block walls, 

featuring dimensions of 1.9 m in width and 2.9 m in length, resulting in a total area of 5.51 m², complemented by a flat 

roof design. For this study, a single case scenario was selected and meticulously modelled to examine fan and air inlet 

configurations. The model incorporates two air inlet vents positioned at the front of the poultry building to facilitate 

natural air intake. To facilitate air ventilation within the building, two fans with diameters of 3.9 m and an airflow rate 

of 28,000 m³/h are strategically placed at the rear section of the structure. External air ingress occurs through intake 

vents measuring 0.26 m x 0.26 m, driven by the negative pressure generated by the installed fans. 

The experimental location is characterized by a tropical wet and dry or savanna climate classification. It experiences 

an annual temperature range between 22.39 ºC and 33.54 ºC, with January registering the lowest average temperature 

of 20.7 ºC and February recording the highest average temperature of 38.54 ºC. Figure 1 presents a schematic diagram 

illustrating the layout of the poultry house, while Figure 2 provides detailed information regarding the building's 

geometry and dimensions of fans and air inlet vents. These architectural and climatic considerations are crucial for 

understanding the environmental dynamics within the poultry house and informing the experimental design for 

optimizing ventilation strategies.  

 

 

Figure 1. Schematic drawing of the poultry house 

 
      Figure 2. Poultry house geometry and dimensions. 

  

2.1  Data collection and analysis 

The study employed a typology of poultry houses commonly found in Nigeria, which mirrors the prevailing 

construction practices in tropical and subtropical regions favouring natural ventilation systems. Specifically, the poultry 

house dimensions were 1.9 m in width, 2.9 m in length, and a ceiling height of 3.0 m, with walls measuring 0.20 m in 

thickness. This structure housed broilers at a high density, aged approximately 39 days (close to the slaughter age).  

The simulation utilized input parameters specifying a maximum fluid velocity of 1.5 m/s upon entry into the poultry 

shed, at a temperature of 25 °C. For the simulation, boundary conditions were meticulously defined for the birds, air 

inlets, and exhaust fans. The walls, doors, and floors of the poultry house were assigned no-slip and adiabatic (heat flux 
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= 0) conditions to accurately model heat transfer dynamics. Furthermore, the chickens were represented as spherical 

entities with a constant heat flux, providing a realistic approximation of heat generation within the poultry environment. 

These comprehensive input parameters and boundary conditions ensure the fidelity and accuracy of the simulation, 

enabling a detailed examination of airflow and thermal dynamics within the poultry house (Pawar et al., 2007). 

According to Reece et al. (1969), the heat produced by poultry birds grown in a litter housing is 40% sensible and 60% 

latent as shown in Eqs (2) and (3). 

Total heat production by a single broiler can be derived using Eq (1).     

THP =
M×HPR

A
        (1) 

THP = Total heat production, W/m2; M = metabolic rate of the broiler (in watts or joules per unit time); HPR = heat production rate (joules per unit 

time per unit weight); A = weight of the broiler (in kilograms). 

The heat flux leaving the birds can then be derived using Eqs (4) and (5). 

Q
sensible

 = 0.40×Q
total

        (2) 

Q
latent

 = 0.40×Q
total

       (3) 

Heat flux =THP×Q
sensible

      (4) 

Heat flux =THP×Q
latent

       (5) 

The total moisture produced by all the birds in a poultry house, in terms of per volume air is derived by Eq. (6). 

Total moisture (kgH2O m3) =
moisture produced(kgH2O)

house volume(m3)
⁄       (6) 

Total water consumption by a total of 100 birds in the poultry house is 20 liters per day and the poultry house 

moisture content is 30%, the moisture produced(𝑘𝑔𝐻2𝑂) by the birds is derived by 

Moisture produced(kgH2O) =
Total water consumption (litres)

Poultry house moisture content
    (7) 

Inlets were specified at the two-side walls and a rear end facing the exhaust fan of the poultry house. These inlets 

were given constant velocity boundary conditions and constant air temperature based on the scenario adopted for the 

simulation process. Outlets were specified where the air leaves the poultry house, which was stationed at the opposite 

wall facing the rear end inlet air opening. The two outlet fans were represented by setting the gauge pressure above the 

ambient pressure to simulated a difference in pressure based on the size of the fan selected and temperature equal to 

ambient temperature. Relative humidity of the air coming through the inlets was set at a constant condition of 60% for 

all simulations, a reasonable approximation of average afternoon humidity in Kwara state region during the dry season. 

2.3  CFD simulation setup 

The mass, momentum, and energy conservation equations employed in the CFD simulation are illustrated in 

equations 5-7 (Fluent, 2008) 
𝛿𝜌

𝛿𝑡
+ ∇ ∙ (𝜌�⃗�) = 𝑆𝑚            3.10  

𝜕

𝜕𝑡
+ (𝜌�⃗�) + ∇. (𝜌�⃗��⃗�) = −∇𝑃 + ∇. (𝜏) + 𝜌�⃗� + �⃗�                   3.11                 

𝜕

𝜕𝑡
+ (𝜌𝐸) + ∇. (�⃗�(𝜌𝐸 + 𝑃)) = ∇(𝑘𝑒𝑓𝑓∇T − (𝑥 + 𝑎)𝑛 = ∑ ℎ𝑗𝑗𝑗

 

 
+ (𝜏𝑒𝑓𝑓 �⃗⃗�)) + 𝑆ℎ 3.12 

Where, ρ is density (kg m-3), v is velocity (ms-1), P is constant pressure (Pa), τ is stress tensor (Pa), g is gravitational 

acceleration (ms-2), F is external force vector (Nm-3), Sm is mass source (kgm-3), Keff is heat transmission coefficient, jj is 

component of diffusion flux (kgm-2 s-1), and Sh is total entropy (J K-1).  

For various configurations of input vents combined with exhaust fans in the poultry house, the airflow pattern and 

ventilation rate were examined using a computational fluid dynamics (CFD) program (V.19, Fluent, ANSYS - Fluent 

Inc.). Autodesk Revit Pro version 2018 software was used for this study's first pre-processing stage to create 3D models 

of poultry houses. Additionally, meshing was done in the ANSYS mesh component. ANSYS Fluent version 19 R3 was 

used to execute simulations in the second step for numerous instances. Finally, (ANSYS 2019 R3) software 

implemented post-processing of the simulation results (Rasheed et al., 2019). Figure 3 is showing the flowchart of 

simulation procedure. 
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Figure 3. Flowchart of simulation procedure. 

2.4  Simulation parameters 

The meshing of the computational domain of the studied internal environment is shown in Table 1 contains a list of 

the meshing properties and information on the boundary conditions and material properties that were employed in the 

simulations. 

Table 1. Simulation parameters. 

Mesh Properties Cell Zone and Boundary conditions 

Properties Value Parameter Unit Value 

Type of mesh Hybrid Inlet velocity m/s constant 

Number of meshes 10,318 Inlet temperature oC constant 

Size function Curvature outlet temperature oC constant 

Curvature normal angle 100 Air Density kg·m-3 0.000293 

Element size 0.015m outlet pressure Pa 0.275 

Relevance 25 Relative Humidity % 60 

  Specific heat Jkg-1K-1 1006 

 

Four scenarios were tested to evaluate the influence of varying inlet velocities and ambient temperatures on the 

environment within the poultry house. These scenarios involved two different inlet velocities and three different 

ambient temperatures as shown in Table 2. The inlet velocity conditions were determined based on typical values 

observed from field measurements, while the selected temperatures were representative of those commonly 

experienced during the dry season in the Kwara state region. This comprehensive approach allowed for a thorough 

examination of how different inlet velocities and outdoor temperatures affect the poultry house environment.  

Table 2. Inlet conditions. 

Scenario Inlet temperature (℃) Inlet air 

velocity (m/s) 

1 29 1.5 

2 28.5 3.0 

3 28.8 1.5 

4 30 3.0 

5 27 1.5 

6 27.7 3.0 

In the simulation, a pressure-based solver was employed to model the airflow dynamics within the poultry house. 

Turbulent airflow conditions, typical in ventilating flows, were assumed based on previous research findings (Norton et 

al., 2010). The boundary conditions were established to account for the mass fraction of moisture generated within the 

poultry house and the influx of water vapour from external sources. For further clarity, a summary of the solution 

methods employed in the simulation is provided in Table 3. This approach ensures a comprehensive understanding of 

the airflow and moisture dynamics within the poultry house environment. 

Post-Processing 

3d Model 

Simulation 

Meshing 

Autodesk Revit 

Ansys Fluent 

Ansys Post 

Processing 

Results 

Ansys Meshing 
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Table 3. Solution methods. 

Solution method Setting 

Pressure-velocity coupling SIMPLE 

Gradient Least squares cell based 

Pressure Second order upwind 

Momentum Second order upwind 

Turbulent kinetic energy Second order upwind 

Turbulent dissipation rate Second order upwind 

H2O Second order upwind 

Energy Second order upwind 

 

3. Results and Discussion 

3.1.  Analysis of baseline ventilation system 

The temperature, velocity and humidity values as observed in both the conventional and optimised case was 

indicated based on the plane of reference which is most suitable for the positioning of the birds in the poultry at a given 

point in time at the same time the Local conditions at 5 crucial points within the poultry house were also evaluated for 

temperature, air velocity and relative humidity. The conditions of the poultry house based on a plane of reference and 

the six points of reference are illustrated in Table 4 and 5. 

The temperature, velocity, and humidity values observed in both the test case and the optimised scenario were 

compared, considering the ideal positioning of the birds within the poultry. Additionally, local conditions at five key 

points within the poultry house were assessed for temperature, air velocity, and relative humidity. The simulation 

outcomes presented in Table 5 provide valuable insights into the thermal distribution within the poultry house, 

revealing a moderately homogeneous temperature profile in the simulated result. However, the velocity distribution 

exhibited non-uniformity, and this situation can be attributed to the inherent variability associated with natural 

ventilation in the baseline system. It was observed that the average temperature within the poultry house under 

optimised ventilation was 28.8 °C, and the average humidity was 50%. This temperature falls within the range of 27 to 

36.2 °C reported by Furlan et al. (2000), Cangar et al. (2008), and Nääs et al. (2010) Furlan et al. (2000), Cangar et al. 

(2008), and Nääs et al. (2010) for a poultry house housing 42-day-old birds. This condition is recommended for birds in 

the age range of 42-61 days to eliminate the risk of heat stress, as the temperature of birds generally varies with 

changes in the air temperature of the environment (Zmrhal et al., 2023). In terms of air velocity, the ventilation set up 

for the baseline systems shows an uneven velocity distribution across the poultry house due to the fact that the baseline 

ventilation system adopts a natural mode of poultry house ventilation. 

Table 4. Simulation results for baseline ventilation system. 

Cases 1 Velocity 

Magnitude 

(m/s) 

Ammonia 

Concentration (%) 

CO2 

Concentr

ation (%) 

Temperat

ure (oC) 

Relative 

Humidity (%) 

Vapour Pressure 

Deficit (mmHg) 

Point a 0.9 0.5 3.1 29.6 70 12.5 

Point b 0.92 0.4 11 29.2 40 24.1 

Point c 0.6 2.1 4.7 28.8 60 16 

Point d 1.55 2.67 9 28.3 56 17 

Point e 1.6 3.2 8 28 60 15.1 

 

Table 5. Simulation results for optimised ventilation system. 

Cases 2 Velocity 

Magnitude 

(m/s) 

Ammonia 

Concentration (%) 

CO2 

Concentr

ation (%) 

Temperat

ure (oC) 

Relative 

Humidity (%) 

Vapour Pressure 

Deficit (mmHg) 

Point a 1.3 0.5 1.4 29 71 12 

Point b 1.5 3.3 7.0 29.2 47 21.05 

Point c 1.6 3.8 4.2 29 40 24.1 
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Point d 3.9 2.3 4.2 28.9 45 22.1 

Point e 4 2.5 4.2 28 47 19.8 

 

The simulated results presented in Table 5 provide insights into optimised ventilation system of the poultry house 

under Case 1 conditions. The maximum and minimum temperatures recorded across the ground plane of the poultry 

house showcase the temperature distribution pattern. Notably, the temperature distribution appears relatively uniform, 

with minimal variation observed across different locations. Figures 4, 5 and 6 offer visualizations of the internal 

temperature dynamics and NH3, H2O mass fraction distribution and CO2 mass fraction distributions within the baseline 

system, respectively. Figures 7, 8 and 9 show the NH3 mass fraction and air velocity distribution, temperature 

distribution and H2O mass fraction and CO2 mass fraction for optimised ventilation system. The velocity distribution 

chart Figure 5 shows that the air velocity is more consistent when an exhaust fan is utilized, leading to lower 

concentrations of ammonia towards the outlet opening. Simmons et al. (2003), conducted a similar study showing that 

an increased wind speed between 0.25 m/s and 3m/s favoured the growth and development in older birds. The study 

examines the correlation among relative humidity, vapour pressure deficit, and temperature in relation to the optimised 

ventilation system. Findings reveal that the relative humidity levels in the poultry area remain consistently stable with 

the optimised ventilation system, contrasting with fluctuations observed in the baseline ventilation system. In a review 

done by Oloyo (2018), it was reported that internal temperature above 26.7 °C combined with high relative humidity 

adversely affected the feed efficiency, feathering, pigmentation, and weight gain of chicken. These findings contribute 

to the scientific understanding of poultry house ventilation dynamics and underscore the importance of optimizing 

ventilation strategies to enhance air quality and animal welfare. 

 

 

Figure 4. Internal temperature and NH3 mass fraction for baseline ventilation system 

 
Figure 5. Air velocity and H2O mass fraction for baseline ventilation system 

 

 
 

Figure 6. CO2 mass fraction for baseline ventilation system 
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Figure 7. NH3 mass fraction and air velocity distribution for optimised ventilation   system 

 

Figure 8.  Temperature distribution and H2O mass fraction for optimised   

 ventilation system. 

 

Figure 9.  CO2 mass fraction for optimised ventilation system. 

 

3.2. Comparison of baseline and optimised systems 

Figures 10 and 11 show the velocity distribution, Ammonia (NH3) and CO2 concentration for baseline and 

simulated ventilation systems, respectively. Figures 12 and 13 show the relative humidity and vapour pressure deficit 

vs temperature for baseline and simulated ventilation systems, respectively. The scenario in the baseline system 

indicates the absence of a pressure differential where an exhaust fan is not utilized to expel the air from the poultry 

house. Figure 12 illustrates the relationship between relative humidity, vapour pressure deficit, and temperature for the 

baseline ventilation system. It shows that as the temperature increases, the relative humidity decreases, resulting in a 

lower vapour pressure deficit. This trend suggests that higher temperatures correspond to lower relative humidity levels 

in the poultry house.  
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Figure 10. Velocity distribution, Ammonia and CO2 concentration chart for baseline ventilation system. 

 

Figure 11 illustrates the velocity distribution within the poultry house under the optimised ventilation system, 

offering insights into air velocity, ammonia concentration, and CO2 concentration. The chart reveals a more consistent 

air velocity profile when utilizing an exhaust fan, with the velocity gradient increasing towards the outlet points of the 

house. Notably, higher concentrations of ammonia were observed at points b and c, corresponding to areas where birds 

are typically present. However, concentrations gradually decreased towards the outlet opening where the exhaust fan 

was positioned, indicating effective ventilation and pollutant removal. This observation underscores the significance of 

optimizing ventilation strategies to maintain optimal air quality and environmental conditions within the poultry house. 

 
Figure 11. Velocity distribution, Ammonia and CO2 concentration chart for optimised ventilation system. 
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Figure 12. Relative humidity and vapour pressure deficit vs temperature chart for baseline ventilation system. 

 
Figure 13. Relative humidity and Vapour pressure deficit vs temperature chart for optimised ventilation system. 

4. Conclusion  

Following a comprehensive analysis and comparison of the baseline and optimised ventilation systems, it is evident 

that the optimised system markedly enhances the overall conditions within the poultry house. While the baseline 

ventilation system exhibits a reasonably uniform temperature distribution, the velocity distribution is notably uneven 

owing to the inherent variability associated with natural ventilation mechanisms. In contrast, the optimised ventilation 

system yields a more consistent air velocity profile. This observation underscores the efficacy of incorporating an 

exhaust fan in the optimised system, which facilitates the creation of a pressure differential, thereby enhancing air 

circulation throughout the poultry house. 

Moreover, the concentration of ammonia, which tends to be highest in areas frequented by birds, exhibits a gradual 

decrease towards the outlet opening where the exhaust fan is strategically positioned in the optimised system. This 

signifies the optimised system's efficacy in mitigating airborne contaminants, such as ammonia, thereby fostering 

improved air quality for the poultry inhabitants. Regarding relative humidity, the baseline system demonstrates a 

decline in humidity levels with increasing temperature, resulting in a lower vapour pressure deficit. In contrast, the 
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optimised ventilation system manifests a more balanced relationship between relative humidity, vapour pressure deficit, 

and temperature, indicative of its capacity to sustain a stable and comfortable environment within the poultry house. 
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Abstract 

The objective of this study was to assess the potential environmental benefits of installing Organic 

Photovoltaic (OPV) panels on the roof of a 200m2 plastic greenhouse for tomato production in Greece 

while using different types of roofs. The study employs a cradle-to-greenhouse gate approach, with 1 kg 

of fresh tomatoes at the greenhouse gate as the functional unit and a temporal boundary of 1 year. 

Comparative assessments were conducted to estimate the environmental performance of the greenhouse 

tomato supply chain after the installation of OPV panels. The results were compared to the respective 

performance before the installation of OPV panels. Four systems were defined: B-OPV, which represents 

the situation before the installation of OPV, and A-OPV-PR, A-OPV-AR, and A-OPV-GR, which 

represent the situation after the installation of OPV on a pitched roof, arched roof, and gothic roof 

greenhouse, respectively. Various environmental impact categories were addressed, using indicators in 

accordance with the EU – Environmental Footprint method. The highest weighted environmental impact 

category indicators (EICI) regarding the total environmental score were GWP-100 (Climate change), 

ADP-fossil (Abiotic resource depletion - fossil fuels), and PEFE (Freshwater Eutrophication). An 

inversely proportional relationship was observed between the electricity produced from the OPVs and 

the value of the EICI for these EICIs. This indicates that the higher the electricity production of the OPVs, 

the lower the values of the EICIs per kg of fresh tomato at the greenhouse gate. The A-OPV-PR and B-

OPV systems showed the largest difference in environmental impact, with potential average variations 

of 15% for GWP-100, 73% for PEFE, and 14% for ADP-fossils over a 25-year period. Additionally, 

installing OPV panels on the greenhouse roof improved the overall environmental performance of the 

tomato supply chain and most environmental impact indicators. Furthermore, the type of greenhouse roof 

was found to affect the amount of electricity generated by the OPV panels that can be fed back into the 

grid, thereby potentially affecting the overall annual environmental performance per kilogram of 

greenhouse tomatoes. These results demonstrate the potential for on-farm installation of OPV panels to 

decrease the environmental impact of fresh horticultural products. 

Keywords: Organic Photovoltaic Panels, Environmental Performance, LCA, Greenhouse tomato supply 

chains, Greece 

1. Introduction 

In the pursuit of sustainable agricultural practices, the integration of renewable energy sources in 

greenhouse operations has gathered significant attention. Organic Photovoltaics (OPVs) present a 

promising solution for reducing the environmental impact of energy consumption in greenhouse farming 

(Zimmermann et al., 2012). However, the potential environmental benefits of OPVs must be carefully 

evaluated, particularly concerning their installation and operational effects on the supply chain of 

agricultural products (Zimmermann et al., 2012).  

A critical aspect of this assessment is the use of OPVs for energy production within a net metering 

framework. This grid-connected system allows the greenhouse to utilize energy generated by OPVs (La 

Notte et al., 2020). The energy produced by OPVs is used primarily for greenhouse processes needs, and 

the extra energy is injected into the national electrical grid. When locally produced energy is insufficient 

to cover greenhouse needs, energy is imported from the grid. This netting process over a specific period 

provides a clear picture of the balance between the energy produced and consumed, highlighting the 

potential for renewable energy sources to reduce the environmental footprint of greenhouse operations. 

Assessing the environmental impact of energy production and consumption in greenhouse farming is 

particularly pertinent in regions where the national grid relies heavily on fossil fuels, such as crude oil 

and natural gas, which contribute significantly to greenhouse gas emissions. In Greece, for instance, the 

dependence of public network electricity on these energy sources underscores the importance of 

exploring renewable alternatives such as OPVs to reduce the environmental burden of greenhouse 
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products’ supply chains. In contrast, in countries such as France, where a notable fraction of public 

network electricity is derived from renewable sources, a different environmental profile for greenhouse 

energy consumption can be detected (Koch and Salou, 2022). 

Life Cycle Assessment (LCA) is a comprehensive analytical tool used to evaluate the environmental 

impacts associated with all stages of a product's life cycle, from raw material extraction through 

production, use, and disposal (Wolf et al., 2010). This methodology provides a systematic framework for 

assessing the environmental performance of products and processes by considering a wide range of 

impact categories, such as greenhouse gas emissions, energy consumption, water use, and waste 

generation. By examining each phase of the life cycle, LCA enables the identification of critical areas 

where improvements can be made to reduce the overall environmental footprint. Through detailed 

quantification and analysis, LCA could help stakeholders make decisions that promote environmental 

sustainability and resource use efficiency in agricultural supply chains (Alhashim et al., 2021). In the 

context of agricultural operations, such as greenhouse tomato production, LCA could be particularly 

valuable for comparing their environmental profile due to different energy sources, including the 

integration of renewable technologies such as Organic Photovoltaics (OPVs) (Tsang et al., 2016).  

This study focuses on assessing the potential environmental benefit of incorporating OPVs into a 

tomato greenhouse, using key environmental impact category indicators (EICIs) estimated per kilogram 

of tomatoes produced. It aims to use an LCA approach to compare the potential environmental 

performance of a greenhouse tomato supply chain utilizing electricity from OPV panels installed on the 

greenhouse roof versus the conventional method of consuming electricity imported from the national 

grid. By examining these potential environmental performances, the present study seeks to examine the 

potential environmental benefits and of integrating OPVs in greenhouse structures. 

2. Materials and Methods  

2.1. System definition 

For this assessment, a typical plastic greenhouse of 200m2 was used (width: 8m, length: 25m, and 

gutter height: 3.2m, roof height: 4.9m) and three types of roofs were examined: i) a pitched roof, ii) an 

arched roof, and iii) a gothic roof. This greenhouse was considered to operate in Central Greece and was 

oriented in a north–south position (Baxevanou et al., 2023). In each case, covering the greenhouse roof 

with OPVs (max. 50% of the roof surface) did not negatively affect the growth of the tomato crop 

(Baxevanou et al., 2020). 

The B-OPV reference system (Table 1) includes the greenhouse tomato supply chain using the default 

Agribalyse dataset (Koch and Salou, 2022) as the basis, considering the Greek low-voltage electricity 

grid mix. The A-OPV systems include the greenhouse tomato supply chain with the OPV units installed 

on the greenhouse roof, for three different types of roofs (Table 1), considering: 

a) the necessary OPV units to cover 50% of the roof’s surface; 

b) the avoided energy from the Greek low-voltage electrical grid mix; 

c) the energy produced from the OPV units, according to the considered roof area covered by the 

OPV units (108.3 m2).  

Table 1. The scenarios examined in this study. 

B-OPV system A-OPV systems 

No OPVs 

OPVs Pitched Roof (A-OPV-PR) 

OPVs Arched Roof (A-OPV-AR) 

OPVs Gothic Roof (A-OPV-GR) 

 

The A-OPV system models were run for a 25-year period, using already available data for the OPV 

energy production, aiming to compare the environmental performance of the A-OPV systems with the 

respective of the B-OPV system. The system boundaries were defined as ‘cradle-to-greenhouse gate’, 

while the functional unit as ‘1 kg of harvested tomato at the greenhouse gate’.  

Life cycle impact assessment was conducted using environmental impact category indicators (EICIs), 

characterization, normalization and weighting factors in accordance with the Environmental Footprint 

v.3.1 methodology (Andreasi Bassi et al., 2023; Fazio et al., 2018). 
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2.2. Development of the greenhouse tomato life cycle model 

The life cycle inventory and life cycle impact assessment stages were performed using SimaPro 

v.9.6.0.1 PhD (PRe-Consultants, 2023). The development of the greenhouse tomato system’s life cycle 

model was based on a suitable life cycle inventory dataset, the conventional greenhouse for tomato 

growth of the Agribalyse database (Koch and Salou, 2022), covering 10,000m2. In line with the defined 

system boundaries of the present study, this dataset includes the following material and energy inputs: 

(1) equipment for irrigation, fertilization, pest and pathogen control, heating, and harvesting; (2) the 

greenhouse structure and mobile machinery and (3) young plants (nursery), fertilizers (mineral and 

organic), growing media, active substances, water for irrigation, fuels, and energy, as well as transport to 

the farm. Emission outputs were further included: direct gas emissions due to fuel combustion, tire 

abrasion, and direct emissions from the greenhouse (emissions to air, water and soil). The temporal border 

is one year of tomato production.  

In the databases currently available in SimaPro, there is insufficient data for modeling OPVs' supply 

chains. Specifically, OPV is a complicated technology, and there is insufficient data on the bill of 

materials (BoM) for OPV production processes, rendering the development of a representative dataset 

for OPVs by directly using available SimaPro background data, impossible. Therefore, the environmental 

analysis was carried out with additional assumptions regarding OPV’s BoM, as the BoM used in the 

study is based on the existing literature (Tsang et al., 2016). 

Different energy results are produced by OPVs in all different types of greenhouses (various A-OPV 

systems). These produced electricity values were used in the compilation of the A-OPV datasets. In the 

cases that annual electricity production exceeded the annual electricity needs, the amount equal to the 

electricity needs of the greenhouse tomato production was considered as an avoided input from the 

national grid. In the same cases, the produced energy was further considered as a product output of the 

greenhouse tomato production system. 

Since the total electricity produced by the OPVs was assessed as a product output there were two 

outputs in total in the A-OPV system, electricity in kWh and fresh tomato in kg. An economic allocation 

approach based on the potential annual income from sold fresh tomato and sold electricity was used to 

determine the environmental load associated with each of these two product outflows. Since it was out 

of the scope of this study to assess price fluctuations for fresh tomato and electricity, a constant price 

throughout the years was considered for both these A-OPV system outflows.  

3. Results and Discussion 

The electricity needed to operate the 200 m2 plastic greenhouse both in the B-OPV and A-OPV 

systems was 1,417.17 kWh/year. It was found that the produced energy from the OPVs on an annual 

basis exceeded this necessary electricity amount for all three types of greenhouses and all 25 years of 

assessment. Thus, in the A-OPV systems (for all 25 years), this amount of electricity was considered as 

an avoided input. As a result, there was no electricity input from the national grid (contrary to the B-OPV 

system), and the associated environmental load was not only neglected but an environmental benefit was 

estimated. On the other hand, the total electricity produced by the OPV panels (A-OPV systems) was 

considered as a product output from the greenhouse tomato production and the total environmental load 

was economically allocated to both the fresh tomato and electricity product outflows. 

The potential estimates (25-year averages) of the environmental impact category indicators (per kg 

of fresh tomato at the greenhouse gate) for all B-OPV and A-OPV systems are presented in Table 2.  

 

Table 2. Potential values for the Environmental Impact Category Indicators of the B-OPV (average annual) and A-

OPV (average annual, 25-year) systems. 

Environmental Impact 

Category Indicator 

Units (per kg of fresh 

tomato at the greenhouse 

gate) 

A-OPV systems 
B-OPV 

system 
A-OPV-

PR 

A-OPV-

AR 

A-OPV-

GR 

Accumulated Exceedance 

(AEAC-T&FW) 
mol H+ eq 0.003 0.003 0.003 0.004 

Global Warming Potential – 100 

years (GWP-100) 
kg CO2 eq 1.451 1.460 1.471 1.707 

Comparative Toxic Unit for 

ecosystems (CTUeFWET) 
CTUe 3.994 4.019 4.049 2.042 
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Disease Incidence due to kg of 

PM2.5 emitted (DIPM2.5) 
disease inc. 

3.38 

×E-08 

3.40 

×E-08 

3.43 

×E-08 

3.87× 

E-08 

Nitrogen equivalents (NEME) kg N eq 0.002 0.002 0.002 0.002 

Phosphorus equivalents (PEFE) kg P eq 
1.61 

×E-04 

1.62 

×E-04 

1.63 

×E-04 
0.001 

Accumulated Exceedance 

(AETE) 
mol N eq 0.008 0.008 0.008 0.009 

Comparative Toxic Unit for 

human, cancer (CTUhC) 
CTUh 

2.63 

×E-10 

2.65 

×E-10 

2.66 

×E-10 

1.98 

×E-10 

Comparative Toxic Unit for 

human, non-cancer (CTUhNC) 
CTUh 

3.09 

×E-09 

3.11 

×E-09 

3.14 

×E-09 

7.10 

×E-10 

Ionizing Radiation Potential 

(IRP) 
kBq U-235 eq 0.036 0.036 0.036 0.040 

Soil Quality Index (SQI) Pt 0.115 0.116 0.117 0.134 

Ozone Depletion Potential 

(ODP) 
kg CFC-11 eq 

2.49 

×E-07 

2.51 

×E-07 

2.52 

×E-07 

2.81 

×E-07 

Photochemical Ozone Creation 

Potential (POCP) 
kg NMVOC eq 0.002 0.002 0.002 0.002 

Abiotic resource depletion – 

fossil fuels (ADP-fossil) 
MJ 21.877 22.016 22.177 25.557 

Abiotic resource depletion (ADP 

– ultimate reserve, ADP-UR) 
kg Sb eq 

1.81 

×E-05 

1.82 

×E-05 

1.84 

×E-05 

3.45 

×E-06 

m3 of water equivalents 

deprived (WED) 
m3 depriv. 0.846 0.851 0.858 0.939 

 

Error! Reference source not found. presents the % differences between the B-OPV and the three 

A-OPV systems for the most affected impact category indicators. The highest negative difference 

(meaning that A-OPV values are increased compared to B-OPV) was for the ADP-UR which was 

more than 4 times higher in the A-OPV systems than in the B-OPV system, followed by the differences 

for the CTUhNC and the CTUeFWET indicators. On the other hand, the larger positive differences were 

observed for PEFE (73%), AEAC-T&FW (30%), GWP-100 (14%), POCP (14%), ADP-fossil (14%) and SQI 

(13%). The rest of the environmental impact category indicators also show potential, lower positive 

differences between the A-OPV and B-OPV systems. 

 

Table 3. Differences (percentage) between A-OPV and B-OPV systems (D = EICIB-OPV – EICIA-OPV). 

Environmental Impact Category Indicator A-OPV-PR A-OPV-AR A-OPV-GR 

ADP-UR -425% -428% -432% 

CTUhNC -336% -339% -342% 

CTUeFWET -96% -97% -98% 

CTUhC -33% -34% -35% 

PEFE 73% 73% 73% 

AEAC-T&FW 30% 29% 29% 

GWP-100 15% 14% 14% 

POCP 15% 14% 14% 

ADP-fossil 14% 14% 13% 

SQI 14% 13% 13% 

DIPM2.5 13% 12% 11% 

NEME 12% 12% 11% 

AETE 12% 11% 10% 

ODP 11% 11% 10% 

AgEng 2024 Proceedings

788



IRP 10% 9% 9% 

WED 10% 9% 9% 

 

The B-OPV system is generally associated with higher or similar EICI values than the A-OPV 

systems (Error! Reference source not found.). This implies a potential improvement of the 

environmental performance of the greenhouse tomato production system when installing OPV panels 

and that the contribution that the unit process for producing the OPV panels is not important to the total 

indicator estimates (expressed per kg of tomato at the greenhouse gate). 

The OPV material has a significant influence on the EICIs connected to negative differences between 

the B-OPV and A-OPV systems. CTUeFWET, CTUhNC, and ADP-UR are the most negatively influenced 

EICIs. These results can be explained in the case of the first two EICIs due to the indium tin oxide (ITO) 

material existing in the PET Lamination of the OPV which potentially increasingly affects the total 

hydrogen sulfite emissions. In the case of ADP-UR, the most important material flows that lead to an 

increase in this EICI is mainly silver (60% of total ADP-UR) which was used as an OPV construction 

material as well as indium tin oxide (ITO) 20% of total ADP-UR). 

The total weighted environmental score (Table 4) based on all environmental impact category 

indicators was higher for the B-OPV system than the A-OPV systems. The impact categories with higher 

relative importance for the total environmental performance were climate change, resource use (fossil 

fuels), freshwater eutrophication, and water use (Table 4). 

Table 4. Relative importance of the various environmental impact category indicators for the total environmental 

load of the B-OPV and A-OPV systems. 

  B-OPV A-OPV-PR A-OPV-AR A-OPV-GR 

 Unit Total Total Total Total 

Total (100%) µPt 144.41 116.81 117.55 118.41 

GWP-100 % 39.09 34.64 34.64 34.64 

ADP-fossil % 26.86 23.97 23.97 23.97 

PEFE % 8.62 2.41 2.41 2.41 

WED % 5.72 5.37 5.37 5.37 

DIPM2.5 % 4.78 4.36 4.36 4.36 

AEAC-T&FW % 4.02 2.95 2.95 2.95 

ADP-UR % 3.36 18.39 18.39 18.39 

NEME % 2.50 2.29 2.29 2.29 

POCP % 1.93 1.71 1.71 1.71 

AETE % 1.60 1.47 1.47 1.47 

CTUhC % 0.57 1.16 1.16 1.16 

IRP % 0.39 0.36 0.36 0.36 

ODP % 0.28 0.26 0.26 0.26 

CTUeFWET % 0.20 0.28 0.28 0.28 

CTUhNC % 0.08 0.38 0.38 0.38 

SQI % 0.01 0.01 0.01 0.01 

 

According to the weighted results, the relative importance of CTUeFWET, CTUhNC, and ADP-UR to the 

total environmental score is lower than other indicators such as GWP-100, ADP-fossil, PEFE and WED, 

resulting in a decrease in the total weighted environmental score per kg of fresh tomato at the greenhouse 

gate for the A-OPV systems.  

The electricity produced by OPV panels (as well as the avoided electricity input from the national 

grid) seems to be connected to a benefit for most of the environmental impact category indicators (GWP-

100, SQI, ADP-fossil, WED, AEAC-T&FW, DIPM2.5, NEME, PEFE, AETE, POCP, IRP, ODP). The avoidance 

of using electricity from the national grid and the reduction in the environmental burden allocation 

percentage to the fresh tomato product (when injecting renewable electricity back into the national grid 

as a product) result in a potentially positive effect on the environmental performance of greenhouse 

tomato production. 
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The highest effect of installing OPV panels can be observed for the GWP-100 (kg CO2-eq/kg fresh 

tomato at the greenhouse gate), the ADP-fossil (MJ/kg fresh tomato at the greenhouse gate) indicators, 

and PEFE (kg P/kg fresh tomato at the greenhouse gate). For these indicators, the difference between the 

three A-OPV systems as well as between the A-OPV and the B-OPV systems ranges between 13% for 

the ADP-fossil and 73% for the PEFE. The largest difference can be observed between the A-OPV-PR 

system and the B-OPV system where the potential differences for the 25-year average values of GWP-

100, PEFE, and ADP-fossils are 15%,73%, and 14% respectively. 

4. Conclusions 

The installation of OPV panels has an aggregate positive effect on the total environmental 

performance of the greenhouse tomato supply chain and on the values of most of the environmental 

impact category indicators. This is achieved by assuming that the total amount of the produced electricity 

by the OPV panels returns to the grid (as an additional product of the greenhouse production process) 

and that an amount of electricity equal to the electricity needs of the tomato production in the greenhouse 

is avoided. Moreover, the additional environmental load that is imported to the system due to the OPV 

panels’ supply chain was too low to counteract the positive effect of their installation and use. These 

results are highly dependent on the modelled environmental load per kWh of electricity in the national 

grid. Moreover, the type of greenhouse was found to affect the amount of produced electricity by the 

OPV panels that can be returned to the grid and therefore potentially influences the total environmental 

performance per kg of greenhouse tomato. The Pitched roof greenhouse (A-OPV-PR system) was 

associated with the highest electricity production by OPV panels and consequently linked to the highest 

potential differences in the environmental performance (total and per separate indicator) from the B-OPV 

system.  

Finally, although the assumptions made influence the size of the point estimates for the environmental 

performance results, the installation of OPV panels on the roof of a greenhouse producing tomato seems 

to have a positive effect (i.e. focusing on the existence of differences) on the environmental performance 

of the associated fresh tomato supply chain.  

Nevertheless, as OPV panels constitute an emerging technology, further research would be necessary 

on the assessment of the environmental impacts of horticulture products’ supply chains in which OPV 

panels are used, using the LCA approach. More detailed Bills of Materials for OPV panels would need 

to be developed for LCA model development of such horticulture products’ supply chain systems and 

more detailed LCAs (e.g. from a primary data collection point of view) would be a prerequisite for higher 

quality estimates of the potential benefit of using OPV panels in different types of greenhouses and 

horticulture products. 
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Abstract 

Insect-proof nethouses can provide efficient protection against harmful insects and environmental 

hazards, and microclimate regulation in favor of protected cultivation. In this study, a full-scale experiment 

and CFD simulations were employed to estimate the wind pressures exerted on two neighboring low-rise 

insect-proof nethouses. Moreover, the airflow pattern windward, leeward, and inside the nethouses was 

analyzed. Two different types of novel insect-proof nets were used as covering materials: The 3353BT 

Biorete AirPlus 50 mesh that allowed for improved ventilation rates; and the OptiNet 50 mesh that provided 

optical exclusion of pests. Anemometers installed windward, leeward, and inside the insect-proof nethouses 

measured wind velocities at different locations. Specially designed pressure differential sensors were used to 

measure the wind loads at the nethouses' windward and leeward sides. The full-scale experiment was 

simulated through a 3D numerical model. The net coverings were simulated as porous domains of porosity 

and aerodynamic coefficients previously measured by wind tunnel experiments. Velocities were less retarded 

inside the AirPlus nethouse (Full-scale: 46%, CFD: 57%), than for the denser mesh OptiNet nethouse (Full-

scale: 63%, CFD: 67%). Lower wind loads were recorded for the windward side of the enhanced ventilation 

technology AirPlus insect-proof net (Full-scale: CP = 0.39, CFD: CP = 0.46) as compared to the OptiNet net 

(Full-scale: CP = 0.48, CFD: CP = 0.54). On the contrary, at the leeward sides of the nethouses, increased 

wind loads were measured for the AirPlus nethouse (Full-scale: CP = -0.28, CFD: CP = -0.24) as compared 

to the OptiNet nethouse (Full-scale: CP = -0.24, CFD: CP = -0.23). The field experiment and numerical results 

were in good agreement. The numerical model was further utilized to visualize the 3D airflow pattern and 

the pressure distribution on the nethouses. 

1. Keywords: field experiment, CFD, wind pressure, airflow pattern, insect-proofIntroduction 

The use of greenhouses as crop protection systems during summer is not possible due to high 

temperatures. For this reason, many vegetables are grown in unprotected open-field cultivations. However, 

this type of cultivation is susceptible to extreme climatic conditions and enemy insects. Over the last decade, 

the use of agricultural nets as means of protection and the construction of nethouses has significantly 

expanded. They offer protection from environmental hazards, such as hail and wind, while they moderately 

regulate the internal microclimate through natural ventilation, allowing for the production of improved 

quality and quantity and reduced irrigation and insecticide inputs.  

Insect-proof nets or exclusion nets have denser mesh structures as compared to the other types of 

agricultural nets imposing higher resistance to the impinging airflow leading to decreased ventilation rates 

(Mahmood et al., 2018). As a result, increased temperature and humidity levels may develop at the nethouse 

interior. For this reason, net manufactures introduced innovative types of agricultural nets, such as nets with 

increased ventilation rates and optical exclusion nets (through additives that interfere with specific visible 

and UV spectrum ranges) (Giannoulis et al., 2021).  

The aerodynamic behaviour of the agricultural nets can be estimated through wind tunnel experiments 

(Castellano et al., 2016). The interaction of the airflow with the nethouse cladding is critical since it affects 

several parameters such as heat, water vapour, and CO2 exchange (Tanny et al., 2003), the interior airflow 

velocities (Mistriotis & Castellano, 2012) and the wind forces on the nethouse (Robertson et al., 2002). 

Several publications have pointed out that it is more accurate to relate the air velocity reduction caused by 

net-covered structures to the aerodynamic coefficients of the net than its porosity ratio (Mistriotis and 

Castellano, 2012). The air velocity reduction inside nethouses reported in various publications ranged 

between 0.2 and 0.91. This wide range was attributed to the fact that several parameters could affect the air 

velocity values inside a nethouse such as the net aerodynamic characteristics, the presence of vegetation, the 

height and density of vegetation, the locations of the anemometers, and the terrain roughness parameter zo 

(Tanny, 2013)   

Nethouses are lightweight structures as compared to greenhouses. They are subjected to reduced wind 
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loads because of their permeable character. Studies regarding wind pressures on nethouses are scarce, since 

the standard pressure measuring equipment is not applicable (Briassoulis et al, 2010, Giannoulis et al, 2015). 

Wind loads on nethouses have only been estimated through numerical analysis (CFD) (Mistriotis et al., 2012, 

Teitel et al., 2022) but not through full-scale or wind tunnel experimental work. Especially for wind tunnels, 

creating scaled nethouse models appears to be further problematic. The small-sized net fibres are impossible 

to be scaled down to smaller dimensions. Robertson et al., 2002 measured wind pressures on an arched and 

a flat roof nethouses in a large wind tunnel (scaling 1:2).   

The objective of this research work was the estimation of the wind loads on two neighboring low-rise 

tunnel nethouses on the field and through numerical simulations. The nethouses were covered by two 

different novel insect-proof nets. For the field experiment, wind loads were recorded through a special 

configuration that allowed for the measurement of the pressure difference that occurs at the net covering. The 

airflow pattern windward, leeward, and inside the insect-proof nethouses was also evaluated both through 

field measurements and CFD analysis, in order to contribute to the limited published data regarding the 

airflow velocities inside and around nethouse structures. The validated 3D numerical model allowed for 

further analysis of the detailed airflow pattern and the pressure distribution on the nethouses. 

2. Materials and Methods  

2.1. Full-scale experiment  

 

Each nethouse was a low-rise semi-cylindrical steel frame structure (tunnel) with a ridge height of 2 m, 

span width of 4 m, and length equal to 8 m (Figure 1, middle). Two different insect-proof nets were employed 

as covering materials. The OptiNet 50 mesh (Ginegar Plastic Products Ltd., Israel, OptiNet for the rest of the 

document) and the 3353BT Biorete 50 Mesh AirPlus (Arrigoni, Italy; AirPlus for the rest of the document). 

The OptiNet was installed at the northern nethouse structure (OptiNet Nethouse for the rest of the document), 

while the southern nethouse was covered with the AirPlus insect-proof net (AirPlus Nethouse for the rest of 

the document) (Figure 1, middle). The nethouses were parallel to each other. They were oriented almost 

perpendicular to the N-S direction, with a small deviation of 4o to the NNE-SSW direction. The nets were 

fixed through specially designed clips on the frame. 

 

 

Figure 1.  The anemometer and the wind vane at 4m high (left); the full-scale nethouse structures (middle); mapping of 

the locations of the rotary cup anemometers (right) 

 

Eight (8) rotary cup anemometers (Vector Instruments, A100K, accuracy: 0.1 m s-1) were used for the 

estimation of the airflow at discrete points windward, leeward, and inside the nethouses. Two of them were 

located on a 10 m high mast at 10 m and 4 m (M10 and M4 correspondingly, Figure 1, left and middle). The 

remaining six anemometers (A1-A6) were located along the centerline of each nethouse (three anemometers 

at each nethouse, Figure 1, right). The anemometers inside the nethouses were located at the mid-point of the 

interior area of the structure, while the outside anemometers were placed 5 m away from the nethouses sides. 

All were at a height of 1.45 m. The anemometer on the mast at 10 m height served as the reference 

anemometer. The rest of the anemometers were correlated to it. Wind velocity data were recorded and 
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analysed only for the South wind direction, which was perpendicular to the sides of the nethouses. A 

potentiometer wind vane was set at 4 m high to constantly monitor the wind direction (Vector Instruments, 

W200P, accuracy: ±2o). The anemometers on the 10 m high mast (M10 and M4) were also used for the 

accurate estimation of the terrain roughness parameter zo through the logarithmic wind profile. 

The total wind pressure on an agricultural net is the static pressure difference between its windward and 

leeward sides. For this reason, pressure differential sensors were mounted on specially designed setups 

(Figure 2, left). The pressure differential sensors were housed in waterproof plastic boxes used for electrical 

applications so that they are protected from external conditions. 

 

 

Figure 2. Configuration and installation of the pressure differential sensors (left); Waterproof box for housing the 

circuit board with the differential pressure sensor mounted and the LDES100B pressure differential sensor (middle); 

Graphical representation of the locations of the pressure differential sensors at the field (right) 

 

The pressure differential sensors (First Sensor AG, LDES100B, Germany) were mounted and wired on a 

circuit board. The pressure difference was measured as the pressure difference at the two nozzles on the 

sensor (Figure 2, middle). Two thin elastic tubes originated from each nozzle. One was placed outside the 

nethouse and the other at its interior at the same height. Both tubes were placed inside secondary rigid plastic 

tubes so that their open end would constantly be perpendicular to the airflow that passed through the 

agricultural net (bleed flow). The sensor was bilinear (could measure both positive and negative pressure 

differences) and the measurements could range between -100 Pa to 100 Pa. Its accuracy was equal to ± 0.4 

% of reading and could be operational for temperatures between -20 oC to 80 oC and relative humidity up to 

97 %.  

Four similar devices measuring net pressure were installed at each side of the two nethouses (two sensors 

for each nethouse, P1, P2 for the AirPlus nethouse; P3, P4, for the OptiNet nethouse, (Figure 2, right) at their 

mid-length (4 m) and at a height equal to 1.5 m from the ground. The waterproof boxes were secured on the 

net covering 0.3 m below the tubes so that they would not disturb the incoming flow (Figure 2, left). The 

elastic tubes were installed so that at the nethouses windward and leeward side the pressure would 

correspondingly be positive (overpressure, (+)) and negative (suction, (-)) (Figure 2, right).  

Net pressure coefficients (CP) were estimated by Eq. 1, where: ΔP (Pa) was the the measured air pressure 

drop at the insect-proof net coverings, ρ was the air density (equal to 1.2 kg m-3), Vref was the velocity of the 

wind at the reference height of the structure (equal to the nethouses ridge height, 2 m). The wind velocity at 

the reference height could be calculated from the logarithmic wind profile. 

 

𝐶𝑃 =
𝛥𝑃

1

2
𝜌𝑉𝑟𝑒𝑓

2                     (1) 

2.2. CFD model 

A numerical model has been employed in order to represent the full-scale experiments. A 3D model was 

created in order to simulate the interaction of the wind with the two insect-proof nethouses. The nethouses 

were assumed to be enclosed by a parallelepiped wind tunnel domain (field domain). The model wind tunnel 

size was 200m, 15m and 100m along the x, y and z directions respectively. The nethouses were accurately 

modelled based on their geometrical characteristics and their configuration at the experimental field.  

The finite volume mesh consisted of both 3D tetrahedral and hexahedral elements. The hexahedral 

elements were used for the nethouses interior domains, while for the remaining domains (insect-proof nets, 
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wind tunnel) the mesh was formed by tetrahedral elements (Figure 3). This combination was preferred 

because the mesh could be easier formulated, refinement was improved and better quality results and faster 

convergence could be achieved. 

Three mesh refinement layers were used (Figure 3, right) for the numerical simulation. Mesh structure 

was finer close to the studied structures, in order to accurately simulate the interaction of the impinging wind 

with the insect-proof nethouses. The 3D mesh consisted of 14.5 million elements and 3.3 million nodes. 

Further mesh refinement did not affect significantly the results.  

 

.  

 

Figure 3. The insect-proof net domain mesh (left); Three different mesh layers (right) 

 

Permeable materials (insect-proof nets) were numerically simulated using the Forchheimer’s equation 

(Lage, 1998). The pressure drop across a porous material of thickness Δx (m) is expressed by the following 

equation: 

                                           𝛥𝛲 = 𝛼𝑉2 +  𝛽𝑉                     (2)                                                          

 

The parameters α (kg m-3) and β (kg m-2 s-1) in Eq. (2) are the aerodynamic coefficients which are 

representative for each porous material. They are also known as the linear (β, multiplied to V) and the 

quadratic (α, multiplied to V2) aerodynamic coefficients. The basic aerodynamic characteristics of the insect-

proof nets, namely the porosity and the aerodynamic coefficients are shown in Table 1 as measured at 

Giannoulis et al., 2021. These values served as input for the setup of the domains that represented the net 

coverings (thickness: Δx = 0.05 m) at the numerical model.  

 

Table 1. Aerodynamic characteristics of the installed insect-proof nets 

  Laboratory Results Numerical Model Input 

Net (name) Porosity (%) α (kg m-3) β (kg m-2 s-1) a/Δx (kg m-4) β/Δx(kg m-3 s-1) 

AirPlus 53.4 1.220 1.586 24.40 31.72 

OptiNet 38.7 2.591 2.010 51.82 40.20 

 

The standard k-ε turbulence model was selected. The wind velocity profile was set to be logarithmic at 

the inlet of the wind tunnel, where the velocity Vz of the wind at a height z is given by Eq. 4.   

 

           𝑉𝑧 =
𝑢∗

𝐾
𝑙𝑛 (

𝑧

𝑧0
)                        (4) 

 

𝑘 =
𝑢∗

2

√𝐶𝜇
                    𝜀 =

𝑢∗
2

𝛫(𝑧+ 𝑧0)
      (5) 

 

Where z (m) is the height, Vz (m s-1) the velocity at height z, u* (m s-1) the friction velocity, zo (m) the 

terrain roughness and K is the von Karman constant (=0.41). Inlet boundary conditions should also provide 

profiles for the turbulent characteristics of the wind, namely the turbulent kinetic energy k (m2 s-2) and the 
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dissipation of the turbulent kinetic energy ε (m s-2) (Eq. 5). Inlet velocities up to 7 m s-1 (at 10 m height) 

where examined through the numerical model. At the lower wall it was assumed that wall boundary 

conditions existed. At the outlet of the wind tunnel the pressure was set to zero to simulate the open wind 

tunnel end. Finally, the upper and side walls of the wind tunnel were set as frictionless barriers (free slip 

condition), so only the vertical wind velocity component was set equal to zero. The residuals target was set 

at 10-5. Convergence at 10-6 was also tested but the results were insignificantly affected.  

3. Results and Discussion 

3.1. Airflow Pattern 

Figure 4 (left) presents the correlation of the data between the anemometers M10 and M4 mounted at the 

10 m high mast. Using Eq. 4 the terrain roughness parameter zo was calculated equal to 0.07 m. 

 

 

Figure 4. Correlation of the M10 and M4 anemometers for the estimation of zo (left); correlation of the ground 

anemometer A3 and M10 (right) 

 

Velocity ratios of the A1-A6 ground level anemometers with the 10 m high reference anemometer M10 

for the full-scale experiment are given in Table 2. Wind velocity ratios were similar, as expected, for the 

windward anemometers of the nethouses (A6/M10=0.61, A3/M10=0.63 (Figure 4, right)). The wind velocity 

ratios decreased at the interior of both nethouses as the wind passed through the insect-proof net claddings 

(A5/M10 = 0.33, A2/M10 = 0.23). The wind velocity reduction was more significant for the OptiNet 

(anemometer A2 - 63% air velocity reduction) than for the AirPlus (anemometer A5 - 46% air velocity 

reduction) because of the latter’s increased ventilation rates.  

 

Table 2. Wind velocity ratios comparison between the full-scale data and the numerical simulation  

SOUTH WIND Wind Velocity Ratios   

Correlated 

anemometers 

𝐴6

𝑀10
 

𝐴5

𝑀10
 

𝐴4

𝑀10
 

𝐴3

𝑀10
 

𝐴2

𝑀10
 

𝐴1

𝑀10
 

Full Scale 0.61 0.33 0.22 0.63 0.23 0.24 

Numerical Model 0.63 0.27 0.21 0.67 0.22 0.17 

 

Table 2 also provides the corresponding wind velocity ratios from the numerical analysis. Results appear 

to be in very good agreement for all cases, providing air velocity reduction equal to 57% (AirPlus Nethouse) 

and 67% (OptiNet nethouse).    

The validated model allowed for further analysis of the airflow vector field. Figure 5 presents 3D 

numerical results regarding the velocity vectors around the insect-proof nethouses at an X-Z plane and an X-

Y plane for the windward (AirPlus) and the leeward (OptiNet) nethouse. The air impinges on both nethouses, 

passes through the interior, and exits from their leeward net-covered sides. The wind velocity appears to drop 

right after it exits the nethouses (blue-colored vectors) and recovers afterwards tending to reach the initial 

(undisturbed) velocity. On the other hand, the wind that does not penetrate the nethouses accelerates at the 

nethouses sides and roof (Figure 5, left and middle, orange/red colored vectors). 
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Figure 5. The airflow pattern at a:  X-Z plane (left); X-Y plane for the windward nethouse (middle); X-Y plane for the 

leeward nethouse (right) 

 

However, at the X-Y plane airflow pattern, leeward of the OptiNet nethouse (Figure 5, right) a small 

recirculation is formed, which is an indication of increased turbulence. This can be initially attributed to the 

less aerodynamic behavior of the OptiNet insect-proof net as compared to the AirPlus net. Further analyzing 

the 3D airflow pattern, it appears that a significant portion of the airflow that impinges on the nethouses 

becomes bleed flow (passes through), and the remaining airflow shifts towards the ridge and the sides of the 

nethouse structures. The airflow from the ridge, the sides, and the nethouse interior meet at the leeward of 

structure and compose the airflow presented in Figure 5. The wind impinges on the OptiNet nethouse after it 

has already interacted with the AirPlus nethouse (windward nethouse). Additionally, the wind velocity 

increases at certain locations (in between the two nethouses). For these reasons, the wind around the OptiNet 

nethouse becomes more complex.  

3.2. Wind Pressure 

Figure 6 presents the relationship between the pressure differential sensors measurements and the wind 

velocity at 10 m high for both the field experiment and the CFD model. For the field experiment, very high 

wind velocities due to wind gusts were not considered. The regression lines given in the graphs of Figure 6 

are represented by quadratic equations as expected since the pressure (P) / velocity (V) relationship is 

quadratic (P ~ V2). In all cases, the regression lines showed zero pressures for zero velocities, confirming 

that the pressure differential sensors were calibrated and configured properly. 

 

 

Figure 6. Full-scale and numerical results for the windward and leeward pressure drop at the nethouses 

 

For the windward pressure sensors of the field experiment, the quadratic regression lines show that wind 

loads were calculated to be higher for the OptiNet nethouse (red continuous line) as compared to the AirPlus 

nethouse (blue continuous line). This was also the case for the numerical simulation results (OptiNet: red 

discontinuous lines; AirPlus: blue discontinuous lines). This confirms that the wind loading was higher for 

the less porous OptiNet nethouse, as expected. However, as shown in Figure 6, the regression lines for the 

leeward nethouses’ sides showed that wind loading was higher for the AirPlus nethouse (in agreement with 

the measured air velocity ratio). Comparison between the experimental and the numerical results for the air 

pressure drop was very good, as shown in Figure 6, further validating the numerical model. 

Analysis of the experimental data showed that the CP measurements converged toward a constant value 

at velocities higher than 3.5 m s-1 at the reference height (2 m). For this reason, the proposed design CP values 

AgEng 2024 Proceedings

797



were calculated as averages over the set of air velocities at reference height that exceed this threshold. For 

the numerical model the CP was also estimated for similar range of velocities at 2 m height. Both analyses 

results appear in Table 3. As expected, windward average CP values were positive (inward), while the 

corresponding leeward values were negative (outward). The windward average CP was higher for the OptiNet 

nethouse (Full scale: CP = 0.48; CFD: 0.54) than the AirPlus nethouse value (Full scale: CP = 0.39; CFD: 

0.46) because of its denser mesh imposing higher air pressure drop and thus a higher average CP value. At 

the leaward side, the average CP value was higher for the AirPlus nethouse (Full scale: CP = -0.28; CFD: -

0.24) than the OptiNet nethouse (Full scale: CP = -0.24; CFD: -0.23). This can be explained by the lower 

indoor air velocity, observed in the OptiNet nethouse, which results in a lower net pressure coefficient at the 

leeward side of the nethouse. Average Cp results between the experiment and the CFD simulation were also 

in good agreement. 

 

Table 3. Average net pressure coefficients CP. 

 Average CP 

Analysis Windward Leeward 

 AirPlus Nethouse 

Full-scale 0.39 ± 0.09 -0.28 ± 0.04 

Numerical 0.46 ± 0.02 -0.24 ± 0.00 

 OptiNet Nethouse 

Full-scale 0.48 ± 0.07 -0.24 ± 0.04 

Numerical 0.54 ± 0.03 -0.23 ± 0.00 

 

 

 

Figure 7. Wind pressure contours windward (left) and leeward (right) of the nethouses 

 

Figure 7 presents the pressure distribution on the windward and leeward sides of the nethouses. The wind 

pressure was higher at the lower part of the windward side of the nethouses, while it became smaller close to 

their ridge. Because of the nethouses semi-circular geometry, the air that impinges close to the ridge was 

mostly directed above the nethouses. For the OptiNet nethouse the highest wind pressure contour (red 

coloured) expanded at a larger area and conforming the previous average Cp results. 

For the entire leeward side of the AirPlus nethouse the wind pressure was higher and constant (light blue 

contours). For the OptiNet nethouse the wind pressure varies from the lower to the upper leeward side (light 

blue, higher negative pressure; dark blue contours, lower negative pressure). This was also a proof of higher 

negative pressures at the leeward side of the AirPlus nethouse as compared to the OptiNet nethouse leeward 

pressures.  

4. Conclusions 

A full-scale experiment and numerical simulations were carried out regarding two small low-rise 

neighbouring insect-proof nethouses. The nethouses were covered by innovative agricultural nets as cladding 

materials, namely an enhanced ventilation technology (AirPlus) and an optical exclusion insect-proof net 

(OptiNet). The ventilation efficiency and the wind pressures on these structures were studied. Specifically, 

the indoor air velocity dropped to 63 % (full-scale) and 67 % (CFD) of the wind velocity at the same height 
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(1.45 m above the ground) for the denser OptiNet insect-proof net, while for the AirPlus net the corresponding 

decrease was equal to 46 % (full scale) and 57 % (CFD). Nevertheless, the net coverings allowed for wind 

velocity reduction at the nethouses interior that confirmed their protective character against potential 

cultivation damages from strong winds.  

The increased ventilation (low aerodynamic coefficients) of AirPlus net allowed for decreased wind 

pressures at the AirPlus nethouse windward side as compared to the OptiNet nethouse. The OptiNet insect-

proof net has a mesh structure and aerodynamic behaviour similar to typical insect-proof nets. Its 

manufacturing novelty is based on the incorporated insect disorienting additives. This means that instead of 

a 50-mesh net (such as the one used here), a 40-mesh net could be used, since less enemy insects would reach 

the nethouse. Using a 40-mesh OptiNet insect-proof net is the next step of this experimental work. On the 

other hand, leeward pressures where smaller for the OptiNet nethouse due to the decreased velocities to its 

interior. These results are critical and should be taken into account for the design of nethouses using this type 

of cladding materials.   

A good agreement was observed between experimental and numerical results regarding the wind 

velocities and pressures around the nethouse structures, validating the numerical model. Further 3D 

numerical analysis showed that the interaction of the incoming wind with two insect-proof nethouses close 

to each other exhibited complex airflow pattern, especially leeward of the OptiNet nethouse where an eddy 

was formed. The 3D pressure distribution on the windward and leeward sides of the nethouses was also 

indicative of the average Cp results.  

The innovative pressure differential sensors used in the current experiment could be further used for the 

estimation of wind loads on large nethouse structures. The net pressure coefficients, measured in the present 

study, could be used for design purposes of similar tunnel-type nethouses.  
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Abstract 

Nethouses can be considered as intermediate low-cost technology for protected crops between greenhouse 

and open-field cultivation. The inherent properties of the net cladding allow them to provide passively 

controlled conditions by modifying the exchange rates of mass, and radiation between the crop and the 

environment.  Insect-proof nets have lower porosity as compared to the other types of nets and may impose 

decreased ventilation rates, and thus, increased temperatures and relative humidity (RH) inside the nethouse. 

A field experiment of two single-span small-sized tunnel nethouses with tomato cultivation, each with a 

different insect-proof net covering (OptiNet 50 mesh, porosity: 53.4%; Biorete 50 Mesh AirPlus, porosity: 

38.7%) was carried out. The 50 mesh Airplus net allowed for increased ventilation through its thinner-thread 

configuration. Temperature and RH levels at the interior of the insect-proof tunnel nethouses were recorded 

through full-scale experiments. Results were compared to the field temperature and RH values. A CFD model 

representing the field experiment was also employed for the estimation of the microclimatic parameters.  

Results showed that for high wind velocities the temperatures inside the nethouses were almost equal to 

the ambient temperatures (convection becomes dominant). For low wind velocities, the highest average 

daytime temperature increased by 1.1oC for the nethouse covered with the denser mesh OptiNet 50 mesh net 

and equal to 0.9oC for the 50 mesh Airplus net covered nethouse. RH measurements were similar to the 

ambient RH values. The highest daytime average RH difference was equal to 2% for the nethouse with the 

OptiNet 50 mesh net, while most of the indoor RH recordings differed from the ambient ones by less than 

1%. CFD results were in good agreement with the full-scale measurements. In addition, a detailed CFD 

analysis of the distribution of the temperature and the RH in the interior of the nethouses is presented. 

Keywords: field experiment, CFD, temperature, relative humidity, tomato plants 

1. Introduction 

The use of agricultural nets as a means of protection steadily expanded over the last decade. One of their 

most common applications is their use as covering materials for nethouses. Nethouses are lightweight, low-

cost structures that use two types of agricultural nets as cladding materials, namely shading and insect-proof 

nets. They can be an alternative to the summer open-field cultivations which are prone to significant damage 

due to excessive solar radiation, strong winds, and enemy insects. Nethouses offer regulation of their interior 

climate through their naturally ventilated permeable cladding. They decrease the incoming solar regulation 

and/or prohibit even the smallest insects from entering the protected cultivation area. They also exhibit an 

environmentally friendly character, since the requirements for irrigation and insecticide inputs significantly 

decrease compared to greenhouses or open-field cultivations.   

Increased temperatures and RH at the interior of the insect-proof nethouses have been reported to be a 

significant disadvantage, especially during the summer period caused by low ventilation levels (Tanny et al., 

2003). The mesh of insect-proof nets is denser in comparison to other commercial types of agricultural nets 

reducing the exchange of air mass of the structure with the environment (Mahmood et al., 2018). As a result, 

increased levels of temperature and humidity may develop at the nethouse interior. Lately, net manufacturing 

companies introduced innovative types of nets in order to alleviate such issues (Giannoulis et al., 2021).  

The objective of this research work was the estimation of the temperature and RH levels at the interior of 

two neighboring low-rise tunnel nethouses on the field. A 3D numerical model representing the field 

experiment was also employed for this reason. The nethouses were covered by two different novel insect-

proof nets. The nethouses and the environment temperatures and RH values were compared so that the 

efficiency of the nethouses regarding their microclimate would be investigated. After the validation of the 

3D numerical model, the 3D distribution of temperatures and RH at the nethouses’ interior was examined. 
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2. Materials and Methods  

2.1. Full-scale experiment  

The nethouses were low-rise tunnel-type structure structures. Their ridge was at a height of 2 m, their 

span width was 4 m, and their length was equal to 8 m (Figure 1, middle). Two different insect-proof nets 

were used as covering materials. The OptiNet 50 mesh (Ginegar Plastic Products Ltd., Israel, OptiNet for the 

rest of the document) and the 3353BT Biorete 50 Mesh AirPlus (Arrigoni, Italy; AirPlus for the rest of the 

document). The OptiNet was installed at the northern nethouse structure (OptiNet Nethouse for the rest of 

the document), while the southern nethouse was covered with the AirPlus insect-proof net (AirPlus Nethouse 

for the rest of the document) (Figure 1, middle). The nethouses were parallel to each other with an almost 

perpendicular orientation to the N-S direction (small deviation of 4o to the NNE-SSW).  

 

 

Figure 1.  The anemometer and the wind vane at 4m high (left); the full-scale nethouse structures (middle); The 

temperature and relative humidity sensor ATMOS 14 (right) 

 

Two (2) rotary cup anemometers (Vector Instruments, A100K, accuracy: 0.1 m s-1) were located on a 10 

m high mast at 10 m and 4 m (M10 and M4 correspondingly, Figure 1, left). Wind velocity data were recorded 

and analysed only for the South wind direction, which was perpendicular to the sides of the nethouses. A 

potentiometer wind vane was set at 4 m high to constantly monitor the wind direction (Vector Instruments, 

W200P, accuracy: ±2o). The anemometers on the 10 m high mast (M10 and M4) were used for the accurate 

estimation of the terrain roughness parameter zo through the logarithmic wind profile (Eq. 4). 

Temperature and RH values were monitored by special sensors (Meter Group, Inc., ATMOS 14, accuracy: 

RH ±2%, temperature ±0.2oC, Figure 1, right). Three sensors were used. All were at a height of 1.45 m. Two 

of them were inside each of the nethouse structures and one monitored the field temperature and RH. The 

temperature and RH data recorded at the interior of the nethouses were compared to the measurements of the 

outside probe for the nethouses with tomato cultivation. Recordings were averages of five (5) 1-min 

measurements.   

The solar radiation (W m-2) was measured with two full spectrum range pyranometers (Kipp & Zonen, 

CMP6b, accuracy: <4 %). One was installed in turns at the interior of the two nethouse structures, while the 

second was located outside in order to measure the total incoming solar radiation. Monitoring the ambient 

and the nethouses' interior solar radiation allowed for estimating the net shading factor of the structure.  

2.2. CFD model 

The nethouses were assumed to be enclosed by a 3D parallelepiped wind tunnel domain (field domain). 

The model wind tunnel size was 340 m, 15 m, and 100 m along the x, y, and z directions respectively (Figure 

1, left). The nethouses were accurately modelled based on their actual geometrical characteristics and their 

configuration at the experimental field. The tomato plants inside the nethouses were simulated as continuous 

porous volumes (porous domains). They were 1.6 m high, 0.4 m thick, and 7.6 m long (Figure 1, right). Two 

more domain (volume) types existed, namely the insect-proof net and the nethouse interior domains. 
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Figure 2. The field domain (left); the nethouses geometrical characteristics and the tomato plants domains inside the 

nethouses (right) 

 

The finite volume mesh consisted of both 3D tetrahedral and hexahedral elements. The hexahedral 

elements were used for the insect-proof nets and the tomato plants domains, while for the remaining domains 

(nethouses interior, wind tunnel) the mesh was formed by tetrahedral elements (Figure 3). This combination 

was preferred because the mesh could be easier formulated and faster convergence could be achieved. The 

mesh structure was finer close to the studied structures in order to accurately simulate the airflow, the 

temperature, and RH values. The 3D mesh consisted of 2.9 million elements and 0.6 million nodes. Further 

mesh refinement had an insignificant impact on the results. 

 

.   

Figure 3. The field domain mesh (up); the insect-proof net and tomato plants mesh (down) 

 

 

Table 1. Aerodynamic characteristics of the installed insect-proof nets 

  Laboratory Results Numerical Model Input 

Net (name) Porosity (%) α (kg m-3) β (kg m-2 s-1) a/Δx (kg m-4) β/Δx(kg m-3 s-1) 

AirPlus 53.4 1.220 1.586 6.10 7.93 

OptiNet 38.7 2.591 2.010 12.96 10.05 

 

Permeable materials (insect-proof nets) were numerically simulated using the Forchheimer’s equation 

(Lage, 1998). The pressure drop across a porous material of thickness Δx (m) is expressed by Eq. 1: 

 

                                           𝛥𝛲 = 𝛼𝑉2 +  𝛽𝑉                     (1)                                                          

 

The parameters α (kg m-3) and β (kg m-2 s-1) in Eq. (1) are the aerodynamic coefficients, representative 

for porous materials. The porosity and the aerodynamic coefficients are shown in Table 1 as measured at 
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Giannoulis et al., 2021. These values served as input for the setup of the domains that represented the net 

coverings (thickness: Δx = 0.2 m) at the numerical model.  

The tomato plants also acted as a momentum sinks, similarly to the net cladding. They were simulated 

using Eq. (2) where Cd was the Drag Coefficient of the tomato plants and LAD was their Leaf Area Density: 

 
𝛥𝛲

𝛥𝑥
= −𝜌𝐶𝑑𝐿𝐴𝐷 𝑉2  ,   𝑎 = −𝜌𝐶𝑑𝐿𝐴𝐷                 (2) 

 

From values reported in the literature regarding full grown tomato plants, it was chosen that: Cd = 0.28 

and LAD = 2.26 (Teitel et al., 2022). This way the quadratic aerodynamic coefficient α (kg m-3), similar to 

the Forchheimer Equation could be calculated equal to α=0.76.   

Water vapor and heat exchange between the tomato plants and the ambient air were also modeled. Part 

of the total incoming solar radiation would be absorbed or reflected by the insect-proof nets based on their 

shading factor, which was calculated by the pyranometers’ data (radiation absorbed to total incoming 

radiation, equal to: 11.1 %, Airplus nethouse; 39.9 %, Optinet nethouse). The numerical model simulated the 

conditions for a day with low wind velocities, increased temperatures, and low RH (average wind velocity at 

10 m height: 1.8 m s-1, average daytime temperature of 35.16oC, and RH =30 %), where the average daytime 

incoming solar radiation was measured to be equal to 700 Wm-2. From this value and the measured shading 

factors the heat flux from the net cladding (set as source) to the nethouse interior could be estimated (Table 

2).  The insect-proof nets were set as the single heat source of the nethouses' interior in the numerical model. 

 The heat provided by the net to the nethouse interior would result in the sensible heat inside the nethouses 

(Hsens), the latent heat absorbed by the tomato plants (Hlat), and the heat absorbed by the soil (Hsoil). The 

energy balance is given by Eq. 4:  

 

𝐻𝑛𝑒𝑡 = 𝐻𝑠𝑒𝑛𝑠 + 𝐻𝑙𝑎𝑡 + 𝐻𝑠𝑜𝑖𝑙                     (4) 

 

Table 2. Numerical model inputs for the aerodynamic coefficients and heat sources/sinks for the net covering, the 

tomato plants canopy and the soil. 

 Nets Canopy Soil 

Nethouse Heat 

 source (Wm-2) 

Shading  

Factor 

(%) 

α (kg m-3) for 

tomato plants 

Hlat (Wm-2) Water Vapor  

production rate  

(kg m-2s-1)x 10-6 

Hsoil  

(Wm-2) 

AirPlus 622.3 11.1 0.76 -41.8 6.32 -6 

OptiNet 420.7 39.9 0.76 -41.8 6.32 -6 

 

The soil surface was modeled as a heat sink, the tomato plants canopy also acted as a heat sink and a 

water vapor source due to its transpiration. Based on literature data (Teitel et al., 2022) these values are given 

in Table 2 which summarizes all the sources/sinks and the quadratic aerodynamic coefficients that were used 

as input for the numerical simulation setup. 

The standard k-ε turbulence model was selected. The wind velocity profile was set to be logarithmic at 

the inlet of the wind tunnel (1.8 m s-1 at 10 m height), where the velocity Vz of the wind at a height z is given 

by Eq. 4.   

 

           𝑉𝑧 =
𝑢∗

𝐾
𝑙𝑛 (

𝑧

𝑧0
)                        (4) 

 

𝑘 =
𝑢∗

2

√𝐶𝜇
                    𝜀 =

𝑢∗
2

𝛫(𝑧+ 𝑧0)
      (5) 

 

Where z (m) is the height, Vz (m s-1) the velocity at height z, u* (m s-1) the friction velocity, zo (m) the 
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terrain roughness and K is the von Karman constant (=0.41). Inlet temperature and RH were set equal to 

35.16oC and 30 %, respectively. Gravitational forces were taken into account and the Boussinesq model was 

applied. Inlet boundary conditions should also provide profiles for the turbulent characteristics of the wind 

(Eq. 5). At the lower wall it was assumed that wall boundary conditions existed. At the outlet of the wind 

tunnel, the pressure was set to zero to simulate the open wind tunnel end. Finally, the upper and side walls of 

the wind tunnel were set as frictionless barriers (free slip condition), so only the vertical wind velocity 

component was set equal to zero. The residuals’ target was set at 10-5.  

3. Results and Discussion 

3.1. Daytime Field Temperatures 

Selected data recorded for a 12-day period (8 to 20 August 2021) are presented, for the tomato cultivation 

at its full growth. For this period of the year, the sun rises at 6:40 am and sets at approximately 8:20 pm. For 

this study, the daytime was assumed the time-span from 07:00 am to 8:00 pm.  

 

 

Figure 4. Daytime average temperature variation outside and inside the nethouses (left); daytime average temperature 

difference variation between the nethouses and the outside temperature (right). 

 

Figure 4 presents the average daytime temperature and temperature difference variations. Higher average 

temperatures were observed at the interior of the Optinet nethouse (highest: 36.85oC, 10th of August). 

Average temperature differences were estimated to be insignificant between the nethouses and the field (less 

than 0.5oC) except for specific days and mostly between the Optinet nethouse and the field temperatures 

(highest: 1.1oC, 11th of August). The average temperature differences between the two nethouses were also 

small, around 0.5oC. For the differences between the field and the Airplus nethouse average temperature 

recordings did not exceed the value of 0.5oC except for the 11th of August when this value was equal to 0.9oC. 

 

 

Figure 5. Daily temperature variation: 11th of August (left); 15th of August (right)  

  

The average daytime temperatures graphs in Figure 4 appear to be very similar for the 12th to the 16th of 

August, while for 8th to 11th of August, the average temperatures inside the nethouses (mostly for the OptiNet 

nethouse) were higher. For high wind velocities the average daytime temperatures at both nethouses are 

similar to the field average temperatures, since the airflow convection becomes dominant and the air mass 

flow from the environment to the small-sized nethouses is constant and rapid. For lower wind velocities, air 

convection is less significant and temperatures show an increase, especially at the interior of the Optinet 

nethouse. The Airplus nethouse with an enhanced ventilation technology cladding (AirPlus net) allows for 
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higher ventilation rates even for low values of wind velocity. 

The 11th of August was a day of high temperatures (average field temperature: 35.16oC) and low wind 

velocities (average wind velocity at 10m high: 1.8 m s-1) while the 15th of August was a day of –at that time 

of year- regular temperatures (average field temperature: 30oC) and high wind velocities (average wind 

velocity at 10m high: 7.48 m s-1).  

As presented in Figure 5 the daytime temperatures during the 11th of August were increased for both the 

OptiNet and the Airplus nethouse. Higher temperature differences with the field were recorded for the Optinet 

nethouse (highest value: 2.1oC). For the Airplus nethouse the maximum temperature difference was equal to 

1.7 oC.  

On the other hand, for the high wind velocity 15th of August maximum temperature differences between 

the field and the nethouses were very small, namely 0.6oC for the Optinet nethouse and 0.5oC for the Airplus 

nethouse.  

3.2. Daytime Field Relative Humidity 

Figure 6 presents the average daytime RH and average daytime RH difference variations for the 12-day 

period of measurements. Average daytime RH graphs are similar for both nethouses and the field. Average 

daytime RH differences showed a maximum difference of 2% between the Optinet nethouse and the field on 

the 8th of August, while for all the other days this value did not exceed 1%. 

 

 

Figure 6. Daytime average RH variation outside and inside the nethouses (left); daytime average temperature 

difference variation between the nethouses and the outside temperature (right). 

 

 

Figure 7. Daily RH variation: 11th of August (left); 15th of August (right)   

 

Figure 7 presents the RH (%) variation for the nethouses and the field for the 11th and the 15th of August, 

in order to compare different environmental conditions (low and high wind velocities, respectively). Both the 

AirPlus and the OptiNet nethouses RH (%) measurements were similar to the field RH (%) for the daytime 

with maximum RH differences of the nethouses interior and the environment less than 2%.  

For the 11th of August, the unexpected abrupt increase of the RH (%) that occurred mostly for the Optinet 

nethouse in the morning around 7.00 a.m. to 8.00 a.m. was because of the irrigation system that was 

programmed to work in the early morning hours (around 6 a.m.) and this means that the RH (%) values would 

increase inside the nethouses at this time. After 9 a.m. all RH (%) values became similar (Figure 7).  
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3.3. Numerical Model Results 

The numerical model represented a hot day (11th of August) of average field daytime temperature equal 

to 35.16 oC and RH of 30 %.  

 

Table 3. Temperature (oC) and RH (%) values for the nethouses interior for the field experiment and the numerical 

model at the center of the nethouses. 

 Field Experiment Numerical Model 

Case Temperature (oC) RH (%) Temperature (oC) RH (%) 

AirPlus Nethouse 36.06 29.80 36.39 30.20 

OptiNet Nethouse 36.30 29.80 36.11 30.15 

Field 35.16 30.00 35.16 30.00 

  

Table 3 presents the temperatures and the RH (%) values at the centre of the nethouses for the 

experimental field measurements and the results from the numerical model. A very good agreement can be 

observed. Temperatures inside the nethouses are almost similar, as for the field measurements, since the high 

shading factor of the OptiNet nethouse compensates for the lower ventilation rates as compared to the AirPlus 

nethouse. The numerical model was further used to evaluate the temperature and RH (%) distribution inside 

the nethouses.  

Figure 8 presents isothermal contours in the insect-proof nethouses mid-height (1 m). Temperatures 

increased as the wind moved further inside the nethouses (as velocity decreased). For the AirPlus nethouse 

the area behind the second row of tomato plants R2 (R1: plants row 1; R2: plants row 2) temperatures reached 

values between the range of 37.7 – 39.6oC. Similarly, inside the Optinet nethouse and behind the R2 plant 

row for that case, temperatures also increased (37.2 – 38.8oC).  However, these values did concern a large 

area inside the nethouse. 

 

 

Figure 8. Temperature distribution at mid-height of the insect-proof nethouses. Airplus nethouse (left); Optinet 

nethouse (right) 

 

Figure 20 presents the RH (%) distribution inside the insect-proof nethouses at mid-height (1 m). The 

values are given in kg kg-1 from which the RH (%) was calculated. The RH (%) values increased after the 

R1 and the R2 plants rows inside both the nethouses. For the Airplus nethouse, behind the second plants row 

R2 values ranged between 30.25 - 30.35%. For the corresponding area inside the Optinet nethouse the RH 

(%) values were between 30.35 – 30.43%. However, these differences are very small and not important.  
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Figure 9. RH (%) distribution at mid-height of the insect-proof nethouses. Airplus (left); Optinet (right) 

4. Conclusions 

A full-scale experiment and numerical simulations were carried out regarding two small low-rise 

neighbouring insect-proof nethouses with tomato cultivation. The nethouses were using innovative 

agricultural nets as cladding materials, namely an enhanced ventilation technology (AirPlus) and an optical 

exclusion insect-proof net (OptiNet).  

The two types of insect-proof nethouses did not exhibit increased temperature and RH values in their 

interior proving that the used nets can be effective as covering materials for nethouses structures offering a 

favourable microclimate for the protected cultivation. For the AirPlus nethouse, its enhanced natural 

ventilation rates led to increased air mass exchange with the environment and consequently temperatures and 

RH values were close to the ambient ones. On the other hand, the denser mesh OptiNet nethouse that imposed 

higher resistance to the incoming air prevented high values of temperature in its interior because of its 

increased shading factor (39.9 %). The small dimensions of the two insect-proof nethouses allowed for the 

quick airflow exchange between the structures and the field and the small number of tomato plants at the 

nethouses interior did not significantly contribute to the RH (%) levels. 

Experimental and numerical results were in good agreement, validating the numerical model. Further 3D 

numerical analysis showed that the temperature increased behind the second row of tomato plants, but for a 

small area. For the RH (%) distribution, an insignificant increase was also detected at the same location. The 

numerical model simulated the field experiment accurately, proving that it can be a useful tool for such 

analyses. For larger nethouses with a significant number of plants rows, a 3D numerical analysis could reveal 

problematic areas of high temperatures and/or RH (%) values. 
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Abstract 

In France, most buildings that house growing-finishing pigs are operated in a dynamic mode with a set-

temperature of 22-24°C throughout the fattening period. In contrast, certain northern European countries use a set-

temperature of 18°C with the stated aim of maintaining zootechnical performance and reducing ammonia emissions 

from these buildings. The aim of this experiment was to study the influence of ambient temperature on zootechnical 

and gaseous emissions by keeping temperatures cooler (16, 18 and 22°C) throughout the fattening period of pigs. 

Performance of these of pigs were compared to those kept in a conventional room with a set-temperature of 22°C. 

Pigs were weighted at the entry, the day of the food transition and the day before departure for the slaughterhouse. 

The quantity of feed distributed to pigs per treatment were weighted daily. NH3, N2O and CH4 concentrations were 

semi-continuously measured by using a photoacoustic multi-gas monitor (Innova 1512). At the same time, the 

ventilation rate was continuously monitored. Data validation was achieved by applying the mass balance method for 

nitrogen and carbon including the calculation of inputs (piglet carcases, feed intake) and outputs (fattening pig 

carcases, slurry composition, gaseous emissions). Pig performance and environmental parameters (gaseous 

emissions and slurry volume and composition) of the reference room were validated to be representative of 

commercial breeding units. Afterwards, the comparison with the other rooms was done. Zootechnical performance 

did not differ between the rooms at the lower set-temperatures and the reference room. However, the rooms at 16, 18 

and 22°C emitted 42 %, 36 % and 39 % less ammonia, respectively, than the reference room and 57 %, 53 % and 27 

% less methane, respectively. In contrast, no effect on nitrous oxide emissions was observed. Reducing of ambient 

temperature could be one way to investigate how existing buildings can decrease their environmental impacts. 

Keywords: Temperature, pig, housing, gaseous emission 

1. Introduction 

In most pig farms in France, buildings housing growing-finishing pigs are operated in a dynamic mode with a 

set-temperature of 22-24°C throughout the fattening period. The aim of this ventilation strategy is to maintain an 

ambient temperature that is appropriate to animal comfort and lead to optimal performance in terms of growth gain, 

feed conversion and carcass quality. A multitude of studies (Rinaldo and Le Dividich, 1991, Faure et al., 2012, 

Quiniou et al., 1997, Quiniou et al., 2000) have been conducted to investigate the impact of ambient temperature on 

the performance of fattening pigs. Conversely, other countries such as Denmark and the Netherlands apply set-

temperatures of around 18°C with the aim of maintaining zootechnical performance and above all, reducing 

ammonia emissions from the building concerned. This difference in ventilation management has been of concern to 

us for many years, particularly when combined with a change in the floor type, such as the introduction of partially 

slatted floor (Guingand et al., 2010). 

France's commitments at the European level to reduce ammonia emissions (-15% by 2030 compared to 2005 

levels) and the desire to reduce the exposure of pigs and workers bring the need to explore new reduction pathways, 

adaptable to existing buildings, to the forefront of research and development priorities. Indeed, with a stock of 

buildings over 20 years old (Bertin and Ramonet, 2016) managed by a population of farm managers with an average 

age of 49 years in 2020 (Roguet, 2023), the proposed reduction solutions must be adaptable to existing building 

configurations without requiring costly major structural modifications. In the conventional system, widely applied in 

France, slurry is stored in the pit beneath the animals during the whole fattening period. The production of ammonia 

mainly results from the degradation of urea present in the urine by urease, an enzyme produced by microorganisms 

present in the feces. This process is sensitive to temperature and pH (Buscher et al., 1997). Indeed, the increase of 

temperature influences the NH3-NH4+ dissociation coefficient promote diffusion and favors the activation of 

bacteria activity responsible of urea decomposition until inactivation temperature (Degré et al., 2001). Thus, 

modifying the management of building ventilation by reducing the set temperature could represent a way to 

reduction ammonia concentration inside buildings and its emission to the atmosphere. 
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The aim of this study is to determine the influence of low ambient temperatures – under the thermoneutrality – 

on pig performance and on NH3, N2O and CH4 emissions. 

2. Material and methods 

2.1. Design of the rooms 

To study the influence of temperature on air quality without neglecting its influence on zootechnical 

performance, Ifip built a temperature-controlled unit called Climatotec at its experimental station in Romillé (35). 

This unit consists of two identical rooms with precise and independent ambient temperature control. The unit allows 

for the application of constant temperatures ranging from 15 to 30°C per room, thanks to a temperature-controlled 

block comprising a heater, a heat pump, and a heat dissipator/collector (Guingand et al., 2024). Each room can 

house twenty animals raised on fully slatted floor with effluent storage in a pre-pit for the entire fattening period. 

The air inlet – cold for this study – is through the attic and then through a Flud’R (Rose), while the extraction is low, 

under the slats. For this study, three different set-temperatures were applied: 16, 18, and 22°C. Due to the unit's 

configuration, the temperature comparison was conducted in two steps: the first comparing the two lowest set 

temperatures in the Climatotec unit (referred to as room T16 and room T18), and the second comparing the effect of 

maintaining a temperature at 22°C in the Climatotec unit (referred to as room T22) with a control room operated in 

parallel in the Ifip Pilot unit with a set temperature of 22°C (referred to as room REF22). This room, with air intake 

through a ceiling diffuser and low extraction, houses a total of 54 pigs raised on fully slatted floor with effluent 

storage in a pre-pit for the entire fattening period. The configuration and ventilation management of this room are 

considered representative of field conditions. The study was conducted between July 2022 and May 2023. 

2.2. Pig management 

The management of the pigs was identical in both type of rooms (Climatotec and control room). At the start of 

fattening, the animals were grouped by weight and sex to ensure an identical average weight per pen within and 

between rooms and a sex ratio of 1 per pen. The animals were fed ad libitum with a two-phase diet consisting of a 

growing feed (16% Crude Protein) provided until pigs reach approximately 65 kg and a finishing feed (14.5% Crude 

Protein) provided until slaughter. Water was supplied by a bowl-type drinker in each pen. The slurry produced by the 

pigs was stored in a pre-pit for the entire fattening period. Pigs from all rooms implicated in the study were sent to 

slaughter at the same time to facilitate the completion of the mass balance. 

2.3. Measurements and recording 

Measurements carried out in the Climatotec unit were identical to those carried out in the control room. 

Individual weighing of the animals was performed at the start of fattening, at each feed change, and on the day 

before slaughter. Feed distributed per pen was daily weighed and refusals were weighed at the time of feed change 

and at slaughter. Water consumption for each pen was recorded once a week. The slurry depth at various points in 

each pen was measured every 15 days, permitting the calculation of slurry production kinetics and volume produced 

per pig. A slurry sample was taken at each feed change and immediately after the animal departure for 

slaughterhouse. Slurry samples were taken from various points in the pen, pooled, and manually homogenized to 

create an average sample. Effluent analysis included pH, dry matter (DM), total nitrogen (Kjeldahl), ammoniacal 

nitrogen (NH3-N), and total carbon (Ct). At the slaughterhouse, carcasses were weighed, lean meat content was 

measured by using Image Meater. 

Regarding the environment, ventilation percentages were recorded using the ventilation control unit in each 

room of the Climatotec unit; recordings were made every 15 minutes throughout the pigs' presence. These 

percentages were then converted into ventilation rates in m3.h-1 using ventilation equations established per batch and 

per room at the pig entry; ventilation rates were measured in percentage increments to establish the relationship 

between percentage and ventilation rate based on the air speed in the extraction duct. Ambient temperatures were 

recorded every 15 minutes during the animals' presence using sensors (EasyLog MOTE-TH, Lascar, UK) positioned 

in the center of the room. Similarly, sensors (EasyLog Wifi-T, Lascar, UK) placed in watertight containers were 

installed on the slurry surface and at the bottom of the pre-pit, recording slurry temperature per room every 15 

minutes. 

Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) concentrations were measured in the ambient air 

using an infrared photoacoustic analyzer (Innova 1512, Lumasens Technologies A/S, Denmark) coupled with a 6-

way sampler (Innova 1409, Lumasens Technologies A/S, Denmark). Measurements were taken in the ambient air 
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every 3 minutes throughout the animals' presence. Gas emissions were then calculated by multiplying the average 

hourly concentrations (in mg/m3) of each gas by the average hourly ventilation rate (in m3/h) and expressed in kg of 

N or C per pig place per year. 

For feed conversion ratio, slurry volume, water consumption, statistical analysis was limited to calculating mean 

and standard deviation due to an insufficient number of values per category. 

3. Results and discussion 

3.1. Ambiance  

For the trial comparing T16 to T18, the average ambient temperatures were 16.5±1.1°C and 18.1±0.8°C 

respectively for T16 and T18. The cold temperature targets have thus been achieved.  

For the trial comparing T22 to REF22, the average ambient temperatures were 23.2±1.9°C and 26.3±1.4°C 

respectively for T22 and REF22. The average temperature in room C22 was higher than the imposed set temperature 

of 22°C but remained significantly lower than the average temperature in room T22, with a difference of 3°C. 

During this period, the average outdoor temperature was 19.8 ± 6.8°C, making it more challenging to achieve the 

22°C target in the Climatotec unit. With high outdoor temperatures, it becomes more difficult to lower the ambient 

temperature despite increasing the air exchange rate, which explains why the average temperature in room T22 was 

much higher than the set value of 22°C. 

3.2. Pig performance  

Pig performance calculated up to slaughter are presented in Table 1. The duration of pig’s presence per batch 

varies between 81 to 85 days. 

For the trial 1 – T16 vs T18 – no significant difference was observed in the weight of pigs during growing and 

finishing phases. Although the slaughter weight of pigs exposed to 16°C was lower than that of exposed to 18°C, the 

difference was not significant. During the growing phase, the ADG of pigs exposed to 16°C was lower than that of 

pigs exposed to 18°C with a significant difference. Nevertheless, for the whole fattening period, there was no 

significant difference. Concerning FCR, data were not statistically analysed due to insufficient data, but the 

difference between rooms was very small, around 0.1. For the lean meat content and the added value per carcass, no 

significant difference was observed between T16 and T18.  

Table 1: Pig performance per trial 

Trial 1 2 

Room T16 T18 RSD T22 REF22 RSD 

Initial LW, kg 30.3±2.2a 30.5±2.5a 2.3 35.6±3.0a 37.4±3.6a 3.5 

Final LW, kg 105.6±12.2a 111.7±8.3a 4.0 122.3±8.1a 122.3±7.8a 5.7 

ADG growing p., g.d-1 924±86b 985±83a 84 950±71a 993±90a 85 

ADG finishing p., g.d-1 990±149a 1 020±142a 141 1 069±112a 981±135b 130 

Overall ADG, g.d-1 956±142a 1 002±94a 117 1 001±77a 987±84a 82 

FCR growing p. kg.kg-1 2.35±0.05 2.18±0.02 - 2.35±0.02 2.38±0.4 - 

FCR finishing p. kg.kg-1 2.69±0.08 3.09±0.07 - 2.60±0.01 2.76±0.3 - 

Overall FCR, kg.kg-1 2.52±0.07 2.64±0.04 - 2.48±0.01 2.56±0.3 - 

Lean meat content, % 60.7±2.1a 60.7±2.0a 2.1 60.5±1.9a 60.8±1.9a 1.9 

Added value, €/kg 0.13±0.06a 0.16±0.07a 0.06 0.16±0.05a 0.16±0.05a 0.05 
LW: Live weight; ADG: average daily gain; FCR: feed conversion ratio; TMP: muscle content rate; Growing P.: growing phase, corresponds 

to the period between the pig’s entry and the time they reach approximatively 65kg. Finishing P.: finishing phase, corresponds to the period after 

the growing phase and until the departure to the slaughterhouse. (a,b) : values followed by a different letter are statistically different – P<0.05 

For the trial 2 – T22 vs REF22 – no significant difference was observed in weight, ADG, FCR, lean meat content 

and added value per carcass.  

According to Le Dividich et al., (1987), cold temperatures do not have significant effect on the total fat mass of 

pig carcass but rather on its distribution, with an increase in the weight and thickness of back fat while the weight of 

the leaf fat decreases.  
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3.3. Gaseous emissions 

Gaseous emissions are given in Table2.  

Regarding ammonia, the pigs in room REF22 emitted 2.87 ± 0.36 kg N_NH3/place/year during the fattening 

period. These emission values are consistent with those obtained under identical conditions at the experimental 

station in Romillé (Guingand and Courboulay, 2019) and with those reported in the literature (Philippe et al., 2011; 

Santonia et al., 2017), which suggest values between 2.5 and 3.0 kg per place per year. The pigs in rooms T16, T18, 

and T22 emitted 1.67 ± 0.30, 1.84 ± 0.40, and 2.04 ± 0.30 kg N_NH3/place/year, respectively, during the fattening 

period, which corresponds to 42%, 36%, and 29% less than the pigs in room REF22. In our study, the lower the 

temperature, the greater the reduction in ammonia emissions. There is limited literature on the impact of cold 

temperatures on ammonia emissions. According to Ocepek and Andersen (2022), the ammonia concentration in the 

environment increases as soon as the ambient temperature exceeds 20°C. Tabase et al. (2018) studied the impact of 

three set-point temperature levels (21, 23, and 25°C) on ammonia emission from "simulated" pigs on fully slatted 

floors with under-slat air entry and over-floor extraction; a system diametrically opposed to our study setup and to 

the majority of French farms. In this study, ammonia emission is influenced by the temperature of the incoming air 

rather than the set-point temperature. In Pouliot et al. (2011), the three ventilation scenarios studied start at 

temperatures between 21 and 22°C at the beginning of fattening, reaching 20°C for the control scenario, 17.2°C for 

the intermediate scenario, and 14.4°C for the "cold" scenario. The lack of effect of the "cold" treatment on ammonia 

emissions is explained by the author as a compensation between the increase in airflow rate for the "cold" scenario, 

raising ammonia concentrations, and the increase in temperatures for the control scenario, raising ammonia 

emissions. In our study, airflow rates are equivalent between the rooms in the thermoregulated unit, with the 

reduction in ambient temperature ensured by cooling the incoming air (Guingand et al., 2024). 

Table 2: Gaseous emissions per ambient temperature 

Room T16 T18 T22 REF22 RSD 

N_NH3 emission, 

kg/place1/year 

1.67±0.3b 1.84±0.40b 2.04±0.30b 2.84±0.36a 0.32 

N_N2O emission, 

kg/place/year 

0.24±0.03a 0.22±0.02a 0.20±0.04a 0.23±0.02a 0.02 

C_CH4 emission, 

kg/place/year 

1.66±0.15c 1.60±0.14c 2.50±0.23b 3.42±0.16a 0.14 

1 the calculation per place is based on 3 rotations per finishing pig place per year - (a,b) : values followed by a different letter are 

statistically different – P<0.05 

Regarding nitrous oxide, pigs in room REF22 emitted 0.23 ± 0.02 kg N_N2O/place/year during the fattening 

period. This value is consistent with those reported by various authors (Philippe et al., 2015; IPCC, 2019), who cite 

values between 0.10 and 0.25 kg N_N2O per place per year. The emissions measured in rooms T16, T18, and T22 

are very close to those measured in room REF22, ranging from 0.20 to 0.24 kg N_N2O per place per year. In our 

study, temperature does not seem to affect nitrous oxide emissions. In the literature, the effect of temperature on 

nitrous oxide production from slurry is only documented for high temperatures (>50°C), which could inhibit the 

bacteria involved in the nitrification-denitrification process (Kebreab et al., 2006). 

Regarding methane, room REF22 emitted 3.42 ± 0.16 kg/place/year during the fattening period. This emission 

level is consistent with previous publications (Philippe et al., 2011; IPCC, 2019), which report values between 2 and 

4 kg per place per year. The emissions measured in rooms T16, T18, and T22 were respectively 51%, 53%, and 27% 

lower compared to REF22. In relation with our study, the "cold" scenario in Pouliot et al. (2011) led to a reduction 

in methane emissions, with a 42% decrease compared to the "hot" scenario, where the setpoint temperatures were 

very close to those in our room REF22. In both our study and Pouliot et al. (2011), the cold ambient temperature 

reduced the activity of methanogenic bacteria in the slurry, bacteria that are particularly sensitive to the temperature 

of their environment (Dabert et al., 2015). 

Reducing the temperature to levels below thermoneutrality (T16 and T18) limits the volatilization and 

degradation processes, resulting in lower ammonia and methane emissions compared to room REF22. Maintaining 

the temperature at 22°C in room t22 throughout the day prevents the increase of temperature observed in room 

REF22, particularly in the afternoon, which promotes ammonia volatilization and its evacuation from the room due 

to the increased ventilation level. 
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3.4. Water consumption 

The average water consumption of pigs in room REF22 was 8.1 ± 2.6 l per pig per day (Table 3). This 

consumption level is consistent with the 7.0 ± 1.7 l per pig per day reported by Massabie et al. (2014) for fattening 

pigs. The water consumption of pigs in rooms T16, T18, and T22 was significantly lower than that of pigs in room 

REF22 (P<0.05). These results confirm those of Pouliot et al. (2011) obtained with the "cold" scenario (setpoint 

temperatures decreasing from 21.1 to 14.4°C), with average consumptions of 4.36 l per pig per day. 

Table 3: Water consumption, volume and temperature of slurry in relation with ambient temperature 

Room T16 T18 T22 REF22 

Water consumption, l/p/d 4.2±0.7a 4.8±1.2a 5.7±1.4a 8.1±2.6b 

Slurry volume, l/p 396 406 491 540 

Ambient temperature, °C 16.5±1.1 18.1±0.8 23.2±1.9 26.3±1.4 

Slurry temperature – surface, °C 14.9±2.5 15.8±2.7 22.1±1.8 26.2±1.0 

Slurry temperature – pit bottom, °C 14.4±2.4 15.1±2.5 21.1±1.5 23.6±1.1 

 

Regarding the volume of effluents, the animals in REF22 produced 540 l of slurry during the fattening period, 

which is close to the value of 480 l per finishing pig proposed by Levasseur (2013). The pigs kept T16 and T18 

produced 25% less slurry than those kept in REF22. This low effluent production is related to the lower water 

consumption of the animals reported previously. 

The temperature of the slurry was measured at two heights: at the bottom of the pit and at the surface. For all 

rooms, the temperature difference between the two heights is very small. The slurry temperature at the pit bottom is 

always lower than the ambient temperature—measured at 1.8 m above the slatted floor in the center of the room—

by 2.1°C for T16 and T22 and 3.0°C for T18. This difference is likely related to the configuration of the sensors, 

which are protected in a rigid plastic box, creating an insulating shield around the sensor. The lower insulation at the 

pit bottom also likely contributes to the reduction in slurry temperature. 

4. Conclusions 

In our study, the zootechnical performances (slaughter weight, ADG, FCR, lean meat content) of animals 

exposed to cold temperatures below thermoneutrality were not significantly affected. Regarding environmental 

performance, continuous exposure to cold temperatures during fattening leads to a reduction in ammonia and 

methane emissions, water consumption by animals, and the volume of slurry produced per pig. No effect was 

observed on nitrous oxide emissions. 

This study was conducted in a thermoregulated unit where ambient temperatures stayed very close to the setpoint 

temperatures imposed. Transposing these findings to actual farming conditions will likely not achieve to the same 

levels of reduction at equivalent setpoint temperatures. Indeed, the differences between setpoint temperature and 

ambient temperature can vary considerably, particularly during warm periods. Further trials under conventional 

ventilation conditions, where temperatures fluctuate more than in our thermoregulated unit, will be needed to 

validate the effectiveness of this practice. Although the reduction in greenhouse gas emissions may be less 

pronounced than in this study, lowering the setpoint temperature to around 18°C could prove to be a beneficial 

practice for reducing the environmental impact of pig farming. However, it will require careful control of airflow to 

avoid high air speeds on the pigs, which could significantly compromise their health and zootechnical performance. 
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Abstract 

The utilization of fossil fuels in agriculture has elevated its status as a significant contributor to 

Greenhouse Gas (GHG) emissions, thereby impacting global climate change and posing a potential 

threat to food security. A major contributor to these emissions is intensive livestock farming, a highly 

energy-consuming sub-sector heavily dependent on fossil fuels. This practice requires a diverse range 

of energy sources, including electricity and thermal energy for heating and cooling indoor livestock 

facilities, equipment operation, lighting, and ventilation. The H2020 RES4LIVE project aims to 

eliminate fossil fuel consumption in certain areas of industrial livestock farming by introducing cost-

effective Renewable Energy Sources (RES) technologies, enhancing thermal comfort for animals. The 

project showcases and evaluates various innovative RES technologies on four European pilot farms 

with swine (Belgium and Italy), dairy cattle (Germany), and laying hens (Greece). The present study 

elaborates on the design and installation process of the most distinctive parts of integrated systems 

(PV/PVT, heat pump, geothermal energy storage, biogas upgrading and biomethane tractor) in the four 

pilot farms and provides performance results obtained after the first months of their operation. The 

results add to the existing knowledge on incorporating RES into livestock systems and provide 

valuable perspectives on the adaptability of the studied systems for use in commercial facilities. 

Keywords: Renewable Energy Sources, Intensive livestock farming, Livestock farming de-

fossilization, Climate resilience. 

1. Introduction 

During the last decade, it has become apparent that fossil fuel use in the agricultural domain has 

negative effects, rendering it a major source of greenhouse gas (GHG) emissions, exacerbating global 

climate change and risking food security (Dubois et al., 2017; FAO, 2019). The intensive livestock 

sector remains heavily reliant on fossil fuels, accounting for a substantial portion of energy demand in 

agriculture (Peyraud and Macleod, 2020). According to recent data, agriculture accounts for 10.3% of 

the EU’s GHG emissions, with the livestock sector alone accounting for around 70% of all GHG 

emissions (European Court of Auditors, 2021). Direct, i.e., on-farm, energy use accounts for 3.2% of 

the EU’s total energy consumption (Eurostat, 2021). Energy consumption in intensive livestock 

farming is multifaceted, encompassing both electricity and thermal energy needs, depending on the 

structures used, the agroclimatic conditions, and the types of livestock used. These requirements range 

from maintaining optimal environmental conditions within livestock buildings (such as heating, 

cooling, and ventilation) (Costantino et al., 2016) to powering equipment (e.g., milking process, 

manure management) (Shine et al., 2020; Loyon, 2018) lighting, and transportation (e.g., tractors). 

Recognizing these challenges, there has been a growing emphasis on transitioning towards more 

sustainable practices and reducing dependence on fossil fuels in livestock production. National and EU 

policy is increasingly focused on improving environmental sustainability and animal welfare of 
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livestock production. To achieve the goals set out in the Green Deal and the Farm to Fork strategy (EU 

Commission, 2019; 2020), livestock rearing, and production will need to transform in the coming 

decades. Advancements in Renewable Energy Sources (RES) technologies, coupled with declining 

costs and improved reliability, have created new opportunities to embrace renewable energy production 

(Paris et al., 2022). Established technologies, such as solar photovoltaic (PV) panels, and biomass/ 

biogas systems are among the RES technologies increasingly adopted by farmers to meet their energy 

needs (Majeed et al., 2023), while more ascending ones, such as Thermal-Photovoltaics (PVT), heat 

pumps (HP), are attracting interest. The H2020 RES4LIVE project contributes to the effort of fossil 

fuel-free agriculture by developing and assessing the performance of innovative RES systems for the 

livestock sector in four European pilot farms. In the following sections, the main parts of the completed 

systems, as well as their first performance results, are presented. 

2. Pilot Farms and Integrated Renewable Energy Sources (RES) Systems  

Towards the imperative for de-fossilized livestock farming, within the framework of RES4LIVE, 

the design, installation, testing, and monitoring of different integrated RES systems is realized. The 

integrated systems have been specifically designed to fit the needs of each pilot farm, aiming at an 

optimal combination of adapted and commercial Renewable Energy Sources (RES) solutions. The 

developed units are fine-tuned by a smart control system, to achieve minimisation of fossil fuels-based 

energy, while enhancing the welfare of hosted animals. In the following sections, the design and 

installation process of the most distinctive parts of integrated systems in the four pilot farms are 

presented, alongside the performance results obtained after the first months of their operation. 

2.1. EV ILVO swine farm in Belgium – PVT and Multi-Source Heat Pumps 

The farm “Varkenscampus” is managed by EV ILVO, UGENT, and HoGent for research and 

educational purposes alongside normal commercial production. It is a farrow-to-finish pig farm hosting 

at any moment sows, piglets, and fattening pigs. The RES4LIVE installations include: 

i. an 8.4 kWp PVT system accompanied by a Solar Station (see below), connected to the short-

term thermal energy storage (TES) tank 

ii. two multi-source HPs, high - and low-temperature 

iii. a smart control system for the RES systems and the ventilation in one fattening pig room, as 

well as environmental sensors and energy meters 

 

 

 

Figure 1. The PVT system (left) and HPs (right) at EV ILVO farm. 

 

The PVT system and HPs (Figure 1) provide heat and power to the entire facility. The developed 

two multi-source, modular HPs substitute a 60 kW gas condensing boiler. They can provide heating at 

different temperature levels, and cooling. The low-temperature (25kW) will provide floor heating 

(42°C), while the high-temperature (40kW) will provide air heating and domestic hot water (60°C). 

The HPs are coupled with the PVT system through a short-term TES tank to enhance their Coefficient 

of Performance (COP). Furthermore, in the case that solar energy will not suffice to cover the required 

thermal load at the evaporator, a dry cooler will also be available. The high-temperature HP will also 

make it possible to cool in the fattening pigs’ compartments and nursery. Therefore, cold water will go 

through the twin tubes of the air heating system. 

The developed solar pumping circuit, or “Solar Central”, is a standardised group of components that 

operate and run the PVT system in an optimized way to deliver heat and electricity to the required 
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integration point. The solar thermal circuit delivers the heat down from the PVT collectors to the solar 

station, which is coupled with the heat storage, or fitted with a heat exchanger, depending on the case. 

In all RES4LIVE interventions including PVT systems, the developed solar central concept is 

incorporated. 

2.2. GOLINELLI swine farm in Italy – PVT, BTES, and Multi-Source Heat Pump 

The second pilot farm is the commercial pig farm GOLINELLI located in the Modena province, 

Italy. The farm consists of a farrowing barn, a nursery barn, a gestation barn, and a hog barn with a 

gestation sector. The interventions include (Figure 2): 

i. a 7.68 kWel, 25 kWth PVT system accompanied with a solar station 

ii. a Borehole Thermal Energy Storage (BTES) system, storing the excess heat from the PVT 

system 

iii. a multi-source, medium-temperature HP of 35 kW 

iv. environmental sensors and energy meters 

 

 

Figure 2. The PVT system (left), BTES system (middle), and HP (right) at GOLINELLI farm. 

 

The HP unit was designed to substitute a 34 kW LPG boiler providing hot water to the space 

heating system of the nursery barn. The PVT collectors are connected to the solar central which is the 

main operational pumping unit with the control system to operate the PVTs. The Solar Central is 

connected to the BTES system to store the heat produced over an extended period. This way, heat is 

flowing from the PVTs to the HPs through the BTES system, while the ambient heat is exploited 

through an air dry cooler. The HP is a multi-source one, selecting between ground and air heat by 

activating and deactivating the fans. To achieve increased COPs, the source selection between ground 

and air is based on the comparison between the geothermal fluid return temperature Tg and the two 

temperature thresholds decided by the user, Ta and Tb, in the following manner: 

• Tg>Ta - Operates as a Ground-source HP. The two fans are deactivated, and the geothermal 

pump is active 

• Tb<Tg<Ta - Operates as a Dual-source HP. The fans are activated and the whole system is 

active 

• Tg<Tb - Operates as an Air-source HP. The geothermal pump is deactivated, while the fans 

remain active 

2.3. AUA laying hens farm in Greece – PV and Heat Pump 

The experimental poultry farm for egg production has been established on the Agricultural 

University of Athens (AUA) campus and occupies an area of 90 m2, hosting approximately 400 

animals at least. It is further divided into two separate equally sized rooms, pullets’ and a laying hens’ 

house. Both pullets and hens are raised in a 3-tier colony cage production system.  Hens are housed in 

enriched cages. The RES4LIVE system (Figure 3) includes: 

i. a 10 kW HP, for heating, cooling, and dehumidification 

ii. a 9 kWp standard PV system, on the rooftop of a nearby building 

iii. smart control and new LED systems 
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Figure 3. The PV system (left) and HP (right) at AUA farm. 

 

Before the project’s interventions, the facility relied mainly on forced ventilation to remove the 

thermal loads, applied with direct drive fans in both rooms, while the pullets’ house used to be heated 

only by infrared heating lamps. The goal of the project’s main interventions is twofold; first, they aim 

at enhancing the thermal comfort of the hosted animals by regulating the indoor air quality, 

temperature, and relative humidity with the use of HP. Keeping the temperature and relative humidity, 

ideally, in the thermo-neutral zone, or thermal comfort zone, is determining for animal welfare and 

increased production. Second, to minimize the electricity consumption from the electricity grid. 

2.4. LVAT dairy farm in Germany – Bio-CNG Plant and Retrofitted Biomethane Tractor 

The Educational and Experimental Centre for Animal Breeding and Husbandry (LVAT) is located 

in Groß Kreutz, in Brandenburg, Germany. The farm includes three barns for milk production, with an 

overall number of 445 cows and calves. The produced manure feeds an existing biogas plant of 1000 

Nm3 per day capacity, combined heat, and power (CHP) generation. Within RES4LIVE, the following 

RES interventions are demonstrated (Figure 4): 

i. a biogas to biomethane upgrading unit, equipped with a fuel-filling station,  

ii. a diesel farm tractor retrofitted for biomethane use 

iii. an innovative PVT system for decentralized heat and electrical power generation, coupled 

with a Solar Station and an existing milk cooling system 

iv. a smart system for barn climate control based on ventilation tubes, using pre-cooled air for 

evaporative cooling 

v. a smart management and control system to efficiently control heat and electricity consumption  

 

 

Figure 4. The Bio-CNG plant and filling station (left) and the biomethane tractor at the LVAT farm. 

 

The new, small-scale (5 Nm³ h-1 biomethane) technological setup with a hollow fiber membrane in 

the very low-pressure range (7-8 bar) and a hybrid compression was set up. In a one-stage membrane 

separation process, methane (CH4) is extracted from raw biogas. Using a closed cycle concept, this 

process ensures that only methane is produced and compressed as BioCNG (Compressed Natural Gas) 

for use as fuel. All CO2-containing gas from the membrane separation process is fed back into the raw 

biogas storage. Moreover, the unit incorporated a Bio-CNG filling station characterized by a simplified 

and compact design in terms of the compression process. 
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One of the farm’s diesel tractors was also modified for BioCNG use. Its engine, with a nominal 

power of 59 kW, was converted from diesel to biomethane to provide the same torque and power after 

the conversion and handle the same duty cycle, mainly for food mixing and delivery. Multiple aspects 

were considered, including the thermal stress of the engine to keep with the reliability of the diesel 

engine, the reduction of the exhaust emissions, the compactness of the gas tank system, containing 26 

kg of biomethane, and the design-to-cost objective of the modification, aiming at reusing the maximum 

number of the diesel parts. 

3. RES Systems’ Performance Results and Discussion 

The installation and commissioning of the RES systems were followed by a period of monitoring 

and fine-tuning. The sections below present the preliminary performance results of the main systems at 

each pilot farm. The availability of logged data in each case was influenced by the managerial 

schedules of the respective farms. 

3.1. EV ILVO RES Systems Performance 

After a series of tests, the high-temperature HP effectively maintains the setpoint of 60°C, 

providing sanitary hot water and air heating. The low-temperature HP, with a setpoint temperature of 

42°C, is connected only to the underfloor heating system used for piglets. The utilization of two HPs 

appears to be beneficial to the efficiency of the system, as compared to the original installation. Before 

the project, a natural gas boiler provided water at 70°C for all subsystems, and afterwards, it was 

cooled down to 42°C for the underfloor heating, losing valuable heat in the process. 

When the temperature of the TES tank is above 37°C, the HPs operate as water-to-water, until the 

temperature drops below 17°C. Below this point, the dry cooler serves as a heat source for the HPs 

using either one or two fans, depending on the heat demand, thus operating as air-to-water. The PVTs’ 

heating circuit operates only when solar irradiance is higher than 200 W/m² for longer than 60 seconds, 

providing the TES tank with heat. The HPs’ water temperature variation alongside the outdoor 

temperature and irradiance between 07 and 28/05/2024 are shown in Figure 5. 

 

 

Figure 5. Environmental conditions and HPs’ water temperature variation at EV ILVO farm, between 

07/05 and 28/05/2024. 

 

During the most recent tests that took place between 07/05 and 28/05/2024, the overall system 

performed as intended. The HPs operated longer as water-to-water compared to previous test periods, 

as solar irradiance was increased during May. The power consumption and heating capacity of both 

HPs are presented in Figure 6 below. 

 

 

Figure 6. Power consumption and heating capacity of the high- and low-temperature HPs at the EV 

ILVO farm, between 07/05 and 28/05/2024. 

 

The low-temperature HP appears to be slightly oversized, operating at a lower compressor capacity, 

which negatively influences the part load ratio of the HP. The high-temperature HP, though 

continuously going into ON/OFF mode, performs well. During this testing phase, the system operated 

for 85% in the air-water and 15% in the water-water mode, respectively. During the air-water mode, 

the average COP of the high-temperature is estimated at 2.95, while for the low-temperature HP, the 
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COP is 4.87. During water-water operation, the high- and low-temperature HPs use considerably less 

electricity, increasing their COPs to 9.85 and 4.10, respectively. The solar electricity was being logged 

from the 7th of May but stopped on the 14th. During these seven days, the PVTs contributed 0.25 MWh 

or 18% electricity, entailing about 18% of the electricity demand of the HPs (1.37 MWh). 

3.2. GOLINELLI RES Systems Performance 

To analyse the performance of the PVT-HP-BTES system at GOLINELLI farm, a representative 

period, between the 10th and 25th of April 2024 was chosen. Between the 10th and 17th, where the 

average temperature and irradiance were higher than usual (above 20°C and 300 W m-2, respectively), 

the PVT and the solar central station both were activated, and solar heat was injected into the BTES 

system. From the 17th to the 25th, the weather temperature dropped abruptly, with the presence of 

precipitation, and reduced irradiance. The average weather temperature reduced to 11°C, with low 

peaks down to 2.5°C during the night. During this period, high variability of weather temperature 

occurred (Figure 7). In these conditions, the hallway of the piglets’ building started to drop its ambient 

temperature and the HP was automatically activated to provide the necessary comfort, by extracting the 

heat from the borehole heat exchangers (BHE) of the BTES and, working in hybrid mode, from the 

ambient air. The two consecutive periods are representative then of the sequence injection-extraction of 

the PVT-BTES-HP system. 

 

 

Figure 7. Frequency distribution of outdoor/indoor temperature between 17/04 and 24/04/2024 in 

GOLINELLI farm. 

 

From the monitoring system, it was possible to record the values from various sensor temperatures 

on the PVT and the BTES circuit. The calculated stored energy was around 2160 MJ, equal to 600 

kWh. The HP extracts energy from the BTES to cover the needs of the hallway of the piglets’ building. 

At the moment, the HP works only in heating mode, but it is designed for cooling as well. For most of 

the testing period, the HP was able to keep the temperature of the hallway very close to the desired 

setpoint temperature, being activated for 17.4% of the total time. The measured temperature data in the 

hallway are present in Figure 7 as well. The heating fluid temperature and the cumulative energy 

provided are presented in Figure 8. 
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Figure 8. Energy provided to the hallway by the HP in the period 17/04 and 25/04/2024 (grey), and 

related inlet and outlet temperatures (blue and red). 

 

The total energy provided by the HP to the building was around 1200 kWh, and the electric energy 

used was around 300 kWh. The total heat provided during the Ground mode was about 670 kWh 

(approx. 75%), while the remaining 230 kWh were extracted during the Hybrid Mode (approx. 25%). 

The Hybrid mode was necessary mostly during the night when temperatures were lower. The Air mode 

was not activated during this testing period. In conclusion, the average COPs for each mode of the HP 

for the period between 17 and 25/04/2024 is presented in Table 1. 

 

Table 1. Average COP of the HP in the reference period 17/04 and 25/04/2024. 

HP mode Average COP 

Ground 4.67 

Air (not activated during this period) 

Hybrid 3.50 

Overall 4.34 

3.3. AUA RES Systems Performance 

Though the installations were completed earlier, the integrated RES system in the AUA poultry 

farm became fully operational in May 2023 when a new laying hen batch arrived. The data analysed 

during two characteristic periods, summer and winter, are presented and discussed next. In both, only 

the laying hens’ room was operational, with the HP operating in one mode each time, cooling, and 

heating, respectively. In Table 2, the total amount of energy consumed by the facility as well as that 

produced by the PVs, and the Seasonal COP (SCOP) of the HP, are presented for both periods. 

 

Table 2. Energy and HP performance-related data for the AUA pilot farm. 

Period (mode) 
Total electricity 

used (kWh) 

Total electricity 

produced (kWh) 

Self-sufficiency 

(%) 

Seasonal 

COP 

Summer (cooling) 4,031.23 908.50 22.54 2.42 

Winter (heating) 2,389.52 482.71 20.20 3.65 

 

Indicative figures are presented for the period between 30/07 and 09/08/2023. Despite the summer 

of 2023 being one of the warmest of the last years in Greece, the HP regulated the indoor temperature 

effectively (Figure 9). The profile for power consumption and PV power production for an indicative 

period in summer (23-25/07/2024) are presented in Figure 10 below. 
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Figure 9. Indoor temperature regulation by the AUA pilot farm HP between 30/07 and 09/08/2023. 

 

 

 

Figure 10. Power consumption and PV power production profile of the AUA pilot farm for an 

indicative period in summer (23-25/07/2023). 

3.4. LVAT RES Systems Performance 

The commissioning of the BioCNG plant at LVAT took place between 19/07 and 21/07/2023, and 

the data collection began. The first data evaluation was based on 20-second intervals, but up to 4-

second intervals are possible and were used for technical optimization of the system. In Figure 11 

graphs represent the first data acquired, while Table 3 illustrates the main performance indicators of the 

plant. 
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Figure 11. BioCNG plant power consumption (top), BioCNG flow rate (middle), and CH4 

concentration of BioCNG (bottom) at the LVAT pilot farm. 

 

Table 3. Key performance indicators from the data monitoring of the LVAT biogas upgrading pilot 

plant. 

Performance indicator Average 

Specific energy consumption [kWhel Nm-3 BioCNG] 0,94 

Separation pressure hollow fiber membrane [bar] 7,83 

Separation temperature hollow fiber membrane [°C] 57,44 

Methane concentration [%] 96,75 

Start-up time until BioCNG production [min] 26,78 

 

Initially, a two-week testing period took place, using the biomethane tractor mainly for transport 

operations. Indicative data of the tractor speed are presented in Figure 12.  

 

 
Figure 12. Tractor speed during the first tests at LVAT premises. 

 

After analysing the data of this period, the biomethane tractor presented an average fuel 

consumption of approximately 4.5 kg BioCNG per hour of operation, or 15.75 kg BioCNG daily, for 

approximately 3.5 hours of operation.  

4. Conclusions 

The results obtained during the first months of the RES systems operation largely appear 

satisfactory. Of course, further experimentation and finetuning are in progress to optimize their 

performance on-farm. The installed RES technologies are further monitored in each pilot farm to draw 
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solid techno-economic figures for their overall performance. Each integrated system is assessed in 

terms of technical, environmental, and economic performance, as well as social acceptance. The next 

steps of the project concern the communication of the outcome that this ongoing work will bring. Their 

dissemination will concern – besides the scientific community – relevant stakeholders involved in 

livestock farming, and intensive agriculture in general, with the aim to add to the existing knowledge 

on incorporating RES into livestock systems and provide valuable perspectives on the adaptability of 

the studied systems for use in commercial facilities. 
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Abstract 

Source segregation (SS) of faeces and urine in the animal house is a strategy to reduce emissions and improve 

nutrient management, but its performance in dairy housing is unknown. This study aims at exploring the separation 

efficiencies of nutrients and organic matter (OM) of a novel SS floor in dairy housing and to explore its effect on 

nutrient losses in the animal house. In addition, the study aims to explore pH dynamics of urine after? acidification 

as a potential alternative to traditional slurry acidification, because urine is hypothesized to require less acid and a 

lower frequency of acidification. For this, faeces and urine were collected in two time points from the novel floor 

and slurry from a traditional slatted floor, both at an experimental dairy farm in the Netherlands. The chemical 

composition of each fraction was analysed and served to calculate the separation efficiency (SE(x)) for selected 

compounds: (dry matter (DM), organic matter (OM), total nitrogen (TN), total ammoniacal nitrogen (TAN), total 

phosphorus (TP), and water soluble phosphorus (SP)). For the acidification test, a titration curve was drawn using 

5M sulfuric acid to determine the amount of acid needed to reach pH 5.5, then the pH of the acidified urine was 

monitored for 30 days. The results from this pilot system showed that on average 88% of DM, 94% of OM, 95% 

of TP, 97% of SP, 67% of TN and 24% of TAN accumulated in the faeces. Further, the SS system had higher N 

content in the excreta, calculated by mass balance, than the slurry system during the first collection and a lower 

one during the second collection. The reasons for this remain unclear and need further investigation. In the 

acidification test, urine required 1.7 ml sulfuric acid kg-1 to reach a pH of 5.5, which was lower than the range 

reported for slurry (2.8 to 5.7 ml kg-1). In addition, the urine maintained the 5.5 pH (5.4 ± 0.3) for the totality of 

the test with a single acidification. Finally, faeces and urine were also collected from the same SS floor in four 

practical farms and the results showed similar SE(x) for DM, OM and TP, but different ones for TN and TAN. 

Further investigations are needed to understand the variations in N separation and emissions under practical 

circumstances. We concluded that the novel SS system can effectively separate OM and P as compared to post-

separation of slurry, which additionally requires more energy and inputs. Further, SS can improve targeted 

reduction of ammonia emissions by acidifying urine instead of slurry because less acid is required and foaming is 

limited. Further investigations are, however, needed to understand the implications of the segregation on emissions 

in-house and during management further down-stream.  

Keywords: Source segregation, dairy housing, separation efficiency, nitrogen losses, urine acidification. 
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1. Introduction 

Growth of intensive livestock production has led to manure surpluses in areas where more manure is produced 

than can be legally applied to the field, e.g. in western Europe (CBS, 2021; Yan et al., 2017). In the Netherlands, 

dairy manure, mainly in the form of slurry which is the mixture of urine and faeces after excretion, has the largest 

surplus at farm level although dairy farms have the most land to apply it (Yan et al., 2017). This manure surplus 

raises environmental concerns as manure storage and application to land are a main source of greenhouse gas 

(GHG) and nitrogen (N) emissions and nutrient leaching. Many regulations are in place to limit these emissions 

such as the European nitrate directive, phosphate application ceilings, and obligations for farmers to process and 

export their excess manure (Schröder et al., 2007; Yan et al., 2017). Consequently, various treatment systems to 

process manure, often slurry, have been developed. 

A common first step in slurry treatment is separation into a liquid and solid fraction. This allows more practicability 

in processing and transport, partly separates and concentrates N and phosphorus (P) and helps reduce GHG 

emissions from slurry storage (Møller et al., 2002; Fangueiro et al., 2008; Kaparaju et al., 2008; Hjorth et al., 2011; 

Zhang et al., 2022). Separation can be achieved by mechanical and chemical technologies such as screw pressing, 

centrifugation, and flocculation, all having their specific (dis)advantages (Hjorth et al., 2011; Zhang et al., 2022). 

For example, centrifugation results in up to 86% separation efficiency of dry matter (DM), which is the highest 

compared to other techniques, often <50% DM separation efficiency. Pre-treatments before centrifugation, such 

as flocculation or coagulation, results in up to 90% P separation efficiency which is the highest as compared to 

other techniques typically resulting in around 60% P separation efficiency (Hjorth et al., 2011; Zhang et al., 2022). 

High separation efficiencies, however, often require high inputs of energy and/ or additives (Møller and Sommer, 

2000). As an alternative to separation of slurry, source segregation (SS) of urine and faeces directly after excretion 

can be considered. Source segregation is achieved through systems under the flooring, e.g. V-shaped scrapers and 

conveyor belts (Aarnink & Ogink, 2007; Koger et al., 2014; Vu et al., 2016), by systems on the flooring, e.g. 

grooved and permeable floors (Swierstra et al., 2001, Deru et al., 2023) or by systems under the animals’ tail, e.g. 

the cow toilet (Galama et al., 2020). With such SS systems, no slurry is created at forehand and thus less 

contamination of urine with organic matter (OM) takes place and minimal energy and/ or chemicals are required. 

Minimal OM contamination can have advantages on the practice of acidification in the animal house, typically 

used on slurry to reduce NH3 emissions. This is because urine could have much less buffering capacity than slurry 

and thus requires less acid and less acid additions. In addition, N and P can easily be kept separate in the fractions, 

because P is mainly present in the faeces thus easing treatment and handling downstream. Separation of N and P 

is specifically important because mixed forms of animal manure, such as slurry, have unbalanced N/P ratios 

compared to crop demand and their application can thus lead to P over application, potentially causing P losses to 

the environment (Knowlton et al., 2004).  

Source segregation systems and their separation efficiencies are well described for pig houses but less in dairy 

houses. The separation efficiency of SS systems in pig housing were found to be over 90% for DM, OM, and P 

(Von Bernuth et al., 2005; Vu et al., 2016). In a study by Vu et al. (2016), a V-shaped belt under the slatted floor 

had 92% DM, 96% OM, and 97% P in the faeces which was higher than other solid-liquid separation techniques 

for slurry. Moreover, SS reduced NH3 emission up to 49% compared to conventional housing systems with slurry 

(Lachance et al., 2005; Stewart et al., 2004; Panetta et al., 2005; Von Bernuth et al., 2005; Vu et al., 2016). In dairy 

housing, however, little is known about the performance of SS systems. A study by Swierstra et al 2001 evaluated 

a grooved floor that drained urine into the pit and scraped faeces to a separate outside storage (Swierstra et al., 

2001). This grooved floor reduced NH3 emissions by 46%, but its separation efficiency was not investigated. Other 

SS systems are currently available for dairy housing in The Netherlands, such as permeable floors and the cow 

toilet. These systems are being tested at Dairy campus in the Netherlands and further developed by the respective 

companies. However, little is known about their separation efficiencies and potential to limit nutrient losses. In 

this research, we focus on the permeable floor system as it currently receives the most interest in practice.  

The objective of this study is to investigate the separation efficiency of OM, DM and nutrients (N and P) at two 

different time points of a pilot permeable SS floor in a dairy house, and unveil its potential N losses reduction 

compared to a conventional slurry system. In addition, we aimed to provide first results of the dynamics of 

segregated urine acidification, including the amount of acid required and pH stability. Finally, we aimed to check 

the separation efficiency of this SS floor in practical farms.   
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2. Materials and Methods  

2.1. Collection of slurry and segregated manure fractions  

2.1.1. Pilot separation system 

Samples of slurry and dairy manure fractions were collected on the 29th of March 2021 and 18th of January 2022 

to account for possible seasonal differences in separation efficiency. Samples were taken from the SS floor and 

from the traditional slurry pit at Dairy Campus (Leeuwarden, Netherlands).  

The selected SS floor in our study was a commercial system (Zeraflex) made with adjacent tiles of a synthetic and 

permeable material allowing urine to drain to an underneath pit while keeping the faeces on top. The system was 

equipped with an automated scraper that moved the faeces out of the barn to an outside covered storage. The 

traditional slurry pit and the SS floor were in the same experimental unit with the same number of cows, floor area 

and feeding regime. The feeding ration consisted of grass silage, silage maize, barley meal and soy meal in addition 

to pelleted concentrates.  

Slurry and segregated urine were taken from the storage pit under the animal house using a cylinder slid through 

the floor slats. The cylinder was used to mix the urine and take the samples at ten representative points in the pit. 

The ten subsamples were mixed to a homogeneous sample from which again three subsamples were taken for 

chemical analysis.  

The segregated faeces were collected from the temporary storage which was emptied daily. From the collected 

faeces, we took three subsamples for chemical analysis. All samples were stored at 2℃ for two weeks on average 

before analysis.  

 

2.1.2. Practical farms 

Samples of source segregated faeces and urine were taken from four practical farms in different parts of The 

Netherlands. The four farms had a permeable floor system originating from the same commercial supplier of the 

pilot system (Zeraflex). The details of each farm, including location, farming system, cows breed and farm number 

are in Table 1. The urine samples were taken from the pit while the faeces were taken from over the floor while 

they were being scraped outside.  

 
Table 1: Details of the practical farms with permeable floor source segregation systems. 

Farm 

number 

Location Farming 

system 

Cow breed Number of 

cows 

1 Maasland, South Holland Organic Holstein-Friesian 67 

2 Leidschendam, South 

Holland 

Organic Mix (mainly Holstein-

Friesian) 

50 

3 Hoogland, Utrecht Conventional Holstein-Friesian 105 

4 Easterwierrum, Friesland Organic Holstein-Friesian 90 

 

2.2. Acidification of urine 

An acidification test was conducted with the pilot scale collected urine. To determine the amount of acid needed 

to reduce the pH of urine from 9.0 to 5.5, a titration curve was drawn by gradually adding 10µl of 5M sulfuric acid 

to 5 g urine. This was replicated five times. The 5M acid solution was prepared by diluting concentrated 18M 

sulfuric acid (98%). When the amount of acid was determined, four replicates of 1kg of urine were acidified to 5.5 

pH and stored at 10 ℃for 40 days, where the pH was monitored every day for the first week and once a week for 

the remaining time of the test. 

 

2.3. Analytical methods  

Chemical analysis of dry matter (DM), ash, total nitrogen (TN), total ammoniacal nitrogen (TAN), total 

phosphorous (TP), water soluble phosphorus (SP), total potassium (K), and pH was done according to standard 

methods (APHA, 1995) in the local laboratory at Wageningen Livestock Research. Organic matter content (OM) 

is defined here as the difference between DM and ash. Organic nitrogen is defined here as the difference between 

TN and TAN.  

 

 

 

2.4. Calculations  

a) Separation efficiency 

To evaluate the separation efficiency, we calculated the SE(x), which is the percentage of a compound (x) 
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accumulated in the solid fraction (SS faeces) using the following formulas:  

SE(x) in % = (Ms(x)) / (Ms(x)+Ml(x) )×100  (Hjorth et al., 2011; Vu et al., 2016) Eq. (1) 

Ms(x) in g = Cs(x)×0.6 kg  Eq. (2) 

Ml(x) in g = Cl(x)×0.4 kg  Eq. (3) 

 

Where Ms(x) is the mass of a compound x in the solid fraction in grams and Ml(x) is the mass of a compound x 

in the liquid in grams. Cs(x) is the concentration of compound x in the solid in g/ kg while Cl(x) is the concentration 

of compound x in the liquid in g/kg. According to Dairy campus, the mass separation is estimated to yield 0.6 kg 

faeces (taken as solid fraction ) and 0.4 kg urine (taken as liquid fraction) for 1 kg of excreta (Galama, 2021a). The 

same estimation was used for the practical farms.  

b) Mass balance calculations and nutrient losses 

The mass balance for 1 kg of excreta of a selected compounds in the SS system was calculated and compared to 

the slurry system. Based on this comparison, we were able to see if N-losses between systems differed or not. This 

N loss gives a proxy for N emissions that were not directly measured in this study, but by Dairy Campus 

themselves. The mass balance for compounds in SS fractions was calculated by adding up Ms(x) and Ml(x) to Mss 

(Eq. 4): 

Mss(x) in g = Ms(x) + Ml(x)  Eq. (4) 

 

2.5. Statistical analysis 

All differences between systems and compounds were statistically tested based on a general linear model 

performed in SPSS 28 (IBM Corp, 2021). The independence of variables and normality of residual observations 

were checked prior to fitting the models. When significant differences were obtained, the equality of variance 

between groups was checked using Levene's test. For multiple comparisons of means, Tukey B test was used when 

the variances were found equal, while Dunnett's T3 test was used when the variances were found non-equal. 

3. Results and Discussion 

3.1.  Chemical composition 

Table 2 summarizes the average contents of DM, OM and nutrients of SS Faeces, SS urine and slurry for all 

measurement times. The composition of slurry was in accordance with ranges found in literature (Prado et al, 

2022). For most of the chemical characteristics the SS faeces and SS urine were significantly different from slurry 

meaning that the separation floor created clearly distinct fractions.  

The average DM content of the SS faeces and SS urine was 13.2% and 2.8%, respectively, which is in line with 

the composition range of faeces and urine collected separately and directly after excretion from dairy cows 

(typically between 13.2 and 18.6% for faeces and between 3.5 and 5.3% for urine) (Tomlinson et al., 1996; van 

Vliet et al., 2007; Vicente et al., 2021). This alignment with literature was also valid for total ammoniacal nitrogen 

(TAN) (typically between 0.3 and 0.8 g kg-1 for faeces and between 1.3 and 5.2 g kg-1 for urine) and total P (TP) 

concentrations (typically between 1.0 and 1.5 g kg-1 for faeces and between 0.1 and 0.2 g kg-1 for urine). On 

average we found 0.6 g kg-1 TAN and 1.0g kg-1 TP in the SS faeces and 2.8 g kg-1 TAN and 0.1 g kg-1 TP in the 

SS urine. The TN content was 4.2 g kg-1 for the SS faeces and 3.2 g kg-1 for SS urine, which are in the range 

reported for TN content in dairy faeces typically between 4.1 and 5.2 g kg-1, but not that of urine being typically 

between 5.2 and 10.2 g kg-1. The much lower TN content found for SS urine could be caused by losses through 

ammonia volatilization as we sampled from the pit where urine accumulated for a long period. Indications of 

results from the experiments at Dairy Campus indeed showed high NH3 losses experimental unit (Galama, 2021b). 

Therefore, for most parameters, SS Faeces and SS urine were in the same range as the isolated dairy faeces and 

urine meaning that the separation floor in the study effectively separated urine from faeces. 

 
Table 2: Chemical composition of the segregated faeces and urine and slurry from the pilot flooring 
systems of Dairy Campus. The results represent the mean of two collection periods ± standard 
deviation (n= 2). 

  DM 
(%) 

OM 
g/kg 

Total-N 
g/kg 

TAN 
g/kg 

Total-P 
g/kg 

SP 
mg/l 

Total-K 
g/kg 

pH  

Slurry 
SS Faeces 
SS urine 

11.5b±0.6 
13.2a±0.9 
2.8 c±0.2 

91.8b±4.6 
110.6a±6.4 
9.8c±0.5 

5.0a±0.2 
4.2b±0.6 
3.2c±0.7 

2.2b±0 
0.6c±0.1 
2.8a±0.8 

0.8b±0.1 
1.0a±0.2 
0.1c±0.1 

15a±4 
45a±20 
2b±2 

4.5b±0.0 
2.5c±0.5 
6.7a±0.7 

7.2b±0 
6.7c±0.2 
8.5a±0.8 

SS source segregation, DM: dry matter, OM: organic matter, TAN: total ammoniacal N, SP: water soluble phosphorus. 

Different subscripts per column indicate significant different means P<0.05.  
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3.2. Separation efficiencies  

The separation efficiencies (SE(x)) calculated per collection period and as average are presented in Table 3. 

The results show that on average the SE(x) was 88, 94, 67, 24, 95 and 97% for DM, OM, TN, TAN, TP and SP 

respectively. When comparing between the two collection periods, the SE(x) varied significantly for TN, TAN, 

TP and SP.  

 

3.2.1. Dry matter  

The SE(DM) showed that 88% of DM accumulated in the faeces, with no significant difference between the 

two collection periods. This was higher than the DM separation efficiency of slurry separation methods typically 

reaching up to 75% (Hjorth et al, 2011; Zhang et al, 2022). Compared to the conveyor belt SS systems in pig 

housing, our SE(DM) was similar to the 88% found by Aarnink and Ogink (2007), but lower than the 92% found 

by Vu et al. (2016).  

 

3.2.2 Organic matter  

The SE(OM) was on average 94% and showed no significant differences between collection periods. This is 

also higher than the SE(OM) achieved with solid-liquid separation of slurry, which is typically not higher than 

62% (Zhang et al, 2022). As compared to other SS systems, our results were similar to Vu et al., (2016) who found 

a 96% SE(OM) with the conveyor belt in pig housing.  

 

3.2.3 Total nitrogen  

The SE(TN) showed that on average 67% of TN accumulated in the SS Faeces. When comparing between 

collection periods, SE(TN) varied significantly and ranged from 65 to 68%. The SE(TN) from both periods, 

however, is higher than the separation efficiencies obtained with solid-liquid separation, where centrifugation 

following flocculation was reported to have the highest separation efficiency of 60% (Hjorth et al., 2011; Zhang 

et al., 2022). For other SS systems, Aarnink and Ogink, (2007) and Vu et al., (2016) showed a SE(TN) of 66% in 

pig housing being in the same range of our results. 

 

3.2.4 Total ammoniacal nitrogen  

SE(TAN) showed significant differences between sampling periods, ranging from 18 to 29% and with an 

average of 24%. Although variations, the SE(TAN) stayed in the same range obtained with solid-liquid separation 

of slurry typically between 16 and 23% (Hjorth et al., 2011; Zhang et al., 2022). Further, SE(TAN) separation in 

our study was lower than that obtained with conveyor belt SS of pig manure (35 to 38%) (Aarnink and Ogink, 

2007; Vu et al., 2016), which means that more TAN was kept in SS urine in our study.  

 

3.2.5 Total P and water soluble phosphorus  

SE(TP) was on average 95% and varied significantly from 92 to 98% between collection periods. Nevertheless, 

the SE(TP) of both periods were similar to the highest separation efficiencies obtained with solid-liquid separation 

of slurry, which is around 95%, but which requires significantly more chemical inputs (Hjorth et al. 2011; Zhang 

et al. 2022). Other SS systems even showed SE(TP)’s of more than 95% (Von Bernuth et al., 2005; Aarnink and 

Ogink, 2007; Vu et al., 2016).  

Water soluble phosphorus (SP) is an important component of TP as it is correlated with P runoff and leaching 

from soils amended with animal manures (Chapuis-Lardy et al., 2003; Kang et al., 2011). Our results showed 

SE(SP) significantly differed between the two periods ranging from 94 to 99%, meaning that very little SP is 

present in urine.  

Summing up, our SE(x) results show that SS had high separation efficiencies for DM, OM, N and P. The 

separation efficiencies significantly varied between the two collection periods but were always higher than those 

achieved with solid-liquid separation of slurry. Moreover, the studied SS system showed high separation 

efficiencies for all compounds whereas solid-liquid separation techniques in literature show high separation 

efficiencies only for a limited number of compounds. Hence, using SS to segregate faeces and urine at source is a 

more effective strategy to separate nutrients and OM than separation after slurry formation. Vu et al., (2016) also 

reported a similar conclusion for a SS system in pig housing. 
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Table 3: The separation efficiencies of the source segregation floor for two sampling moments. The 

results represent mean ± standard deviation (n= 2).  
    DM OM Total-N TAN Total-P SP 

  % % % % % % 
 

March 
January 
Average 

87 ns±0 
88 ±0 
88±1 

94 ns±0 
94 ±0 
94±0 

65 *±1 
68 ±0 
67±2 

18 *±1 
29 ±2 
24±8 

98 *±0 
92 ±0 
95±4 

99 *±0 
94 ±2 
97±4 

DM: dry matter, OM: organic matter, TAN: total ammoniacal N, SP: water soluble phosphorus.  

* indicates means are significantly different ?and ns indicates that means not significantly different (P<0.05).  

  

3.3.  Mass balances and potential nutrient losses 

Mass balances were estimated for the SS floor and the slurry system and are presented in Table 4. The results 

show that on average there were no significant differences between the nutrient contents of slurry and the SS 

system. However, the different collection periods showed few trends of mass balance variations between SS and 

slurry.  

In the March collection, there was a significant 1.3 g (3%) higher TN in the SS system compared to slurry 

meaning there were less losses of TN in the SS system as compared to the slurry system. SS is expected to limit 

contact between urease and urea and contact time with free air, and thus reduce NH3 emissions, which might be 

the reason for lower N losses (Vaddella et al., 2010). In the same period, TAN of both systems was comparable. 

Although the slurry system had lower TN, its TAN content might have been compensated with more mineralization 

of N than SS system, through for example anaerobic carbon decomposition to CH4 (Möller et al., 2012). TP was 

statistically not different for SS and slurry systems. 

In January, TP was again not significantly different between slurry and the SS system. TAN, however, was 

significantly lower in SS, contrarily to March observations. At the same time, SE(TAN) was the highest in January 

(Table 2), meaning there was higher TAN left in the SS faeces after segregation.  

Summing up, our findings from this section suggest that SS has a potential to reduce N losses from dairy 

manure in the barn at high separation efficiencies (above 90% SE(OM) and 65% SE(TN)) looking at March results 

as an example. We also depict from this study that the SS system can increase N losses, most likely from the urine, 

but no cause-effect relationship could be made.  

 
Table 4: Estimated mass balances of N and P for the slurry compared to source segregation (SS) 
system. Results are displayed as mean± standard deviation (n=3 samples per period), and 
represent the mass of the compounds in 1 kg of slurry/ SS fractions. The statistical comparisons 

shown are between slurry and SS within each period. * represent significant differences and ns 
non-significant differences (p<0.05, n=3). 

  March January Average 

  Slurry SS Slurry SS Slurry SS 

Total-N   g 43.3 *±0.3 44.6 ±02 43.4 *±0.1 38.6   ±0.1 43.4 ns±0.1 42.3±3.3 

TAN   g 17.9 ns±0.3 17.7±0.2 19.7 *±0.1 14.6 ±0.5 18.8 ns±1.3 16.2±2.2 

Total-P   g 7.1 ns±0.0 7.2±0.1 6.7ns±0.0 6.6±0.1 6.9 ns±0.1 6.9±0.4 

TAN: total ammoniacal N. 

 

3.4. Urine acidification test 

The titration curve established for urine acidification and the development of the pH of the acidified urine during 

the 40 days test are shown in Figure 1. The results show that the urine required 31 µl of 5M sulfuric acid per 5 g 

to go from pH 9 to 5.5, which is equivalent to 1.7 ml 18M sulfuric acid (98%) per kg. This is lower than the 2.8 to 

5.7 ml kg-1 found for slurry acidification with sulfuric acid (Sørensen, P., Eriksen, 2009; Regueiro et al., 2016; and 

Overmeyer et al., 2021), although slurry is characterised by a lower initial pH than urine. In addition, the results 

show that pH of the acidified urine remained fairly stable in the 5.5-5.1 range during the test. This is also different 

from the behaviour of slurry acidified with sulfuric acid to pH 5.5, where pH increases quickly to reach 6.5 at 

around 30 days after acidification (Regueiro et al., 2016; Overmeyer et al., 2021). Urine requiring less acid and 

maintaining a low pH as opposed to slurry was linked to its lower buffering capacity. Slurry is known to have a 

high buffering capacity because of its content of carbonates, phosphates and volatile fatty acids (Sommer and 

Husted, 1995; Regueiro et al., 2016). Urine has very low content of carbon and phosphorus.  

The results thus show that source segregation followed by urine acidification could facilitate the practice of 

acidification, which intended to reduce NH3 emissions during storage in the animal house and after application to 

the field. Acidifying urine instead of slurry can reduce the required amount of acid and limit other constraints that 
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come with the higher buffering capacity of slurry such as foaming (Fangueiro et al., 2015). This is because we 

have not observed notable foaming when acidifying with 5M sulfuric acid and very limited foaming when 

acidifying with 18M sulfuric acid. However, further testing with urine collected from practical farms having 

different N and OM separation efficiencies is needed to substantiate these results.   

 

 

 

 

 

 

 

 

 

  

 

 

 

3.5. Separation efficiency of SS systems at practical farms 

The contents of DM, OM, TN, TAN, TP and K of the segregated faeces and urine collected from four practical 

farms are shown in Table 5. The SE(X) of the different compounds are also shown in Table 5. The results show 

that the contents of all compounds in the faeces and urine varied between farms which can be related to variations 

in feeding and management between farms. However, the ranges found for DM (10.6-16.7% for faeces, 1.2-2.3% 

for urine) and TP (1.7-2.9 g kg-1 for faeces and 0.0 to 0.3 g kg-1 for urine) are within the bounds of literature for 

dairy faeces and urine (Tomlinson et al., 1996; van Vliet et al., 2007; Vicente et al., 2021). The SE(X) results also 

showed some variation between farms. The SE(DM) ranged from 89% to 93%, which overlaps with the 88% found 

in the pilot study. Similarly, the SE(OM) range was 92% to 97% overlapping with the 94% found in the pilot test. 

The SE(TP) was also in the high range similarly to what we found in the pilot test, with 91 to 97% of TP in the 

faeces. The S(TN) and S(TAN) results, however, showed larger differences between farms and deviations from 

the separation efficiency results in the pilot test. The SE(TN) ranged from 74% to 81%, which is higher than the 

67% found in the pilot test. The reason for the higher SE(TN) in the practical farms seems to be the low TN content 

of urine, which was as low as 1.5 g kg-1 in two of the farms. The SE(TAN) in three out of the four farms ranged 

from 31% to 56%, which was also higher than that found in the pilot test (14% to 29%). This difference can also 

be related to the TAN content of urine being consistently low in the farms as compared to in the pilot test (1.7±0.8 

g kg-1 as compared to 2.8±0.8 g kg-1). The low urine N content can be linked to a lower N intake of the cows in the 

practical farms, as three out of four are organic farms, or to lower N excretion because of different cow breeds. 

However, lower N in urine can also indicate substantial N losses, which can occur through NH3 emissions.  

The results thus showed that SS systems in dairy housing can effectively separate DM, OM and TP also in practice 

and achieve separation efficiencies higher than those of sloid-liquid separation of slurry. However, it appears that 

N separation is a critical aspect of these systems as they show considerable variation and possibly lead to high N 

losses. Future research needs to focus on understanding the factors influencing N separation and losses with SS 

systems and research additional measures to reduce these losses, such as acidification or air scrubbing in the pit. 
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Figure 1: Development of the pH of acidified urine with sulfuric acid (on the left) and the 
titration curve of urine acidification (on the right). Error bars represent standard deviation 
(n=5).  
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Table 5: Chemical characteristics of source segregated faeces and urine collected from four farms 

in The Netherlands and the separation efficiencies (SE) of the corresponding source segregation 
floor. The results are based on one collection per farm. 

 Farm   DM OM Total-N TAN Total-
P 

    % g/kg g/kg g/kg g/kg 

1 SS Faeces 11.8 92 3.5 0.8 2.1 

SS Urine 1.6 8 1.5 1.1 0.3 

SE  92% 95% 78% 52% 91% 

2 SS Faeces 10.6 90 2.8 0.1 1.7 

SS Urine 1.2 5.0 1.1 0.9 0.1 

SE  93% 96% 78% 14% 98% 

3  SS Faeces 12.6 103 4.1 0.5 2.1 

SS Urine 2.3 13 2.1 1.7 0.1 

SE  89% 92% 74% 31% 97% 

4 SS Faeces 16.7 121 4.4 1.0 2.6 

SS Urine 1.8 6 1.5 1.2 0.1 

SE  93% 97% 81% 56% 97% 

*SE: separation efficiency, DM: dry matter, OM : organic matter, TAN: total ammoniacal nitrogen.  

 

3.6. Conclusions and future prospects 

This study revealed that source segregation in dairy housing can effectively  separate DM, OM, TN, TAN and 

TP by up to 88%, 94%, 67%, 24% and 95%, respectively, without intensive use of energy and chemical inputs 

traditionally used to separate slurry. While these results sourced from a pilot SS system, we also found similar 

trends of high separation efficiencies with SS systems installed in four practical farms, particularly for DM, OM 

and TP. For TN and TAN however, the trends showed variations between farms and from the pilot study, and 

understanding these variations require further investigations including measuring N emissions in the animal house. 

Moreover, the SS faeces and SS urine obtained can be more adapted to the downstream manure processing. With 

the high separation of OM achieved, SS faeces can substitute slurry in anaerobic digestion and thus reduce digester 

size and transport costs (EL Mahdi et al., 2024). The SS faeces are also low in TAN which is an inhibitor of the 

anaerobic digestion process above certain thresholds (Labatut et al., 2014; Kang et al., 2021). Vu et al., (2016) 

reported that digesting the solids from a SS system can increase economic feasibility of mono-digestion of pig 

manure. A similar investigation on SS dairy excreta is the objective of our future work. In addition, SS urine can 

be applied to land to provide readily available N for crops combined to an NH3 emission reduction treatment like 

acidification. Acidification of the SS urine was found to require less acid and to be more stable than acidification 

of slurry.   

Another potential benefit of SS is the reduction of emissions and nutrient losses. Previous studies reported SS 

to reduce N losses by limiting ammonia emissions in both pig and dairy houses (Swierstra et al., 2001; Lachance 

et al., 2005; Stewart et al., 2004; Panetta et al., 2005; Von Bernuth et al., 2005; Vu et al., 2016). In this study, we 

did not directly measure N losses, but based on the slurry, SS faeces and SS urine compositions, we estimated the 

mass balances and derived the potential losses. Our results showed varying effects in the different collection 

periods where N losses were either increased or decreased with the SS system compared to slurry. Further 

investigations are needed to understand the factors that might affect the nutrient balances, like floor material, 

management aspects and contamination of the urine in the pit. This information can then be used to identify critical 

aspects to achieve the desired separation and nutrient loss reduction effects. Further investigations are also needed 

to depict and understand trade-offs of urine acidification, as it was suspected to increase N2O emissions and 

solubilisation of phosphorus in urine to measure emissions from the segregated fractions downstream.   

Funding 

The research leading to these results has received funding from the European Union’s Horizon 2020 research 

and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860127 (FertiCycle project).  

Acknowledgements 

The authors acknowledge Geert Kupers from Wageningen livestock research for supporting with analytical 

methods, and Herman De Boer from Dairy Campus for facilitating the collection of manure material 

and providing information. We would also like to acknowledge Joachim Deru from the Louis Bolk 

Institute and Debby Van Rotterdam from the Nutrient Management Institute for providing the practical 

farms data collected as part of the Gescheiden met waarde project.  
 

AgEng 2024 Proceedings

831

https://www.sciencedirect.com/science/article/pii/S2352186423002444?via%3Dihub#GS1


 

References  

Aarnink, A. J. A., & Ogink, N. W. M. (2007). Environmental impact of daily removal of pig manure with a conveyer belt system. 

In International Symposium on Air Quality and Waste Management for Agriculture, 6-19 September 2007, 

Broomfield, Colorado, USA. 

APHA (American Public Health Association). (1995). Standard methods for the examination of water and wastewater (19th ed.) 

Washington, DC, USA. 

Braam, C.R., J.J.M.H. Ketelars, and M.C.J. Smits. 1997. Effects of floor design and floor cleaning on ammonia emission from 
cubicle houses for dairy cows. Neth. J. Agric. Sci. 45:49–64.  

CBS, PBL, RIVM, WUR (2021). Manure surpluses in agriculture, 1970-2019 (indicator 0096, version 20, 8 April 2021). 

www.environmentaldata.nl. Statistics Netherlands (CBS), The Hague; PBL Netherlands Environmental Assessment 

Agency, The Hague; RIVM National Institute for Public Health and the Environment, Bilthoven; and Wageningen 

University and Research, Wageningen. 

Von Bernuth, R. D., Hill, J. D., Henderson, E., Godbout, S., Hamel, D., & Pouliot, F. (2005). Efficacy of a liquid/solid isolation 

system for swine manure. Transactions of the ASAE, 48(4), 1537-1546.Dai, X., Karring, H. 2014. A determination 

and comparison of urease activity in faeces and fresh manure from pig and cattle in relation to ammonia production 

and pH changes. PLoS One, 9(11), e110402. 

Deru J., Van Rotterdam D., EL Mahdi J., De Stigter J., Beek J. (2023) Ammoniak- en broeikasgasemissies van gescheiden 
mestfractie in een incubatie-experiment. Wageningen, Netherlands: Louis Bolk Instituut, 2023-01 LbD. 

EL Mahdi, J., Nyang'au, J.O., De Vries, J.W., van Eekert, M.H.A., Koerkamp, P.G., Møller, H.B. 2024. Biomethane yield of novel 

source segregated dairy excreta under different anaerobic digestion systems. Environmental Technology & 

Innovation, 103684. 

Fangueiro, D., Coutinho, J., Chadwick, D., Moreira, N., Trindade, H. 2008. Effect of Cattle Slurry Separation on Greenhouse Gas 

and Ammonia Emissions during Storage. Journal of Environmental Quality, 37(6), 2322-2331. 

Galama P.J., Ouweltjes W., Endres M.I., et al. (2020) Symposium review: Future of housing for dairy cattle. Journal of Dairy 

Science 103: 5759-5772. 

Galama P.J. (2021a) Wisselende effecten bij mestscheiden aan de bron. Retrieved January 30, 2023, from  
https://www.wur.nl/nl/nieuws/wisselende-effecten-bij-mestscheiden-aan-de-bron.htm. 

Galama P.J (2021b) Doorlaatbare tegelvloer in bedrijfsverband. Retrieved January 30, 2023, from 

https://www.wur.nl/nl/nieuws/doorlaatbare-tegelvloer-in-bedrijfsverband.htm. 

Hjorth, M., Christensen, K.V., Christensen, M.L., Sommer, S.G. 2011. Solid–Liquid Separation of Animal Slurry in Theory and 

Practice. in: Sustainable Agriculture Volume 2, (Eds.) E. Lichtfouse, M. Hamelin, M. Navarrete, P. Debaeke, Springer 

Netherlands. Dordrecht, pp. 953-986. 

Yan, J., De Buisonjé, F.E., Melse, R.W. 2017. Livestock Manure Treatment Technology of the Netherlands and Situation of 

China. Wageningen Livestock Research, Wageningen, Report 1048. 

Kang, J., Amoozegar, A., Hesterberg, D., Osmond, D.L. 2011. Phosphorus leaching in a sandy soil as affected by organic and 

inorganic fertilizer sources. Geoderma, 161(3), 194-201. 
Kaparaju, P.L.N., Rintala, J.A. 2008. Effects of solid–liquid separation on recovering residual methane and nitrogen from 

digested dairy cow manure. Bioresource Technology, 99(1), 120-127. 

Knowlton K.F., Radcliffe J.S., Novak C.L., et al. 2004. Animal management to reduce phosphorus losses to the environment. J 

Anim Sci 82 E-Suppl: E173-195. 

Koger J.B., O’Brien B.K., Burnette R.P., et al. 2014. Manure belts for harvesting urine and faeces separately and improving air 

quality in swine facilities. Livestock Science 162: 214-222. 

Lachance, I., Jr, Godbout, S., Lemay, S. P., & Larouche, F. P. J. P. (2005). Separation of Pig Manure Under Slats: to Reduce 

Releases in the Environment! Paper presented at the ASAE Annual International Meeting, St. Joseph, MI. 

Møller, H.B., Lund, I. and Sommer, S.G. 2000. Solid–liquid separation of livestock slurry: efficiency and cost. Bioresource 
Technology 74: 223-229. 

Møller, H.B., Sommer, S.G., Ahring, B.K. 2002. Separation efficiency and particle size distribution in relation to manure type 

and storage conditions. Bioresource Technology, 85(2), 189-196. 

Möller, K. and Müller, T. (2012), Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. 

Life Sci., 12: 242-257. 

Labatut R.A., Angenent L.T. and Scott N.R. (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off 

between performance and stability? Water Res 53: 249-258. 

Overmeyer, V., Kube, A., Clemens, J., Büscher, W., Trimborn, M. 2021. One-Time Acidification of Slurry: What Is the Most 

Effective Acid and Treatment Strategy? Agronomy, 11(7), 1319. 

Panetta, D.M., Powers, W.J., Lorimor, J.C. 2005. Management Strategy Impacts on Ammonia Volatilization from Swine Manure. 
Journal of Environmental Quality, 34(3), 1119-1130. 

Prado, J., Ribeiro, H., Alvarenga, P., Fangueiro, D. 2022. A step towards the production of manure-based fertilizers: Disclosing 

the effects of animal species and slurry treatment on their nutrients content and availability. Journal of Cleaner 

Production, 337, 130369. 

Regueiro, I., Coutinho, J., Fangueiro, D. 2016. Alternatives to sulfuric acid for slurry acidification: impact on slurry composition 

and ammonia emissions during storage. Journal of Cleaner Production, 131, 296-307. 

Schröder, J.J., Aarts, H.F.M., van Middelkoop, J.C., Schils, R.L.M., Velthof, G.L., Fraters, B., Willems, W.J. 2007. Permissible 

manure and fertilizer use in dairy farming systems on sandy soils in The Netherlands to comply with the Nitrates 

Directive target. European Journal of Agronomy, 27(1), 102-114. 
Sommer, S.G., Husted, S. 1995. The chemical buffer system in raw and digested animal slurry. The Journal of Agricultural 

Science, 124(1), 45-53. 

Sørensen, P., Eriksen, J. 2009. Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and 

plant availability of nitrogen. Agriculture, Ecosystems & Environment, 131(3), 240-246. 

Stewart, K.J., Lemay, S.P., Barber, E.M., Laguë, C., Crowe, T. 2004. Experimental Manure Handling Systems for Reducing 

Airborne Contamination of Fecal Origin, Paper presented at the ASAE Annual International Meeting. St. Joseph, MI. 

Swierstra, D., R. Braam, C., C. Smits, M. 2001. Grooved Floor System for Cattle Housing: Ammonia Emission Reduction and 

Good Slip Resistance. Applied Engineering in Agriculture, 17(1), 85-90. 

Tomlinson, A. P., Powers, W. J., Van Horn, H. H., Nordstedt, R. A., Wilcox, C. J. 1996. Dietary Protein Effects on Nitrogen 
Excretion and Manure Characteristics of Lactating Cows. Transactions of the ASAE, 39(4), 1441-1448. 

Vaddella, V.K., Ndegwa, P.M., Joo, H.S., Ullman, J.L. 2010. Impact of Separating Dairy Cattle Excretions on Ammonia 

Emissions. Journal of Environmental Quality, 39(5), 1807-1812. 

Van Vliet, P.C.J., Reijs, J.W., Bloem, J., Dijkstra, J., de Goede, R.G.M. 2007. Effects of Cow Diet on the Microbial Community 

and Organic Matter and Nitrogen Content of Faeces. Journal of Dairy Science, 90(11), 5146-5158. 

Vicente, F., Elouadaf, D., Sánchez-Vera, A., Soldado, A., De La Torre-Santos, S., Martínez-Fernández, A. 2021. The Dairy Cow 

Slurry Composition Used as Organic Fertilizer Is Influenced by the Level and Origin of the Dietary Protein. Animals,  

11(10), 2812. 

AgEng 2024 Proceedings

832



Vu, P. T., Melse, R. W., Zeeman, G., & Groot Koerkamp, P. W. G. 2016. Composition and biogas yield of a novel source 

segregation system for pig excreta. Biosystems Engineering, 145, 29-38. 

Whitehead, D.C., Raistrick, N. 1993. Nitrogen in the excreta of dairy cattle: changes during short-term storage. The Journal of 

Agricultural Science, 121(1), 73-81. 

Zhang, X., Liu, C., Liao, W., Wang, S., Zhang, W., Xie, J., Gao, Z. 2022. Separation efficiency of different solid-liquid separation 

technologies for slurry and gas emissions of liquid and solid fractions: A meta-analysis. Journal of Environmental 

Management, 310, 114777. 

 

AgEng 2024 Proceedings

833



Performance evaluation of different pumps and pumpsets for agricultural 

application 
 

Arthur L. Fajardoa*, Charleen Grace V. Deniegab, Fatima Joy J. Raytana-Ayingc,  

Marie Jehosa B. Reyesc, Jerson Jose T. Menguitoc, Yaminah Mochica M. Pincac  
a Agribiosystems Machinery and Power Engineering Division, University of the Philippines Los Baños,  

Los Baños, Philippines 
b Sorsogon State University, Sorsogon City, Philippines 

c Agricultural Machinery Testing and Evaluation Center, University of the Philippines Los Baños,  

Los Baños, Philippines 

* Corresponding author. Email: alfajardo@up.edu.ph 

Abstract 

The Philippine government has identified agricultural mechanization as a strategy for addressing national 

food security challenges. Performance evaluation of pumps and pumpsets serves as a guide for government 

agencies and private institutions deciding on units to buy, distribute, and install on the farms. This study 

aimed to evaluate the performance of agricultural pumps and pumpsets. Performance data of centrifugal 

pumps and pumpsets tested by the Agricultural Machinery Testing and Evaluation Center (AMTEC) from 

1989 to 2022, based on Philippine Agricultural Engineering Standards (PAES) 115:2000, were used in the 

study. The selected sizes for both pump and pumpset include 50×50 mm, 75×75 mm, and 100×100 mm. Only 

engine-powered units were selected for the pumpsets. The performance of the agricultural pumps was 

evaluated using four (4) schemes. Scheme 1 was patterned from Resurreccion et al. (2008) while Schemes 2, 

3, and 4 were a modified version. In Schemes 3 and 4, the performance data were adjusted using pump 

affinity law. Results showed that most pumps are within the minimum requirements (6 points and above) 

under Scheme 1. All non-self-priming 100×100 mm pumps passed the minimum requirements for Scheme 

1. On the other hand, using Schemes 2 and 4, most 50×50 mm pumps were below the minimum requirements. 

Most 50×50 mm pumpsets were below performance for all the rating schemes except for the close-coupled, 

self-priming, air-cooled diesel and gasoline types under Scheme 2. Most 75×75 mm non-self-priming, water-

cooled diesel, V-belt and pulley transmission pumpsets passed the rating for all evaluation schemes. Most 

100×100 mm non-self-priming, water-cooled diesel, V-belt and pulley transmission pumpsets passed the 

rating for all evaluation schemes. With the modified scheme, putting weight on the efficiency (pump or 

system) has an impact on the performance evaluation of pumps and pumpsets. Appropriate tools (i.e., 

statistical) or systems should be utilized to determine the optimum weight assignment for the evaluation 

scheme.  

Keywords: agricultural mechanization, agricultural machinery testing, centrifugal pumps and pumpsets 

1. Introduction 

The Agricultural and Fisheries Mechanization (AFMech) Law of 2013 and the 2019 Rice 

Competitiveness Enhancement Fund (RCEF) program of the Philippines both aim to attain food security and 

increase farmer’s income through agricultural mechanization. RCEF allocates a PhP 5-billion annual budget 

for agricultural mechanization from 2019 to 2024. The goal of the RCEF mechanization program is to 

improve farmer’s yield, income, and competitiveness in the global market through access to appropriate 

agricultural machinery from land preparation to postharvest operation. One of the machinery types distributed 

by this program is the irrigation pump.  

Centrifugal pump is a type of pump with impellers rotating inside a closed casing that draws water into 

the pump through a central inlet opening and forces water out through a discharge outlet at the periphery of 

the housing using centrifugal force. A centrifugal pumpset is a pump directly- or indirectly- coupled to a 

prime mover, either with an engine or electric motor. An engine pumpset could be powered by a diesel (either 

water-cooled or air-cooled) or a gasoline engine (air-cooled). The common types of power transmission 

systems for engine-powered pumpsets include close-coupled, direct-coupled, and belt-and-pulley 

transmission. In the Philippines, centrifugal pumps and pumpset are tested in accordance with PAES 

115:2000 (Agricultural Machinery – Centrifugal, Mixed Flow, and Axial Flow Water Pumps – Method of 
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Test). The test is conducted by operating the pump at the manufacturer’s recommended pump speed.  

A performance rating system was developed as a guiding tool in the appropriate selection of agricultural 

pumps (Resurreccion et al., 2008). The performance evaluation of different bare pumps and pumpsets serves 

as a guide for government agencies and private institutions in deciding the pumpset and bare pump to buy, 

distribute, and install on farms. The main objective of this study is to evaluate and compare the performance 

of bare pumps and pumpsets based on different parameter weighting. 

2. Materials and Methods  

The performance data of pumps and pumpsets tested in AMTEC from 1989 to 2022 were collected, 

processed, and evaluated. The sizes selected only include 50×50mm, 75×75mm, and 100×100mm for both 

pumps and pumpsets. For the pumpsets, only the engine-powered units were considered. These selection 

criteria were based on the common sizes and prime mover used for shallow tubewells (STW) and low-lift 

pumps (LLP) in the Philippines. 

 The pumps were then grouped based on the priming method (non-self-priming and self-priming) for each 

pump size. On the other hand, the pumpsets were grouped by priming method (non-self-priming and self-

priming), engine type (diesel engine and gasoline engine), and power transmission type (close-coupled and 

belt-and-pulley transmission). Direct transmission pumpsets were grouped under the close-coupled 

transmission category.  

The performance rating scheme (Scheme 1) adopted from the study of Resurreccion et al. (2008) was 

used to evaluate the centrifugal pumps (Table 1) and pumpsets (Table 2). The performance data of pumps 

and pumpsets tested were evaluated using the following parameters for Scheme 1: discharge-to-input power 

ratio, suction lift, maximum efficiency, and input speed. Parameters were rated on a scale of 2 to 10, with 2 

representing the lowest rating and 10 the highest. The final rating points were computed by dividing the total 

rating points by the number of parameters used.  If the pump or pump set receives a final rating point of 6 or 

higher, it satisfies the minimum requirements for performance, whereas a score of 4 or less does not. 

Regardless of whether the pump met the minimum requirements based on PAES 115, it should be noted that 

the parameters used have equal weights for determining the final rating. 

Table 1. Criteria for the performance rating of centrifugal pumps (Resurreccion et al., 2008).  

Parameter Minimum Requirement Range of Values Equivalent Points 

Discharge-Input Power Ratio  0.75 1.30 and above 10 

1.00-1.29 8 

0.75-0.99 6 

0.50-0.74 4 

Below 0.50 2 

Pump Efficiency, %    

Self-priming 50.00% 60.00 and higher 10 

55.00 to 59.99 8 

50.00 to 54.99 6 

45.00 to 49.99 4 

Below 45.00 2 

Non-self-priming 55.00% 65.00 and higher 10 

60.00 to 64.99 8 

55.00 to 59.99 6 

50.00 to 54.99 4 

Below 50.00 2 

Total Suction Lift, m 8.0 9.0 and higher 10 

8.5 to lower 9.0 8 

8.0 to lower 8.5 6 

7.5 to lower 8.0 4 

7.5 and lower 2 

Input Speed, rpm 1800-2400 1800-2400 10 

2400-3000 8 

1500-1800 6 
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3000 and above 4 

Below 1500 2 

 

Table 2. Criteria for the performance rating of centrifugal pumpsets (Resurreccion et al., 2008).  

Parameter Minimum Requirement Range of Values Equivalent Points 

Discharge-Input Power Ratio  0.75 1.30 and above 10 

1.00-1.29 8 

0.75-0.99 6 

0.50-0.74 4 

Below 0.50 2 

System Efficiency, % 10.0% 14.0 and above 10 

12.0-13.9 8 

10.0-11.9 6 

8.0-9.9 4 

Below 8.0 2 

Total Suction Lift, m 8.0 9.0 and higher 10 

8.5 to lower 9.0 8 

8.0 to lower 8.5 6 

7.5 to lower 8.0 4 

7.5 and lower 2 

Input Speed, rpm 1800-2400 1800-2400 10 

2400-3000 8 

1500-1800 6 

3000 and above 4 

Below 1500 2 

 

A modification of the evaluation scheme by Resurreccion et al. (2008) was performed for this study 

(Scheme 2). The modified weight distribution is as follows for Scheme 2: pump/system efficiency – 40%, 

input speed – 30%, and suction lift – 30%. A higher weight for pump and system efficiency was considered 

since it is the most important performance parameter. Then, the discharge-to-input power ratio was not 

included since it is almost the same with efficiency except for the inclusion of the total head. Also, the 

equivalent points for the input speed were modified. Lower pump speed was given higher points since local 

farmers tend to set the engine throttle to near the lowest speed (near idling speed). Moreover, setting the 

pump to a higher shaft speed will also increase its power requirement thereby increasing its fuel consumption. 

Different shaft speed requirement was set for self-priming and non-self-priming pumps and pumpsets under 

Scheme 2 (Table 3). This was based on observations from pump test data that the common pump shaft speed 

for non-self-priming types is 1500-1800 rpm and 2000-2200 rpm for self-priming types. However, it was 

also observed that the pumps and pumpsets were tested at different shaft speeds (Fajardo et al., 2023). With 

this, it was proposed to evaluate the bare pump and pumpset performance using the common shaft speed. 

Table 3. Criteria for the input speed (rpm) of centrifugal pumps and pumpsets under Scheme 2.  

Priming Method 
Minimum 

Requirement 

Range of 

Values 
Equivalent Points 

Self-priming 1800-2400 1800-2400 10 

2400-3000 8 

1500-1800 4 

3000-up 6 

Below 1500 2 

Non-self-priming 1500-1800 1800-2400 8 

  2400-3000 6 

  1500-1800 10 

  3000-up 4 
  Below 1500 2 
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Performance parameters were adjusted using the pump affinity laws. Pump affinity laws state that for the 

same impeller diameter, if the pump speed is changed, the flow rate is directly proportional to the speed, 

whereas the head is directly proportional to the square of the speed. As with diameter change, the brake 

horsepower is proportional to the cube of the impeller speed (Karassik et al., 2008). For the bare pumps, the 

discharge, head, input power, and pump efficiency were recomputed at 2000rpm shaft speed. Whereas for 

centrifugal pumpsets, the discharge, head, fuel consumption, and system efficiency were re-computed at 

2000rpm for units with V-belt and pulley transmission and 3600rpm for units with close-coupled 

transmission. Fuel consumption was recomputed using the input power-shaft speed relationship (proportional 

to the cube). 

After the recomputations, performance was evaluated using the original scheme of Resurreccion et al. 

(2008), excluding the input speed (Scheme 3). Also, another modified version (Scheme 4) was applied using 

the following weight distribution: pump/system efficiency – 60% and suction lift – 40%.  

Therefore, four (4) evaluation schemes were used in the study: a) Scheme 1 – based on Resurreccion et 

al. (2008); b) Scheme 2 – a modified scheme by Resurreccion et al. (2008) with adjusted input speed scores 

and higher weight for pump or system efficiency; c) Scheme 3 – adjusted shaft speed to 2000 or 3600rpm, 

then applied the scheme based from Resurreccion et al. (2008) excluding input speed; and d) Scheme 4 – 

adjusted shaft speed to 2000 or 3600rpm, then applied modified scheme by Resurreccion et al. (2008) 

excluding input speed and higher weight given for pump or system efficiency. 

3. Results and Discussion 

3.1. Bare Pumps  

The performance data of pumps and pumpsets tested by the AMTEC in the University of the Philippines 

Los Baños from 1989 to 2022 were gathered. Data from a total of 341 bare pumps were sorted by size (50×50 

mm, 75×75 mm, and 100×100 mm) and priming method (non-self-priming and self-priming). A total of 49 

bare pump units have a size of 50×50 mm which include 31 self-priming units and 18 non-self-priming units. 

Then, there were 114 units of 75×75 mm bare pumps. Of the 114 75×75 mm bare pumps, 50 units were self-

priming and 64 units were non-self-priming. The remaining 178 units are 100×100 mm bare pumps, which 

included 72 self-priming units and 106 non-self-priming units.  

Table 4 presents the performance of the different sizes of bare pumps tested. Pump efficiency and 

discharge capacity increase with pump size, though the pump efficiencies of 75×75 mm and 100×100 mm 

bare pumps have relatively slight differences for each type. 

Table 4. Total head and discharge capacity at maximum pump efficiency of the different bare pump sizes 

tested at AMTEC. 

Pump Size Priming Method 
Maximum Pump  

Efficiency, % 

Total Head, m 
Discharge Capacity, L/s 

50×50 mm Non-self-priming 52.99 16.40 7.78 

Self-priming 39.11 15.91 5.37 

75×75 mm Non-self-priming 61.05 16.62 15.78 

Self-priming 45.14 15.48 10.82 

100×100 mm Non-self-priming 62.21 14.39 25.54 

Self-priming 47.24 15.90 16.66 

Source: Fajardo et al., 2023 

3.2. Performance Evaluation Scheme Analysis of Bare Pumps 

Four (4) parameters were used for the performance evaluation scheme: discharge-input ratio, pump 

efficiency (%), total suction lift (m), and input speed (rpm). Most pumps are within the minimum 

requirements (6 points and above) under Scheme 1 as presented in Table 5. All non-self-priming 100×100 

mm pumps passed the minimum requirements for Scheme 1. On the other hand, using Schemes 2 and 4, most 

50×50mm pumps were below the minimum requirements (less than 6 points). Moreover, most of the self-

priming pumps have the highest decline in number after using Schemes 2, 3, and 4. The reduction of the 

number of units that passed the minimum requirements using Schemes 2 and 4 shows that the pump efficiency 
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has a greater impact on the evaluation scheme. 

Table 5. Number of units of different bare pump sizes that passed the performance evaluation scheme.  

Pump Size Priming Method Scheme 1 Scheme 2 Scheme 3 Scheme 4 

50×50 mm Non-self-priming (18) 16 9 13 6 

 Self-priming (31) 28 5 17 3 

75×75 mm Non-self-priming (64) 60 45 59 35 

 Self-priming (50) 48 15 35 9 

100×100 mm Non-self-priming (106) 106 87 100 75 
 Self-priming (72) 71 29 41 5 

 

3.3. Centrifugal Pumpsets 

Tables 6 to 8 present the performance of the 50×50 mm, 75×75 mm, and 100×100 mm centrifugal 

pumpsets at maximum system efficiency, respectively. Results showed that, in general, the pumpsets’ system 

efficiency is relatively higher for the non-self-priming units than the self-priming type (same with bare pump 

efficiency). Considering engine type, the system efficiency is relatively higher for diesel engine-powered 

pumpsets than those powered by gasoline engines. Also, the system efficiency of the pumpsets was observed 

to be relatively higher for units driven by water-cooled engines than air-cooled engines. 

Table 6. Performance of the AMTEC-tested 50×50 mm centrifugal pumpsets at maximum system 

efficiency.  

Type 

Maximum 

System 

Efficiency, % 

Fuel 

Consumption, 

L/h 

Total 

Head, 

m 

Discharge 

Capacity, L/s 

Range of 

Engine Rated 

Power, kW 

Close-coupled 

Non-self-

priming, 

Water-cooled 

diesel engine 

10.70 1.48 28.50 6.19 3.73 – 5.97 

Self-priming, 

Air-cooled 

diesel engine 

10.18 0.94 16.86 5.89 2.24-5.22 

Self-priming, 

Gasoline 

engine 

7.97 1.30 16.63 5.70 2.24 -5.22 

V-belt and pulley 

Non-self-

priming, 

Water-cooled 

diesel engine 

11.28 1.76 30.09 6.73 5.10 – 5.27 

Self-priming, 

Water-cooled 

diesel engine 

8.45 1.48 23.63 5.92 5.10 – 6.18 

Source: Fajardo et al., 2023 

 

Table 7. Performance of the AMTEC-tested 75×75 mm centrifugal pumpsets at maximum system 

efficiency.  

Type 

Maximum 

System 

Efficiency, % 

Fuel 

Consumption, 

L/h 

Total 

Head, 

m 

Discharge 

Capacity, L/s 

Range of 

Engine Rated 

Power, kW 

Close-coupled 

Non-self-

priming,  

Air-cooled  

18.99 1.34 15.60 17.30 4.80 
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diesel engine 

Non-self-

priming, 

Water-cooled 

diesel engine 

14.95 1.80 13.78 17.05 3.73 – 5.22 

Self-priming,  

Air-cooled  

diesel engine 

11.47 1.33 16.12 9.84 2.80 – 8.96 

Self-priming, 

Water-cooled 

diesel engine 

8.36 0.84 10.7 7.07 5.10 

Self-priming,  

Gasoline 

engine 

10.01 1.56 15.63 9.97 2.83 – 5.60 

V-belt and pulley 

Non-self-

priming,  

Air-cooled  

diesel engine 

15.25 1.26 14.09 13.85 4.90 – 9.00 

Non-self-

priming, 

Water-cooled  

diesel engine 

13.87 1.81 19.19 13.33 4.48 – 7.09 

Self-priming, 

Air-cooled  

diesel engine 

10.08 1.72 16.18 11.27 4.90 – 7.46 

Self-priming,  

Water-cooled  

diesel engine 

11.79 1.49 15.00 12.30 5.12 – 7.09 

Source: Fajardo et al., 2023 

 

Table 8. Performance of the AMTEC-tested 100×100 mm centrifugal pumpsets at maximum system 

efficiency.  

Type 

Maximum 

System 

Efficiency, % 

Fuel 

Consumption, 

L/h 

Total 

Head, m 
Discharge 

Capacity, L/s 

Range of 

Engine Rated 

Power, kW 

Close-coupled 

Non-self-

priming,  

Water-cooled 

diesel engine 

17.49 1.32 12.79 18.77 3.73 – 5.97 

Self-priming,  

Air-cooled 

diesel engine 

11.99 1.48 14.83 12.87 4.00-7.50 

Self-priming, 

Gasoline engine 
8.44 2.46 16 11.55 5.20 – 5.60 

V-belt and pulley 

Non-self-

priming,  

Air-cooled 

diesel engine 

11.90 2.41 13.24 20.61 6.62 – 9.00 

Non-self-

priming,  

Water-cooled 

diesel engine 

13.38 2.08 14.06 20.75 5.10 – 8.96 
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Self-priming,  

Air-cooled 

diesel engine 

9.51 2.14 14.40 14.94 7.30 – 7.46 

Self-priming,  

Water-cooled 

diesel engine 

10.62 2.59 16.53 15.25 5.10 – 10.30 

Source: Fajardo et al., 2023 

3.4. Performance Evaluation Scheme Analysis of Centrifugal Pumpsets 

As presented in Table 9, most 50×50 mm pumpsets were below performance for all the rating schemes 

except for the close-coupled, self-priming, air-cooled diesel engine-powered units and gasoline engine-

powered units under Scheme 2. Moreover, it could be observed that for all schemes, no changes were 

observed for the non-self-priming, water-cooled diesel engine-powered pumpsets with V-belt and pulley 

transmission systems. In comparison to the 50×50 mm self-priming bare pumps, the number of units 

increased from Scheme 1 to Scheme 2 for self-priming close-coupled pumpsets. One reason for this is that 

the input speed did affect the overall rating of the 50×50mm self-priming closed-coupled pumpsets. 

Table 9. The number of 50×50 mm centrifugal pumpsets that passed under the different performance 

schemes. 

Type Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Close-coupled (111)     

Non-self-priming, Water-cooled diesel engine (2) 1 1 0 0 

Self-priming, Air-cooled diesel engine (22) 3 16 9 9 

Self-priming, Gasoline engine (87) 8 56 21 8 

V-belt and pulley (10)     

Non-self-priming, Water-cooled diesel engine (4) 3 3 3 3 

Self-priming, Water-cooled diesel engine (6) 0 1 0 0 

 

Table 10 presents that most non-self-priming, water-cooled diesel engine-powered pumpsets with V-belt 

and pulley transmission systems passed the rating for all evaluation schemes. On the contrary, for all 

evaluation schemes, most of the close-coupled, self-priming pumpsets did not pass the rating. It could also 

be observed that a relatively higher number of units passed the evaluation for Schemes 3 and 4 for the self-

priming close-coupled gasoline engine-powered pumpsets. Increasing the pump shaft speed for the 75×75 

mm self-priming pumpsets affected its performance. 

Table 10. The number of 75×75 mm centrifugal pumpsets that passed under the different performance 

schemes. 

Type Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Close-coupled (106)     

Non-self-priming, Air-cooled diesel engine (1) 1 1 1 1 

Non-self-priming, Water-cooled diesel engine (5) 4 4 4 4 

Self-priming, Air-cooled diesel engine (32) 9 8 13 12 

Self-priming, Water-cooled diesel engine (1) 0 0 0 0 

Self-priming, Gasoline engine (68) 12 12 29 24 

V-belt and pulley (50)     

Non-self-priming, Air-cooled diesel engine (2) 1 1 1 1 

Non-self-priming, Water-cooled diesel engine (27) 23 18 15 15 

Self-priming, Air-cooled diesel engine (2) 1 1 1 1 

Self-priming, Water-cooled diesel engine (19) 14 8 7 6 

 

In Table 11, it could be observed that most non-self-priming, water-cooled diesel engine-powered 

pumpsets with V-belt and pulley transmission systems passed the rating for all evaluation schemes. Also, for 

the close-coupled, self-priming, air-cooled diesel engine-powered pumpsets, the number of units that passed 

the rating increases with Schemes 2 and 3. For all sizes of pumpsets, the modified evaluation (Schemes 2 to 
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4) showed the impact of pumpset efficiency in the performance evaluation. On the other hand, a relatively 

higher number of units passed the evaluation for Schemes 3 and 4 for the self-priming, closed-coupled, air-

cooled diesel engine-powered pumpsets. Similar to the observation with the 75×75 mm pumpsets, increasing 

the pump shaft speed for the 100×100 mm self-priming pumpsets also affected its performance. 

 

Table 11. The number of 100×100 mm centrifugal pumpsets that passed under the different performance 

schemes.  

Type Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Close-coupled (30)     

Non-self-priming, Water-cooled diesel engine (5) 2 2 3 3 

Self-priming, Air-cooled diesel engine (23) 8 6 13 13 

Self-priming, Gasoline engine (2) 0 0 0 0 

V-belt and pulley (177)     

Non-self-priming, Air-cooled diesel engine (7) 4 5 4 4 

Non-self-priming, Water-cooled diesel engine (90) 69 73 57 57 

Self-priming, Air-cooled diesel engine (8) 4 3 2 2 

Self-priming, Water-cooled diesel engine (72) 58 34 28 26 

 

4. Summary and Conclusions 

Agricultural pumps and pumpsets tested in the Agricultural Machinery Testing Evaluation Center 

(AMTEC) from 1989 to 2022 were the focus of the study. Testing data of the centrifugal pumpsets and bare 

pumps were subjected to four (4) performance evaluation schemes based on the study of Resurreccion et al. 

(2008). Pump and system efficiency, as well as adjustments in the pump shaft speed, affected the performance 

evaluation in the selection of centrifugal pumps and pumpsets. 
 

5. Recommendations 

To further improve the results of this study, analysis of the pumps and pumpsets performance can be done 

in terms of assigning weights on specific parameters using statistical tools such as the Analytic Hierarchy 

Process (AHP) or Multi-Criteria Decision Analysis (MCDA). This is to determine the ideal (or optimum) 

weight distribution to better guide stakeholders in the selection of pumps and pumpsets. Further, it is also 

recommended to use the performance of pumps and pumpsets using a common pump shaft speed for 

evaluation. 
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Abstract 

The laser-guided intelligent spray technology has been rapidly adopted by specialty crop growers to 

significantly reduce pesticide waste, increase production profitability, and safeguard the environment. However, 

improvements are needed to eliminate the tank mixture leftover waste which is a common problem for all variable-

rate sprayers. An inline injection and mixing system was developed as an attachment to the laser-guided variable-

rate orchard sprayer. Major components of the system consisted of a chemical metering pump, a water pump, a 

two-stage static mixer, a premixing tank, a buffer tank, an electric shut-off valve, a chemical container assembly, 

electronic control boards, a graphical user interface, and an embedded computer with a touch screen unit. Liquid 

level sensors were mounted in all tanks and the chemical container to control the liquid discharge process and 

prevent overflows. The graphical user interface with visual operation functions was designed for operators to 

communicate with the system and monitor the operation status shown on the touch screen. During spray 

applications, the system performed with loops in dispensing, mixing, and transferring desired amounts of water 

and chemical concentrates automatically to maintain spray mixtures with a constant concentration for variable-

rate nozzles to discharge. The system could be rinsed automatically when the spray application task was 

completed. Test results demonstrated that the simulated pesticide and water could be accurately delivered into the 

injection line and could be mixed well in the buffer tank before the spray mixture was discharged to the nozzles. 

The inline injection and mixing system would be a potential technique to further reduce pesticide waste and 

improve environmental stewardship for both conventional and new precision variable-rate sprayers. 

Keywords: Precision application, Laser-guided sprayer, Pesticide disposal, Environment protection, Automation 

1. Introduction 

Structure and density of horticultural crops in fields generally are not as uniform as traditional row crops such 

as corn and soybeans. The use of conventional constant-rate sprayers to apply pesticides to protect horticultural 

crops has caused tremendous amount of pesticide waste and environment contamination. To solve these problems, 

a laser-guided air-assisted precision spray technology was developed to automatically adjust spray rates that match 

the crop structure and density for precision delivery of agrochemicals in real time (Chen et al., 2012; Shen et al., 

2017). This technology is designed as a retrofit attachment for new, used and autonomous sprayers commonly 

used in orchards, vineyards and nurseries. With the attachment, growers can use their existing sprayers rather than 

buying new sprayers to achieve precision applications. Sprayers retrofitted with the intelligent spray control 

system detect crops with tens of thousands of laser beams and then spray the body of crops but not the empty 

spaces in the field. During a growing season, the sprayers can reduce pesticide use between 30% and 85% and 

reduce spray drift by up to 90% (Chen et al., 2013a, 2013b; Zhu et al., 2017; Boatwright et al., 2020; Chen et al., 

2021; Fessle et al., 2021; Fessler et al., 2023; Wodzicki, et al., 2023). Smart Apply Inc (Indianapolis, Indiana, 

USA) commercialized the technology with the trade name “SmartApply® – Intelligent Spray Control System™” 

in 2019, and John Deere acquired Smart Apply in 2023 to strengthen the production capability and service 

(https://www.deere.com/en/news/all-news/john-deere-acquires-smart-apply/). Many growers in the USA and 

other countries have been using this reliable and profitable technology to protect their crops and safeguard the 

environment. Crops include apples, citrus, grapes, berries, cherries, pecans, almonds, hops, nurseries and many 

others (https://smartapply.com/).  

However, all variable-rate sprayers equipped with sensor control systems encounter the same problem as the 

conventional constant-rate sprayers to dispose excess tank mixtures after spray tasks (Shen and Zhu, 2015). For 

variable-rate orchard sprayers, the required volume of tank mixture to be applied varies with plant size, shape, 

foliage density and growth stage as well as plant density in the field. For variable-rate boom sprayers to apply 

herbicides, the amount of sprays varies with weed population in the field but weed densities are usually unknown. 

Thus, it is difficult for applicators to prepare the exact amount of tank mixtures needed before they go to the field 

to spray crops or weeds. The problem may not be obvious for large orchard fields requiring multiple tank refills 

because applicators usually have an accurate estimation on the amount of tank mixture for the last tank refill after 

they have multiple refills of full tanks to spray majority of the field. However, for small orchard operations which 

require less than a full tank of mixture to complete the task, excessive tank mixture leftover is usually inevitable. 

This leftover problem can be serious especially for large boom sprayers to apply variable-rate herbicides. 
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Therefore, real-time in-line injection systems are needed for variable-rate sprayers, regardless they are used for 

orchards or row crops, to solve the problems such as pesticide exposure, tank mixture leftover and rinsed water 

disposal associated with conventional spray applications (Shen and Zhu, 2015; Zhang et al., 2019). 

To eliminate the tank mixture leftover problem for conventional constant-rate sprayers, direct in-line injection 

systems to discharge concentrated pesticide formulations directly into the carrier stream or nozzles have been 

investigated and improved over past several decades (Reichard and Ladd, 1983; Marchant and Frost, 1989; Way 

et al., 1990; Sudduth et al., 1995; Zhu et al., 1998; Womac et al., 2002; Downey et al., 2006; Vondricka and 

Lammers, 2009). However, these conventional in-line injection systems cannot be used for variable-rate sprayers 

because of their unsolved problems associated with the long lag time, inconsistent mixture uniformity and 

inaccurate dispense of very low chemical flow rates (Shen and Zhu, 2015). Also, spray outputs from variable-rate 

sprayers can be suddenly changed from zero to full capacity due to instant changes in plant canopy structures and 

plant presence or absence status. To maintain a constant chemical concentration in the spray mixture to be 

discharged from every nozzle in the variable-rate mode, it would require chemical pumps to dispense chemicals 

into carrier lines with widely variable ranges instantaneously to respond the sudden changes of the spray outputs. 

However, there are no such available metering pumps or valves capable of responding such sudden changes 

precisely.  

Therefore, the objectives of this research were to: (1) design, build and test an automatic in-line injection and 

mixing system for variable-rate spray applications; (2) validate the system accuracy in providing uniform tank 

mixtures at desired mixture concentrations. 

 

2. Materials and Methods  

2.1. Design of in-line injection and mixing system 

Figure 1 shows the schematic diagram of the developed in-line injection and mixing system integrated in a 

variable-rate sprayer (Zhang et al., 2020a). Major components of the system were a 16-L premixing tank, an 

electric shut-off valve, a 16-L buffer tank, a water pump, a chemical tank assembly, a chemical metering unit, a 

microprocessor-controlled unit, a two-stage static mixer, and a corrosion-resistant rectangular enclosure. The 

chemical metering unit and the microprocessor-controlled unit were stored in the corrosion-resistant enclosure. A 

metal frame was fabricated to mount these components and was attached to the sprayer. 

 

 
Figure 1. Schematic diagram of the in-line injection and mixing system integrated into a sensor-

guided variable-rate sprayer. 

 

A 5-chamber diaphragm pump was used as the water pump to discharge water as the pesticide carrier from the 

water tank to the injection point. The pump was powered with the 12 VDC tractor battery and had the capacity of 

26.5 L min-1 at 414 kPa pressure. A water level sensor was mounted at the bottom of the water tank to estimate 
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the amount of remaining water in the tank. The sensor measured the water level and the amount of remaining 

water in the tank. In addition, there were two flow sensors mounted diagonally near the top of each premixing 

tank and buffer tank to detect overflows. When the liquid level in the premixing or buffer tank reached the 

overflow detection sensors, the water and metering pumps would be automatically turned off, and the electric 

shut-off valve would be closed. 

The chemical metering unit was an integration of a ceramic piston metering pump with a precision electronic 

controller. This unit was used to dispense desired amounts of chemical concentrates from the chemical container 

to injection point near the two-stage mixer. The metering pump was able to discharge liquid at variable rates 

ranging from 5 to 635 mL min-1 by synchronizing the piston rotation speeds and stem motor pulses (Shen and 

Zhu, 2015). The synchronization was manipulated by the microprocessor-controlled unit. 

The chemical container assembly consisted of a 2-L chemical container, a magnetic stirrer, a stainless-steel 

chemical level sensor, refilling bottles and a storage box. The magnetic stirrer was used to agitate the chemical 

concentrates with adjustable speeds. The chemical container sat on the stirrer and a 35 mm long and 9 mm 

diameter magnetic bar was placed at the bottom inside the container. Besides the chemical container, there were 

eight bottles in the storage box for refilling the chemical container with additional chemical concentrates as 

needed. The chemical level sensor was mounted on the container lid to measure the chemical concentrate level in 

the chemical container at 20% resolution. The sensor shaft end was 5-cm above the bottom of the chemical 

container. This 5-cm clearance was used to remind operators to refill the chemical container and also prevent the 

metering pump from running dry. 

Premixing and buffer tanks were two 16-L capacity rectangular-funnel reservoirs. The premixing tank was 

mounted above the buffer tank. The electric shut-off valve was mounted between the two tanks for the spray 

mixture transfer. The valve was operated by an electric motor with a rotational speed of 25 rpm, and it could be 

fully opened or closed within 0.6 s for quick liquid transfer. Two stainless steel liquid level sensors were mounted 

in premixing and buffer tanks separately. One sensor was located at the bottom of the premixing tank to detect 

whether this tank was nearly empty. This sensor was also used to trigger both water pump and metering pump to 

start discharging water and dispensing chemical concentrates to refill the premixing tank. The other sensor was 

located at the bottom of the buffer tank and was used to activate the electric shut-off valve to ensure sufficient 

spray mixture in the buffer tank. 

A motionless embedded computer with a touch screen was used as the main processor for the in-line injection 

and mixing system. The microprocessor-controlled unit mainly consisted of an Arduino circuit board, which was 

placed adjacent to the metering-dispensing unit inside the corrosion-resistant enclosure. Computer programs were 

written with Visual C++ and were installed in the embedded computer to manipulate the microprocessor-

controlled unit. A graphical user interface was also designed for operators to manage the system operations and 

view the operation status through the touch screen. Serial commands from the embedded computer to the Arduino 

board included: turning on or off the mixing process, setting the chemical concentration in percentage, starting or 

stopping the metering pump and water pump, activating the electric shut-off valve, performing the auto-rinse 

function, preventing the overflow, and terminating the system operation. Similarly, the serial communications 

between the Arduino board and the embedded computer interface included status of mixing process, metering 

pump operation, water pump operation, electric shut-off valve activation, chemical concentration calculation, 

mixture levels in premixing and buffer tanks, auto-rinse function, overflow prevention in premixing and buffer 

tanks, water level in the water tank, and chemical concentrate level in the chemical container. 

With the computer programs and the graphical user interface, the system was performed with six steps in loops 

automatically after the operator provided the desired chemical concentration during spray applications: (1) 

dispensing desired amounts of water and chemical concentrates into the static mixer based on mixture 

concentration input; (2) mixing water and chemical concentrates in the static mixer while flowing into the 

premixing tank; (3) transferring the mixture from the premixing tank to the buffer tank through the electric shut-

off valve for further agitation and for discharge from the spray pump to variable flow-rate nozzles; (4) repeating 

steps (1) and (2) when the premixing tank nearly empty; (5) repeating step (3) when the buffer tank neared empty; 

(6) rinsing the system lines with the tank water when the spray application task was completed. In addition, liquid 

levels in the chemical container, water tank, premixing tank and buffer tank were also shown on the screen for 

visual observation. Operators could manually start or stop the system operation. 

A ‘Zero leftover’ function was designed and displayed on the user interface to dispose small amounts of 

leftovers in the premixing and buffer tanks before spray tasks were completed. When the spray task was nearly 

completed, the operator could turn off the automatic mode and turn on the ‘Zero leftover’ function. When the 

function was enabled, the system would automatically turn on the electric shutoff valve to transfer the remaining 

mixture in the premixing tank to the buffer tank, and continued to spray the same field until the buffer tank was 

empty. 

The in-line injection and mixing system was attached on a laser-guided variable-rate intelligent orchard 

sprayer for experiments (fig. 2). The sprayer mainly consisted of a 200-L spray tank, a diaphragm pump, a 0.6-m 
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diameter axial fan, 14 hollow cone nozzles coupled with 14 pulse width modulation (PWM) solenoid valves, a high-

speed 2-D laser scanning sensor, an automatic flow controller and an embedded computer with a touch screen. To 

perform variable rate functions to match variable canopy architectures, a specially designed laser-guided variable-

rate spray control system (Liu et al., 2014) was integrated in the sprayer. With the integration, the sprayer could 

be operated with either automatic variable-rate mode or manual constant-rate mode as needed. The 200-L spray 

tank was used as the water tank for the in-line injection and mixing system. Flow rates of the 14 nozzles were 

independently manipulated with the 14 PWM valves by tree presence, canopy volume and shape and sprayer 

travel speed in real-time.  

 

 
Figure 2. The in-line injection and mixing system attached to a laser-guided variable-rate orchard sprayer 

for tests. 

 

2.2. System accuracy validation  

A platform using the IO-Link technology was designed to validate the accuracy of dispensing desired amounts 

of water and chemical concentrates into the system. A magnetic-inductive flow meter with the measurement range 

of 5 to 3000 mL min-1 and resolution of 1 mL min-1 was used to measure chemical concentrates dispensed from 

the metering pump. Another magnetic-inductive flow meter with the measurement range of 0.2 to 100 L min-1 

and resolution of 0.1 L min-1 was used to measure the amount of water discharged from the water pump.  

The two flow meters were connected to an IO-Link master which was then connected to the embedded 

computer by using a RJ45 connection cable. The IO-Link was used to display instantaneous flow rates in real-

time and totalized flows after each test run.  

The concept of the in-line injection and mixing system was validated through previous laboratory tests (Shen 

and Zhu, 2015; Zhang et al., 2019). Previous validations included the system accuracy for dispensing simulated 

pesticides to achieve uniform spray mixtures. Due to the fact that the metering pump in the new system remained 

the same as the previous system (Zhang et al., 2019) while the other major components including computer-

controlled programs for the metering pump and the entire system operation process, the static mixer design and 

the chemical concentrate container assembly were modified and new liquid level detections and controls were 

added, the accuracy of the chemical concentrates dispensed to the mixing line and the mixture uniformity in the 

buffer tank must be evaluated again after the new system was attached to the orchard sprayer.  

Because the capacity of the premixing tank was 16 L, the desired volume of water discharged through the 

water pump was assigned as 10 L for the spray mixture preparation in each operational loop. Experiments were 

conducted to evaluate the metering pump accuracy to dispense desired amounts of chemical concentrates, the 

water pump accuracy to discharge 10 L of water, and uniformity of the spray mixture in the buffer tank. To avoid 

the engineering laboratory was contaminated by toxic pesticides, distilled water mixed with a fluorescence tracer 

Brilliant Sulfaflavine (BSF) was used as the simulated pesticide concentrate for the experiments. For these tests, 

the mixture concentration was defined as the ratio between the volume of the simulated pesticide dispensed from 
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the metering pump and the volume of water discharged from the water pump.  

For the chemical metering accuracy evaluation, desired mixture concentrations used for the tests were 0.1%, 

0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%, and they were inputted into the embedded computer through the user 

interface shown on the touch screen. Corresponding to these desired concentrations, desired volumes of the 

simulated pesticide dispensed by the metering pump were 10, 50, 100, 150, 200, 250 and 300 mL, respectively.  

For the mixture uniformity evaluation, the test was designed with four mixture concentrations (0.5%, 1.0%, 

1.5%, and 2.0%). Based on preliminary trials, to achieve a fluorescent intensity that fell within the linear range of 

the fluorometer, the concentration of BSF in the simulated pesticide concentrates was selected as 2.0 g L-1. With 

this test design, the final BSF concentrations in spray mixtures in the buffer tank were assumed to be 10, 20, 30 

and 40 mg L-1 for the concentrations of 0.5%, 1.0%, 1.5%, and 2.0%, respectively.  

Spray mixture samples were collected from the outlet of the buffer tank with thirty 120-mL glass bottles in a 

sequence at 3 s intervals. It took about 90 s to complete the collection of 30 samples for each mixture 

concentration. After the collection, each sample was transferred to a 4-mL square cuvette for fluorescence 

intensity analyses. The BSF tracer concentration as a function of fluorescence intensity was calibrated before the 

experiments. Measured BSF tracer concentrations in the buffer tank were determined with the linear calibration 

equation, 

                         y = (9.47×10-4) x+ 1.80,   R2 = 0.982       (1) 

Where y is the BSF tracer concentration (mg L-1), and x is the solution fluorescence intensity (unitless) 

measured with the fluorometer (16.7 < x <4.2×105). 

 

3. Results and Discussion 

3.1. System accuracy  

The mean measured amounts of the simulated pesticide dispensed from the metering pump agreed well with 

the desired amounts across the desired concentrations ranging from 0.1% to 3.0% (table 1). For example, the 

maximum relative error between measured and desired amounts of the simulated pesticide was 6.33% which 

occurred at the 2.0% desired concentration. Similarly, the measured amounts of water discharged to the injection 

line were also very close to the desired amount of 10 L. Consequently, measured concentrations of the spray 

mixture agreed well with the desired concentrations over the range from 0.1% to 3.0% (table 1).  

 

Table 1. Mean measured amounts of simulated pesticide dispensed from the chemical container by the 

metering pump and water discharged from the water tank by the water pump for desired concentrations of 

0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%. Standard deviations for the mean measured amounts are 

presented following the symbol ‘±’. 

Desired 

Concentration 

(%) 

Amount of Simulated 

Pesticide (mL) 
Relative 

error 

(%) 

Amount of Water (L) 
Relative 

error 

(%) 

Actual 

Concentration 

(%) Desired Measured Desired Measured 

0.1 10 9.67±1.15 3.3 10 10.42±0.19 4.2 0.09±0.01 

0.5 50 52.33±0.58 4.66 10 10.57±0.33 5.7 0.50±0.01 

1.0 100 103.33±0.58 3.33 10 10.58±0.15 5.8 0.98±0.02 

1.5 150 152.33±0.58 1.55 10 10.54±0.15 5.4 1.45±0.03 

2.0 200 212.67±0.58 6.33 10 10.49±0.35 4.9 2.03±0.06 

2.5 250 265.33±2.08 6.13 10 10.52±0.11 5.2 2.52±0.01 

3.0 300 318.33±0.58 6.11 10 10.56±0.04 5.6 3.01±0.02 

 

3.2. Mixture uniformity 

Measured BSF concentrations also agreed well with the desired concentrations of 0.5%, 1.0%, 1.5% and 2.0% 

(fig. 3). Variations in the measured concentrations were very small over the 90 s sampling duration (fig. 3a). For 

desired concentrations of 0.5%, 1.0%, 1.5% and 2.0%, the average measured concentrations were 0.48%, 0.99%, 

1.43%, and 1.97% with coefficients of variations of 0.92%, 1.53%, 1.26%, and 1.16%, respectively (fig. 3b). 

Relative errors were 3.89%, 1.22%, 4.70%, and 1.26% between measured and desired concentrations. Thus, these 

tests demonstrated that the in-line injection and mixing system was able to provide consistent mixture uniformity 

ready for the downstream variable flow-rate spray nozzles to discharge.  

The in-line injection and mixing system attached to the variable-rate sprayer was preliminarily tested in a 

nursery field (fig. 4). As expected, the system performed automatic loops of mixing and refilling water and 

chemical concentrates in premixing and buffer tanks when the sprayer discharged variable-rate spray outputs to 

match tree presence, canopy characteristics and travel speeds. Details on validations of the spray system 

performance under laboratory conditions could also be found in previous publications by Zhang et al. (2020b, 

2021). 
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(a) Measured concentrations over time (b) Measured and desired concentrations  

Figure 3. Measured concentrations (%) of the simulated pesticide concentrate in spray mixtures collected 

from the buffer tank for the desired concentrations of 0.5%, 1.0%, 1.5% and 2.0%.  

 

 

 

Figure 4. The in-line injection and mixing system attached to a laser-guided variable-

rate orchard sprayer for field tests. 

4. Conclusions 

Hardware and software of the in-line injection and mixing system were designed and assembled as an 

attachment to a laser-guided variable-rate orchard sprayer. A graphical user interface was integrated into the 

system for operators to manage and view the operation process on the touch screen.  

Following functions could be achieved with this newly designed in-line injection and mixing system: detecting 

individual components separately before spray operations to ensure they were functional; setting mixture 

concentrations with step increase or decrease of 0.1% in real-time; using the virtual level gauge to indicate liquid 

levels in the chemical container, water tank, premixing tank, and buffer tank, to help operators monitor the system 

operation process; using the protection sensors to prevent premixing and buffer tanks from overflow; rinsing 

premixing and buffer tanks, chemical lines automatically after spray applications.  

Laboratory experiments illustrated that the simulated pesticide and water could be accurately dispensed into 

the injection line according to the concentration inputs and could be well mixed in the buffer tank. For spray 

mixtures containing 0.5 to 2.0% simulated pesticide, the in-line injection and mixing system provided consistent 

mixture uniformity, and relative errors between measured and desired concentrations were below 4.7%, and 

coefficients of variations were below 1.53%. 

Future investigations will include comprehensive validations of the accuracy, repeatability and reliability of 

the laser-guided variable-rate sprayer equipped with the in-line injection and mixing system to apply chemical 
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concentrates with different physical properties and solubilities under field conditions. 
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Abstract 

Electrostatic technology based is an advancement that, despite having been studied decades ago, has 

not yet been widely incorporated in terms of agriculture spray applications. Regarding Pesticide Application 

Equipment (PAEs), particularly focusing on small knapsack sprayers, it should not be dismissed that their 

utilization remains high in many countries. However, the lack of regulation and control of these sprayers 

makes it difficult to track their acquisition and usage. Therefore, pesticide application research and 

improvement efforts must encompass this category of PAEs. 

The objective of this study was to conduct a preliminary evaluation of an electrostatic knapsack sprayer 

prototype designed to operate at 1 kV and equipped with a hydraulic nozzle that provides a range of droplet 

size values of Dv50 from 136 µm to 386 µm in the pressure range between 2 and 6 bar. In this sense, two 

sprayer configurations associated with connected or disconnected electrostatic system (ES or NES, 

respectively) were tested. Horizontal and vertical liquid distribution, as well as qualitative evaluation of 

deposition using water-sensitive papers, were carried out under laboratory conditions. Results showed no 

differences between ES and NES in terms of flow rate (L min-1) provided by the nozzle at any pressure. 

The total accumulated volume when evaluating the vertical distribution profile with NES was higher than 

with ES and this difference decreased at greater distances of application. However, percentage values of 

coverage, both on the side facing the nozzle and on the opposite side, were significantly higher when using 

ES, with increments of up to 20 % compared to NES in some cases. The results obtained suggest that this 

technology could be a feasible option for enhancing treatment efficacy and integrating it into this type of 

equipment. Therefore, further experiments in terms of quantitative deposition and crop trials will be 

conducted to support these findings. 

Keywords: Crop protection, charged droplets, pesticide, coverage. 

1. Introduction 

The continuous advancement of technology has been enhancing plant protection product application 

equipment for decades, allowing for a wide range of machinery that can adapt to the diverse types of crops 

and planting frameworks seen today. This is particularly evident with intensive crops, specifically those 

where the product is applied to a three-dimensional. In such cases, it is crucial to emphasize the amount of 

product that reaches the vegetation to minimize losses due to drift, runoff, or the product falling to the 

ground before reaching the crop due to gravity (Doruchowski et al., 2009; Gil et al., 2007; Llorens et al., 

2010; Salcedo et al., 2020). 

Advancements made have enabled precise adjustments in the amount of product needed, based on 

various factors such as the forward speed of the equipment and the characteristics of the vegetation. To 

further optimize spraying, electrostatic technology can be applied; this exposes the droplets at the nozzle 

outlet to an electric field, typically charging them negatively. As the droplets approach the crop, they are 

attracted to the positively charged leaves (Law, 2001). This technology has been applied in various 

industries such as disinfection, painting, etc. (Appah et al., 2019). Although some manufacturers have 

included this technology in large-scale agricultural sprayers, there are few studies or commercialized 

knapsack sprayers, similar to traditional ones, that incorporate this technology in a compact and easy to use 

manner. Actually, this category of PAEs, whose acquisition tracking is difficult due to the lack of purchase 

control or inspection, are still used today, both in greenhouse plantations (Li et al., 2018), where the 

difficulty of accessing crop rows makes operator applied spraying the norm, and also in larger plantations, 

such as vineyards, where some spot applications are still carried out using handheld sprayers. 

One of the concepts referenced in the study of spray performance or efficiency when discussing this 

technology is the Charge-to-Mass Ratio (CMR), associated with the charge generated on the droplets at the 
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nozzle outlet. This parameter, expressed in mC kg⁻¹, has been evaluated in relation to other application 

parameters considered influential on the effectiveness of electrostatic technology. Some studies have shown 

that the CMR is affected by factors such as droplet size (Pascuzzi and Cerruto, 2015); application distance 

(Patel et al., 2017; Zhao et al., 2008); intrinsic characteristics of the electrode, such as its geometry (Mamidi 

et al., 2013; Patel et al., 2016), material (Patel et al., 2013); applied voltage (Laryea and No, 2003), and 

even the viscosity or nature of the sprayed product (Maski and Durairaj, 2010).  

Some authors have defined certain CMR values where efficient spraying with electrostatic technology 

has been observed, such as the pneumatic nozzle evaluated in the study by Pascuzzi & Cerruto, where CMR 

values of 10 mC kg-1 resulted in significant higher coverage for small droplets provided by a pneumatic 

nozzle (Pascuzzi and Cerruto, 2015). However, there is still work to be done, overall when studying 

equipment equipped with hydraulic nozzles, where the efficiency of coverage associated with charging the 

droplets and the CMR values associated with larger droplet sizes have not been thoroughly evaluated. 

In this context, the present work aims to conduct a preliminary analysis of an electrostatic backpack 

sprayer equipped with a hydraulic nozzle, with the objective of evaluating its performance in terms of 

coverage. This includes preliminary analyses of droplet size characterization, spray distribution, and charge 

analysis of the droplets at the nozzle exit. 

2. Materials and Methods  

2.1. Spray Application Equipment 

The knapsack sprayer (Tecnostatic, Zaragoza, Spain) is a commercial electric unit equipped with a 12V 

diaphragm pump and a pressure regulator fitted on the lance that allows adjusting the flow rate through the 

nozzle between 2 bar and 6 bar of pressure. Additionally, the equipment includes a charge induction system 

in the nozzle, operating at a voltage of 1 kV, which is controlled by a switch located next to the pressure 

regulator. 

2.2. Nozzle characterisation 

2.2.1.  Droplet size and liquid distribution 

To understand the nature of the spray, droplet size characterization tests were conducted for each 

combination of pressure (2 bar, 4 bar, and 6 bar) and electrostatic system configuration (connected 'ES' or 

disconnected 'NES'). The droplet size distribution was determined using the Insitec® T laser diffraction 

system (Malvern Panalytical, United Kingdom). From the cumulative volume function, the percentiles 

Dv10, Dv50, and Dv90 were obtained. Thus, 50% of the atomized liquid is contained in droplets smaller 

than Dv50, representing the median droplet size. Additionally, Dv10 and Dv90 provide a measure of the 

distribution width, described by the value of “relative span” or Span. According to Amaya and Bayat 

(2023), this dimensionless number is given by Eq (1), and indicates whether the distribution spread is 

narrow or wide. 

 
𝑆𝑝𝑎𝑛 =  

𝐷𝑣90 − 𝐷𝑣10

𝐷𝑣50

 
(1) 

The nozzle flow rate was determined for all pressure settings following the methodology described in 

ISO 5682-2:1997 (ISO, 1997). Finally, product distribution tests were conducted to obtain both the 

horizontal spray pattern and the vertical distribution profile, as well as to evaluate the effect of the 

electrostatic system on these parameters. 

The horizontal distribution profile was evaluated at 50 cm for all pressure settings provided by the 

device (from 1 bar to 6 bar, in 1 bar increments) and for the two electrostatic system configurations (ES or 

NES). The vertical profile was assessed by positioning the sprayer lance facing a vertical patternator 

(AAMS-Salvarani, Maldegem, Belgium), which collected the amount of product every 20 cm in height. 

The sprayer was placed at distances of 20 cm, 35 cm, 50 cm, and 65 cm. This profile was obtained for both 

electrostatic system configurations (ES and NES) and for 5 working pressures (2 bar, 3 bar, 4 bar, 5 bar, 

and 6 bar). 
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2.2.2. Droplet size Charge-to-mass ratio (CMR) 

The CMR has traditionally been measured using a Faraday cage system, described in several 

methodologies (Law and Cooper, 1987; Marchant and Green, 1982). However, in this case, small current 

values did not allow to measure the charge at a great distance from the outlet. For this reason, accurate 

measurements were recorded by employing a metal conical device that encompassed the entire nozzle outlet 

flow and that was connected to a digital multimeter, which measured the current (µA) for each working 

pressure, i.e., based on the flow rate provided by the nozzle. Considering the flow rate data in L min⁻¹ and 

amperage in C s-1, the CMR value (mC kg⁻¹) was obtained for each configuration. 

2.3. Coverage trials 

A qualitative study of deposition was conducted by analysing the coverage percentage for each 

combination of equipment working conditions: 2 electrostatic system configurations (ES or NES), 3 

working pressures (2 bar, 4 bar, and 6 bar), and 3 application distances (20 cm, 35 cm, and 50 cm). For this 

purpose, water sensitive papers measuring 26 x 76 mm were placed along a vertical post, with 9 water 

sensitive papers at known heights located at both the side facing the spray (side A) and the 

underside/opposite side to the lance (side B), as detailed in Figure 1.  

 

Figure 1. Knapsack sprayer setting with respect to the vertical post (left) and water sensitive locations on 

the side A of the post (right). 

The vertical post was placed on a device mounted on 2 rails that allowed the movement in the plane 

perpendicular to the lance at a speed of 0.20 m s⁻¹, ensuring identical working conditions between 

repetitions. Three repetitions were performed for each factor configuration, resulting in a matrix of 972 

coverage data points. Water sensitive papers were processed using ImageJ software. The results were 

statistically analysed using IBM SPSS Statisticsv.26 software package (IBM Corp., Armonk, NY, USA), 

to establish differences in coverage percentage associated with pressure (droplet size), distance, or 

application height. 

3. Results and Discussion 

3.1. Nozzle Characterisation 

The nominal flow rate of the nozzle ranged from 0.32 L min⁻¹ at the lowest pressure (2 bar) to 0.50 L 

min⁻¹ at the highest pressure (6 bar). On the other hand, no significant effect of the electrostatic system 

connection on droplet size was observed at any of the studied pressures, so the values presented below are 

relative to the electrostatic system being connected. At 2 bar pressure, a Dv50 of 386 µm was obtained, 

indicating a spray of coarse droplets with a relative span of 1.66. As the pressure increased, the droplet size 

decreased, as expected in pressure spraying equipment, with a Dv50 value of 173 µm at 4 bar pressure, and 

a span of 1.74. Finally, the finest droplet size was observed at 6 bar pressure, with a Dv50 value of 136 µm 
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and a span of 2.02. 

The horizontal distribution profile, obtained by facing the nozzle toward a horizontal test bench that 

collected the sprayed liquid volume in 5 cm segments, showed a pattern associated with a hollow cone 

nozzle type. Additionally, no significant differences were observed in the total collected volume (p<0.05) 

based on the ES or NES configuration. 

Regarding the vertical distribution profile, in all configurations, the total accumulated volume was 

higher in the NES configuration compared to the ES configuration, but this difference was not significant 

(p>0.05) and decreased at greater application distances. This could possibly be due to the presence of a 

slight backflow of charged droplets attracted to the spray lance itself. Furthermore, beyond an application 

distance of 30 cm, the recovered volume decreased for all studied pressures (p<0.001). Regarding the liquid 

distribution by height, it was observed that turning off the electrostatic system resulted in a drop of droplets 

to the lower heights of the patternator, highlighting the attraction force of the structure itself on droplet 

distribution in the ES configuration. 

Figure 2 shows how the droplet size, represented through the Dv50 parameter, decreased as the working 

pressure increased. Furthermore, same Figure also shows the droplet charge variation at each pressure 

configuration, represented by the Charge-to-Mass Ratio (CMR). An inverse relationship between these two 

variables was observed, with results that align with those of other authors who evaluated the influence of 

these parameters on deposition in electrostatic pesticide application (Patel et al., 2017; Zhao et al., 2008). 

 

Figure 2. Dv50 values (in µm, blue line) and CMR (in mC kg-1, red line) as a function of pressure (bar). 

CMR was found to range from 0.03 mC kg⁻¹ to 0.38 mC kg⁻¹. It increased exponentially as the droplet 

size decreased, up to 4 bar pressure, where the curve began to flatten, reaching its maximum at 5 bar and 

remaining constant at 6 bar despite the continued decrease in droplet size. 

3.2. Coverage  

Coverage results from water sensitive papers analysis for each configuration, pressure, distance, and 

height are shown in Figure 3. 

A clear effect of the electrostatic system effectiveness on the covered surface was observed. With the 

system disconnected, the product did not reach the underside of the post in any case. Furthermore, there 

was an effect of application distance and working pressure on the percentage of coverage. At closer 

distances (20 and 35 cm), the percentage of coverage on the underside reached up to 60% for those located 

at heights associated with the surroundings of the lance position. Focusing on the effect of working pressure 

on the percentage of coverage, the electrostatic effect was hardly noticeable at the lowest pressure (2 bar); 

on average, the percentage of the covered surface increased by only 1% when the electrostatic system was 

switched on. However, it increased considerably with higher pressure, reaching a maximum of 22% at a 

distance of 35 cm and a pressure of 6 bar.  
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Figure 3. Coverage results (%) obtained in laboratory at 3 distances (20 cm, 35 cm and 50 cm), 3 

pressures (2 bar, 4 bar and 5 bar) and 2 electrostatic configurations (connected, ES vs. disconnected, 

NES). 

The highest values were observed on side B at distances of 20 cm and 35 cm when operating at 6 bar. 

However, at a distance of 50 cm, the highest coverage values on side B were recorded at 4 bar rather than 

the highest pressure. These results align with those obtained in the vertical distribution profile, where, at a 

distance of 50 cm and ES configuration, the accumulated volume was higher at 4 bar than at 6 bar. This 

suggests that Dv50 values lower than 170 µm could result in excessive dispersion of the small charged 
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droplets, potentially leading to difficulties in reaching the underside of leaves due to adhesion to other 

regions before reaching the crop.  

These results partially agree with those obtained by some authors, such as Laryea and No (2003), who 

achieved a considerable improvement in deposition using a hydraulic nozzle with similar droplet sizes and 

a charge-to-mass ratio of 0.27 mC kg-1. However, it should be noted that they applied a voltage of 4.0 kV, 

which is considerably higher than that evaluated in the present study, and they also used air assistance in 

their equipment. Similarly, more recent studies have reported higher deposition values on both the adaxial 

and abaxial surfaces of leaves when applying a charge to the droplet distribution (Gan-Mor et al., 2014; 

Maski and Durairaj, 2010; Sánchez-Hermosilla et al., 2022). It should be considered that the reviewed 

literature provides a more comprehensive analysis of the application of electrostatic technology in air-

assisted or pneumatic equipment, which generates small droplets and higher CMR values.  

4. Conclusions 

Electrostatic technology, implemented in an electric knapsack sprayer equipped with a hydraulic nozzle 

was tested in laboratory conditions in terms of flow rate, droplet size, distribution profiles, charge-to-mass 

ratio, and qualitative assessment of coverage. Based on these initial findings, it can be concluded that this 

technology offers a viable solution for basic handheld applications without air assistance, demonstrating a 

significant enhancement in coverage compared to conventional methods, particularly on the underside of 

treated areas. Consequently, its integration could be contemplated in a wider range of equipment, such as 

hydraulic boom sprayers, commonly used in extensive crops. 

Further experimentation is necessary, particularly focusing on quantitative deposition, encompassing 

both controlled laboratory settings and real crop applications. This will enable a comprehensive evaluation 

of the technology's ability to penetrate the canopy effectively and optimize its performance in practical 

agricultural scenarios. 
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Abstract 

Air-assisted recycling tunnel sprayers for trellised vineyard’s PPP applications incorporate panels, 

enabling the recovery of the majority of the sprayed liquid fraction that remains unretained by the leaves 

during the process. In this study, a new tunnel sprayer has been developed with an automatic variable-rate 

application (VRA) control unit. This system is able to execute previously generated prescription maps 

based on remote sensors (such as satellites) and Decision Support System for vineyards (Dosaviña®). 

Furthermore, there is also the option to include ultrasonic sensors to identify canopy size, increasing the 

accuracy of the application rate. Currently, regardless of the VRA spray mode selected, a third option is 

being considered to adapt the separation between recovery panels depending on the width of the vine 

canopies along the row. To verify the operability of the prototype, numerous tests were done concerning 

the effect of air, the capacity to recover the flow from the panels and the losses to the ground. First, the 

effect on air stream patterns between panels was studied. The air velocities at different positions were 

recorded between panels. Then, the flow rate recovery capacity was checked, for different distances 

between panels and air flow rates, including the presence of canopies. These tests were carried out under 

laboratory conditions and with the sprayer in static mode. The last part was performed in an experimental 

vineyard plot. The operating capacity of the ultrasonic sensors to carry out a variable application was 

assessed, as well as the effectiveness of the panel design to reduce losses to the ground. The tests were 

conducted using Petri dishes as collectors to evaluate both direct losses under the canopies and ground 

deposits outside the plot. The prototype was compared with a conventional multi-row sprayer without 

panels. The tests demonstrated the ability to adapt the application rate, reducing losses outside the 

plantation, although more tests are still necessary. 

Keywords: Precision application, Recovery panels, Airflow analysis, Adaptive control, Ultrasonic sensors. 

1. Introduction 

The application of Plant Protection Products (PPP) remains one of the major challenges in agriculture, 

particularly in the cultivation of 3D crops, such as fruit orchards and vineyards. In the context of 

viticulture, this issue is of significant importance within the European Union, which stands as the world's 

largest producer of grapes and wine (EPRS, 2023). Given the socioeconomic relevance, farmers are highly 

motivated to ensure that the final product reaches consumers with the highest possible quality, maintaining 

productivity levels without the presence of agrochemical residues. Consequently, Variable-Rate 

Application (VRA) systems are gaining increasing interest among growers (Gil et al., 2023). 

VRA sprayers involves variably applying the amount of product needed for each area of the target 

plantation based on its vegetative characteristics, primarily the size and density of the foliage. This method 

optimizes the amount of PPP used, maintaining efficacy against pests and diseases, while reducing losses 

and saving resources. Currently, there are two main ways to work with a VRA system: using onboard 

proximal sensors that characterize canopy structure in real-time (Salas et al., 2024), or through prescription 

maps generated from aerial images collected by drones and/or satellites (Garcia-Ruiz et al., 2023). In these 

cases, Decision Support Systems (DSS), such as Dosaviña® for vineyards (Gil et al., 2019), based in the 

Leaf Wall Area (LWA) method, help refine these prescription maps. The first method can be much more 

precise, whereas the second tends to be less expensive with reasonable field resolution. 

To encourage farmers to adopt these technologies sooner (Warneke et al., 2021), VRA systems are 

being developed that can be integrated into existing commercial sprayers (Salcedo et al., 2020). In the case 

of viticulture, it would be beneficial to integrate an intelligent device into a multi-row sprayer with 

recovery panels. These sprayers can operate on two rows simultaneously and have a hydraulic circuit that 
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recovers the sprayed liquid that does not deposit on the leaves, theoretically reducing losses even further 

compared to a conventional sprayer. By incorporating VRA technology, this application could become 

even more efficient. In this regard, the SENSORECUFIT-F2 (AEI-010500-2022b-213) Spanish project, 

funded by the Spanish Ministry of Science, is currently investigating this by means of a vineyard sprayer. 

The obvious first step is to assess the properties of the recycling tunnel spraying system in order to 

understand the influence of the design on the spray application quality. In this regard, the objective of this 

research work was to characterize the sprayer's performance in terms of fan currents and flow rate recovery, 

as well as to evaluate its capacity to detect vegetation and reduce ground losses during an application using 

ultrasonic sensors. 

2. Materials and Methods  

2.1. Spray mode  

The VRA system was integrated into a multi-row sprayer SH-R1000-1A Saher (Saher, Barcelona, 

Spain) with recovery panels. This sprayer was designed to treat two rows of vines simultaneously (Figure 

1). It was equipped with side panels that capture and recover the sprayed liquid that does not adhere to the 

leaves or grapes, reducing liquid losses and increasing application efficiency. There were four side panels, 

grouped in pairs of two on each side of the sprayer. The sprayer featured a pneumatic circuit with five 

pistons to deploy the panels (upwards, downwards, and to open between themselves). Each panel had an 

internal vertical downpipe through which the nozzles and air stream were distributed. Each downpipe 

presented six nozzles spaced 20 cm apart. The air was generated by a dual intake turbine with two-speed 

positions at the gearbox. The arrangement of the downpipes on opposite ended of each panel pair, with the 

downpipe on the panel adjacent to the sprayer placed at the farthest end from the tractor, and the reverse 

configuration for the other panel. This design pretended to maximize the efficiency in the application by 

forming an air circulation pattern to promote a recirculation around the canopy. These panels were foldable 

for easy transport and storage. 

  

Figure 1. General schematic view of the experimental tunnel sprayer (left) and use of recovery panels during a spray 

application (right). 

 

The sprayer included a hydraulic system to regulate pressure and spray volume, as well as advanced 

technology such as sensors and electronic controllers to optimize the use of PPP. This sprayer managed the 

application rate by regulating the working pressure through a WAATIC electronic controller (Waatic S.L., 

Barcelona, Spain), which was connected to an integrated GNSS receiver and an automatic section 

controller. Originally, this VRA sprayer was designed to operate based on maps obtained via UAV or 

satellites. However, it also offered the option to spray in real-time, incorporating 10 ultrasonic sensors, 5 on 

each side of the sprayer, aligned vertically on the same metal structure and spaced 20 cm apart for optimal 

canopy characterization. The unit control was capable of operating in both VRA modes. In the case of the 

ultrasonic sensors, it was continuously monitoring the measurements collected. The data from the 

ultrasonic sensors was converted into vegetation volume using the Tree Row Volume (TRV) method, 

which, through a conversion factor (Gil and Escolà, 2009), was transformed into application rate (L ha-1). 

For the case of using maps, the external support of the Dosaviña® DSS could be utilized to determine the 

spray volume for each different level of vigour. 
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2.2. Experimental site 

The experimental layouts were performed at the facilities of the Agropolis center, which belongs to the 

Polytechnic University of Catalonia (UPC). This is place where the Agricultural Mechanization research 

team has a laboratory and an experimental vineyard plot. It is located in Viladecans in Barcelona (Spain). 

2.3. Characterization trials under lab conditions 

2.3.1. Air behaviour  

The airflow rates from the downpipes were measured. For this, a hot-wire anemometer (Handle model; 

Testo, S.A., Barcelona, Spain) was placed at the centre of each air outlet opening of all the downpipes of 

the sprayer. The anemometer was oriented following the direction of the main current. Data was recorded 

at every individual outlet, until the values stabilized within a defined range. Air velocities were obtained for 

each of the four panels, by combining the two fan speeds, with the PTO at 480 rev min-1, as recommended 

by the sprayer’s manufacturer. There were two replications per measurement. The flow rate was calculated 

based on the area through which the air exited to the exterior. 

Additionally, a 3D ultrasonic anemometer (3D WindMaster 1590-PK-020 model; Gill Instruments Ltd., 

Hampshire, United Kingdom) was used to acquire the instantaneous air flow velocities in the three spatial 

directions between the panels. The velocities were measured on one side of the machine, with the sprayer in 

a stationary position. The two fan speeds were tested again. Air velocities were recorded in three different 

planes, subdivided into six heights and two depths, inspired on the methodology exposed by Salcedo et al. 

(2021). For each point, velocities were recorded for 60 s at a frequency of 10 Hz. 

2.3.2. Flow rate recovery 

The capacity of the sprayer's hydraulic system to recover the flow rate emitted by the nozzles between 

two panels was estimated. On the left side of the machine, the flow rate returning to the tank from the 

recovery panels was measured using a precision scale. The hose from the left side pump to the tank was 

redirected to an individual container, which was filled for 60 s and then weighed to determine the flow rate 

(L min-1). Four scenarios were tested: 1) panels completely closed; 2) panels separated by 60 cm; 3) panels 

separated by 100 cm with an artificial vine in the middle with a width of 40 cm; 4) and panels separated by 

140 cm with two artificial canopies together in the middle of 40 cm-width each. 

The tests were conducted supposing a theoretical application rate of 250 L ha-1, assuming a width of 2.8 

m and a forward speed of 5.5 km h-1, which are typical values in the Penedés area (Barcelona, Spain). The 

corresponding operating pressure was 550 kPa, and 24 nozzles (6 per downpipe) were used, according to 

the recommendation provided by Dosaviña®. The nozzles were hollow cone TR-01 nozzles (Lechler 

GmbH, Metzingen, Germany). The test was conducted in a static setup of the sprayer. The panels were 

positioned 40 cm above the ground, and only water was used. For each test, both fan speed positions, as in 

the air assays, were combined. The same side than the air velocities test was selected. 

2.4. Ground losses during a field application 

The prototype was compared in field conditions with a conventional constant-rate IRIS multi-row 

sprayer (Ilemo-Hardi, SAU, Lleida, Spain), with the VRA spray mode disconnected. It was intended to 

evaluate the panels design to reduce ground losses. For the reference spray system, it was capable to treat 

two rows at the same time too, with four vertical booms also and six nozzles per downpipe. Half of the plot 

was treated with the conventional sprayer, while the other part was sprayed with the prototype. The forward 

speed was 5.5 km h-1 and the spacing rows was 3.0 m. According to the characteristics of the canopies, Best 

Management Practices (BMP) were applied, and only three TR-015 hollow cone nozzles per downpipe 

were used on each sprayer. The theoretical application rate was 200 L ha-1 for both sprayers, recommended 

by Dosaviña®, and operating at a spray pressure of 700 kPa. On both sprayers the low gear of the fan 

gearbox was chosen considering the BMP. Although the prototype was working with a constant application 

rate, the ultrasonic sensors were operating monitoring the dimensions of the canopies in real time. The 

prototype was operating with a constant application rate, the ultrasonic sensors were monitoring the 

dimensions of the canopy in real-time, monitoring the changes with a resolution at 10 L ha-1 application 

rate estimated intervals. The idea was to determine if they were capable of identifying vegetative 
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differences within the plot and if they estimated application rates similar to those estimated with the DSS 

Dosaviña®. 

Each of the two treated halves was further divided into two sides (right and left). On each side, in the 

central zone of the vine rows, there were four rows of Petri dishes used as collectors to sample the losses to 

the ground. Each row was spaced 1.0 m apart. Within each row, there were eight Petri dishes. Four of these 

were positioned directly beneath the canopies, corresponding to the four outermost rows of vines on each 

side of the plot. The other four dishes were placed at distances of 2.5, 3.5, 5.5, and 9.5 m from the last vines 

row. The tracer used was Tartrazine at a theoretical concentration of 3 g L-1. Meteorological data were 

monitored with a portable weather station (Campbell Scientific Inc., Logan, UT) that included a 2D sonic 

anemometer and a digital temperature and relative humidity sensor. Wind speeds never exceeded 3.0 m s-1, 

in accordance with Spanish regulations for PPP applications (BOE, 2012). 

3. Results 

3.1. Airflow behaviour 

Variations in the air velocity vectors between panels were found for the two positions of the fan 

gearbox, showcasing shifts in both direction and magnitude. Particularly noticeable was the increasingly 

erratic behaviour observed as the height above ground level increased. This variability manifested in 

vectors diverging in opposite directions, indicative of complex airflow patterns. The observed changes in 

air direction pointed out the formation of air vortices between panels. The higher the fan speed, the more 

evident this phenomenon was. Moreover, notable disparities in airflow rates were observed between the use 

of short and long gear settings, underscoring again the impact of fan gearbox speed on these critical 

parameters. 

3.2. Liquid recovery 

Recovery capacity of sprayed liquid varied from 100% with the panels closed to approximately 18% 

when the panels were further apart, with the vegetation in the middle, for both fan speeds. For the 

separation of 60 and 100 cm, respectively, there was a noticeable difference between short and high-speed 

position. Generally, the low fan speed showed higher water recovery. The combination of distance and 

additional fan speed decreased liquid recovery compared to simpler conditions (panels closed). The bigger 

the fan speed, the less effective the recovery capacity. The higher fan speeds and complex airflow patterns 

between panels, including vortices, could be affecting the efficiency of liquid recovery 

3.3. Ground losses 

The results of losses to the ground were disparate. On the one hand, in terms of direct losses to the 

ground within the plot, the conventional sprayer produced fewer losses than the prototype. The mean 

ground deposition was 2.5 μg cm-2 with the prototype, while with the reference application it was 3.2 μg 

cm-2. This increase could be explained by the design of the panels, which concentrates the air currents in 

the form of an eddy. It could favour the sprayed droplets to precipitate in greater amounts to the ground. On 

the other hand, the Hardi sprayer applied from a single downpipe and the droplets could travel beyond the 

canopy, without the presence of the wide panel. In fact, the collectors outside the plot exposed lower losses 

with the prototype, with a mean deposition of 0.05 μg cm-2, compared to the reference sprayer, with a mean 

deposition close to 0.3 μg cm-2. It was probably due to the effect of the panels on the air, although there 

could be other reasons such as the spray profile of the nozzles. 

Additionally, the ultrasonic sensors were able to detect differences in canopy dimensions. However, the 

recommended average application volumes were lower than those estimated by Dosaviña (20-55 L ha-1). 

The explanation likely lies in the calculation algorithm used by the control unit. Therefore, it is necessary to 

review the agronomic parameters used by the intelligent system, as such a low application rate would not 

be viable. 
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4. Conclusions 

The fan settings influenced on the air stream between panels, generating even vortices, and probably 

diminishing the recovery flow rate capacity. The better recovery values were achieved with low fan speeds, 

but at certain distance and/or dimensions of the canopy this effect is neglected. Increased separation and 

higher fan speeds reduce recovery rates with more intensity. During a field application, the prototype 

sprayer leads to higher ground losses within the plot, maybe due to concentrated eddy currents. However, it 

performs better in reducing losses outside the plot compared to the conventional sprayer. Finally, the 

sensors were able to characterize the vegetation but the proposed application rates showed that it is 

necessary to continue adjusting the prototype algorithms. This work highlights the importance of 

characterizing the effect of air fan on the VRA sprayers, as well as continuing to further investigate this 

prototype. 
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Abstract 

Addressing the challenge of replacing airplane and helicopter Plant protection products (PPPs) spraying 

characterized by distribution inaccuracies, product overdoses, and losses, Unmanned Aerial Spraying 

Systems (UASSs) emerge as a transformative solution with unique capabilities such as navigating complex 

terrains and executing low-altitude flights. This study explores the impact of UASS flight height, speed, and 

position on vineyard spraying coverage, canopy penetration, and off-target dispersion employing Water 

Sensitive Papers and a MATLAB image analysis script. The investigation revealed the optimal performance 

of the UASS operating at a 2 m height while flying over the inter-row (IR), minimizing off-target and ground 

dispersion. The IR flight configuration with strategically positioned nozzles above the canopy facilitated 

canopy penetration, reaching lower sections, and reducing off-target dispersion. The performance exhibited 

sensitivity to changes in flight speed, where faster rotation aided canopy opening and droplet penetration. 

The positive relationship between higher speed and improved efficiency underscores the significance of 

speed optimization in achieving optimal flight outcomes. The positioning of the flight significantly impacted 

the deposition of droplets on the target, off-target, and ground, leading to an increased coverage area in over-

row (OR) treatments with higher flight heights. In IR treatments, a lower flight height was associated with 

reduced product dispersion, resulting in greater coverage area and penetration rate. Flight position and speed 

correlate closely, as higher speed and propeller rotation induce increased downward flow. OR treatments 

exhibit heightened influence in lower positions, facilitating ground and side-row waste. The droplet analysis 

method presented in this study showed potential in refining UASS spraying strategies in vineyards and open 

to further research to comprehensively assess the aerial PPP distribution effectiveness and environmental 

impact in agriculture. These investigations are crucial for the responsible implementation of this technology, 

particularly in regions where aerial treatments lack regulatory approval. 

 

Keywords: Unmanned Aerial System spraying, Aerial spraying, PPP, Precision Viticulture, WSP analysis.   

1. Introduction 

With the escalating global demand for food and the significant impact of biotic factors on annual yield 

losses (FAO 2017), plant protection products (PPP) persist in safeguarding crops from insects, pests, and 

fungi (Lykogianni et al. 2021). PPP distribution is a high-risk operation, resulting in residues in food, water 

bodies, and non-target organisms, which poses substantial risks with profound implications for consumer 

safety and the environment (Akpan et al. 2023). Commonly distributed through spraying systems 

implemented on board of terrestrial vehicles, PPP application is a challenging operation in terms of time, 

labour, and health risks for operators. As farmers predominantly favour traditional ground spraying methods, 

evaluating application efficiency becomes crucial to minimize human and environmental hazards (V. 

Dhananjayan et al. 2020; Kestur et al. 2020).  

Airplane and helicopter aerial spraying are considered an economical and fast method for PPP spraying, 

prone to poor distribution accuracy (Quantick 1979), high product overdose and losses, and not suitable for 

small-scale farms requiring large areas for take-off and landing (Baio et al. 2019). Addressing these concerns 

has stimulated policy initiatives, legislative regulations, and a growing demand for environmentally friendly 

management methods, leading the European Parliament to prohibit aerial PPP distribution in Union countries 
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(European Parliament 2009) except in specific limited situations where conventional operations are not 

feasible.  

In recent years, multi-rotor Unmanned Aerial Spraying Systems (UASSs) have gained attention due to 

their ability to follow complex patterns, fly at low altitudes, adapt to hilly terrain, take off and land vertically, 

perform low-volume and site-specific PPP applications, limit operator’s health risks with a low operational 

cost, preserving the crops and soil’s structure form physical damage (Qin et al. 2016). Pump pressure, flight 

height and speed, payload capacity, weather conditions, flight range, and environmental dispersion (drift 

effect and ground leaking) are the aspects to consider that may affect the treatment’s results (H. Chen et al. 

2021).   

Vineyards, exposed to several recurring diseases at certain times of the year and in specific climatic 

conditions and growth phases, require timely and successful treatments (Pertot et al. 2017). Despite being a 

viable alternative to conventional application methods, the application of UASS in vineyards is not yet well 

investigated. As a relatively new technology, evaluating their effectiveness and spraying configuration is 

essential to understand when and how to implement UASS in agricultural PPP distribution scenarios and to 

compare them to terrestrial machinery performances.  

The initial hypothesis of the manuscript suggests that UASS can effectively and safely perform PPP 

spraying on the rows of a vineyard, given the appropriate environmental conditions and flight settings. 

Specifically, this research aims to verify and characterize the uniformity and dispersion of UASS distribution 

by testing different combinations of flight parameters over a vineyard. The spraying performance, assessed 

with Water Sensitive Papers (WSPs) placed inside the canopy and on the ground along the inter-row, was 

obtained using a MATLAB code, able to extrapolate WSPs’ covered area on target and off-target rows and 

the penetration rate through the canopy. 

2. Materials and Methods  

2.1. Study area 

The experimental field was a Savatiano variety (Vitis Vinifera L.) 480 m2 vineyard located in Spata, 

Greece (228285.983 East – 4208689.259 North; WGS84 – UTM 35 N, EPSG: 32635) at 123 m above the 

sea level, 20 km East from Athens. The grapevines, planted with a 1.5 m × 2 m spacing with an NW-SE 

rows’ orientation, were trained as Vertical Shoot Position (VSP). The survey area was a small flat plot far 

from the field borders of the experimental vineyard owned by the Agricultural University of Athens. 

Experiments took place on 21, 22, 28 June, and 13 July 2022 (BBCH 77). The weather conditions faced 

during the experiments were optimal for UASS operations: sunny days, clear sky, and wind absence. 

2.2. UASS platform  

The UASS Agras T16 (DJI Technology Co., Ltd, Shenzhen, China) was used for the trials. Equipped with 

a spraying system with a 16 L thank, eight nozzles (XR11001VS, Teejet Technologies, Glendale Heights, 

Illinois, USA), an RTK navigation system, a DBF imaging Radar, and FPV camera, the Agras T16 weights 

18.5 kg excluding the battery and an empty thank, with a hovering time varying from 18 minutes to 10 

minutes depending on the take-off weight, the wind speed, and the flight’s settings. The air-injection flat fan 

nozzles were chosen to perform water spray distribution over the rows, because of their better deposition 

performance, uniformity, and reduced drift than hollow cone ones (C. Wang et al. 2021). 

2.3. Experimental design 

The experiment employed a factorial design involving flight height Above Ground Level (AGL) (H), 

flying speed (S), and the UASS over-row (OR) and inter-row (IR) overflight positions with two levels per 

factor, for a total of eight treatments repeated three times. The UASS flew OR and IR at 2 m and 2.5 m AGL 

at 1 m s-1 and 1.5 m s-1 (Table 1).  The OR treatments’ target was the row the UASS was flying over, with 

the two adjacent rows used to evaluate the off-target dispersion, for a total of three rows. Instead, the IR 

flights had as target the two rows surrounding the inter-row area overflown by the UASS, with the two 

external rows used to evaluate the off-target dispersion, for a total of four rows. Figure 1 reports the two 

flying paths with the sampling points’ position consisting of WSPs (7.6 cm x 2.6 cm; 19.86 cm2, Syngenta 
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Crop Protection AG, Basel, Switzerland) located along three deposition lines spaced 20 m from each other 

to collect droplets. Test area boundaries were marked visibly in the field using a red tape. A 20 m preparation 

zone was defined to allow the UASS to reach the aimed speed and pump distribution pressure before entering 

the test zone. 

 

Figure 1. A graphical representation obtained using the SVG software Inkscape 1.2.2. (Software Freedom 

Conservancy) of OR (left) and IR (right) treatments seen from above. 

Table 1. The eight treatments included in the experiment and the respective factors’ values. 

Treatment Factors Values 

A H1-S1-OR 2.5 m -1 m s-1 - over row 

B H1-S2-OR 2.5 m - 1.5 m s-1 - over row 

C H2-S1-OR 2.0 m -1 m s-1 - over row 

D H2-S2-OR 2.0 m - 1.5 m s-1 - over row 

E H1-S1-IR 2.5 m -1 m s-1 - inter row 

F H1-S2-IR 2.5 m - 1.5 m s-1 - inter row 

G H2-S1-IR 2.0 m -1 m s-1 - inter row 

H H2-S2-IR 2.0 m - 1.5 m s-1 - inter row 

For each row’s sampling point three WSPs were hooked to the trellis at 0.3 m, 0.6 m, and 1 m AGL to 

measure the PPP penetration inside the canopy. Four WSPs for the OR treatments and six WSPs for the IR 

treatments for each deposition line, were placed on the ground in the inter-rows (2 WSPs per inter-row) over 

wooden dedicated supports to evaluate the off-target PPP ground deposition. All the WSPs were manually 

positioned by the operators using latex gloves to prevent stains on the WSPs, sensitive to water and humidity.   

The treatments were performed with a wind speed lower than 3 m/s direction N, NW, parallel to the rows, 

with a 1.3 l min-1 to 1.8 l min-1 average pump flow velocity values. Weather conditions were monitored by a 

weather station located Sud east at the border of the field 15 m off the flight path, close to the piloting zone, 

at 1.5 m AGL. The weather requirements (suggested by the ISO 23117-1:2023) necessary to perform the 

aerial distribution were an ambient dry temperature between 10 °C and 35 °C, a relative humidity under 70%, 

and a mean wind speed under 2.0 m s-1. 

2.4. Automatic droplets detector development 

 

The first step to perform the automatic droplets detection was scanning the WSPs with 1200 dpi maximum 

resolution office scanner (Epson L3250). All the WSPs hooked to the trellis system belonging to the same 

deposition line, were scanned in the same image (9 WSPs for OR and 12 for IR operations). The same 
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procedure was applied to the WSPs located on the ground support (4 for OR and 6 for IR operations). The 

WSPs used for the test were then analyzed through a MATLAB R2021b code. Further details about the 

automatic droplet detector development are described in (Ghiani et al. 2020). WSP’s droplets covered area 

(cm2) was used to evaluate the UASS distribution performance. 

2.5. Statistical analysis for spray performance evaluation 

Spray features and UASS performance were evaluated using the MATLAB-based WSPs analysis and 

then processed using Python (Python Software Foundation) scripts through Pandas, Statsmodel, and 

Matplotlib packages, respectively for data frame manipulation, statistical analysis, and plotting. The 

statistical analysis was prompted by the works of Biglia et al. (2022); S. Chen et al. (2020); Sarri et al. (2019); 

C. Wang et al. (2021, 2022). The covered area was plotted for each sampling height (high, medium, and low) 

by averaging the three repetitions (corresponding to each deposition line) of each treatment and separating 

the target and off-target rows results. The same procedure was applied to the ground samples by averaging 

all the WSPs results of the same treatment. A three-way analysis of variance (ANOVA) test was performed 

to detect the effect of flight speed, flight height, and UAS flight position factors and their combination on 

each of the three variables, differentiating target rows, off-target rows, and ground loss. The significance of 

statistical computations for ANOVA and Tukey test was considered for P<0.05 unless otherwise stated. Data 

distribution and homoscedasticity were respectively tested through Shapiro-Wilk and Levene’s test.  If the 

ANOVA performed on the fitted model showed a significant factors effect, the Tukey’s test for multiple 

comparisons was performed to compare mean values of parameters between treatments, and results showed 

inside the respective bar plots. 

To characterize droplets Penetration Rate (PR) at each collection point (representing the efficiency of the 

treatment to reach the lower part of the row where the protection products are more needed), the ratio of the 

lower WSP's droplets covered area (CAlow) to the sum of the upper (CAup) and mid (CAmid) WSPs' droplets 

covered area was used, as explained by the equation 1 (C. Wang et al. 2022): 

𝑃𝑅 =
𝐶𝐴𝑙𝑜𝑤

𝐶𝐴𝑢𝑝+𝐶𝐴𝑚𝑖𝑑
× 100%    (1) 

3. Results 

The results are presented in two main sections reporting respectively the distribution of target and off-

target rows droplet deposition for the covered area at each height position of the WSPs, and the PR results 

through the canopy. 

3.1. Covered area 

Covered area results (Figure 2) tent to decrease from the higher to the lower canopy section, with 

treatments A and B gaining the largest covered area. Treatment H got a similar result in the lower position, 

impacting on the PR. The higher covered area in treatments A and B could be related to the position of the 

UASS perpendicular to the row and the higher flight altitude AGL, which led a larger volume of product to 

reach the upper-mid part of the canopy. Treatments C and D, instead, due to the lower flight altitude and the 

location of the nozzles perpendicular to the inter-rows, gained a lower covered area, leading a conspicuous 

volume of product to hit the off-target rows. In fact, despite the UASS frame was positioned over the target 

row, due to the large diameter of the UASS and the derived location of the nozzles over the inter-rows, 

treatments C and D flight settings caused a lower covered area on the target row compared to A and B. 

Treatment H results at low sampling height (Figure 1c) could derive from the combined action of flight height 

and speed. The first one helped reduce the off-target dispersion (larger in treatments E and F, specifically at 

low positions), while the second one, thanks to the higher spinning rotation of the propellers, caused a bigger 

canopy opening, allowing the droplets to reach the lower position. It is essential to emphasize the importance 

of finding the proper flight setting that allows a homogeneous distribution of product throughout the canopy 

height, with a specific focus on the mid-low parts, known to be the main canopy’s infection sites, which 

require more than others to be treated and limiting an over-coverage of the highest part. The results obtained 

in the IR treatments (E, F, G, and H) could be attributed to the same reason described above, where, this time, 

the UASS propellers, and consequentially the nozzles located below, were positioned over the two target 
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rows. This condition provoked a generally smaller covered area on the two target rows at the three sampling 

heights, a large covering at the lower sampling height (probably derived by the action of the propellers that 

opened the canopy), and a lower dispersion on off-target rows compared to low flight height over-row 

treatments (C and D).  These differences were also emphasized by the longer distance of the off-target rows 

from the UASS in IR treatments compared to the OR ones and the different generated turbulence between 

the rows.   

 

Figure 2. The bar charts containing the mean covered area results and Tukey’s test group division for target 

and off-target rows divided for each treatment at high (a), medium (b), and low (c) WSPs heights. 
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According to the three-way ANOVA (Table 2), the factors flight height and UASS flight position had a 

significant influence on the area covered in the upper part of the canopy, also showing a significant interaction 

effect. The two factors probably caused treatments A and B to get a larger WSPs' covered area, specifically 

at the higher sampling position. Since flying speed was not considered a significant predictor of the covered 

area, spraying operations could be performed at a higher speed to cover larger surfaces in less time. 

Table 2. Covered area 3-way ANOVA results divided by high, medium, and low WSP’s canopy height for 

target and off-target rows. 

 Target rows p-value Off-target rows p-value 

Factors H M L H M L 

UASS height 0.042* 0.137 0.333 0.444 0.058 0.024* 

UASS speed 0.889 0.444 0.727 0.594 0.563 0.551 

UASS position 0.044* 0.057 0.877 0.153 0.034 0.009** 

UASS height : UASS speed 0.581 0.531 0.413 0.449 0.918 0.389 

UASS height : UASS position 0.005** 0.141 0.082 0.088 0.026* 0.000*** 

UASS speed : UASS position 0.837 0.287 0.430 0.106 0.743 0.562 

UASS height : UASS speed : UASS position 0.922 0.278 0.680 0.933 0.755 0.544 

* = p-value < 0.05 

** = p-value < 0.01 

*** = p-value < 0.001 

The 3-ways ANOVA table also suggested that the two mentioned factors, singularly and combined, 

influenced the off-target results at the lowest off-target sampling position. As shown in Figure 1c, the 

treatments C, D, E, and F reported a higher off-target dispersion. For the OR treatments (C and D), this effect 

was probably caused by the position of the nozzles on the two inter-rows alongside the target row, which 

helped disperse the product on the inter-rows and the lower part of the off-target rows. The E and F treatments 

provoked a smaller off-target dispersion probably because of the different nozzles' position on the target rows 

(perpendicular to them) and the greater distance from the off-target rows. The higher position of treatments 

E and F compared to G and H probably provoked a drift effect due to the wind effect, which pushed the 

droplets far from the monitored off-target rows.  

Averaged ground dispersion results reported in Figure 3a showed a general difference between OR 

treatments, characterized by a higher covered area (most of all treatment B), and IR ones. Such a result 

suggests a better performance for IR treatments, which showed a lower ground dispersion of product, 

especially for treatments E and F, and a higher one for treatments G and H. This behaviour could be related 

to the higher flight performed in treatments E and F, which involved an increased droplets' exposition to the 

wind action (especially the smaller ones), which influenced distribution results and provoked value 

fluctuation.  

 

Figure 3. Covered area results with Tukey’s test grouping divided by treatments for ground WSPs (a) and a 

specific focus on IR treatments’ ground dispersion (b), larger in central inter-row of treatments G and H. 
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  The three-way ANOVA shows how the speed and UASS flight position (singularly and combined) 

influenced the ground results (Table 3). As described above, the position of the nozzles over the target rows 

in the IR flying treatments helped reach good covering results and limit the quantity of product that reached 

the ground, differently from the other treatments, characterized by the nozzles spraying perpendicular to the 

inter-row. The flight speed and the consequent higher propellers’ speed rotation could have provoked an 

increased downward flow that pushed the droplets onto the ground, as described by Wen et al. (2019), visible 

in treatments B and D. In the OR treatments, the treated inter-rows were only two, where the UASS sprayed 

identically through each nozzle positioned above. Differently, in IR flights, the sprayed inter-rows were three: 

a central inter-row sprayed by both UASS’s side nozzles and two side inter-rows, respectively sprayed from 

half part of the nozzles. While treatments E and F showed almost homogeneous results throughout the inter-

rows, treatments G and H showed higher coverage percentages on the central inter-row. Such result 

determines the influence of the flight height on the downward direction of the droplets in IR flights, limiting 

the wind effect on the spray jet, protected by the target rows and how, in general, the central row receives an 

increased volume of PPP. 

Table 3. Covered area 3-way ANOVA results for ground WSPs. 

Factors p-value 

UASS height 0.524 

UASS speed 0.035* 

UASS position 5.76-06*** 

UASS height : UASS speed 0.206 

UASS height : UASS position 0.081 

UASS speed : UASS position 0.018* 

UASS height : UASS speed : UASS position 0.882 

* = p-value < 0.05 

** = p-value < 0.01 

*** = p-value < 0.001 

3.2. Penetration rate 

The PR is highly connected to the covered area variable, as shown in Formula 2. For this reason, high PR 

was obtained because of the ratio between lower sampling points results characterized by an expanded 

covered area value and a small high and mid-sampling points sum.  

 
Figure 4. The mean PR results bar chart for target and off-target rows divided by treatments. 

For instance, even if treatment B showed an increased coverage in all three sampling heights, it showed 

a lower PR compared to treatment H, which instead gained a reduced coverage in the higher parts of the 

canopy and a large coverage in the lower parts. The same interpretation could be transferred to off-target 

results, which showed reduced PR than target rows. It is essential to stress that the mid-low part of the canopy 

is the one that, more than others, requires adequate PPP coverage, and for this reason, treatments with higher 

PR are preferred. Also, for off-target rows, WSPs in lower positions were hit more than the higher ones but, 
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if visually inspected, the results derived from almost empty WSPs, meaning that few droplets reached the 

off-target rows' lower part and even less in the upper parts, with a crucial product saving.  

No significant results were found in PR ANOVA table. 

4. Discussion 

Flight position was the factor that, more than others, influenced the covered area results for target, off-

target, and ground WSPs. The treatments that gained a higher covered area were treatments A, B, and H. The 

first two showed an apparent homogeneous distribution of the canopy but the upper WSPs were over-covered, 

a sign of a less efficient application than that achieved by the H-treatment. This behaviour was in agreement 

with the experiments of Wen et al. (2019), where lower altitude flights with a speed of around 2 m s-1 were 

also identified as optimal for increased foliage coverage and drift reduction. Off-target rows showed similar 

results for these three treatments, while ground WSPs revealed a larger dispersion of PPP for OR treatments. 

Even if the ANOVA tables mainly showed a significant impact of flight position and height on the high 

and mid-levels, it confirms the importance of the position of the UASS to limit spray over-dosage on leaves 

and how flight height also played a crucial role in OR treatments, causing a higher coverage where the UASS 

flew higher (treatments A and B), and also in IR treatments where a lower height helped increasing the spray 

coverage through the canopy height. Flight position and height appeared strictly connected because in OR 

treatments the bigger height helped improve the covered area of treatments A and B, while in IR flight 

position, the lower height helped reduce the dispersion of product and increase the covered area and the PR 

(as in treatment H). As a result of the nadiral nozzles’ position over the row, the turbulence effect generated 

by the propellers helped to open the canopy to facilitate the PPP penetration, specifically for treatment H, 

where the rotary speed of the propellers was higher (Martinez-Guanter et al. 2020). 

As described above, although with a reduced results impact, also flight position and speed were strictly 

connected. The flight speed and the consequent higher propellers’ speed rotation could have provoked an 

increased downward flow. For OR treatments, the higher speed pushed the droplets on the ground (Biglia et 

al. 2022), increasing the dispersion (this effect is most visible in treatments B and D), while IR flights 

generated an efficient product penetration inside the canopy. 

All treatments showed similar results in terms of product dispersion, but OR treatments C and D showed 

an increased influence in the lower positions, probably due to the lower flight height and position, which, 

more than other treatments, facilitated ground and side-row waste. In addition, the higher flight altitude of 

treatments A and B could have provoked droplets to drift further over the sampled rows, providing only a 

partial representation of the total dispersion. 

It is essential to highlight that the treatments that reached a higher PR are preferable (A, B, and H) since 

most current PPP treatments applied to grapevine have the lower part of the canopy, where the grapes are 

located, as a target. Based on the results, treatment H seems to be the most appropriate one since it provided 

good PR results, it did not provoke an over-dosage effect in the upper part of the canopy, the ground 

dispersion is lower than treatments A and B, and it allows to treat two rows simultaneously and at higher 

speed, with crucial performance benefits.    

These findings must be traced back to the specific diameter of the UASS (which in the presented trials 

helped reach both rows simultaneously in IR treatments), the number, model, position, and angle orientation 

of the nozzles under the propellers, generally used for herbaceous crops in this configuration. Specific nozzles 

for UASS arboreal operation, with a smaller spray angle, differently oriented would have taken to probably 

different and better results. In the same way, the vineyard’s plant spacing along and between the rows would 

have affected the results. 

Further studies are required in vineyard UASS application to analyse the effect of speed on spraying 

performance and to learn what is the limit over which the downward movement that improves droplet 

penetration ends and their dispersion begins. Turbulences represented the unknown factor that could have 

influenced the results. Appropriate sensors should be placed inside and outside the canopy and on the inter-

row to evaluate the effect on the droplets' penetration and dispersion. Strictly correlated with the turbulence 

is the shape and configuration of the UASS.  It is essential to define what is the most appropriate configuration 

(size, diameter, number of propellers and their orientation, etc.) to gain the best performances (C. Wang et 

al. 2022) in viticultural scenario. As with every application scenario, UASS PPP application should benefit 

from specific nozzles designed to reduce product dispersion and modulate droplet spectra depending on the 

chosen protection product and the environmental requirements. Since the experiments were conducted only 
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on one (OR treatments) and two target rows (IR treatments), it is crucial to evaluate the spray coverage 

derived from treating an extended surface and give better details about the overlapping results of parallel 

applications along the rows. 

Further research is needed to provide the necessary guidelines for aerial distribution by UASS, to limit 

the dispersion of pesticides (according to ISO 22866), to evaluate the economic benefit and to boost the aerial 

spraying sector in agriculture, which is restricted to specific situations where terrestrial treatments are not 

feasible. These restrictions, mostly limited to the European Union, have repercussions on technological 

progress and the implementation of this technology in specific scenarios that could benefit from this 

approach, such as viticulture traditionally located in Europe, and limit the research development.   

5. Conclusions 

The work showed the flight position, height, and speed factors effect on PPP aerial distribution from UAS 

on vineyards, and how the obtained results were influenced by the UASS model and the vineyard 

characteristics. 2.0 m height inter-row flight position showed the best performance, with the lowest off-target 

and ground dispersion, demonstrating how flying over the inter-row, with nozzles right above the canopy, 

represents the best setting to facilitate droplets penetration inside the canopy, reaching the lowest parts, 

generally more affected from disease, and reduce off-target dispersion. Flight speed did not significantly 

affect the performance, apart the cases where a faster propeller rotation helped open the canopy and facilitate 

the droplet penetration. This result represents an essential logistic information, enabling the performance of 

shorter flight missions and increasing the general efficiency of the system. The droplet analysis procedure 

showed high potential and it could help boost the UAS spraying scenarios in vineyards. Further research is 

required to evaluate the aerial PPP distribution from UASs effectiveness and assess the environmental impact 

in agricultural scenarios. This knowledge is essential to boost the implementation of such technologies, 

specifically in those countries where aerial treatments are not still allowed. 
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Abstract 

Recent research suggests that soil microorganisms (fungi and bacterial) might be an important component of the soil 

organic carbon (SOC) pool, in addition to facilitating carbon sequestration by providing biophysical protection. The 

present study evaluated the influences of inserting available carbon-rich exogenous material with and without 

microorganisms incorporation in enhancing carbon capture within top-to-subsoil depth (down to 60 cm) in order to 

improve soil health and productivity, and consequently maize growth. The materials (including two carbon-rich 

exogenous materials, i.e., liquid digestate and humic acid, plus with three microorganisms, i.e., bacteria, mycorrhizal 

fungi as well as Trichoderma) were injected into the soil down to 60 cm depth using a novel drilling machine 45 days 

after maize seeding in two fields. The results showed that the combined application of humic acid and mycorrhizal 

fungi (HM) led to the highest NDVI (0.79 ± 0.07) and chlorophyll content (4.47 ± 0.93) among other treatments. The 

treatment of the liquid digestate incorporating mycorrhizal fungi (LM) presented the highest corn cob mass (0.30 ± 

0.04 kg) and total plant mass (0.68 ± 0.16 kg). Therefore, it is recommended to apply humic acid as well as mycorrhizal 

fungi in the subsoil, as a means of increasing the growth of maize and indirectly promoting the photosynthesis process, 

thus helping mitigate the CO2 to the atmosphere. 

Key words: soil organic carbon, exogenous material, greenhouse gas, subsoil, maize growth 

1. Introduction 

The constantly increasing world population has been pressuring the cropland to produce more grains. The results were 

more land reclamation and overuse of agriculture land, along with extensive application of  inorganic fertilizers and 

pesticides. Consequently, nearly 1.12 ±0.25 Pg C has been emitted to the atmosphere annually by the land use change 

(Houghton et al., 2012), which appears to be one of the main drivers of global climate change, causing most frequent 

and dramatic natural disasters. While the overuse of cropland and abuse of inorganic fertilizer have depleted essential 

soil nutrients particularly phosphorus (P), potassium (K) and micronutrients, crucially, they have also resulted in a 

gradual decrease in soil organic matter (SOM) content in the soil. The application of inorganic fertilizers certainly has 

resulted in a yield increase, however, which is also highly related to soil, caused water and air pollution (Komakech 

et al., 2015). But what is most worrisome for farmers is the affordability of fertilizers, provoked by the high energy 

prices. 

To replenish SOM and other nutrient deficits caused by crop removal, in fact, farmers have been using organic 

fertilizers to maintain soil fertility since early times. Some studies (D'Hose et al., 2020; Han et al., 2020; Wang et al., 

2021) have shown that the application of organic fertilizers can be an efficient agricultural management approach for 

promoting the productivity of cropland, particularly for improving the stability and sustainability of the crop 

production. For example, the addition of OM through organic amendments not only provides nutrients but also 

improves soil aggregation and stimulates microbial diversity and activity (Ferreras et al., 2006). With a study aims at 

investigating the effects of humic acids (HA) on growth improvement in rice plants, de Castro (de Castro et al., 2021) 

found that HA caused an increase in photosynthetic efficiency carbohydrates and total biomass. This may be down to 

the strong cation adsorption and exchange capacities, which can effectively improve soil structure and SOM, and 

promote crop growth. Soils are complex systems often limited by factors like the impact of rhizosphere beneficial 

microbes on plant nutrient use and SOC sequestration. Recent studies have found that SOC is mainly derived from 

roots and rhizomicroorganism interactions (Cheng et al., 2014; Holden and Treseder, 2013). Arbuscular mycorrhizal 

fungi (AMF) was found to be the most effective microbial symbioses for improving the growth and yield through 
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enhancing the photosynthetic rate and the availability and translocation of various nutrients (Gao et al., 2020). 

Therefore, exploring the addition of organic amendments with beneficial microorganisms would be meaningful to 

help improve the crop yield and even bring the ancillary benefits of increasing SOC. This will be of special interest if 

these material are applied to subsoils that suffer not only from soil compaction, but poor structure and OM, and 

consequently minimal microbial activity with negative effects of soil health. 

However, most researches (Page-Dumroese et al., 2018; Wang et al., 2014) on these organic amendments have focused 

on their effects on soil physical, chemical as well as biological properties, and there are few studies on the adaptive 

characteristics and response of maize to soil amendment with microorganisms application, needless to say applying 

them to subsoil. Therefore, identifying the soil amendment and microorganisms that can facilitate maize growth 

through facilitating nutrients availability and microbial activity, and quantifying their influences on soil quality is key 

to sustainable soil management. This research aims at evaluation of the influences of inserting humic acid and liquid 

digestate with and without microorganisms incorporation on enhancing maize growth within top-to-sub-soil depth 

(down to 60 cm) in order to improve soil health and productivity. To ascertain the efficacy of these treatments in 

promoting maize growth, several vital metrics were carefully selected for evaluation. These included height, perimeter, 

total mass, corn mass as well as leaf parameters such as chlorophyll content, NDVI, LAI, et al, as they play a crucial 

role in influencing and reflecting crop growth.  

2. Materials and Methods  

2.1. Soils 

In current study, an out-door pot experiment was conducted in the northwestern region of Belgium. The pot 

experiments was carried out at Beervelde (51°04'25.0"N 3°53'57.9"E), located about 12 km northeast of Gent, 

Belgium (Fig. 1). The study area is a relatively flat region with an average slope of 1%. It has a marine west coast 

climate. The annual rainfall of the area is about 858.8 mm and the mean monthly sunshine hours are 1618. Maize, 

potato as well as barley are the three main crops in local area, and most of the maize are used as silage for dairy cattle. 

The main soil textures in the study area is sand and loamy sand, which accounts for more than 50% of the total area 

(Zomlot et al., 2015). The basic physical and chemical properties of the study site soil are listed in Table 1.  

 

 

Fig. 1. Location map of research place (Beervelde) nearby Ghent, Belgium and the pot experiment. 
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Table 1. Basic properties of the soil used in the pot experiment. 

Parameter 
Potassium 

 
phosphorus  

total 

sulfur  
sodium  magnesium  calcium  

Soil 

type 

total 

carbon  

total 

organic 

carbon  

pH-

KCl 

(ISO) 

unit (mg/100 g)  (%) (%)  

soil 15 24 17 1.1 9 60 15 1.29 1.14 4.6 

2.2. Organic amendments and bio-stimulants 

The liquid digestate (Table 2) were directly taken from the digester of a farm, which made from a combination of 

manure, energy crops, vegetable or animal waste. The biogas (primarily CH4 and CO2) emitted from anaerobic 

digestion are used for electricity generation. The humic acid is a standard product sold as a fertilizer (Humifirst WG) 

(Tradecorp, Belgium). Mycorrhizal fungi (Mycoshell Dripper) and Bacterial (Kiplant AllGrip) were provided by 

Asfertglobal (Asfertglobal, Portugal). Trichoderma (Trianum-P) was obtained from Koppert (Koppert, Belgium).  

 

Table 2 The basic properties of liquid digestate and humic acid. 

Parameter 
dry matter 

(g/1000 g) 

organic matter 

(g/100 0g) 

 Total 

nitrogen 

(mg/100 g) 

P (P2O5)(g/1000 g) C/N ratio 

Liquid 

digestate 
75 53 4.9 1.32 6.4 

2.3. Pot experiments       

The pots are made of iron with a diameter of 56 cm and a height of 85 cm (Fig. 1). To better facilitate the subsequent 

experimental operation and avoid the accumulation of rainwater in the pots, several holes were drilled at the bottom 

of the pots. For each pot, the soil filling processes were carried out with three steps (e.g., by adding three layers), the 

bottom layer and middle layer were compacted to simulate the real situation in the field, while the top layer was 

naturally filled. A hole of 64 mm diameter were drilled in the middle of each pot using a ring knife to set up transparent 

tube to visualize and measure crop roots. Lastly, 10 maize (Zea Mays) seeds were evenly planted in each pot, the 

maize seeds (P8685) are from Pioneer(Pioneer, USA). During the third growing stage, 7 maize plants were removed 

and only 3 were maintained. All the pots received the same amount of chemical fertilizers according to local standard. 

The chemical N, P and K fertilizers used were urea, calcium superphosphate and potassium sulphate, respectively. 

Besides, 3 holes were drilled when crops are at 5-10 cm height to inject biomaterials and microorganisms. A total of 

12 treatments were applied in a completely randomized block design with four replications. The  treatments are as 

follow: 1. Blank control (CK, no materials and bio-stimulants but seeds). 2. Liquid digestate (L). 3. Humus (H). 4. 

Trichoderma (T). 5. Bacterial (B). 6. Mycorrhizal fungi (M). 7. Liquid digestate + Trichoderma (LT). 8. Liquid 

digestate + Bacterial (LB). 9. Liquid digestate + Mycorrhizal fungi (LM). 10. Humus + Trichoderma (HT). 11. Humus 

+ Bacterial (HB). 12. Humus + Mycorrhizal fungi (HM).  

2.4. plant growth measurements 

12 weeks after seeding, plants were harvested to record the observations. The height of each plant was determined by 

measuring this parameter from the soil's surface to the top of the plant. Subsequently, the average height of the three 

plants was calculated as the plant height for each pot. The perimeter of the maize stem was measured by a flexible 

rule. The weight of the fresh maize as well as the cob were recorded using top loading balance. Sampling and 

measuring of maize leaf parameters were performed at the silking growing stage. A Crop Circle Phenom canopy sensor 

(Holland Scientific, Lincoln, NE, USA) was used to measure the chlorophyll content and normalized difference 

vegetation index (NDVI) of the three fully grown leaves at the top of maize plants. 
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2.5. Data analysis 

The collected data on various leaf and crop parameters were statistically analyzed using one-way analysis of variance 

(ANOVA) in MS Excel. Differences among the treatments were assessed at a 5% significance level using the one-

sample t-test. Figures were created with R studio. Principal component analysis (PCA) was applied to evaluate how 

much of the variance of the data can be interpreted by the measured variables in order to unveil the effects of organic 

amendments and microorganism on maize growth. To improve the quality and accuracy, the data was standardized to 

eliminate bias due to scale differences before PCA analysis. PCA was implemented via stats(Team and Worldwide, 

2002) packages in R. 

3. Results and Discussion 

3.1. Plant growth 

The data concerning plant growth (total mass, stem perimeter and plant height) under different treatments are presented 

in Fig. 2. Overall, all treatments of organic amendments with microorganisms increased the total mass of maize and 

the stem perimeter, compared with CK treatment, although this trend was most obvious from perimeter. The highest 

total mass of maize was observed in the soil amended with LM (0.68 ± 0.16 kg), while HM had a similar effect. The 

control group had the lowest total mass (0.55 ± 0.08 kg). The treatment response pattern for stem perimeter was 

LM > LB > HT > HM > LT > HB, and treatments that included both organic materials and microorganisms showed 

significantly greater promotion compared to those with single additives (Fig. 2b). Especially, the LM and HM 

treatments significantly increased (p < 0.05) the stem perimeter by 24.66% and 21.57%, respectively, compared with 

CK treatment. It is worth mentioning that maize height did not show a consistent trend with stem perimeter or total 

mass. CK resulted in the highest height (238.41 ± 27.46 cm), followed by L (228.67 ± 16.74 cm) and LB (225.39 ± 

12.56 cm). 

Generally, with respect to total mass and stem perimeter, treatments that included liquid digestate performed much 

better than those with humic acid. This may be attributed to the richness of labile organic compounds and additional 

nitrogen present in the liquid digestate, which can be readily available in the soil, thus promoting plant growth within 

a short period (Kirchmann and Lundvall, 1993; Slepetiene et al., 2023), while humic acid is much more stable, as it 

formed during long-term decomposition of biomass residues. However, the advantages of improving soil properties 

(Nardi et al., 2002), plant growth (Ampong et al., 2022), especially soil carbon sequestration (Spaccini et al., 2002) in 

the long run have been proved.  Among the three types of microorganisms, mycorrhizal fungi had the greatest effect 

plan growth, followed by Trichoderma, while bacteria showed the least promotion. This may be down to single-celled 

organisms of Bacteria, which need a film of water to survive, while fungi are multi-celled organisms that grow rapidly 

and can extend great lengths in the soil. This allows fungi to bridge gaps in the soil and transport nutrients easily over 

relatively long distances back to the plants (Allen, 2007). 
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Fig. 2. Effect of amendments on (a) maize total mass (kg), (b) cob mass (kg),  (c) stem perimeter (cm), and (d) plant 

height (cm). Bars show values of means from three replicates and contain the ± standard deviation of means (n = 3). 
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In each panel, bars marked with *, ** and *** indicating significance at p < 0.05, p < 0.01 and p < 0.001, respectively. 

The  treatments are as follow: 1. Blank control (CK, no materials and bio-stimulants but seeds). 2. Liquid digestate 

(L). 3. Humus (H). 4. Trichoderma (T). 5. Bacterial (B). 6. Mycorrhizal fungi (M). 7. Liquid digestate + Trichoderma 

(LT). 8. Liquid digestate + Bacterial (LB). 9. Liquid digestate + Mycorrhizal fungi (LM). 10. Humus + Trichoderma 

(HT). 11. Humus + Bacterial (HB). 12. Humus + Mycorrhizal fungi (HM).  

3.2. Photosynthetic parameters 

A positive effect of several treatments were also been observed on the photosynthesis in maize leaves (Fig. 3). Plants 

subjected to HM, HT, LB, LM, treatments displayed significantly improved chlorophyll content and NDVI and 

subsequently exhibited an increase in net photosynthesis. Specifically, the LM and HM treatments significantly 

increased (p < 0.05) the chlorophyll content by 26.28% and 9.28%, respectively, compared with the M treatment. And 

M treatment significantly improved the chlorophyll content and NDVI by 69.99% and 15.58%, respectively, compared 

with CK treatment. Whereas the treatments with bacteria did not show eminent increase in chlorophyll content. 

Pearson’s correlation coefficients (r) between chlorophyll content and total mass is 0.54, which was probably due to 

the important role of chlorophyll in photosynthesis that generate energy for plant organ development. Many studies 

indicate that the application of humic acid can positively increase the leaf chlorophyll concentration by improving 

uptake of macro and micronutrients (Rose et al., 2014; Sible et al., 2021). For instance, in a pot experiment, Chen et 

al. 2022) reported that humic acid modulates growth and photosynthesis of maize under drought conditions, resulting 

in a 19.7% increase in maize yield compared to the control treatment. This was attributed to the high cation exchange 

capacity of humic acid, leading to maxim nutrient uptake by maize. 
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Fig. 3. Effect of amendments on a) chlorophyl content (mg/g), b) normalized difference vegetation index (NDVI). 

Boxes show values of means from three replicates and contain the ± standard deviation of means (n = 3). In each panel, 

bars marked with *, ** and *** indicating significance at p < 0.05, p < 0.01 and p < 0.001, respectively. The  treatments 

are as follow: 1. Blank control (CK, no materials and bio-stimulants but seeds). 2. Liquid digestate (L). 3. Humus (H). 

4. Trichoderma (T). 5. Bacterial (B). 6. Mycorrhizal fungi (M). 7. Liquid digestate + Trichoderma (LT). 8. Liquid 

digestate + Bacterial (LB). 9. Liquid digestate + Mycorrhizal fungi (LM). 10. Humus + Trichoderma (HT). 11. Humus 

+ Bacterial (HB). 12. Humus + Mycorrhizal fungi (HM). 

3.3. Relationships among maize growth and leaf parameters 

To investigate the overall relationship between key parameters such as corn growth and chlorophyll content under 

different treatments, this study conducted PCA and correlation analysis. The first two principal components explained 

69.9% of the total variance, 47.2% of the variance was explained by the principle component 1 (Fig. 4), which was 

positively correlated with chlorophyl content as well as three leaf indexes (e.g., NDVI, leave area index [LAI], and 

normalized difference red edge index [NDRE]). Principal component 2 explained 22.7% of the variance of the data 

(Fig. 4), and total mass of the maize positively correlated with the mass of the cob as well as stem perimeter. All 

variables were negatively correlated with the height of the plant. 

 

 

Fig. 4. Principal component analysis (PCA) of plant growth and leaf parameters. Cos2 represents the quality of 

variations in the PCA, and a higher value of cos2 indicates a larger contribution of variation to the principal component. 

The  treatments are as follow: 1. Blank control (CK, no materials and bio-stimulants but seeds). 2. Liquid digestate 

(L). 3. Humus (H). 4. Trichoderma (T). 5. Bacterial (B). 6. Mycorrhizal fungi (M). 7. Liquid digestate + Trichoderma 

(LT). 8. Liquid digestate + Bacterial (LB). 9. Liquid digestate + Mycorrhizal fungi (LM). 10. Humus + Trichoderma 

(HT). 11. Humus + Bacterial (HB). 12. Humus + Mycorrhizal fungi (HM). 
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4. Conclusions 

Based on the observed results, it can be concluded that the addition of liquid digestate, humic acid, microorganisms, 

and their combinations significantly improved the height, stem perimeter, and total mass of maize. An increase in 

chlorophyll content in the leaves was also observed. In particular, Liquid digestate + Mycorrhizal fungi (LM) and 

Humus + Mycorrhizal fungi (HM) treatments showed the highest promotion of maize growth. Overall, due to the 

easily decomposable materials in liquid digestate, it had more immediate and positive effects on maize growth 

compared to humic acid in the short term. However, for improving the carbon content in the soil, humic acid would 

be a more suitable option and further studies on changes in soil properties are useful and necessary. 
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Abstract 

Soil processing in agriculture requires high energy because of soil resistance, like the ship’s motion in 

water. The ship’s bulbous bow reduces fuel consumption by 12-15%. It protrudes water likewise to the ripper 

in the soil. The unique three types (delta, oval and nabla) of bulbous bow elements are designed for the soil 

ripper. The designed elements are simulated using the discrete element method. Prototypes are printed 3D 

printed to verify the simulation values and measure draught force in the sand bin. The simulation results 

showed at most 2% higher values than the laboratory measurements. Compared to the original soil ripper 

element, the draught force values have the highest increase of 2.8% of the nabla shaped bulbous bow soil 

ripper element. Other samples showed lower differences. Based on the obtained results, the bulbous bow-

shaped element is promising, especially for wear analysis. The original soil ripper tool has a similar rounding 

of the lower part as the bulbous bow element.  

 

Keywords: soil ripper, bulbous bow, DEM, draught force, sand bin.  

1. Introduction 

The European Union's common agricultural policy supports no-tillage technology, mainly covering the 

field with 30-100% crop residue. Organic residues cover the soil surface to reduce soil erosion and moisture 

losses by evaporation(Achankeng & Cornelis, 2023). This soil processing technology (no-tillage) helps to 

improve carbon sequestration in agricultural soils (Guyomard et al., 2020). But at the same time, the no-

tillage process requires special machines to properly prepare and ensure good seedbed preparation for the 

sowing process. The soil ripper is used as a soil opener to loosen the soil. The tool's shape or position has a 

high impact on energy consumption (Liu et al., 2023; Sun et al., 2018). As agricultural equipment works 

under high abrasion conditions, the machine elements must have a wear resistance property. There are two 

options to increase the longevity of agricultural machine elements: use hardfacings to protect the most 

wearable parts or optimize the shape of agricultural machine elements. The second option helps to save 

energy and greenhouse gas emissions. The proper design, new coatings, materials, and technology for 

machine wear protection can reduce energy losses by 40% in long-term conditions (Holmberg & Erdemir, 

2017). This is a significant value for a greenhouse gas emission and climate change.  

The previous soil ripper wear analysis (Katinas et al., 2019) gave an idea to improve the design of the soil 

ripper element. The worn ripper element, which works at the 0.2 m working depth, is round at the bottom 

(Figure 1). If the soil resistance removes the tool's edges, it is possible to design a soil ripper element that 

does not have sharp edges and corners on the main contact surface with the soil. The ships have similar 

motion in water as the agricultural tools in the soil. The vessel has a bulbous bow element in the front of the 

body. The bulbous bow is a water-protruding element (bulb) in the front of the ship to modify the water flow 

around the hull (Szelangiewicz et al., 2021). It is a solution to improve ships' economic efficiency, reduce 

total resistance and increase stability. The properly optimised bulb resulting the reduction of total resistance 

by 12-15% and increased fuel economy for the same amount or improves hydrodynamic and plow-in 

phenomena (Gia Tran et al., 2021; Song Zhang et al., 2022).  

Given the similarities between the bulbous bow and soil ripper movement, the ship's bulbous bow design 

could potentially be adopted in agriculture. 
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Figure 1. Soil ripper with wear resistant hard facings: new and worn (208 km wear track). 

The design of the bulbous bow for the soil ripper tool inspired by the experience and benefits of the 

marine industry. There are three types of ship's bulbs, discussed by the authors(Hoyle, 1985; Kracht, 1978) 

(Figure 2): 

• Delta type bulb (Δ) or the shape of the drop sectional area where the mass centre is below the vertical 

axis middle point. 

• Oval type bulb (O) has the mass centre in the middle of the vertical axis. 

• Nabla type bulb (∇) has an upside-down shape of the drop, but the mass centre is above the vertical axis 

middle point. 

 

Figure 2. Ship bulb types provided by Kracht’s (Kracht, 1978). 

The ship industry’s practise gives a promising prediction that bulbous bow shape element in soil 

processing will show reasonable results. The prototyping process of the bulbous bow element for the soil 

ripper will take time, expenses, and materials because of the design element validation in the field. To shorten 

the testing period, the discrete element method (DEM) will be used to test the designed element virtually. 

The DEM is a specific method developed to simulate granular material (Cundall & Strack, 1979). It is 

beneficial for agricultural simulation processes such as ploughing, soil disturbance, seeding, grain threshing, 

fertilizing, wear prediction, etc. processes (Barr et al., 2018; Chen et al., 2022; Liu et al., 2023; Wang et al., 

2020; Shilin Zhang et al., 2023; Zhao et al., 2021). Virtual testing improves the design stage of agricultural 

machine elements, but it is mandatory to verify simulation results, which can be done in a sand-filled bin. 

During the experiment, the draught force is measured to evaluate the resistance force of the tool. (Ucgul et 

al., 2017). This study aims to design, simulate, and experimentally validate the bulbous bow for a soil ripper 

tool. The draught force evaluation in a sand bin with a designed and 3D printed bulbous bow elements and 

DEM simulation enables us to compare results and find the most suitable shape to continue research. 

2. Materials and Methods  

The experimental setup is carried out in three stages: design of the bulbs for the soil ripper according to 

Figure 2; soil ripper processing in the sand bin by DEM model; draught force measurement of soil ripper 
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with 3D printed bulb. 

2.1. Soil ripper and bulbous bow types 

The soil ripper type is selected based on previous research (Katinas et al., 2019) (Figure 1). According to 

Kracht’s bulb types in Figure 2, bulbous bow elements are designed and created for the soil ripper. The delta, 

oval and nabla type elements (Figure 3) replace an original shape element. The delta and nabla-type elements 

have the same shape; the difference is that they are rotated around the vertical axis by 180°.  

 

Figure 3.Original and designed bulbous bow types for the soil ripper. 

The designed elements were tested in the laboratory sand bin to reduce the testing time and material 

(steel) consumption. 3D printing technology shortens the production process compared to the production of 

steel samples. The real-size bulbous bow elements were printed using an ABS+ filament. The working depth 

of the soil ripper in the field is about 20 cm, but it is reduced to 10 cm for laboratory tests in the sandbox and 

DEM model as it helps to decrease the amount of sand and computational time because of the lower number 

of sand particles in the model. 

2.2. DEM model 

The DEM simulation used ANSYS Rocky software (ANSYS, Inc., U.S.). The soil bin (0.5×1.5×0.25 m) 

was filled with a sphere particle size of 0.005 m (total number of the sand particles 817,558) (Figure 

4Figure 3). The working depth of the tool is – 0.1 m, and the velocity of the geometry is – 0.1 m·s-2. The 

simulation time was 11 s, and the data retention was 0.01 s, the total computation time was approx. 6 hours. 
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The simulation physics, material properties and material interaction parameters used for simulation are 

given in  

Figure 4. The sand bin prepared for simulation. 

Table 1 (Kuře et al., 2021). The bulbous bow elements (sample) were meshed by the ANSYS Workbench 

platform, where the nonlinear mechanical physics preferences were selected for meshing with a 3 mm mesh 

element size, while the holder element size was increased to 10 mm. 

 

Figure 4. The sand bin prepared for simulation. 

Table 1. DEM parameters used in the simulation (Kuře et al., 2021). 

Simulation physics:  

Normal force  Hysteretic linear spring   

Tangential force Linear spring coulomb limit  

Gravity (m·s-2) 9.81  

Sand properties:  

Bulk density (kg·m-3) 1533  

Particle size (m) 0.005  

Poisson’s ratio 0.3  

Young Modulus (MPa) 1.7  

Rolling resistance 0.14  

Restitution coefficient  0.3  

Material interaction properties: Sand-sand Sand-geometry  

Static friction 0.7 0.4 

Dynamic friction 0.6 0.3 

Tangential stiffness ratio 1 1 

Restitution coefficient 0.3 0.3 

2.3. Draught force measurement 

The draught force measurement in the sand bin test was made according to the description of the Kure 

(Kuře et al., 2021) work. The sand bin dimensions, soil ripper working depth, and movement velocity are the 

same as those used for a DEM model Figure 3. The silica sand fraction (0.1-0.3 mm) was used to fill a bin. 

The force sensor measures the draught force required to move the soil ripper with a sample (bulbous bow 

shape element) in the sand (Figure 4). The maximal measured force of the sensor is 2kN. The measurement 

was repeated three times to get statistically proven data. The bulbous bow elements were positioned to the 

square pipe (holder) to ensure a working depth of 0.1 m.  
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Figure 5. Draught force measurement in a sand bin. 

3. Results and Discussion 

The main evaluation criterion of designed soil ripper bulbous bows is draught force. Figure 6 shows 

measurement values in the sand bin and DEM model results. The draught force values are reaching their peak 

in the middle of the distance because of the sand pile shape. The model has more data points because the 

force values were measured ten times more frequently than in the case of the sand bin test. The formed pile 

of sand in a bin is not smooth throughout the whole length of the bin. This is a reason why draught force 

values fluctuate. The ripper motion starts at 0 N because there is no contact with sand. When the ripper begins 

to move, the force increases to the maximum value (40-50 N); after the distance of 0.7 m, it stops in the sand. 

The model and measured draught force values in sand are in correct arrangement.  

  

Figure 6. Draught force results of modelled and measured in a sand bin test of original, delta, oval and 

nabla elements. 

A better comparison of the draught force of designed shape tools can be seen if the average force values 

are estimated at 0.2-0.5 m (Figure 6). This distance interval helps to compare maximal values during the sand 
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processing in the bin. The average draught force values at the distance of 0.2-0.5 m are given in Table 2. The 

lowest measured draught force value in a laboratory sand bin is a ripper with an original shape tool, which 

creates an average force of 41.85 N resistance. The designed delta, oval and nabla-shaped bulbous bow 

showed higher draught force values than the original shape: delta – by 1.7%, oval – by 2.3%, and nabla has 

the highest draught force measured in the sand bin – 2.8%. The standard deviation values show that the 

draught force values have slight differences for the designed tools compared to the original tool.  

Table 2. Average values of draught force at 0.2-0.5 m distance measured in a sand bin and model. 

Shape Sand bin Model 

Original 41.85±2.16 N 42.04±3.27 N  

Delta 42.57±2.01 N 42.82±4.12 N 

Oval 42.83±2.51 N 43.66±4.06 N 

Nabla 43.07±2.13 N 43.94±4.03 N 

 

The laboratory test in a sand bin showed lower draught force values compared to the model results 

obtained from the DEM. The highest difference, 2%, appeared in the nabla shape tool model compared to the 

measurement in a sand bin. The rest of the model results of bulbous bow elements showed lower differences 

compared to the laboratory measurement (sand bin): 0.5% (original), 0.6% (delta) and 1.9% (oval). The 

model results show high standard deviation values (Table 2) because of high fluctuation at the entire maximal 

force evaluation at a specific distance (0.2-0.5 m) (Figure 6). The draught force oscillation appeared because 

of the geometry mesh and particle sizes. However, the sand fraction size (0.1-0.3 mm) used in the sand bin 

is much smaller than the model particle size (5 mm). Larger model particle size optimises computational time 

while the force results remain close to the laboratory measurement values. The particle size is not the only 

factor that influences the model results. The model parameters sensitivity analysis is discussed in previous 

literature (Katinas et al., 2021; Kuře et al., 2021). 

The difference of draught force measurement in sand bin can be influenced by the layer height during the 

3D printing process. The 0.2 mm layer height was set for the printing of samples. Figure 7shows the 3D-

printed, delta-shaped soil ripper tool. The layered structure appeared on the sample surface after the printing 

process. The Figure 7b shows the contact variation during the sand processing in a bin. The sand particle size 

varied from 0.1-0.3 mm, while the printed layer height was 0.2 mm. The ideal way is for a larger fraction 

sand particles to have a particle-geometry contact region (Figure 7, in yellow). 

Nevertheless, the smaller sand particles (0.1-0.2 mm) can be placed in the corners of the geometry where 

particles hide geometry, and the primary interaction appears for the particle-particle contact region (Figure 

7, in green). From the DEM parameters setting 

(  

Figure 4. The sand bin prepared for simulation. 

Table 1), we can see that the interaction of particle-geometry and particle-particle has different static and 

dynamic friction. The prevailing particle-particle interaction can change the draught force values because 

static and dynamic friction coefficients are lower than particle-geometry interaction. 
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Figure 7. Sand particles and geometry contact scheme of the 3D printed delta shape tool. 

4. Future plan 

One of the most valuable factors during soil processing is tool longevity. If the tool can process many 

hectares without replacing, the machine's downtime and material consumption will be reduced. 

Simultaneously, the critical raw material (tungsten) will be consumed less. The designed delta, oval and nabla 

shape soil ripper elements show slightly higher draught force results than the original shape element. As 

previously mentioned, a factor of the tool's longevity, the bulbous bow design shape tool must be analysed 

as a wearable element to predict its longevity. The original tool shape is round at the bottom of the soil ripper 

after 208 km of wear track. This tendency suggests that wear analysis must be done with delta, oval and nabla 

shape tools to predict an abrasive wear resistance.  

5. Conclusions 

The ship's bulbous bow shape element was adapted to the soil ripper tool. The delta, oval, and nabla-

shaped soil ripper elements were designed and tested virtually using the discrete element method. The draught 

force measurement in a laboratory sand bin was used to evaluate the advantages of the newly created 

elements. The increase in draught force is only 1.7-2.8% for newly designed delta, oval, and nabla shape 

elements compared to the original shape element. The model and laboratory experiment measurements differ 

by up to 2%. The adopted bulbous elements can be used in soil processing machines because the draught 

force consumption results do not show huge differences. However, agricultural machines work in highly 

abrasive conditions where material loss plays an important role. The designed bulbous bow shape elements 

must be tested under abrasive wear conditions to verify the shape's effectiveness for abrasive wear resistance. 
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ABSTRACT 

 
The purposive acquisition and distribution of Agricultural and Fisheries Machinery (AFM) by the Philippine 

government has improved the level of agricultural mechanization of the country over the years.  However, the lack of 

unified protocols and limited considerations in selecting the best machine has resulted in machinery mismatches, leading 

to over-utilized, under-utilized, or not utilized AFM in the agricultural production and postproduction systems. This study 

addresses the knowledge gaps by developing a decision tool for the selection of AFMTs using a numerical system that 

presents the overall machine rating. The Multiple Criteria Decision Making (MCDA) approach was used to establish the 

numerical rating system.  Three major factors, namely performance-based, manufacturer-based, and end-user-based 

factors were considered. Specific criteria for each factor were identified. Analytical Hierarchy Process (AHP) and Rank 

Sum (RS) method were used to determine the weights of the factors and their respective criteria. Six target machines were 

considered in this study, namely, 2-wheel tractors, 4-wheel tractors, small engines, threshers, combine harvesters, and 

pump sets. The rating scales were established using 20-year test data from the Agricultural Machinery Testing and 

Evaluation Center (AMTEC) for the performance-based criteria, while results of the field surveys conducted were used 

to identify the manufacturer and end-user-based criteria. Data analyses and consultations reveal that the three identified 

major factors influenced the holistic performance of the machine/technology which should be considered in the machinery 

distribution program of the government. The results of this study can aid in the planning and formulation of policies by 

the government for the selection of the best machine to specific end-users’ needs. This will also aid in the efficient use of 

resources that would help uplift the lives of Filipino farmers. 

Keywords: Agricultural and Fisheries Machinery, Numerical Rating Scale, Multiple Criteria Decision Making, 

Analytical Hierarchy Process, Rank Sum Method. 

 
 

1. INTRODUCTION 
 

The global landscape has always oriented itself towards food security especially in local communities through the 

Sustainable Development Goals (SDGs). In the Philippines and most tropical countries, agriculture serves as the main 

source of income in the rural sector, with rice crop with largest production (Mataia et al., 2018). Other crops such as corn, 

coffee, and cacao serve as other sources of income for farmers (Takeshima, 2017). Throughout the years, the Philippine 

government has already initiated efforts on upscaling rice production with its intensive mechanization program for the 

organized farmers. Mechanizing the agricultural sector gave them access to technologies that will improve their 

productivity by increasing their farms’ mechanization index (Lantin, 2016). Since the last decade, these efforts have 

already distributed 39,393 and 100 units of SPIS from 2011-2019 for the rice and corn program on all regions in the 

Philippines, majority of which are centered with rice (NAFIAT, 2021). These mechanization efforts were spearheaded by 

the Philippine government through the Department of Agriculture- Bureau of Agricultural and Fisheries Engineering 

(DA-BAFE) whose main responsibility is to oversee the distribution of the machines with regards to its technical 

specifications and fitting the correct machine to the needs of the farmers (Bautista et al., 2017). On the other hand, the 

Philippine Council for Agriculture and Fisheries (DA-PCAF) is also involved in mechanizing the agricultural sector by 

providing policy recommendations for the improvement of the government distribution program.  
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While these efforts have significantly increase rice farmers’ productivity over the years, there have been reports 

of machine mismatches that were distributed. DA-PCAF reported in 2018 that two out of ten machines that were 

distributed were under-utilized, or not utilized at all. The sources of mismatching of the machines are said to be 

categorized into three main factors, Technical, Environmental, and Socio-economic factors. Environmental factors deal 

with the terrain of the farm to which the machine is being used, while Socio-economic factors are those that are concerned 

with financial security amongst the end-users like monetary allowances for repairs and other after-sales services (Van den 

Berg et al., 2007). Technical factors; however, has only considered machine specifications in recent evaluations of AFMs. 

In the knowledge of many, this factor only deals with how much power a machine can give to the farm.   

 

Studies centered machine selection already exist in literature over the recent years. In the Philippines, Resurreccion 

et al. (2008) first recommended a rating system based on different machine performance parameters to select the best 

machine among alternatives. However, this study considers only the performance test data of the machines, and not the 

perspective of other machine usability factors such as the provisions of after-sales services, or the level of acceptability 

of the machines by the farmers.  It is in this light that this study is conducted to establish a numerical rating system for 

the selection of AFMs which considers not only the performance of machines, but also the perspective of the other players 

and conditions in the distribution system.  

 

2. MATERIALS AND METHODS 

 

This study is divided into two main components, namely the evaluation of the status of historical machine 

performance test results from AMTEC, and development of a numerical rating system, The selection of machines should 

not only consider machine performance which would not suffice the efficient usage of these machines given that economic 

and cultural practices which also play a part in determining if a certain machine is effective to be deployed in a specific 

area. With this, three main dimensions were considered in the development of such protocols, namely performance-based 

factors, manufacturer-based factors, and the end-user-based factors.  The process flow is shown in Error! Reference s

ource not found. while the three main factors considered in this study is shown in Error! Reference source not found.. 

 

 
 

 

 

 

 
 

 

 

     

                         

                     

               

     

                           

                              

                            

         

                         

                        

      

                          

                     

                     

     

                  

              

          

                

          

         

 

 

 

 

Figure 1. General Methodology of the Study. 

 

Figure 2. Three main factors identified for the selection of Agricultural and Fisheries Machinery. 
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2.1 Status of machinery testing, evaluation, and selection in the Philippines 

 

Six target machines were identified in this study, namely 2-wheel tractors, 4-wheel tractors, small engines, 

threshers, combine harvesters, and pump sets. The performance test data of each machine from year 2000 to present 

were obtained from AMTEC for analysis which served as the foundation for the establishment of the numerical rating 

system. Field surveys were conducted to determine the status of the distributed machines, as well as the identification 

of the criteria for each of the three factors. The study identified three key sectors in the conduct of the survey namely 

the Farmer Cooperative beneficiaries of the machine distribution programs, DA RFO officials who evaluates and 

monitors the distributed machines, as well as manufacturers, suppliers and distributors who supply and deliver 

machines to the beneficiaries through government biddings. The status and gaps of the machine distribution program 

were holistically identified which set a strong support for the development of the necessary machine selection 

protocols.  

 

2.2 Selection of Project Survey Sites 

 

Four regions were selected as study sites based on the following considerations: 

a. Rice production area (in ha) 

b. Presence of agricultural machinery manufacturers, suppliers, and distributors based on AMTEC database, 

c. Number of active Farmer Cooperatives (FO) according to the latest database of the Regional Field Offices (RFOs) 

; and, 

d. Number of Agricultural and Fisheries Machines (AFMs) received from the government. 

 

Regions II, V, VI, XIII, and NCR were selected as project sites (Figure 3) to have a regional cluster 

representation for the North Luzon cluster, South Luzon cluster, Visayas cluster, and the Mindanao cluster. Provincial 

locations of the RFOs were visited for the actual survey, namely Tuguegarao City in Cagayan (Region II), Naga City 

in Camarines Sur (Region V), Iloilo City (Region VI), and Butuan City in Agusan Del Norte (Region XIII). Focus 

Group-Discussions (FGD) with the DA RFO key officials, while Key Informant Interview (KII) were done for the 

identified FOs and manufacturers. Three farmer cooperatives with different service areas were selected. Key officials 

for each farmer cooperative, including the operator of the machines were invited for the conduct of the on-site FGD. 

For manufacturers/suppliers/ distributors, a sampling plan was developed to identify these private respondents based 

on the database provided by AMTEC on the accredited machine manufacturers, suppliers, and distributors. 

 

 

 

 

Figure 3 The project sites. 
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2.3  Development of Survey Instruments 

 

Three types of survey instruments (RFOs, FOs and Manufacturers) were devised with a printed, and online 

versions. FOs and machine operators were interviewed using the printed questionnaire For some manufacturers, 

suppliers, and distributors that opted to participate in the survey through virtual platform, a version of the questionnaire 

was made in Google Sheets, which also served as data backup of the results of the project field survey that was 

accomplished using the printed questionnaires. A database of the survey responses was also created to analyze the 

results. The survey instrument contains the following parts: 

 

2.3.1 For all respondents (FOs, DA-RFO Key Officials, and Manufacturers/ Suppliers/Dealers) 

a.  Demographic Information: Contains basic details of both the interviewer and respondent, including 

the name of the respondent, affiliation, contact details including the date and time of the survey. 

b. Machines acquired/Distributed/received: this section determined the machines distributed by DA-

RFOs and received by the FOs and manufactured/supplied machinery by the manufacturers/ 

suppliers/dealers in relation to the six identified (AFMs). Included in this part are the machine 

specifications such as the brand, model, power rating, and machine supplier. 

2.3.2 For Farmer Cooperative Respondents Only 

a. Ease on Operation: Ease of operation for each machine included: 

i. Maneuverability, Control, Balance: For all machines except for the pump/pumpsets; this refers to 

the ease in which the operator can operate/drive the machine without disrupting its assigned path in 

the field nor cause any discomfort to the operator and cause any damages to the machine. 

ii. Ease of Refueling: This is the number of times the engine was refilled with fuel assuming that the 

tank is originally full, and the machine has been used for a productive 10-hour operation. 

iii. Ease of cranking/starting: This section is included only in the questionnaires for small engines and 

pump sets; this refers to the easiness of starting the machine. For this project, this is measured by 

the number of tries for the operator to fully start the engine. 

b. Ease of access to spare parts: This is the longest possible time for the FOs to acquire spare parts for 

each of the machines. The longest time of acquisition means either that the specific part is not available 

in their city proper or needed to be shipped from Manila or outside the country. The respondents were 

also asked which parts were mostly replaced and the nearest suppliers. Also included in this section are 

the common problems that the operators face with the machines that they have received and are 

operating. 

c. Ease of access for after-sales services: Along with the access to spare parts, the FO respondents were 

also asked about the process in which they seek after-sales service. The coverage of these after-sales 

service provisions includes, but is not limited to access for on-site repair, checkups, and access to service 

caravans. The questions for this section revolve on the time for the farmer to reach the after-sales 

services that they require, starting from the initial contact with the supplier to the success of the repair 

of the machine. 

d. Coordination with DA RFO: This includes the response time of the RFOs regarding machine 

registration, after-sales services, and coordination with the supplier/s of the distributed machines. 

 

2.3.3 For DA RFO Official Respondents only 

a. Concerns of the FO recipients: RFO officials were asked to reiterate the common concerns of FOs 

regarding the machines received. The concerns include but were not limited to access to spare parts, 

access to after-sales services, and concerns regarding the suppliers of the distributed machines. For 

Manufacturers/Suppliers/Dealers. 

b. Turnover rate: This is the number of units that were manufactured (for manufacturers) or sold (for 

suppliers and distributors) per year. 

c. Ratio of government to private clients:  This is the overall percentage of manufacturers’ clients 

acquired through government biddings or private sector- clients. Additional questions were also asked 

regarding the process in which the manufacturers participate in bidding (if applicable), or the number 

of private clients they have served for the recent year, including the months when most clients request 

machines. 

d. Warranty: As a main component of machine sales, the duration of warranty was asked for each 

machine that they deal with, including the specific coverage, part replacements, labor/services provided, 

check-ups, and other forms of services. Specific questions for each warranty component were also 

included such as the types of parts that are only included in the warranties, or the requirements that must 

be accomplished by the clients for their machine to be eligible for warranty-covered labor.  
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e. Response time for access to spare parts: This is the time it takes for the manufacturers/suppliers to 

respond to the needs of their clients regarding parts replacement.  

f. Response time for access to after-sales services: This is the time to respond to after sales services 

given that the supplier has on-call mechanics (their number of available mechanics was also asked in 

the questionnaire) and the time it takes for a mechanic to reach their farthest client for hands-on machine 

repair. In case the manufacturer/supplier has multiple service centers, the farthest region in which they 

can offer their services was also asked. 

 

2.4   Survey Sites 

 

With the volume of production and presence of NAMDAC accredited agricultural and fisheries machinery 

manufacturers as bases for selection, Regions II, V, VI, and XIII were considered as the project survey sites. As seen 

in Table 1, the volume of production of palay in 2022 for Regions II, V, VI, and XII was 2,928,165.70 MT, 

1,329,004.41 MT, 2,321,593.72 MT, and 520,181.03 MT , respectively. Regions II, V, VI, and XIII had 8, 2, 5, and 

1 NAMDAC-accredited AFM manufacturers, respectively. The team conducted a face-to-face courtesy meeting and 

FGD/KII with the DA-RFOs, Manufacturers and FOs in Regions II, V, VI, and XIII using the formulated survey 

instruments. The actual survey intends to verify the parameters to be used for the unified selection system of the 

agricultural and fisheries machinery. A total of 88 participants attended the courtesy meeting and FGD/KII, wherein 

27 participants were from FOs, 17 participants from DA-RFOs, and 44 participants from Agricultural Machinery 

Manufacturers. NCR was also included in the survey since most of the large manufacturers/dealers/suppliers of 

agricultural machinery are located (Table 1). 

Table 1. Survey respondents from the four regions with the addition  of NCR manufacturers. 

Region Volume of 

Production 

(MT) (2022) 

Area 

Harvested 

(Has) (2022) 

NAMDAC 

Accredited 

Manufacturer 

in the area 

End 

Users/ 

Farmer 

Coop 

Regional 

Field 

Office 

Manufa

cturers 

REGION II  

(Cagayan Valley) 

2,928,165.70 621,995.30 8 8 3 6 

REGION V  

(Bicol Region) 

1,329,004.41 348,848.02 2 7 4 7 

REGION VI 

(Western Visayas) 

2,321,593.72 681,300.26 5 6 4 14 

REGION XIII 

(CARAGA) 

520,181.03 159,519.02 1 6 6 6 

NCR    - - 11 

TOTAL    27 17 44 

 

2.5 Establishment of a numerical rating system 

 

The Multiple Criteria Decision Making (MCDA) approach was used to establish the numerical rating system. The 

criteria for each of the three factors were identified. For performance-based factors, the criteria for each target machine 

were identified using the historical performance test data from AMTEC. For the manufacturer and end-user-based 

factors, their respective criteria were identified using the project field surveys in the study regions, as well as 

consultative meetings with manufacturers, DA RFO officials, and members of selected FOs. With the presence of 

historical test data for the performance-based factors, statistical analysis was used to determine the minimum 

acceptable value for each of the criteria, which serves as baseline for the rating system. A specific range of values for 

each criterion was then identified corresponding to a certain rating. The weighted sum of the criteria for the three 

factors were integrated to get the overall machine selection rating. The criteria weights per factor for each machine 

considered was determined using the weighing by ranking method while the weights of the three factors, namely the 

performance, manufacturer, and end-user-based factors were determined using the Analytical Hierarchy Process 

(AHP) The general framework for the establishment of the numerical rating system is shown in Figure 4. Using the 

individual rating scores from the three factors, the overall machine selection rating is determined by obtaining the 

weighted sum of the scores.  
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3. RESULTS AND DISCUSSION 

  

3.1 Survey Results from the Department of Agriculture Regional Field Offices (DA-RFOs) 

 

There were 4 selected regions (Region II, V.VI and XIII) where the RFOs, Manufacturers’, Farmer Organizations 

and other stakeholders were interviewed to gather primary data on the selection scheme for the agricultural machinery 

distribution program of the government. In Region II, all six identified machines were distributed by RFO II.  The 

highest number of machines distributed were the 4-wheel tractors in which a large portion was supplied by Kubota, a 

well-known manufacturer of various agricultural machines with numerous service centers across the Philippines. RFO 

II also revealed that other brands of combine harvesters, threshers, and 2-wheel tractors were also present supplied by 

ACT, which is a local manufacturer for two-wheel tractors. Based on the survey results from DA RFO II officials, the 

common problems reported by the FO recipients were the inappropriateness of the machines received. Some of the 

machines that were distributed to the farmers are not suitable to their corresponding farm because of the type of soil 

in the area or concerns that the machine parts needed for repair are not readily available from the nearest city.  

 

The FGD with the officials from RFO V shows that most of the distributed machines to the farmers in the regions 

were 2-wheel and 4-wheel tractors supplied by local manufacturers and distributed by private institutions. Common 

concerns that were raised to RFO V from farmers was the lack of service center that could accommodate some parts 

especially belts that are specific to a certain brand only. Given that there are not many manufacturers present in the 

region, the supply of machines largely depends on private suppliers and distributors. This means that the lack of spare 

parts would become a problem for the farmers once the existing service centers run out of pertinent parts.  

 

In the focus group discussion conducted with the officials of DA-RFO VI it shows that all six identified 

machineries were procured by the region in the last 5 years. The FGD also showed that the region conducted needs 

assessments before procuring the AFMs. Among Only thresher and pump/pump sets were reported by the recipients 

with problems. According to the recipients, these two machineries were heavy making hauling the machines difficult.  

 

The discussion between the UPLB, DA-PCAF, and DA RFO XIII teams mainly centered on the review of the 

appropriateness protocols involved in the distribution program to FO recipients. These protocols include the extent of 

the needs assessment conducted on the prospective FOs to get a better insight of the machines needed by the famers. 

The conduct of trainings directed to the operators of the cooperatives on basic repair and maintenance of the machines 

were also identified to lessen the services of a custom-hired mechanic, which also attributes to their expenses.  

 

3.2 Numerical Rating System 

 
The rating system implemented in this study is the 5-point Likert scale, in which scores of 1 to 5 with Table 2 as 

guide. Having this kind of system can be easily understood by the general stakeholders which makes the results of 

this study more comprehensible. Moreover, this scoring system is advantageous especially for representing the 

manufacturer and end-user-based criteria because the Likert scale is a psychometric measure of a person’s range of 

acceptance for a certain aspect (Bernstein, 2005). With the addition of intermediate scales (scores of 2, 3, and 4), the 

central tendency bias of the respondents towards one decision is significantly reduced (Jebb et al., 2021). Hence, the 

qualitative measures on after-sales provision and ease of operation for farmers can be quantified with the assignment 

Figure 4. Framework for the establishment of the numerical rating system 
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of a numerical score on the 5-point Likert scale. Though the Likert scale has multiple ranges, the 5-point scale was 

adopted with the basis on the results of Clark and Watson (2019) stating that a five-to-seven-point Likert scale 

generates higher mean scores compared to the highest score possible and having a significant statistical difference as 

compared with the 10-point Likert scale. 

 

Table 2. Guide in assessing AFM selection using the established numerical rating system. 

Rating 

Score 
Interpretation 

1 Minimum acceptable value is met but is not considered as competitive for machine selection 

2 Falls above the minimum acceptable value but is still considered unsatisfactory for machine selection 

3 Values are within the average for the specified criterion for machine selection 

4 Satisfactory values which are above average and is considered favorable for machine selection 

5 
Values possess the highest preference for a specific criterion and is considered as most favorable for 

machine selection 

 

For the performance-based factor, the historical AMTEC test data were the primary bases for selection of the 

criteria. Notably, some were chosen from consultative activities with mechanization experts. These performance-

based criteria represent the machine parameters that have the greatest impact on field operation as validated by the 

FOs. The specifications of the prime mover, as well as machine characteristics such as efficiencies, and the provision 

of safety features were identified as major concerns. It was also found out that accessibility to after-sales services 

constitute one of the most concerns of the FOs. The survey instrument contains information on the frequency of 

machine breakdown while in operation which is closely related to the accessibility of spare parts and after-sales 

services such as on-site machine repair.  

 

 Aside from the standards from the Philippine Agricultural Engineering Standards (PAES), manufacturer 

provisions for warranty duration and coverage, as well as service reach and repair service area were also identified as 

manufacturer-based criteria. Included in the survey activity were the acceptance of the farmers on the target machines 

that they have received for farm operation. The results revealed that ease of operation (maneuverability, control, and 

balance), ease of refueling for a maximized productive operation, and ease of spare parts and services acquisition 

comprise the end-user-based criteria as these parameters are farmer-specific indicators on how well the machine fits 

for farm operation. The identified criteria for performance, manufacturer, and end-user-based factors are summarized 

from Tables 3 to 5. 

 

  Table 3. Identified performance criteria and sub-criteria for the target machines. 

SMALL ENGINES 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      Percent of Rated Maximum Power at Varying Load  Percent 

2.      Percent Continuous Power at Rated Speed  Percent 

3.      Specific Fuel Consumption  mL kW-h-1 

4.      Noise Level  db(A) 

5.      Vibration g 

6.      Volume of Fuel Tank Per Max Engine Power in Name Plate mL kW-1 

HAND TRACTORS 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      PRIME MOVER:   

a.      Percent Continuous Power at Varying Load Percent 

b.      Specific Fuel Consumption mL kW-h-1 

c.      Volume of Fuel Tank Per Max Engine Power in Name Plate mL kW-1 

2.      POWER TRANSMISSION:   

Overall Transmission Efficiency (Percent Continuous Power of the Engine X Belt 

Efficiency X Peak Transmission Efficiency)  
Percent 

AgEng 2024 Proceedings

894



3.      IMPLEMENT: (2-bottom disc plow)   

a.      Forward Speed During Field Operation  kph 

b.      Percent Wheel Slippage Percent 

c.      Field Capacity Per Max Engine Power in Name Plate Ha h-kW-1 

4.      SYSTEM:   

Safety Features (e.g., belt cover, mud guard, light, emergency stop, etc)   

FOUR-WHEEL TRACTORS 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      PRIME MOVER:   

a.      Power Output Efficiency (Max and Continuous)  % 

b.      Specific Fuel Consumption  mL kW-h-1 

c.      Noise Db(A) 

d.      Volume of Fuel Tank Per Max Engine Power in Name Plate mL kW-1 

2.      POWER TRANSMISSION:   

a.      Overall Power Transmission Efficiency to PTO  Percent 

b.      Overall Power Transmission Efficiency to Hydraulic System Percent 

3.      IMPLEMENT (Plow and Rototiller)   

a.      Forward Speed during field operation kph 

b.      Percent Wheel Slippage Percent 

c.      Field Capacity Per Max Engine Power in Name Plater Ha h-kW-1 

4.      SYSTEM:   

Safety Features (e.g., canopy, lights, horn, etc )   

THRESHERS 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      PRIME MOVER:   

a.      Percent Continuous Power at Varying Load Percent 

b.      Specific Fuel Consumption  mL kW-h-1 

c.      Volume of Fuel Tank Per Max Engine Power in Name Plate  mL kW-1 

2.      POWER TRANSMISSION:  

Overall Transmission Efficiency (Percent Continuous Power of the Engine X Belt 

Efficiency X Peak Transmission Efficiency) 
Percent 

3.      MACHINE:   

a.      Threshing Capacity Per Max Engine Power in Name Plate  kg h- kW-1 

b.      Threshing Efficiency  Percent 

c.      Threshing Loss  Percent 

d.      Purity Percent 

e.      Broken Grains Percent 

f.       Cracked Grains Percent 

4.      SYSTEM:   

Safety Features (e.g., belt guard, length of feeding chute, emergency stop   

COMBINE HARVESTERS 

TECHNICAL PARAMETER UNIT OF MEASURE 
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1.      PRIME MOVER:   

a.      Percent Continuous Power at Varying Load Percent 

b.      Specific Fuel Consumption L kW-h-1 

c.      Volume of Fuel Tank Per Max Engine Power in Name Plate  mL kW-1 

2.      POWER TRANSMISSION:  

Overall Transmission Efficiency (Percent Continuous Power of the Engine X Belt 

Efficiency X Peak Transmission Efficiency) 
Percent 

3.      MACHINE:   

a.      Threshing Capacity Per Max Engine Power in Name Plate  kg h-kW-1 

b.      Field Efficiency  Percent 

c.      Total machine loss  Percent 

d.      Purity  Percent 

e.      Broken Grains Percent 

f.       Cracked Grains  Percent 

4.      SYSTEM:   

Safety Features (e.g., belt guard, length of feeding chute, emergency stop   

PUMPSETS 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      Maximum discharge capacity per input power  L s-kW-1 

2.      Maximum pump efficiency Percent 

3.      Total head per input power  m kW-1 

 

 

  Table 4. Identified end-user-based criteria and sub-criteria for the target machines. 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      EASE OF OPERATION:   

a.      Maneuverability, Comfort, and Balance   

b.      Between field transfer   

c.      Ease of Refueling 
Number per 8 h 

operation 

2.      RECORD OF BREAKDOWN:   

a.      Frequency of Prime Mover Breakdown 
Number  

(1-3-5 yrs. record) 

b.      Frequency of Transmission Breakdown 
Number  

(1-3-5 yrs. record) 

c.      Frequency of Implement/Machine Breakdown 
Number  

(1-3-5 yrs. record) 

3.      AFTER-SALES SERVICE:   

a.      Call Response Time h 

b.      Service Time (e.g., change oil/filter, replacement of consumable parts, 

adjustments, etc) 
h 

c.      Repair Time (e.g., engine over hauling, replacement of major transmission 

and implement/machine parts, etc) 
h 
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  Table 5. Identified manufacturer-based criteria and sub-criteria for the target machines. 

TECHNICAL PARAMETER UNIT OF MEASURE 

1.      Number of Service Centers:   

a.      Company-owned Service Centers Number 

b.      Accredited Service Centers Number 

2.      Description of a Typical Service Center (Random Selection):   

a.      Service Area m2 

b.      Stock Room Area m2 

c.      Admin and Reception Area m2 

d.      Number of Consumable Spare Parts on stock Number 

e.      Number of Major Spare Parts on stock Number 

f.       Number of Technicians Number 

g.      Number of Sets of Basic Repair Tools Number 

h.      Number of Service Vehicles Number 

   

For the data dependent performance-based criteria, the values for each rating were determined based on their 

normal distribution curve, in which the Mean and the Standard Deviation (MSD) was used to identify the minimum 

acceptable values. The intervals of which were determined based on the maximum or minimum value of each data 

sets. With the consideration of the MSD, this numerical rating scheme would take into consideration all the test data 

for the machines that were tested by AMTEC from year 2000, which gives a more accurate description on the ideal 

range of values for each performance criteria. The use of MSD simply serves as tools on where to draw the threshold 

line which is considered as the minimum acceptable value. For the manufacturer and end-user-based criteria, the 

similar Likert scale used in the field survey was used in the rating system, since the survey instrument is already 

designed to assign a numerical rating on the level of ease of the farmer for their field operation. The established 

numerical rating scale done in this study is summarized from Tables 6 to 11. 

 

  Table 6.  Established rating scales for the evaluation of 2-wheel tractors. 

PEAK TRANSMISSION EFFICIENCY (%) FIELD CAPACITY (ha h-1) 

Rating Range Rating Range 

1 77 and below 1 0.09 and below 

2 78-81 2 0.1-0.3 

3 82-85 3 0.31-0.5 

4 86-89 4 0.51-0.7 

5 90 and above 5 0.71 and above 

TRAVEL SPEED (kph) SAFETY FEATURES (# of provisions) 

Rating Range Rating Range 

1 2 and below 1 Provision of 1 safety feature 

2 2.1-4 2 Provision of 2-3 safety features 

3 4.1-5.3 3 Provision of 4-5 safety features 

4 5.4-7 4 Provision of 6-7 safety features 

5 7.1 and above 5 Provision of 8 safety features 

 

  Table 7. Established rating scales for the evaluation of 4-wheel tractors. 

SPECIFIC FUEL CONSUMPTION 

 (g kW-h-1)  

Rating Range   

1 218 and above   

2 219-208   
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3 207-198   

4 197-188   

5 187 and below   

OVERALL, POWER TRANSMISSION 

EFFICIENCY TO PTO (%) 

SAFETY FEATURES  

(# of provisions) 

Rating Range Rating Range 

1 80 and below 1 Provision of 1 safety feature 

2 81-85 2 Provision of 2 safety features 

3 86-90 3 Provision of 3 safety features 

4 91-95 4 Provision of 4 safety features 

5 96 above 5 Provision of 5 safety features 

 

  Table 8. Established rating scales for the evaluation of small engines. 

PERCENT OF RATED MAXIMUM POWER 

AT VARYING LOAD (%) 

SPECIFIC FUEL CONSUMPTION (g kW-h-1) 

Rating Range Rating Range 

1 80 and below 1 787 and above 

2 81-85 2 786-636 

3 86-89 3 635-486 

4 90-93 4 485-336 

5 94 and above 5 335 and below 

NOISE LEVEL (dB) 
VOLUME OF FUEL TANK PER MAXIMUM 

ENGINE POWER (L kW-1) 

Rating Range Rating Range 

1 96 and above 1 0.44 and below 

2 95-91 2 0.45-0.69 

3 90-85 3 0.7-0.94 

4 84-79 4 0.95-1.2 

5 78 and below 5 1.21 and above 

 

Table 9. Established rating scales for the evaluation of threshers. 

SPECIFIC FUEL CONSUMPTION  

(L kW-h-1) 

Volume of Fuel Tank Per Max Engine Power 

(L kW-1) 

Rating Range Rating Range 

1 1.36 and above 1 0.32 and above 

2 1.35-1 2 0.31-0.25 

3 0.99-0.75 3 0.24-0.18 

4 0.74-0.45 4 0.17-0.11 

5 0.44 and below 5 0.1 and below 

Threshing Capacity Per Max Engine Power 

(kg kW-h-1) 
Cracked grains (%) 

Rating Range Rating Range 

1 144 and below 1 7 and above 

2 145-244 2 6.9-5 

3 245-344 3 4.9-3 

4 345-444 4 2.9-1.6 

5 445 and above 5 1.59 and below 

Threshing Efficiency (%) Threshing loss (%) 

Rating Range Rating Range 
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1 99.1-99.3 1 2.2 and above 

2 99.4-99.5 2 2.1-1.6 

3 99.6-99.7 3 1.5-1.1 

4 99.8-99.9 4 1-0.56 

5 100 5 0.55 and below 

Purity (%) Broken grains (%) 

Rating Range Rating Range 

1 94 and below 1 0.86 and above 

2 94.1-95 2 0.85-0.65 

3 95.1-96 3 0.64-0.43 

4 96.1-97 4 0.42-0.21 

5 97.1 and above 5 0.2 and below 

SAFETY FEATURES (# of provisions)   

Rating Range   
1 Provision of 1 safety feature   
2 Provision of 2 safety features   

3 Provision of 3 safety features   
4 Provision of 4 safety features   
5 Provision of 5 safety features   

 

  Table 10. Established rating scales for the evaluation of combine harvesters. 

SPECIFIC FUEL CONSUMPTION (L kW-h-1) Field Efficiency (%) 

Rating Range Rating Range 

1 0.2 and above 1 62 and below 

2 0.19-0.14 2 63-71 

3 0.13-0.1 3 72-80 

4 0.09-0.06 4 81-88 

5 0.05 and below 5 89 and above 

Threshing Capacity Per Max Engine Power 

(kg kW-h-1) 
Threshing loss (%) 

Rating Range Rating Range 

1 43 and below 1 1.83 and above 

2 44-83 2 1.82-1.4 

3 85-124 3 1.39-0.96 

4 125-165 4 0.95-0.52 

5 166 and above 5 0.51 and below 

Purity (%) Threshing loss (%) 

Rating Range Rating Range 

1 92 and below 1 1.65 and above 

2 93-94 2 1.64-1.1 

3 95-96 3 1.09-0.57 

4 97-98 4 0.56-0.03 

5 99-100 5 0.02 below 

Broken grains (%) Cracked grains (%) 

Rating Range Rating Range 

1 0.97 and above 1 8 and above 

2 0.96-0.73 2 7.9-6.2 
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3 0.72-0.49 3 6.1-4.2 

4 0.48-0.24 4 4.1-2.1 

5 0.23 and below 5 2 and below 

SAFETY FEATURES (# of provisions)   

Rating Range   

1 Provision of 1 safety feature   

2 Provision of 2 safety features   

3 Provision of 3 safety features   

4 Provision of 4 safety features   

5 Provision of 5 safety features   

   

Table 11. Established rating scales for the evaluation of pumpsets. 

MAXIMUM DISCHARGE CAPACITY  

PER INPUT POWER, (L s-kW-1) MAXIMUM PUMP EFFICIENCY (%) 

Rating Range Rating Range 

1 18 and below 1 10 and below 

2 19-34 2 10-19 

3 35-50 3 20-28 

4 51-66 4 29-36 

5 67 and above 5 37 and above 

    
TOTAL HEAD PER INPUT POWER (%)  

Rating Range   

1 8 and below   

2 9-14   

3 15-20   

4 21-26   

5 27 and above   

  

For the manufacturer-based factors, the scale revolves around their respective response time in which they can 

accommodate the replacement of spare parts requested by their clients, as well as the time it takes for their on-site 

mechanic to reach the farthest client for in-field machine repair. This is apart from their warranty in which coverage 

duration comprise the rating scales. It was revealed that manufacturers who have multiple service centers spread across 

different regions provided better services for their clients, as compared to some that requires the farmers to bring the 

machine to their service centers for repairs. The numerical rating system ensures that the manufacturers who have 

better service reach and quick response time would be favored over the ones that are not responsive to their clients.  

 

The end-user-based criteria takes into consideration how the farmers react with the machines that they received in 

terms of daily operation. Having the advantage of the bipolar scaling of the Likert system in which respondents can 

have different levels of perception on agreement and disagreement towards an issue, the perception of the farmer 

towards different machine usage aspects such as the ease of operation and the number of times they need to refuel 

their machines for daily operation is quantified with the assignment of scores for each criterion. Since the overall 

machine selection rating depends on the ratings for the varying scores for the different performance, manufacturer, 

and end-user-based criteria can provide a more holistic description on which machine is to be selected amongst 

alternatives as this rating system is not solely dependent on performance factors only.  

 

 

3. CONCLUSION 

 
This study was conducted to establish a more holistic approach on selecting the Agricultural and Fisheries Machinery 

(AFM) by means of a numerical rating system. An overall machine selection rating is obtained from three factors namely: 

the performance, manufacturer, and the end-user-based factors. The respective criteria for these factors were identified 
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through the analysis of historical performance test data from AMTEC, as well as the conduct of project field surveys in 

four identified representative regions. Results revealed that the use of a 5-point Likert scale is an effective approach to 

evaluate the manufacturer and end-user-based criteria because it allows the respondents to quantifiably assess the range 

of acceptance towards the contents of the survey instruments which were the primary basis of the identifying the criteria 

for each factor. For performance-based factors, the use of the MSD was found to be effective in determining the range of 

values corresponding to each rating since it considers the normal distribution curve of the historical data. The developed 

rating system can be used by relevant agencies and policy makers in improving the protocols on selecting AFMs which 

can be a mediator for better machine allocations for farmers to achieve food security.  
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Abstract 

The commercialisation of pistachio nuts often faces issues of adulteration or misrepresentation 

concerning their cultivation practices and geographical origins. In this investigative study, we harnessed the 

capabilities of Hyperspectral Imaging (HSI) employing a SPECIM IQ camera to discern the irrigation 

treatments and geographical variations in pistachio nuts harvested from two distinct orchards in Spain, 

namely "La Seca" and "La Moraleja". Two experimental plots were designated as control and high irrigation 

within each orchard. Hyperspectral data, covering the spectral range of 400-1000 nm, were meticulously 

captured and analyzed to unravel the contrasts in water management practices and their implications on 

pistachios' commercial quality and yield. 

 

The ensuing image analysis encompassed a broad spectrum of parameters, including water supplied and 

yield, and assessing percentage distribution among split, non-split, and blank nuts. Additionally, the origin 

and commercial calibre were evaluated to gauge the commercial viability of the yield. Three different 

Machine Learning (ML) models were used: Partial Least Squares-Discriminant Analysis (PLS-DA), Support 

Vector Machine (SVM) and XGBoost, which robust models were conceived. The results show that pistachio 

origin and water treatment predictions showed high accuracy with F1 scores of 0.99 and 0.92, respectively, 

and a combined prediction achieving 0.97, indicating the significant impact of location and irrigation. In 

contrast, other predictions like yield were strong (R2 score of 0.88), but shell split and calibre predictions 

were less accurate, highlighting the potential of advanced modelling to enhance pistachio quality 

predictability. 

 

Our analysis accentuates the profound potential of HSI, especially when deployed with a SPECIM IQ 

camera, in delineating the irrigation treatment and tracing the geographical origin of pistachio nuts. This 

endeavour paves the way for ensuring authenticity and commercial quality in the pistachio trade. It augments 

our understanding of the interplay between irrigation practices and nut commercial quality, fostering a 

sustainable and informed agricultural paradigm. 

 

Keywords: Commercial Quality, Machine learning, Pistacia vera, Post-harvest, Traceability. 

1. Introduction 

Pistachio trees, originating from southern Central Asia, have spread globally, reaching regions such as 

modern-day Syria around 2000 years ago (Mir-Makhamad et al., 2022). Pistachio nuts are renowned for their 

unique flavour and are celebrated for their high protein, dietary fibre, and essential vitamins and minerals 

(Mandalari et al., 2021). As significant crops in global agriculture, pistachios are in high demand. In 2022, 

Iran led in harvested area with 497,484 hectares, followed by Turkey (408,709 hectares) and the United States 

(173,207 hectares) (FAO, 2024). However, production quantities were highest in the United States (400,070 

tons), with Turkey and Iran producing 241,669 tons and 239,289 tons, respectively. Despite market instability 

and import competition, Spain has seen increased interest in pistachio cultivation and rising consumption 

(CBI, 2020). The pistachio industry faces challenges such as adulteration, mislabelling, and the diverse 
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impacts of irrigation practices on yield and quality. These issues necessitate robust, non-invasive techniques 

to trace the geographical origin and determine irrigation treatments. Spectroscopy, which analyses material 

interactions with electromagnetic radiation, offers a solution by examining light spectra. This technique, used 

to evaluate fruit quality (Lin & Ying, 2009), leaf water content (Rodríguez-Pérez, 2017), and disease 

assessment (Vélez et al., 2024; Xie et al., 2017), has been applied in the agri-food sector. Hyperspectral 

Imaging (HSI), combining imaging systems and spectroscopic instruments to provide spatially resolved 

spectral data, has gained popularity in this field (Wu et al., 2022). 

 

Unlike traditional spectrometers, HSI captures spectral profiles across areas, offering comprehensive 

characterization of absorption and reflection bands linked to objects and their conditions (Khan et al., 2022). 

HSI has proven feasible for disease detection, classification, grading, and chemical attribute detection in 

various agricultural products (B. Wang et al., 2023). By capturing and analysing images across a broad 

spectrum of wavelengths, HSI systematically detects nuances in grains, fruits, vegetables, and meats (Zhu et 

al., 2020). Over the past two decades, HSI has shown promise in measuring quality and protecting 

horticultural and agricultural products, evolving from remote sensing, computer vision, and point 

spectroscopy to provide superior defect and contamination detection (Sethy et al., 2022). These spectral 

signatures are crucial for acquiring agricultural information and detecting quality attributes of products like 

pistachio nuts (C. Wang et al., 2021). The post-harvest phase, critical for biosecurity, diagnostics, and quality 

assessment, significantly impacts commercial value and consumer acceptance (Palumbo et al., 2022). HSI 

contains hundreds of spectral bands, unlike RGB images with three colour channels. Despite the complexity 

of analysing this data, its potential is undeniable, with new techniques continually evolving (L. Wang & 

Zhao, 2016). Machine Learning (ML) has enhanced HSI applications for non-destructive, real-time food 

quality and safety assessments, from sorting to sales (Kang et al., 2022). Integrating HSI with ML has 

revolutionized non-destructive testing in agriculture and food quality assessment. ML has enabled precise 

pistachio mass estimation (Saglam & Cetin, 2022), damage detection in mango using NIR hyperspectral 

images (Vélez Rivera et al., 2014), accurate prediction of apple quality parameters (Çetin et al., 2022), and 

mango ripeness estimation via field hyperspectral imaging and ML (Gutiérrez et al., 2019). These advances 

highlight the significant impact of HSI and ML in improving food quality, agri-food production, and safety 

inspection. 

 

This study explores HSI technology and ML's potential to differentiate between irrigation treatments and 

the geographical origins of pistachios from two Spanish orchards. Using Python, Scikit libraries, and ML 

models like PLS-DA, SVM, and XGBoost, the study hypothesizes that irrigation methods and locations 

significantly affect pistachio yield and commercial quality. HSI images were used to build models for 

classifying pistachios based on origin and irrigation treatments, enhancing their traceability and authenticity. 

2. Materials and Methods  

 

In 2022, a study was conducted in two pistachio orchards in Valladolid, Castilla y León, Spain. These 

orchards, named "Moraleja de las Panaderas" (M) and "La Seca" (S), hosted pistachio plants from the Pistacia 

vera cv. Kerman variety. These 7-year-old (Moraleja) and 15-year-old (La Seca) plants were grafted onto 

UCB rootstock, a P. atlantica × P. integerrima hybrid, and planted in a 7 × 6 m triangular pattern to maximise 

sunlight and resource use. The male cultivar used was cv. Peter. Standard agricultural practices, including 

agrochemical applications, were followed to ensure optimal yield. Two irrigation treatments were applied: a 

high irrigation treatment (H) delivering 50% more water than the control (C). In "La Seca", irrigation from 

January to October used a computer-controlled drip system, providing 2,750 m³ ha⁻¹ for the control (SC) and 

4,660 m³ ha⁻¹ for the high irrigation treatment (SH). In "Moraleja", irrigation from May to October provided 

844 m³ ha⁻¹ for the control (MC) and 1,161 m³ ha⁻¹ for the high treatment (MH). This systematic variation 

aimed to study the effects of different irrigation levels on pistachio growth and productivity. 

 

By October 2022, twenty trees (five per treatment and location) were harvested. Agronomic and 

commercial quality metrics were assessed, including yield (kg per tree) and nut size (number per ounce). In 

addition, percentages of open husk (Split), closed husk (Non-Split) and empty nuts (Blank) were determined 

from representative subsamples of twenty-five nuts per tree. 
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Hyperspectral imagery was captured using the SPECIM IQ camera, equipped with a VNIR CMOS sensor, 

offering a 400-1000 nm spectral range. The camera, controlled via Specim's software, stored data on SD 

cards and operated on a 5200 mAh Li-Ion battery. This setup facilitated capturing high-quality images under 

optimal conditions (temperatures between +5°C and +40°C, and up to 95% non-condensing humidity). The 

collected pistachios were obtained from three bunches per tree across different orientations and heights. Due 

to tree age differences, some height samples were unobtainable from the Moraleja site. After processing, 

peeling and drying, a total of 158 images (2,818 pistachio nuts) were captured.  

 

Python 3.9 was used for image processing and model creation alongside libraries like Pandas, Numpy, 

Scikit-learn, and Scikit-image. The reflectance of the images was corrected using white and dark references, 

and Scikit-image's Otsu's binarisation removed the background. The spectra were scatter-corrected using 

standard normal variate (SNV) before analysis. Hyperspectral data analysis involved extracting the mean 

spectra of each pistachio and using Machine Learning (ML) models to predict various parameters. The 

models employed were Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine 

(SVM), and Extreme Gradient Boosting (XGBoost), trained on an Intel i9 processor with 16 GB of RAM 

and an NVIDIA GeForce RTX 3070Ti GPU. Model evaluation used metrics like F1 scores, confusion 

matrices, R², Mean Absolute Error (MAE), and Mean Squared Error (MSE). The dataset was split into 

training (70%) and validation (30%) sets. Scikit-learn's RandomizedsearchCV optimized model parameters 

using 10-fold cross-validation to achieve high accuracy and low Root Mean Squared Error (RMSE). 

3. Results 

Origin 

The study found notable spectral differences between the two locations, particularly in the Near-Infrared 

(NIR) region around 970 nm, associated with water content (Büning-Pfaue, 2003). More pronounced 

differences were observed at wavelengths 675 nm (chlorophyll) and 450 nm (carotenoids) (Wellburn, 1994), 

especially in the "La Seca" location. The predictive models reflected these spectral variations, with all 

achieving F1 scores above 94%. The PLS and SVM models performed similarly overall (both with an F1 

score of 0.99). However, SVM excelled in predicting "La Seca" pistachios, while PLS was better for 

"Moraleja" pistachios (Table 1). 

 

Irrigation Treatment 

The study also identified spectral differences based on irrigation treatments, especially in the NIR region 

at 970 nm, linked to water content, and at 480 nm, related to carotenoids. These differences were more 

noticeable in the "La Seca" location. The predictions reflected these spectral variations with high F1 scores. 

XGBoost had the lowest performance (F1 score of 0.72), while PLS achieved the highest F1 score of 0.92 

(Table 1). 

 

Origin and Irrigation Treatment 

Combining origin and irrigation treatment for predictions provided better results than mixing different 

locations, which could lead to poorer outcomes. Table 1 shows significant differences across the entire 

wavelength range for the four origin and irrigation treatment combinations. This approach improved 

classification accuracy, obtaining higher F1 scores. SVM produced the highest F1 score of 0.97, while 

XGBoost had the lowest at 0.87 (Table 1). 
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Table 1. Prediction results of the pistachio origin and irrigation treatment models and their interaction 

classification. 

Origin 

PLS XGBoost SVM 

F1 = 0.99 F1 = 0.94 F1 = 0.99 

 
Predicted 

 
Predicted 

 
Predicted 

La Seca Moraleja La Seca Moraleja La Seca Moraleja 

R
ea

l 

L
a 

S
ec

a 

412 3 

R
ea

l 

L
a 

S
ec

a 

391 24 

R
ea

l 

L
a 
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ec

a 

415 0 

M
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5 428 

M
o
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ja
 

22 409 

M
o
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ja
 

7 424 

Irrigation treatment 

PLS XGBoost SVM 

F1 = 0.92 F1 = 0.72 F1 = 0.77 

Class 
Predicted 

Class 
Predicted 

Class 
Predicted 

High Control High Control High Control 

R
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l 

H
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h
 

259 59 

R
ea

l 

H
ig

h
 

170 148 

R
ea

l 

H
ig

h
 

254 64 
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l 

9 519 

C
o
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l 

93 435 

C
o

n
tr

o
l 

128 400 

Origin and irrigation treatment 

PLS XGBoost SVM 

F1 = 0.95 F1 = 0.87 F1 = 0.97 

Class 

Predicted 
Class 

Predicted Class Predicted 

MH SH MC SC MH SH MC SC  MH SH MC SC 

R
ea

l 

MH 121 0 0 0 

R
ea

l 

MH 90 17 7 7 

R
ea

l 

MH 120 0 1 0 

SH 0 310 0 0 SH 1 296 9 4 SH 0 308 2 0 

MC 0 2 166 29 MC 1 9 161 26 MC 0 0 189 8 

SC 0 0 10 208 SC 2 5 23 188 SC 0 0 15 203 

MH, Moraleja High; SH, La Seca High; MC, Moraleja High; SC, La Seca control 

 

Yield and commercial quality traits predictions. 

In pistachio production, yield, split, non-split, blank, and calibre are critical quality factors. PLSR, 

XGBoost, and SVM regression models were tested to predict these parameters. Accurate yield prediction, 

crucial for economic planning, showed high R² scores of 0.89 for PLS, 0.88 for SVM, and 0.38 for XGBoost. 

For split pistachios, SVM performed best with an R² of 0.58, while PLS and XGBoost had R² values of 0.56 

and 0.37, respectively. Non-split predictions were lower, with PLS achieving the highest R² of 0.37. PLS 

excelled with an R² of 0.71 for blanks, compared to XGBoost’s 0.48. Lastly, SVM predicted calibre most 

accurately with an R² of 0.57 (Table 2). 
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Table 2. Prediction results of the regression models for pistachio yield, split, non-split, blank and calibre. 
Model 

Y
ie

ld
 R² MAE MSE 

C
al

ib
re

 R² MAE MSE 

PLS 0.89 0.72 0.81 0.54 0.71 0.75 

XGBOOST 0.38 1.84 4.57 0.45 0.90 1.21 

SVM 0.88 0.72 0.89 0.57 0.63 0.70 

Model 

S
p

li
t 

R² MAE MSE 

N
o

n
-

S
p

li
t 

R² MAE MSE 

B
la

n
k
 R² MAE MSE 

PLS 0.56 6.74 74.15 0.37 5.30 55.53 0.71 5.11 49.56 

XGBOOST 0.37 8.96 104.33 0.23 6.13 68.10 0.48 6.92 90.69 

SVM 0.58 6.28 70.98 0.27 4.97 64.26 0.67 4.94 57.23 

MAE, Mean Absolute Error; MSE, Mean Squared Error. 

4. Discussion 

 

This study investigates the use of non-invasive techniques, specifically HSI in the 400-1000 nm range, to 

predict the geographic origin of pistachios and evaluate the impact of different irrigation practices. The 

research also aims to predict key quality and yield metrics of pistachios. Models using Partial Least Squares 

(PLS), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), performed excellently 

distinguishing pistachios from the La Seca and Moraleja locations, achieving F1 scores above 94%. PLS and 

SVM models achieved an F1 score of 0.99 for water content and colour pigments, demonstrating precise 

differentiation based on these spectral characteristics. In predicting geographic origin, the models were 

inspired by previous research using deep learning techniques, which have also achieved high accuracy in 

classifying pistachio types (Singh et al., 2022). For instance, the EfficientNet-B3 model successfully 

identified Iranian pistachio cultivars with an average precision, recall, and F1 score of around 96.7% 

(Soleimnipour et al., 2022). This demonstrates the strong capability of machine learning models to ensure 

the traceability and authenticity of agricultural products. 

 

The study also explored the effects of irrigation treatment on pistachio spectral signatures, revealing 

significant differences, particularly at the 970 nm peak in the Near-Infrared (NIR) region, which is linked to 

water content (Büning-Pfaue, 2003). The best F1 score for distinguishing between different irrigation 

treatments was 0.92 with the PLS model. Differences at the 675 nm and 450 nm bands associated with 

chlorophyll and carotenoids were also noted (Walsh et al., 2020; Wellburn, 1994). Combining geographic 

origin and irrigation treatment variables improved classification performance, achieving higher F1 scores. 

The SVM model reached an F1 score of 0.97, demonstrating its effectiveness in this combined approach. 

Similar results were found in predicting the origin of Zanthoxylum bungeanum Maxim with a 97% accuracy 

(Ke et al., 2020) or in Jatropha curcas L. seeds (Gao et al., 2013) with a 94% correct classification. This 

highlights the subtle impact of both geographical origin and irrigation practices on the spectral signatures of 

pistachios. 

 

Regression models developed in the study showed high R² scores for predicting yield and commercial 

quality factors. The yield prediction achieved an R² of 0.88 with the SVM model, while the prediction of 

blank quality reached an R² of 0.71 with the PLS model. As previous research (Caporaso et al., 2018; Elmasry 

et al., 2012; Torres-Rodríguez et al., 2022; B. Wang et al., 2023), these models effectively forecast essential 

agricultural metrics, offering valuable tools for optimizing pistachio production. However, modelling the 

split and non-split conditions of pistachios proved challenging, with lower R² scores highlighting the 

difficulties in using spectral data for these specific quality attributes. 

 

The study underscores the potential of combining HSI with machine learning in agricultural science, 

particularly for identifying the unique characteristics of pistachios based on their geographic origin, irrigation 

methods, and quality markers. Despite challenges in classifying certain features accurately, the findings lay 

a foundation for future research into the spectral analysis of various pistachio varieties. Integrating these 

insights with precision agriculture technologies could significantly improve agricultural productivity and 

management. Advancements in HSI technology, such as its application through drone technology, offer 

promising avenues for optimizing water usage, enhancing crop quality, and promoting sustainable 

management practices in pistachio orchards. These developments could lead to more efficient and sustainable 
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pistachio production, benefiting increased efficiency, improved productivity, and reduced environmental 

impact. 
 

5. Conclusions 

 

This study demonstrates the effectiveness of Hyperspectral Imaging (HSI) and Machine Learning (ML) 

in accurately identifying the geographic origin of pistachios and assessing the impact of irrigation practices 

on their spectral properties. By using advanced models like Partial Least Squares (PLS), Support Vector 

Machine (SVM), and Extreme Gradient Boosting (XGBoost), high F1 scores above 94% were achieved, 

particularly in distinguishing pistachios from La Seca and Moraleja. PLS and SVM models excelled with F1 

scores of 0.99 in evaluating water content and colour pigments, underscoring HSI's potential in precision 

agriculture. The study also highlighted distinct spectral signatures from different irrigation treatments, 

especially the NIR region's notable peak at 970 nm. The PLS model stood out with an F1 score of 0.92, 

illustrating HSI's role in improving sustainable agricultural resource management. Regression models 

showed promising results, with an R² score of 0.88 for yield predictions using SVM and 0.71 for blank 

predictions with PLS. Despite challenges in predicting shell split and calibre, the study confirms HSI as a 

precise tool for identifying pistachio characteristics and forecasting commercial quality and yield, marking a 

significant advancement in optimizing pistachio production. 
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Abstract 

Modern dairy farming has intensified considerably, and its production model has led to an increase in milk production 

per cow; however, it has also been associated with an elevated incidence of nutrition-related metabolic disorders, such as 

ketosis. This condition frequently goes undetected by farmers because it is often not severe enough to show symptoms, 

but it still impacts animal welfare and productivity. Hence, the significant challenge lies in the timely detection by the 

farmers. 

In-line milk monitoring systems based on NIR spectroscopy offer insights into cows’ metabolic conditions resulting 

from milk composition analysis. However, such instruments may struggle distinguishing between ketotic and healthy 

animals, especially during subclinical metabolic conditions. In contrast, aquaphotomics can constitute an innovative 

approach to detect subtle biochemical changes at the onset of the disease. This discipline considers the molecular spectrum 

of water as a biomarker to point out any biological system’s behaviour and functionality. Such a chemometric approach 

leverages water’s ubiquitous presence as a mirror that reflects any system perturbation, representing a promising avenue 

for enhancing the sustainability of modern dairy production. 

A study was conducted on 621 milk spectra from three Italian dairy farms. Milk samples underwent NIR spectroscopy 

analysis, and the collected data underwent processing using the open-source software Gnu Octave. The developed script 

enabled the identification of the most significant absorption wavelengths of water for distinguishing between healthy and 

ketotic cows using multivariate spectral analysis and chemometrics methods (e.g. Quadratic Discriminant Analysis - 

QDA, and Partial Least Square Regression Analysis - PLSR). Preliminary results from the QDA, utilising only three 

water wavelengths, showed a 77.7% accuracy rate classification. Meanwhile, the PLSR analysis suggests that there is a 

significant opportunity for improvement. The aim is to expand the number of samples and farms to create a more robust 

mathematical model to increase classification accuracy. 

 
Keywords: Livestock Production, Subclinical Ketosis, Diagnostic Methods, Data Processing, Programming Language 

 

1 Introduction 

The agri-food supply chain is undergoing a transformation towards increased sustainability: it is necessary to produce 

more while using fewer resources to meet the growing and changing global population’s food demands. In particular, the 

dairy industry has experienced a significant intensification in its production model in recent years, with global production 

of cow’s milk reaching more than 757 million tons in 2022 (CLAL, 2024). Despite a reduction in the livestock heritage 

of dairy cattle in highly developed countries such as North America, Europe and Oceania, there has been a notable increase 

in the average annual milk production per cow, primarily driven by North America. There, milk production per cow 

reached 10.6 million tonnes in 2022, reflecting a 25% increase compared to the production recorded in 2000 (FAO, 2023). 

The reasons behind this intensification can be attributed to advancements in technology within the dairy cattle industry 

through automation, robotics, big data, sensors, artificial intelligence, and significant scientific breakthroughs in genetics 

(Neethirajan, 2020). 

The production scenarios foresee a steady expected increase in the coming years, with annual milk yields potentially 

doubling in the next 50 years (Britt et al., 2018). However, such a drive for increasingly high-performance production 

conditions may affect the economic, social, and environmental sustainability of livestock farming, particularly in the case 

that the welfare and health of the animals are not prioritised. It is a pressing concern that affects both farmers and 

consumers. A significant aspect arising from the intensification of agricultural practices is the heightened occurrence of 

metabolic disorders in dairy cattle, such as ketosis. Ketosis is a metabolic disease characterised by elevated levels of 

ketone bodies in the bloodstream, resulting from alterations in carbohydrate and fatty acid metabolism (Deniz et al., 

2020). However, beyond the clinically evident form, dairy cattle may experience a subclinical manifestation of the 
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disease: this hidden form of ketosis silently compromises animal welfare, productivity, and reproductive performance, 

exacerbating the economic and sustainability issues faced by the dairy industry (Guliński, 2021). 

Conventional veterinary diagnostic methods and sensoristic technologies based on NIR spectroscopy for real-time 

monitoring of milk composition may have limitations in the early detection of ketosis, following their inability to directly 

assess metabolic changes at the molecular level, especially during the subclinical phase of the disease. In this context, 

aquaphotomics emerges as a promising approach to overcome these limitations (Tsenkova, 2005). This scientific 

discipline focuses on the molecular interactions between water and other constituents, offering a deeper understanding of 

the status, behaviour, and functionality of a biological system. In particular, the three-dimensional molecular network of 

hydrogen bonds within water is considerably influenced by the chemical content and the biological and physical 

conditions of the system. This dynamic equilibrium leads to conformational changes in water molecules, which alters the 

absorption pattern of water in its near-infrared spectrum, acting as a molecular mirror of matter and energy reflecting the 

intricate characteristics of a system (Muncan and Tsenkova, 2019). Veterinary diagnostic studies conducted using 

aquaphotomics for the early identification of mastitis in dairy cattle demonstrate the potential of water as a biomarker 

responsive to the perturbations induced by the onset of the disease. During the initial stages this metabolic state, the 

concentration of many analytes varies, resulting in subtle changes that may not be visible when analysing the spectra of 

those compounds alone. Water amplifies these signals, enhancing their discernibility and facilitating more comprehensive 

monitoring of the animal’s physio-pathological state (Tsenkova and Muncan, 2021). As with spectroscopic analysis 

methods, chemometrics and pattern classification methods are essential tools in aquaphotomics (Tsenkova et al., 2018). 

This study aims to assess the effectiveness of a mathematical model developed in the Gnu Octave programming 

language for determining the metabolic state of dairy cattle using the spectral pattern of water as a biomarker. This 

approach proposes innovative monitoring of animals’ metabolic performance for the early detection of ketosis in intensive 

farming. 

2 Materials and Methods 

2.1 Milk samples 

The experimental activity involved three dairy farms located in the Lombardy region (Italy), all equipped with an 

automated milking system incorporating AfiLab TM (S.A.E. Afikim, Afikim, Israel) (Leitner et al., 2012), a device for 

real-time analysis of the qualitative and quantitative characteristics of the milk produced. This NIR device provides 

accurate information on the fat, protein, lactose concentration, somatic cell counts or electric conductivity for each cow, 

allowing rigorous daily monitoring of animals. In particular, the fat-protein ratio represents a valuable indicator parameter 

for a preliminary assessment of the cow’s health status: if it is higher than 1.4, it indicates the possibility of subclinical 

ketosis (Guliński, 2021). 

The sampling took place for two years to ensure the representation of different production conditions and cow 

populations. Each milk sample underwent analysis for its fat-protein ratio, and if higher than 1.4, this was classified as 

“Ketotic”, based on the established criteria. Following the collection and labelling, samples were stored frozen at -18°C 

until the day before NIR analysis when they were thawed. The samples were then preheated to 40°C in a water bath before 

being measured with a portable NIR spectrophotometer. 

2.2 NIR analysis 

NIR spectra were collected in reflectance mode with the MicroNIR TM OnSite-W (VIAVI Srl, Italy), within the 908 

nm to 1676 nm wavelength range (50 scans; 125 reading points). For each sample, spectra were acquired in triplicate, 

including pure water spectra as control. Before the analysis, the instrument underwent calibration for the black, in the air, 

and for the white, using the provided standard. 

The spectral data obtained were then processed to verify the suitability of the water molecular system in determining 

the metabolic state of dairy cattle and, in particular, to discriminate between healthy and ketotic cattle.  

2.3 Data Processing 

The GNU Octave software language program (version 8.4.0 https://www.gnu.org/software/octave/) was used to 

realise a script for a chemometric model to identify the class of belonging of a given milk sample based on the chemical 

characteristics of its near-infrared spectrum. The code enables the execution of multivariate spectral analysis and the 

application of chemometric models to NIR spectra of milk to extract the spectral pattern of water absorption related to 

the onset of ketosis. Spectral data elaborations included: 
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• Spectral subtraction of the average spectrum of pure water to isolate the specific spectral characteristics of all 

the components contained in the milk. 

• The second derivative Savitzky-Golay smoothing (second-order polynomial fit, 21 points), to improve the 

spectral resolution, bringing to evidence information partially obscured by background noise. 

• Multiplicative Scatter Correction and Normalisation to reduce the physical variability between samples caused 

by the scattering of incident light. 

• Aquagrams graphic representation to visualise and interpret the interactions between water molecules and other 

analytes. 

• Principal Component Analysis (PCA) to investigate the variables most involved in the differentiation of samples 

and to uncover complex relationships between spectral variables. 

• Quadratic Discriminant Analysis (QDA) to maximise the separation between classes in the spectral data. 

• Partial Least Squares Regression (PLSR) to establish quantitative relationships between spectral data and the 

variable of interest (i.e. the fat-protein ratio). 

The identification of the most representative wavelengths for the aquagrams construction was carried out by 

subtracting the average value of the two normalised matrices obtained from ketotic and healthy groups of samples. The 

common wavelengths between the two groups for which the normalised absorbances differed the most were then selected. 

PCA was carried out using a limited portion of the spectrum, with wavelengths between 1310 and 1589 nm, aligning 

with the intervals defined by the Water Matrix Coordinates (WAMACS) (Tsenkova, 2009). This range corresponds to 

the absorption coordinates of the water matrix, with specific molecular conformation and distinctive spectral properties, 

as Vitalis et al. (2023) pointed out. These bands typically exhibit activation in response to any perturbations of the system. 

From the analysis of the loadings on the three principal components, it was possible to identify the top ten water 

wavelengths most involved in the differentiation between the two classes. 

QDA was performed to identify the combination of three water wavelengths (among those resulting from the PCA) 

and the lactation number of the animals, that maximises the separation of the two groups of samples. The dataset was 

split into a calibration set, containing 60% of the observations chosen randomly, and a validation set, with the remaining 

40%. For each set, confusion matrices were constructed to evaluate the performance of the classification models, and to 

verify its ability to distinguish between the two categories of samples. 

PLSR was employed to establish a predictive model relating the fat-protein ratio of the milk samples to the selected 

water wavelengths in the interval between 1310 and 1589 nm. The model performance was assessed using metrics such 

as coefficient of determination (R²), root mean square error (RMSE), per cent bias (PBIAS), root mean square residual 

(RSR) and correlation index (r) on both the calibration and validation datasets (Moriasi et al., 2007). 

3 Results and Discussion 

A total of 207 milk samples were collected from the farms participating in the study. Among these, 146 samples were 

from “Agricultural Society Della Bona Faustino” (Gambara, BS, Italy), 45 from “Agricultural Society Brocajoli Dr 

Massimo Luigi” (Marcaria, MN, Italy) and 16 from “Agricultural Society Our Dream’s Farm Colombo Matteo” (Brignano 

Gera d’Adda, BG, Italy). For each sample, three spectra were obtained, resulting in a total of 621 spectra, with 54 

classified into the ketotic group (prevalence 8.7%). The observed incidence of ketosis is lower compared to reported 

Italian literature data, which suggests a prevalence of 23% (Bellato et al., 2023). 

Figure 1 shows the raw spectra of the milk samples collected from the three farms, with the pure water spectra as 

control. 

The raw milk spectra in the NIR region revealed the presence of specific absorption peaks at 970, 1190, and 1450 nm, 

associated with water absorption bands and indicative of the molecular vibration modes of water molecules present in 

milk samples. For the purposes of the multivariate spectral analysis, preprocessing methods were therefore applied to 

enhance the quality of the data. These steps included Spectral Subtraction (Fig. 2a), Second derivative Savitzky-Golay 

Smoothing (Fig. 2b), Multiplicative Scatter Correction and Normalisation (Fig. 2c). 

The visualisation of the role of water in discriminating the metabolic conditions of dairy cattle has required the 

construction of aquagrams, which are graphical representations of water absorbance spectral patterns reporting the 

normalised absorbance within the WAMACS. The absorption bands detected in the normalised spectra are: 1323, 1329, 

1335, 1391, 1397, 1404, 1410, 1515, 1521 and 1527 nm. These wavelengths correspond to a specific structural 

characterisation of water molecules. In particular, 1323, 1329 and 1335 nm are water bands indicating the presence of 

water molecules bound to protons, forming small clusters: a possible explanation is that the onset of ketosis alters the 

acid-base balance of the organism because acetone, acetoacetate and beta-hydroxybutyrate, the main ketone bodies 

released in the blood, are weak acids. The 1391 nm band is associated with trapped water, which are molecules with 
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limited mobility following the formation of a three-dimensional network of water hydrogen bonds that restrict their 

movement: also, in this case, this could be related to water trapped within the solvation shells. The 1397, 1404 and 1410 

nm are bands correlated with free water molecules without hydrogen bonds or trapped water: during ketosis, there is a 

significant mobilisation of lipids, which are non-polar compounds that do not interact with water, thus increasing the 

fraction of free water in the system. The 1515 nm corresponds to water strongly bound: the presence of ketone bodies 

facilitates strong hydrogen bonding with water molecules due to the presence of carbonyl functional groups (C=O) and 

hydroxyl groups (OH), which can act as donors or hydrogen bond acceptors. Similarly, 1521 and 1527 nm correspond to 

hydrogen-bonded hydroxyl groups: the propensity of ketone bodies to form hydrogen bonds with water could explain the 

activation of these wavelengths during ketosis.  

 

Figure 1 Raw milk spectra, where each colour represents a NIR acquisition. Observations with lower absorbance values 

correspond to water pure spectra. 

 

Figure 2 Spectral preprocessing methods; spectral subtraction of the average spectrum of pure water (a), second derivative 

Savitzky-Golay smoothing (b) and normalisation of samples (c). 

Figure 3 reports the aquagrams resulting from the samples of the three farms analysed, highlighting differences among 

ketosis and healthy conditions. 

 

Figure 3 Aquagrams of milk samples from the three dairy farms. Red line for animals with the ketosis condition and blue 

line for healthy cattle. 
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The PCA was conducted utilising three principal components. The score plot (Fig. 4a) using PC1 (81.8% of cumulative 

explained variance) vs. PC2 (94.8% of cumulative explained variance) vs. PC3 (99.4% of cumulative explained variance) 

revealed that ketotic samples tend to separate primarily along the second and third principal components, although this 

separation is not as pronounced. The loading plot (Fig. 4b) indicates that this separation is mainly attributed to 10 specific 

wavelengths: 1323, 1329, 1335, 1404, 1410, 1416, 1422, 1497, 1503 and 1509 nm. 

 

Figure 4 Score (a) and Loading (b) plots of milk samples from the three dairy farms. Red dots for animals with the ketosis 

condition and blue dots for healthy cattle. The majority of ketotic samples identified by PCA are enclosed within the red 

line. 

The 10 water absorption bands extracted from PCA nearly overlapping with those identified during the construction 

of the aquagram. Despite the lack of clear differentiation evident in both the aquagram and PCA score plot between the 

two sample classes, this overlap emphasises the importance of these wavelengths in distinguishing between healthy and 

ketotic cattle. Table 1 summarises the structural characterisation and the assignment of water absorption bands found to 

be activated during the preliminary processing of the spectra and with the execution of PCA. 

Table 1 Coordinates of the molecular matrix of water with their spectroscopic and structural characterisation (Tsenkova, 

2009; Kojić et al., 2014; Vitalis et al., 2023). 

Wavelengths (nm) Assignation  

1323-1329-1335 Free OH in small proton hydrates H+(H2O)5, H+(H2O)2 

1391-1397 Trapped water and H2O symmetric stretch in proton hydrate H+(H2O)4 

1404-1410-1416 Free water molecules without hydrogen bonds (S0) and free OH- or trapped water 

1422 Water hydration, H-OH and O-O bond 

1497 Water molecules with four hydrogen bonds (S4) 

1503-1509-1515 ν1, ν2 and strongly bound water 

1521-1527 
Hydrogen-bonded hydroxyl groups, the first overtone of hydrogen-bonded O-H 

stretching and bending fundamental 

 

The QDA was implemented on the calibration set of the three dairy farms participating in the study (32 milk spectra 

from ketotic group, 340 from healthy group). The code developed with GNU Octave randomly selects samples for 

splitting between calibration and validation sets for each run. Overall, the accuracy achieved is high indicating the 

adequacy of the mathematical model built on the theoretical principles of aquaphotomics. However, the results obtained 

underscore also the limitations of the QDA model, which is not immune to misclassifications. Specifically, the presence 

of a significant number of non-ketotic samples erroneously classified as ketotic (22.9%) suggests a similar response of 

the water bands utilised in the model to both samples’ classes. While the use of only three water bands highlights the 

model’s robustness, it also indicates challenges for broader practical applications, such as in a milking parlour setting. 
Expanding the spectral range by incorporating additional wavelengths could potentially address this limitation, offering 

improved discrimination between ketotic and non-ketotic samples, reducing in this way the need for extensive verification 

and analysis by the farmer. 

Excellent results were also achieved for the validation set (22 milk spectra from ketotic group, 227 from healthy 

group), using the combination of wavelengths defined by the calibration set. The results of QDA are summarised in Table 

2. 
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Table 2 Confusion matrices for the calibration and for the validation sets 

 

 

The PLSR model was finally developed to predict the fat-protein ratio from the absorbance measured for each 

wavelength defined by the Water Matrix Coordinates interval. Considering 15 components, the predictive model was 

applied using the same calibration and validation sets utilised with the QDA. Figure 5 shows the scatter plot of the model, 

applied to the calibration (a) and to the validation (b) sets, with the resulting metrics obtained. 

 

Figure 5 Scatter Plot of the PLSR on the calibration (a) and validation (b) sets. In the legend the resulting metrics, 

including R2, RMSE, Standard Deviation, PBIAS, RSR and the correlation index. 

The resulting metrics suggested that the PLSR model, utilising wavelengths based on water matrix coordinates, has 

achieved satisfactory performance in predicting the fat-protein ratio for the calibration set. In particular, the coefficient 

of determination exceeds 0.5, indicating the ability of the model to describe a significant portion of the variation in the 

observed data. Moreover, the RMSE value is lower than the observed values' standard deviation, suggesting that the 

model’s predictions exhibit a higher precision compared to the inherent variability present in the observed data. The 

PBIAS is close to zero, so the tendency to overestimate or underestimate the observed values is minimal, while the low 

RSR values suggest that the model’s predictions are precise compared to the variability in the observed values. The 

correlation index, in addition, indicate a strong linear relationship between the predicted and observed values, further 

supporting the reliability of the PLSR model in predicting the fat-protein ratio for the analysed samples. However, in the 

validation set, results are not as satisfactory as in the calibration set especially regarding the values of R2 and the 

correlation index. 

4  Conclusions 

The script code developed for discriminating between a healthy and diseased system, even in the subclinical phase of 

ketosis, could be preliminary for the realisation of an innovative sensor tool for real-time and non-invasive monitoring of 

milk’s qualitative and quantitative characteristics in the milking parlour. The aim is to assist farmers in monitoring the 

health status of individual animals, facilitating timely health treatment. Nevertheless, data processing is still in early 

Calibration Set Ketosis Not Ketosis  Validation Set Ketosis Not Ketosis 

Ketosis 27 78  Ketosis 18 55 

Not Ketosis 5 262  Not Ketosis 4 172 

       

Total 32 340  Total 22 227 

Correctly Classified 27 262  Correctly Classified 18 172 

       

Total Accuracy 77.69%  Total Accuracy 76.31% 

Ketosis Accuracy 84.38%  Ketosis Accuracy 81.82% 

Not Ketosis Accuracy 77.06%  Not Ketosis Accuracy 75.77% 
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stages: the aim is to expand the sample size for analysis and the number of farms to create a more robust mathematical 

model capable of accurately classifying samples based on their characteristic spectra. 

The aquaphotomics approach was suitable for studying dairy cattle's metabolic conditions, as demonstrated by the 

results obtained from PCA, QDA, and PLSR. However, there is a need for future studies focusing on analysing samples 

from each farm separately, allowing for the independent examination of both ketotic and non-ketotic samples within each 

farm to verify any potential improvement in accuracy. 
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Abstract 

Food producers must ensure the quality of their products at all stages of production. Food contamination 

can occur at several stages of the processing chain, posing a health risk. Control is necessary to assure quality. 

Many use machine vision for this task, but only a few employs multispectral cameras. Multispectral imaging 

(MSI) is a non-destructive sensing technique that can be used to evaluate the quality and safety of food 

products. It involves capturing images of food products at different optical wavelengths, which can reveal 

information about the chemical composition, structure, and other properties of the food. This technique can 

be used to detect defects, such as bruises or insect damage, in fruits and vegetables. It can also be used to 

identify contaminants, such as bacteria or foreign objects, in food products. Multispectral imaging has the 

potential to improve food safety and quality by providing more accurate and efficient methods for inspection 

and quality control. This review paper explores the principles, applications, challenges, and future 

perspectives of multispectral imaging in the context of food safety and quality assessment, proposing 

potential avenues for future research and development. Through a comprehensive examination of 

multispectral imaging applications, this review underscores its significance in advancing food safety and 

quality evaluation practices, while also highlighting the need for continued innovation and exploration in this 

rapidly evolving field. 

 

Keywords: Multispectral imaging (MSI), Non-destructive, Imaging, Spectroscopy, Food quality & safety 

1. Introduction 

Food safety and quality assurance are paramount concerns for food producers worldwide, necessitating 

rigorous measures to mitigate risks associated with contamination throughout the production process. 

Contamination incidents can occur at various stages of the food processing chain, posing significant health 

hazards and economic consequences. To uphold stringent quality standards and ensure consumer well-being, 

effective control mechanisms are imperative (Gemeda et al., 2023). 

While traditional approaches to quality control often rely on visual inspection or machine vision systems, 

recent advancements in sensing technology have introduced novel methods for enhancing inspection 

accuracy and efficiency (Ali et al., 2021). One such technology gaining traction in the food industry is 

multispectral imaging, offering a non-destructive means of assessing food quality and safety (Liu et al., 

2023). 

Multispectral imaging (MSI) involves the acquisition of images across multiple wavelengths of light, 

providing valuable insights into the chemical composition, structural integrity, and other intrinsic 

characteristics of food products (Patel et al., 2024). This technique enables the detection of defects such as 

bruises or insect damage in fruits and vegetables, as well as the identification of contaminants like bacteria 

or foreign objects in food matrices. 

(Ropodi et al., 2017) emphasized the potential of MSI as a non-invasive rapid method for monitoring the 

quality, safety, and authenticity of foods, particularly meat products. The study highlighted the importance 

of hyperspectral and multispectral imaging in ensuring food quality standards. In a study by (Fan & Su, 

2022), the authors explored the applications of fluorescence spectroscopy, RGB, and multispectral imaging 

for quality determinations of white meat products, demonstrating the effectiveness of these analytical 

methods for non-destructive quality assessment. Additionally, Wang et al. (2018) provided an overview of 

emerging spectroscopic and spectral imaging techniques for the rapid detection of microorganisms in food, 
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highlighting the potential of MSI in ensuring food safety. In another study researchers explored the potential 

of imaging spectroscopy, including MSI, for determining the quality parameters of potatoes and sweet 

potatoes, highlighting the non-destructive classification capabilities of this technology (Su & Xue, 2021). 

In light of these developments, this review paper aims to explore the principles, applications, challenges, 

and future perspectives of MSI in the context of food safety and quality evaluation. By synthesizing existing 

literature and highlighting emerging trends, this review underscores the significance of MSI in advancing 

food safety and quality assurance practices, showcasing its potential as a valuable tool for ensuring the 

integrity of food products. 

2. Multispectral imaging technology (MSI) 

MSI technology (Figure 1) involves capturing images across multiple wavelengths of light, providing 

insights into the chemical composition, structural integrity, and other intrinsic characteristics of food products 

(Giannoni et al, 2018). Unlike traditional imaging methods, which capture images in a single wavelength, 

multispectral imaging offers a more comprehensive understanding of food properties by analyzing data from 

various wavelengths within the electromagnetic spectrum (Tang et al., 2022). 

 

 

Figure 1. Multispectral imaging (MSI) is optical spectroscopy imaging technique. Discrete and 

discontinuous portions of the spectral range are considered (Giannoni et al., 2018). 

 

This technique facilitates the detection of defects such as bruises or insect damage in fruits and vegetables, 

as well as the identification of contaminants like bacteria or foreign objects in food matrices (Wang et al., 

2018). By analyzing the spectral signatures of food samples, MSI can reveal subtle differences indicative of 

quality attributes or potential safety hazards (Liu et al., 2023).  

In the realm of food evaluation, MSI offers several advantages over traditional methods. One key 

advantage is the non-destructive and rapid assessment of food quality and safety, enabling repeated 

measurements without compromising food integrity. This makes this method suitable for real-time quality 

control and inspection applications in the food industry, where rapid and accurate assessment of product 

quality is essential. By analyzing the spectral signatures of food items, MSI can detect defects, assess 

ripeness, and identify contaminants without altering the physical properties of the samples (ElMasry et al., 

2019). This capability is particularly valuable in postharvest applications, such as evaluating chilling injury 

in mangoes, where MSI has been successfully employed (Hu et al., 2020). 

The key components of multispectral imaging systems used in food industry applications typically include 

sensors capable of capturing images at multiple wavelengths, data processing units for spectral analysis, and 

software for image interpretation and feature extraction (Figure 2) (ElMasry et al., 2019). These systems are 

designed to acquire spatio-spectral data across a wide range of the electromagnetic spectrum, allowing for 

detailed characterization of food products (ElMasry et al., 2019). Additionally, advancements in MSI 

technology have facilitated its integration with other techniques like chemometric analysis and artificial 

intelligence (AI), enhancing its utility in food quality control and seed science research (ElMasry et al., 2019). 
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Figure 2. Schematic representation of a computer-aided image analysis system for seed quality 

evaluation based on computer-vision and multispectral imaging techniques (ElMasry et al., 2019). 

 

In summary, MSI technology offers a powerful tool for non-destructive evaluation of food quality and 

safety, providing valuable insights into product characteristics and enabling timely detection of defects or 

contaminants. Its versatility, coupled with ongoing technological advancements, holds significant promise 

for revolutionizing food inspection and quality assurance practices in the food industry. 

3. Applications of MSI technology in Food Safety 

3.1 The role of MSI in detecting microbial contamination in food products 

The role of MSI in detecting microbial contamination in food products is crucial for ensuring food safety 

and quality. This technology has emerged as a powerful tool in the food industry for detecting various types 

of contaminants, including microbial, chemical, and physical impurities (Soni et al., 2022). MSI allows for 

nondestructive and robust detection of foreign particles in food, aiding in the identification of microbial 

contaminants that can pose serious health risks to consumers (Mantilla et al., 2017).  

Microbial contamination in food products is a significant concern due to its potential to cause foodborne 

illnesses and spoilage. Detecting microorganisms at low levels of contamination and identifying biofilm 

growth spots are crucial for maintaining food safety standards (Lorenzo et al., 2020). Biofilm formation, a 

common challenge in the food industry, can lead to food contamination incidents, emphasizing the 

importance of effective detection and prevention strategies (Dehkordi et al., 2023).  

Efficient process controls and robust food safety management systems are essential for reducing microbial 

contamination and enhancing food security (El-Khishin et al., 2017). Microbial contamination typically 

occurs at various stages, from production to consumption, highlighting the need for preventive measures and 

early detection methods in the food industry (Gholami-Shabani et al., 2023). The presence of microbial 

contaminants in food products can result in foodborne diseases and spoilage, underscoring the importance of 

stringent quality control measures (Bintsis, 2018).  

In conclusion, the integration of MSI technologies, plays a crucial role in detecting microbial 

contamination in food products. By leveraging advanced imaging techniques and effective management 

practices, the food industry can enhance food safety, minimize contamination risks, and safeguard consumer 

health. 
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3.2 The role of MSI in identifying physical contaminants (foreign objects or defects) in food items 

 

The utilization of MSI in the food industry is crucial for identifying physical contaminants in food items, 

ensuring food safety and quality control. MSI technology is increasingly used to detect and classify physical 

contaminants in food products by capturing images at various wavelengths across the electromagnetic 

spectrum. This enables the differentiation of materials based on their spectral signatures, facilitating the 

identification of foreign objects or defects that may compromise the safety and quality of food items (Nguyen 

et al., 2021). 

X-ray inspection systems are commonly used in the food industry to detect physical contaminants in 

packaged food products, thereby maintaining a high level of food safety for consumers (Nguyen et al., 2021). 

Furthermore, the development of handheld multispectral fluorescence imaging systems has provided a means 

to detect and disinfect surface contamination, addressing concerns related to food safety and contamination 

for food distributors, restaurant owners, and caterers (Sueker et al., 2021). 

 Physical contaminants can enter the food supply chain through various channels, such as equipment 

breakdowns, incorrect handling practices, or foreign items in raw materials. Detecting and mitigating 

physical hazards in food processing require risk assessment and preventive strategies to uphold the safety of 

food products and prevent potential health risks to consumers (Onyeaka, 2023).  

In summary, the application of MSI technology in the food industry is essential for identifying physical 

contaminants in food items, thereby enhancing food safety, quality control, and consumer protection. 

Through the implementation of advanced imaging techniques and preventive measures, the food industry can 

effectively detect and mitigate physical hazards, ensuring the delivery of safe and high-quality food products 

to consumers. 

3.3 Case studies of MSI used for food safety purposes  

3.3.1 Detection of Contaminants in Meat Products 

 

The objective of the study of Ye et al. (2016) was to evaluate the effectiveness of MSI in detecting 

contaminants in meat products. Researchers utilized MSI to capture images of chicken meat samples at 

various wavelengths, analyzing the spectral data to identify contaminants such as bacterial pathogens and 

foreign objects. The findings demonstrated that MSI could accurately detect contaminants in chicken meat 

products, distinguishing between safe and contaminated areas based on their spectral signatures. This method 

proved to be faster and more reliable than traditional microbiological testing methods. 

3.3.2 Quality Assessment of Fruits and Vegetables  

 

The objective of the study of Lorente et al. (2012) was to assess the quality of fruits and vegetables using 

MSI. Researchers employed MSI to capture images of apples and tomatoes at different wavelengths, 

analyzing the spectral data to detect defects such as bruises, ripeness levels, and insect damage. The findings 

demonstrated that MSI was effective in identifying various quality attributes of the fruits and vegetables, 

detecting bruises and assessing ripeness levels, thereby providing a non-destructive method for real-time 

quality assessment. 

3.3.3 Detection of Mycotoxins in Grains  

 

The objective of the study of Shi et al. (2020) was to detect mycotoxins in grains using MSI. Researchers 

imaged grain samples at various wavelengths with MSI and processed the spectral data to identify the 

presence of mycotoxins, which are harmful fungal metabolites. The findings demonstrated that MSI 

successfully detected mycotoxins in the grain samples, providing a rapid and non-destructive method for 

mycotoxin screening and improving the efficiency of detection compared to traditional chemical analyses. 
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3.3.4 Monitoring Fish Freshness  

 

The objective of the study of Cheng et al. (2014) was to monitor the freshness of fish using MSI. 

Researchers used MSI to capture images of fish samples over different storage periods, analyzing the spectral 

data to monitor changes in freshness. The findings demonstrated that MSI effectively tracked the freshness 

of the fish, identifying spectral changes associated with spoilage, and provided a non-destructive and rapid 

assessment tool for determining fish quality during storage. 

3.3.5 Detecting Adulteration in Dairy Products  

The objective of the study of Munir et al. (2018) was to detect adulteration in dairy products using MSI. 

Researchers imaged milk samples containing various adulterants (e.g., water, urea, starch) with MSI and 

analyzed the spectral data to identify and quantify the adulterants. The findings demonstrated that MSI 

accurately detected and quantified the adulterants in milk samples, providing a non-destructive and efficient 

method for ensuring the purity and safety of dairy products. 

 

Overall, these case studies and examples illustrate the diverse applications of MSI in enhancing food 

safety and quality assessment across a range of food products, from meat and dairy to fruits, vegetables, 

grains, and seafood. The successful utilization of multispectral imaging in these contexts underscores its 

importance in safeguarding food quality and ensuring consumer protection. 

 

 

4. Applications of MSI technology in Food Quality Evaluation 

 

4.1 Use of MSI technology for assessing various quality parameters in food products, such as color, 

texture, and ripeness 

 
MSI is a versatile and powerful tool for assessing various quality parameters in food products, such as 

color, texture, and ripeness. By providing detailed and accurate information through non-destructive means, 

MSI enhances the ability to ensure food safety and quality, ultimately benefiting both producers and 

consumers. 

Color is a primary quality attribute influencing consumer preference and perception of freshness in food 

products. MSI can measure color more accurately than conventional imaging by analyzing specific 

wavelengths associated with the food's color characteristics. MSI captures images at multiple spectral bands 

across the visible spectrum. Each band provides specific information about the reflectance or absorbance of 

light at that wavelength. For example, in apples, MSI can detect slight variations in color that indicate 

ripeness or the presence of bruises. By analyzing reflectance data, it is possible to create detailed color maps 

that highlight even subtle color differences not visible to the human eye (Lorente et al., 2012). 

 Texture is another vital quality parameter that impacts the sensory experience of food products. MSI can 

assess texture by analyzing the surface and subsurface properties of food items. MSI captures images at 

different wavelengths that penetrate the food surface to varying depths. This allows for the detection of 

structural differences beneath the surface. For instance, in meat products, MSI can differentiate between 

tender and tough regions by analyzing the scattering properties of light. Changes in the microstructure due 

to factors like fat content and muscle fiber orientation can be detected, providing insights into the texture (s 

(Kamruzzaman et al., 2012). 

Ripeness significantly affects the taste, texture, and overall quality of fruits and vegetables. MSI can 

assess ripeness by detecting biochemical changes that occur during the ripening process. MSI captures images 

across various wavelengths, including those outside the visible spectrum (near-infrared and short-wave 

infrared), which can provide information on the internal chemical composition. For example, in tomatoes, 

MSI can detect changes in chlorophyll and carotenoid levels, which are indicative of ripening stages. By 

analyzing these spectral signatures, it is possible to classify fruits according to their ripeness level accurately 

(Lorente et al., 2012). 

 

 

4.2 Use of MSI technology for Grading and Sorting Food Items Based on Quality Attributes 
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MSI has become an invaluable tool in the food industry, particularly for grading and sorting food items 

based on various predefined quality attributes. The ability to non-destructively assess multiple quality 

parameters simultaneously makes MSI highly effective for ensuring food quality and safety. 

MSI systems can be integrated into automated sorting lines, enabling real-time assessment and sorting of 

food products. Automated systems equipped with MSI can rapidly process large volumes of food items, 

increasing efficiency and consistency in grading and sorting. These systems provide objective, quantitative 

data that enhances the accuracy of grading and sorting processes. The ability to detect subtle variations in 

quality attributes ensures that only products meeting stringent standards reach the market. 

In Kim et al. (2014) study, MSI was used to sort citrus fruits based on quality attributes. Images of citrus 

fruits were captured at various wavelengths. The spectral data were analyzed to classify the fruits into 

different grades based on predefined quality criteria. The MSI-based sorting system effectively differentiated 

between high-quality fruits and those with defects or suboptimal ripeness, improving the overall quality of 

the sorted batches (Kim et al., 2014). 

In conclusion, MSI offers a versatile and efficient approach for grading and sorting food items based on 

quality attributes such as color, texture, and ripeness. The technology's non-destructive nature, real-time 

capabilities, and ability to provide detailed spectral information make it a valuable tool for quality assessment 

in the food industry. 

5. Challenges and Future Perspectives 

MSI technology, while offering considerable advancements in food safety and quality evaluation, 

encounters several limitations and challenges that need to be addressed for broader and more effective 

implementation. One primary challenge is the high cost of MSI systems. Advanced multispectral cameras 

and associated equipment can be expensive, making it difficult for small to medium-sized food producers to 

afford them. Additionally, the operational complexity of MSI systems requires specialized training and 

expertise, which can increase operational costs and limit accessibility. The technology generates large 

volumes of data, necessitating robust storage solutions and significant computational power for effective data 

processing and analysis. Developing and refining the complex algorithms needed for accurate data 

interpretation is resource-intensive and technically demanding, presenting a significant barrier to widespread 

adoption. 

Another significant challenge is the calibration and standardization of MSI systems. Accurate calibration 

is essential for obtaining consistent and reliable spectral data, but this process can be affected by variations 

in lighting conditions, sensor sensitivity, and environmental factors. Without standardized protocols for MSI 

application in food quality assessment, there can be inconsistencies in data interpretation and application 

across different contexts. Furthermore, MSI is primarily effective for surface-level analysis, which limits its 

ability to detect internal defects or contaminants that are not visible on the surface of food products. 

Environmental conditions such as lighting, temperature, and humidity can also impact MSI performance, 

complicating its use in field conditions. Addressing these challenges requires continuous technological 

advancements, the development of cost-effective solutions, improved calibration techniques, and the 

establishment of industry-wide standards. These efforts will enhance the reliability, accessibility, and overall 

effectiveness of MSI in food safety and quality evaluation. 

The future of multispectral imaging (MSI) in food analysis promises exciting advancements that can 

significantly enhance its capabilities and applications. One potential development is the miniaturization and 

cost reduction of MSI systems. Advances in sensor technology and manufacturing processes are likely to 

make MSI equipment more affordable and accessible, even for small and medium-sized food producers. 

Portable and handheld MSI devices could become more prevalent, enabling on-the-spot quality assessments 

in various settings, from farms to supermarkets. These portable systems could be integrated with mobile 

devices, allowing for real-time data processing and analysis through advanced applications. 

Another promising area is the integration of MSI with other emerging technologies, such as artificial 

intelligence (AI) and machine learning. AI can enhance the interpretation of MSI data by automating the 

detection and classification of defects, contaminants, and quality attributes in food products. Machine 

learning algorithms can be trained on extensive datasets to improve the accuracy and speed of MSI analyses, 

making the technology more efficient and reliable. Additionally, combining MSI with other imaging 

modalities, such as hyperspectral imaging or X-ray imaging, can provide a more comprehensive assessment 
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of food quality and safety. These hybrid systems can leverage the strengths of each technology to offer 

detailed information on both surface and internal properties of food items. 

Furthermore, advancements in data analysis and computational techniques will play a crucial role in the 

future of MSI. The development of more sophisticated algorithms and software tools can improve the 

processing of large volumes of MSI data, enhancing the precision and usability of the results. Cloud-based 

platforms for MSI data storage and analysis can facilitate collaborative research and the sharing of datasets, 

accelerating innovation and the development of new applications. Improved calibration methods and the 

establishment of standardized protocols will ensure consistency and comparability across different MSI 

systems and applications. 

Lastly, the expansion of MSI applications to new areas of food safety and quality assessment is 

anticipated. For instance, MSI could be used to monitor the freshness and shelf-life of perishable products, 

detect food fraud and adulteration, and assess nutritional content more accurately. Research into new spectral 

indices and imaging techniques will continue to uncover novel applications and improve the sensitivity and 

specificity of MSI for various food quality parameters. As the technology evolves, MSI is expected to become 

an integral part of the food industry’s efforts to ensure high standards of safety and quality, ultimately 

benefiting both producers and consumers. 

6. Conclusions 

Τhis review highlights the significant potential of MSI in enhancing food safety and quality control. MSI 

technology, which involves capturing images at different wavelengths, allows for the non-destructive 

assessment of food products, providing detailed information about their chemical composition, structure, and 

properties. MSI can detect surface-level defects, contaminants, and quality attributes such as color, texture, 

and ripeness. Despite its high cost and operational complexity, advancements in sensor technology, data 

processing, and machine learning integration are making MSI more accessible and efficient. The review 

emphasizes the need for standardized calibration protocols and improved environmental robustness to ensure 

consistent and reliable results. By combining MSI with other imaging modalities and focusing on specific 

food products, the technology's applicability and accuracy can be further enhanced. Addressing these 

challenges and exploring future developments will significantly improve the effectiveness of MSI in the food 

industry, leading to better food safety and quality assurance practices. 

 MSI plays a pivotal role in advancing food safety and quality evaluation practices by providing a 

sophisticated, non-destructive method for assessing various attributes of food products. The technology's 

ability to capture detailed images at multiple wavelengths enables the detection of subtle changes in color, 

texture, and chemical composition, which are often indicative of quality and safety issues. MSI can identify 

surface defects, such as bruises or insect damage in fruits and vegetables and detect contaminants like bacteria 

and foreign objects that are not easily visible to the naked eye. This level of detailed analysis is critical for 

ensuring that food products meet safety standards and quality expectations. 

Moreover, MSI enhances the efficiency and accuracy of food quality control processes. By integrating 

with advanced data processing and machine learning algorithms, MSI systems can automate the inspection 

and sorting of food items based on precise quality criteria. This reduces the reliance on manual inspection, 

which can be time-consuming and prone to error, and increases the throughput of food processing lines. The 

real-time capabilities of MSI allow for continuous monitoring and immediate detection of issues, enabling 

prompt corrective actions that prevent contaminated or substandard products from reaching consumers. 

The adoption of MSI also supports compliance with stringent food safety regulations and helps build 

consumer trust by ensuring high standards of quality control. As technology continues to evolve, MSI is 

expected to become even more accessible and versatile, further solidifying its role as an essential tool in the 

food industry. By addressing current challenges and leveraging future advancements, MSI will significantly 

contribute to safer, higher-quality food products, benefiting producers, regulators, and consumers alike. 

To fully realize the benefits of MSI, continued research and innovation are imperative. We must focus on 

reducing costs, enhancing data processing capabilities, establishing standardized protocols, and improving 

the robustness and applicability of MSI systems. By investing in these areas and fostering collaboration 

between industry, academia, and regulatory bodies, we can overcome current limitations and unlock new 

possibilities for MSI technology. Let us commit to advancing this critical field, ensuring that the food industry 

can consistently deliver safe, high-quality products to consumers worldwide. 
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Abstract 

Olive harvesting mechanization is adopted in different types of olive orchards: traditional, intensive, in 

hedgerows. 

In Mediterranean basin, traditional olive orchards have an important economic value. In this type of olive 

orchards planting densities are 100 to 240 trees per hectare, and over 30 years old. 

In these olive orchards, the most used mechanical harvesting system is based on a trunk shaker to detach 

fruits, and an inverted umbrella to collect them.  

With this harvesting system it is usual to collect 70% to 90% of the production. 

The olives that remain in the tree is a problem. To solve it, farmers adopt manual harvesting as a 

complementary task. 

This procedure increases the cost of harvesting with the addition of labour and reduces the mechanical 

harvesting system work rate (trees hour-1). 

It is important to understand if this complementary manual harvesting is advantageous or not. 

In field tests carried out in the Northeast of Portugal on traditional olive orchards with “Cobrançosa” and 

“Verdeal Transmontana”, cultivars, two different procedures were compared: (I) mechanical harvest 

performance complemented by manual harvesting; (II) mechanical harvest performance without the addition 

of manual work. 

In both procedures were evaluated: a) work rate (trees hour-1); b) production harvested; b) associated 

costs; c) harvest efficiency considering it as the percentage of fruits collected in relation to total production. 

To evaluate work rate system, a methodology based on measurement of each elementary operation time 

(in minutes) was adopted. 

Costs was computed under international standards for agricultural machinery management.  

The reduction in work rate and the increase in harvesting costs with complementary harvesting may be 

balanced by the increase in production that is harvested in this way. However, this does not seem to be the 

case, given the results presented. 

Complementary manual harvesting may be a solution, but an evaluation of other agronomic and 

mechanical solutions is recommended. 

Keywords: olive orchard; mechanization; trunk shaker; costs; labour. 

1. Introduction 

The mechanical harvesting system mostly adopted in traditional olive orchards in the Northeast of 

Portugal consists on a trunk shaker to detach olives and an inverted umbrella to collect fruits, both mounted 

on the front loader of four-wheel drive tractors of 70 kW to 95 kW. 

In these olive orchards planting densities range from 100 to 240 trees per hectare, and are over 30 years 

old. 

With this harvesting system, the entire production is not removed from the olive trees. 

It is usual to harvest 70% to 90% of the olives (Sola-Guirado et al, 2018). Harvesting 80% to 85% of 

production is already a reasonable objective (Castro-Garcia et al, 2012). 

It is important to improve the mechanical harvesting efficiency, considering it as the percentage of fruits 

removed in relation to total production (Ferguson 2006), (Ravetti et al 2014), in order to obtain a better net 

return for farmers. 

Harvest efficiency is one of the most important factors to consider on mechanical harvesting olives for 

olive oil (Ferguson 2006). 
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To avoid this loss of production, farmers usually adopt traditional manual harvesting methods to remove 

the olives that remain on the tree, after the trunk shaker work. 

This procedure improves harvesting cost: (I) by the increase in labour and (II) by the reduction of 

mechanical harvesting system work rate (trees hour-1). This reduction in work rate is a consequence of the 

time required for manual harvesting. 

It is important to assess if olives manual removal remaining on the tree after the trunk shaker work has a 

compensatory cost. 

With this objective field tests were carried in the Northeast of Portugal on traditional olive orchards with 

“Cobrançosa” and “Verdeal Transmontana” cultivars, to evaluate the work rate (trees ha-1) of this harvesting 

system, through the measurement of each elementary operation time.  

In these field tests harvest system performance was compared: (I) without supplementary manual 

harvesting; (II) with the addition of manual harvesting and in this case evaluated the increase in production 

harvested. 

In both procedures were evaluated: a) work rate (trees hour-1); b) production harvested; b) associated 

costs; c) harvest efficiency considering it as the percentage of fruits collected in relation to total production. 

The results can contribute to a better decision-making by farmers. 

2. Materials and Methods  

Field tests took place in Portugal - Trás-os-Montes region from 2018 to 2020 in irrigated olive orchards 

with the cultivars “Cobrançosa” and “Verdeal Transmontana”, with 200 trees per hectare, spaced 7 m x 7 m 

(Figure 1). 

 

Figure 1. Olive orchard example used in field trials 

Tests were carried out in four different olive orchards (L1; L2; L3 and L4). L1 and L2 in 2018 (L1A and 

L2A) and 2019 (L1B and L2B). In 2020, the tests were carried out in olive groves L3 and L4. 

Olive orchards L1, L2 and L4 are “Cobrançosa” cultivar. L3 olive orchard is “Verdeal Transmontana” 

cultivar. 

In L1 olive orchard there were 3 replications in randomized blocks in each of the years considered (2018 

and 2019). In L2 olive orchard there were 2 replications in randomized blocks in each of the years considered 

(2018 and 2019). In L3 olive orchard there were 3 replications in randomized blocks (in 2020). In L4 olive 

orchard there were 2 replications in randomized blocks (in 2020). 

The harvesting system is based on a trunk shaker to detach the olives and an inverted umbrella to collect 

them. The inverted umbrella can temporarily store 200 to 250 kg of olives in a collecting tray. Under the 

inverted umbrella a door can be hydraulically opened to allow unload the olives. 

Four-wheel drive tractors of 70 to 95 kW were used. 

To assess harvesting system work rate, the following elementary operation time were measured in 
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minutes: 

Tvib – average trunk shaking time; 

Tvar – average additional manual harvesting time; 

TvibVar – average trunk shaking time and complementary manual harvesting simultaneously; 

Tdesloc – average time to move the tractor with trunk shaker from one tree to the next; 

Tlimpfolhas – average time for cleaning leaves accumulated on the inverted umbrella; 

Tdesclinha – average tractor travel time, from one headland to the other. Farmer's option due to the slope 

of the olive orchard greater than 10%. Traveling in reverse from the higher level headland to the lower level 

headland; 

Tdesc – average time to discharge the inverted umbrella; 

Na – number of trees between inverted umbrella discharges. 

Work rate harvesting system (trees hour-1) was computed by the following equation Eq (1): 

𝐶𝑡 =
3600

𝑇𝑣𝑖𝑏+𝑇𝑣𝑎𝑟+𝑇𝑣𝑖𝑏𝑉𝑎𝑟+𝑇𝑑𝑒𝑠𝑙𝑜𝑐+𝑇𝑙𝑖𝑚𝑝𝑓𝑜𝑙ℎ𝑎𝑠+𝑇𝑑𝑒𝑠𝑐𝑙𝑖𝑛ℎ𝑎+
𝑇𝑑𝑒𝑠𝑐

𝑁𝑎

  (1) 

In each field test not all of the elementary operation referred in the equation were used. In cases where 

any of the elementary operation was not recorded, it was not considered in the equation. 

In each of the olive orchard, per replication, the quantity of olives harvested was evaluated. 

In order to evaluate harvest efficiency, in olive orchards L1, L2 and L4, the amount of olives that remained 

in the tree after shaking was evaluated. This assessment was carried out by randomly choosing 1 tree in every 

10. In cases where additional manual harvesting was used, this procedure was interrupted in the trees selected 

for this assessment. 

In order to estimate the cost kg-1 of mechanical harvesting without manual complementary harvesting and 

with manual complementary harvesting after and during mechanical shaking, the following assumptions were 

adopted: 

Cost hour-1 of trunk shaker, inverted umbrella and operator = € 75.  

Labour cost for additional harvesting (1 operator) = € 6.25 hour-1. 

Figure 2 shows the complementary manual harvesting procedure. 

 
Figure 2. Complementary manual harvesting procedure 

In 2018, replications of three of the olive orchards, L1 (L1AR1; L1AR2; L1AR3), L2 (L2AR1; L2AR2) 

and in 2020 in L3 (L3R1; L3R2) the harvest was carried out with complementary manual harvesting. In 2019, 

replications of four of the olive orchards, L1 (L1BR1; L1BR2; L1BR3), L2 (L2BR1; L2BR2) and in 2020 in 

L3 (L3BR3) and L4 (L4R1; L4R2) the harvest was carried out without additional manual harvesting. 
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3. Results 

Tables 1 and 2 show the results obtained in olive orchards where harvest was carried out using 

complementary manual harvesting. 

Table 3 shows results obtained in olive orchards where harvest was carried out without additional manual 

harvesting. 

Table 1. Olive orchards with manual complementary harvesting: total production and per tree; measured and 

estimated work rate without manual harvesting and harvest time per tree. In the “work rate” and “minutes 

per tree” columns, the maximum and minimum values are marked in bold. 

Orchard 

Total 

production 

(kg) 

kg tree-1 
Work rate (tree 

hour-1)) 
Minutes tree-1 

Estimated work rate 

without manual harvesting 

(trees hour-1) 

L1AR1 1511 30.2 33.10 1.81 52.41 

L1AR2 1215 21.7 37.94 1.58 50.68 

L1AR3 2143 33.5 34.36 1.75 46.34 

L2AR1 905 18.1 15.22 3.94 20.70 

L2AR2 638 10.6 22.72 2.64 29.22 

L3R1 920 17.4 14.27 4.20 17.55 

L3R2 750 14.2 10.96 5.47 13.63 

Average  20.81 24.08 3.06 32.93 

Table 2. Olive orchards with manual complementary harvesting: production by manual harvesting, 

harvesting efficiency, costs kg-1 of total harvested production, estimated costs kg-1 without complementary 

manual harvesting and costs kg-1 of production harvested by complementary manual harvesting. In columns 

2, 3 and 6, the maximum and minimum values are marked in bold. 

Orchard 

Production by 

manual 

harvesting 

(kg) 

Harvesting 

efficiency (%) 

Costs kg-1 of total 

harvested 

production, (€) 

Estimated costs kg-1 

without manual 

harvesting (€) 

Costs kg-1 of 

production harvested 

by manual harvesting 

(€) 

L1AR1 82.5 94.5 0.07 0.05 0.52 

L1AR2 58.24 95.2 0.07 0.07 0.07 

L1AR3 65.92 96.9 0.06 0.05 0.45 

L2AR1 130 85.6 0.17 0.14 0.66 

L2AR2 100.8 84.2 0.23 0.22 0.76 

Average  91.28 0.12 0.11 0.49 

Table 3. Olive orchards without complementary harvesting: total production and production per tree, 

harvesting efficiency, work rate, harvesting time per tree and costs kg-1 of harvested production. In columns 

4, 5 and 6, the maximum and minimum values are marked in bold. 

Orchard 

Production 

harvested 

(kg) 

kg tree-1 

Harvesting 

efficiency 

(%) 

Work rate 

(tree hour-1) 
Minutes tree-1 

Cost kg-1 harvested 

production (€) 

L1BR1 910 19 94.0 47.38 1.27 0.08 

L1BR2 720 13 96.9 49.76 1.21 0.12 

L1BR3 890 15 100 68.34 0.88 0.07 

L2BR1 1184 24 100 42.39 1.42 0.07 

L2BR2 2994 49 100 32.84 1.83 0.05 

L3R3 584 17.7 100 24.57 2.44 0.08 

L4R1 703 20.7 91.1 63.46 0.95 0.05 

L4R2 725 17.7 95.0 67.12 0.89 0.06 

Average  2.01 97.13 49.48 1.36 0.07 

As it is not possible to present for all the olive orchards in which field tests were carried out the values of the 

elementary working times that allowed to compute working rate and its relative importance, was taken the 
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option to present these results for two representative olive orchards, one in which additional manual 

harvesting was used (Figure 3) and another in which this option was not taken (Figure 4). 

 

Figure 3. Olive orchard L1AR1 with additional manual harvesting - elementary working time per tree. 

 

Figure 4. Olive orchard L4R2 without additional manual harvesting - harvesting elementary working time 

per tree. 

4. Discussion 

Results presented in tables 1 to 3 show important differences between the performance of the harvesting 

system when there is use of complementary manual harvesting and when there is no use of complementary 

manual harvesting. 

Work rate with complementary harvesting (Table 1) varies from 10.96 trees h-1 to 37.94 trees h-1. Without 

additional harvesting (Table 3), work rate varies from 24.57 trees h-1 to 68.34 trees h-1. 

These results show a work rate reduction when supplementary harvesting is used. The same can be seen 

in the time spent per tree (Table 1), which ranges from 1.58 minutes tree-1 to 5.47 minutes tree-1 using 

complementary harvesting and from 0.88 minutes tree-1 to 2.44 minutes tree-1 without complementary 

harvesting (Table 3). 

Based on values presented in the fifth column of Table 2, it is assumed that a reduction in the cost kg-1 of 

harvest would be possible if there were no use of additional manual harvesting. 

The cost of production harvested mechanically with complementary manual harvesting (Table 2) is on 

average €0.12 kg-1. The cost of production harvested mechanically without manual harvesting is on average 

€0.07 kg-1 (Table 3). 

The reduction in work rate and the increase in harvesting costs with complementary harvesting can be 

balanced by the increase in production harvested in this way. However, this does not seem to be the case, 
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given the results presented in the second and sixth columns of Table 2. It can be seen that the increase in 

harvested production varies from 130 kg in an olive grove with a total production of 905 kg, to an increase 

in harvested production from 58.24 kg in an olive grove with a total production of 1,215 kg. Labour costs to 

obtain this increase in harvest range from €0.07 kg-1 to €0.76 kg-1 with an average value of €0.49 kg-1 (Table 

2). 

It will be worth reflecting on these costs for additional manual harvesting. The results obtained show that 

the increase in harvest is reduced and the price per kg of this increase in harvested production is much higher 

than the commercial value of the olives. 

Harvest efficiency results show that in the olive orchards where complementary manual harvesting was 

used (Table 2), the values varied from 84.2% to 96.9%, with an average of 91.28%. In olive orchards where 

no additional manual harvesting was used (Table 3), values ranged from 91.1% to 100%, with an average of 

97.13%. 

These harvest efficiency values are above 85%, a value that is referred to by (Castro-Garcia et al, 2012) 

as an objective for harvesting systems based on trunk shakers. For (Farinelli et al 2012), harvesting efficiency 

of 85% is considered the breakeven point for mechanical harvesting of olives with a trunk shaker, meaning 

that 15% or less of the total production remaining on the tree, losing it, is worthwhile compared to the cost 

reduction that the harvesting system provides. 

Figure 3 show the substantial value that the elementary time for manual harvesting has in the set of 

elementary working times, followed by the elementary time for moving equipment between trees. 

Figures 3 and 4 show the importance that time for moving equipment between trees has for work rate. All 

measures that reduce this value, such as good trafficability conditions of the equipment within the olive 

orchard and the use of mechanical devices that allow easy and quick coupling of the shaker to the tree, 

contribute to improving the work rate of this harvesting system. 

5. Conclusions 

Mechanical olive harvesting systems based on trunk shakers do not detach all production. 

The majority of farmers who use this type of harvesting equipment, to harvest the entire production opt 

for complementary manual harvesting with the consequent increase in labour. 

Before making the most appropriate decision, it is worth checking the cost/benefit ratio of this solution. 

Mechanization brings considerable benefits, such as significantly reducing the time required for the 

operation, which allows harvesting a larger area of olive orchards in the time period considered optimal. With 

effective operation management, this increase in work rate reduces the time required and harvesting costs, 

despite not harvesting the entire production. The references cited in previous points indicate that with a 

harvesting efficiency of 85% the breakeven point is reached, that is, it is economically worthwhile to lose 

some production that remains on the tree. 

With these harvest efficiency values (>85%), the use of complementary manual harvesting results in an 

unnecessary increase in costs, without obtaining a compensatory increase in harvested production. 

This is what the results obtained in this work show. In the field tests carried out, (Table 2) for an average 

harvesting efficiency of 91.28%, the olives harvested by complementary harvesting had an average cost of 

€0.49 kg-1, much higher than their value. 

Being harvesting efficiency less than 85%, it is necessary to adopt solutions that can include 

complementary harvesting, or others such as agronomic solutions, or such as  better mechanical solutions, 

which increase harvest efficiency. 

A set of agronomic factors are known that affect harvest efficiency, such as canopy shape and density, 

pruning, orchard density and cultivar (Ferguson et al, 2010). 

The shape and density of the canopy can affect the efficiency of mechanical harvesting, impairing the 

performance of the trunk shaker, by reducing the capacity to transmit vibration energy to the fruiting zone 

(Martin, 1994). 

The density of the canopy can affect mechanical harvesting (Tombesi et al, 2002), as it makes difficult 

the visibility for the operator and jeopardize the equipment performance by limiting access for the shaker 

clamp to the most convenient area of the trunk. 
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Proper pruning should provide enough space under the canopy to facilitate shaker access to the trunk and 

efficiently transmit vibration to the fruiting zone. Suitable olive orchard density for trunk shakers is between 

150 to 400 trees per hectare (Ferguson et al, 2010). 

Among the factors linked to the cultivar, fruit removal force (FRF), fruit weight (P) and the relationship 

between them are important for harvest efficiency (Tombesi 1990; Ferguson 2006, Farinelli et al 2012). To 

know FRF/P ratio that can be used as an indicator of good harvesting efficiency is an important objective 

that remains to be carried out. In addition to the cultivar, it depends on the agro-ecological region in which 

the olive grove is located. 

The choice of mechanical equipment is another factor that affects harvesting efficiency. For Ferguson 

(2006), the vibration pattern must be characterized by a short amplitude, less than 2.5 cm and a high 

frequency, above 2500 cycles minute-1. 

Before making the decision to use complementary harvesting, it is important to assess if it is really need, 

for instance, what harvesting efficiency is expected. With the values obtained in the field tests presented, it 

may have led to an increase in harvesting costs, without the corresponding return. 

Being expected a harvesting efficiency lower than the reference values, complementary manual 

harvesting can be a solution, but an evaluation of the other agronomic and mechanical solutions mentioned 

is recommended. 
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Abstract 

During olive harvesting activities, special machines are used that expose drivers to Whole-Body Vibration 

(WBV). This issue is significant because machines drivers are subjected to mechanical stresses that can lead 

to serious health problems. Italian legislative decree 81/2008 requires that the assessment of the risk of 

exposure to WBV is based on the evaluation of daily exposure A(8), expressed as equivalent continuous 

acceleration over an eight-hour period. The vibratory stress is caused by the tractor engine and the movements 

of the mechanical arm installed at the rear for olive harvesting. The objective of this work is to compare the 

influence of different work phases on the operator's and driver's exposure to WBV during olive harvesting 

activities. An experimental campaign was conducted in a farm in central Italy under the same boundary 

conditions. Whole-body vibration (WBV) measurements, according to ISO 2631, were performed on two 

different vehicles during the olive harvest: a New Holland TD5105 tractor and a New Holland TN55D. 

During the experimental campaign, signals from front and rear and vertical accelerations were acquired at 

the driver's seat using a tri-axial accelerometer in both vehicles. In order to characterize the actual exposure 

of the workers, field measurements were conducted under real working conditions for the drivers of both 

machines (tractor and olive harvester). The data obtained show that the highest WBV values were recorded 

with the olive harvester in an upright position for both tractors; the mechanical movement of the arm 

influences the accelerations because it generates high stresses at maximum extension compared to the source 

signal produced by the tractor engine. Furthermore, the data were compared to highlight the differences be-

tween the operator of the mechanical arm and the tractor driver. The same computing process was applied to 

compare the values obtained in the measurement campaign with those established by Italian legislative decree 

81/2008. 

Keywords: tractor, farm, whole body vibration, human health, driver. 

1. Introduction 

Whole-body vibrations (WBV) are a physical agent for workers using tractors in agricultural activities 

(Kumar et al., 1999; Scarlett et al., 2007). The scientific literature points out that an operator in contact with 

a vibration source for a prolonged period may have problems with his or her health (Bovenzi and Betta, 1994; 

Bovenzi and Hulshof, 1998), (Ahmadi, 2013; Boshuizen et al., 1990 a). In fact, prolonged exposure to 

vibration can generate over the long-term problems of different kinds (Lings and Leboeuf-Yde, 2000) 

(Boshuizen et al., 1990 b), such as musculoskeletal disorders, spinal problems (human nervous system 

problems and spinal damage (Kumar et al., 1999). This issue affects drivers of different types of vehicles 

such as trucks, cars, buses and even tractors (Cutini et al., 2019). Numerous studies that have been carried 

out in the field of agriculture, point out that tractors are a very significant source of vibration for the drivers 

(Cutini et al, 2017; Cvetanovic and Zlatkovic, 2013; Futatsuka et al., 1998; Langer et al., 2015; Sorainen et 

al., 1998). European studies show that every year there are many workers who have health problems due to 

exposure to vibration (Kabir et al., 2017; Khaksar et al., 2013).  

On this issue, a physical agents’ directive has been issued that establishes minimum requirements for the 

health protection of workers exposed to WBV. A key parameter for exposure assessment is the actual working 

time affecting the worker, and the standard value of 8 hours is defined and, with reference to this parameter, 

the limit values of 0.5 m/s2 (action value) and 1.0 m/s2 (exposure limit) are defined. There are numerous 

factors that influence whole-body exposure, such as ground conditions (Oncescu et al., 2022), type of tires 

(Deboli et al., 2008), speed vehicle, wear degree (Cecchini et al., 2021), suspension (Kim et al., 2018) 

anthropometric characteristics of the driver and the seat (Abouel-seoud, 2019; Deboli et al., 2017; Melemez 

et al., 2013). Fundamental turns out to be the process of defining the typical day of the worker driving the 

tractor on a farm in order to be able to determine the actual exposure dose for the driver. During the activities 

performed the different phases may lead to different exposure is precisely why a daily exposure dose 

assessment is established. In particular, the latter can be a valuable tool in order to be able to reduce the dose 
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of exposure at the same time an improper functioning of the seat can lead to a worsening of the situation with 

an enlargement of the vibratory signal. Suspension and tires can also greatly influence the stress on the tractor 

driver's body. Some researchers have pointed out that proper suspension selection can lead to a dampening 

of the vibration signal reaching the driver. In agriculture, the soil plays a key role as it leads the medium to 

significant stresses along all directions according to the standard x, y and z reference system.  Especially 

because the vehicle is advancing over terrain that in most cases is uneven and therefore causes considerable 

stresses (Oncescu et al., 2022). 

2. Materials and Methods  

A measurement campaign was carried out on a farm in Viterbo, central Italy. The activity involved 

measuring the vibrations induced on an operator during olive harvesting.  To perform this operation, a 

mechanical arm is connected to rear part the vehicle; it is connected to the tractor engine by a cardan joint. 

The operator stands on a seat on the rear of the tractor, and he can move the mechanical arm that acts on the 

trees to drop olives. This system consists of a special component consisting of several plastic rods that shake 

the tree, causing olives to fall but without damaging the branch. This mechanical device is movable and can 

be uncoupled from the tractor so that it can be used on more than one farm tractor.  

   

Figure 1. Triaxial accelerometer fixed on the seat and PC connected to analyse the signal. 

 Measurements were realized with a triaxial accelerometer attached to the operator's seat according to the 

directions established by the standard reference system (ISO 2631-1, 1997). It was fixed on the seat using 

scotch tape, which made it integral to the vehicle and avoided displacement of the instrument on the seat. 

The system requires there to be two seats: one for the tractor driver and the other one destinated to the worker 

that moving the mechanical arm, as shown in the figures. The measurements were all repeated under the same 

boundary conditions in the farm field. Table 1 report the instrument characteristics (Fig. 1). 

In order to be able to highlight the influence of the source on the operator's whole-body exposure, two 

different tractors were tested, and the characteristics are reported in Table 2. 

 

Table 1. Characteristics of instruments. 

Model Sensivity Position 

Triaxial 

accelerometer 

SEN027-PCB 

X axis:10.52 mV/(m/s2) 

Yaxis:10.55 mV/(m/s2) 

Z axis:10.58 mV/(m/s2) 

Driving seat of the truck in the position 

which corresponds to the driver's 

sacroiliac joints (his buttocks)  

 

Table 2. Characteristics of tractors. 

Tractor Model Engine Power [kW] Mass [ton] 

New Holland 

TD5.105 
79 3,74 

New Holland 

TN55D 
36 2,7 
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Fig. 2 and 3 show the two tractor models used in the experimental campaign and the mechanical olive 

harvesting arm: this is a device that is mounted on both vehicles. 

 

   

Figure 2. First tractor for the measurement campaign: New Holland TD5.105. 

 

  

Figure 3. Second tractor for the measurement campaign: New Holland TN55D. 

 

The campaign consisted of the following steps: firstly, vibration measurement for the operator on the 

tractor with the minimum engine rotation speed (rpm) in order to be able to characterize the source signal. 

Subsequently the measurements were carried out with three different configurations of the mechanical arm: 

the first with maximum extension relative to the tractor; a second closer to the tractor; and the last with the 

arm in an intermediate position (Fig. 4 and 5). The vehicles employed in the experimental campaign can 

carry out the tasks described below. The weather conditions were always the same and there was no wind. 

before using the mechanical arm on the rear of the tractor, stability was checked using the stabilizers. 
 

  

Figure 4. Different mechanical arm configurations on the tractor. 
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Figure 5. Activities with the mechanical arm for olive harvesting. 

 Operators of the tractor were instructed to perform their normal duties during the data collection period 

in order to replace the real conditions. The percentage of time spent in each work phase was defined on the 

basis of the driver’s interview. In the field tests, WBV exposure were measured according to the standard 

procedure of the ISO 2631-1 (1997) guidelines. The duration of measurements was kept sufficiently long to 

ensure reasonable signal precision and to ensure that the vibration is typical of the exposures of the drivers 

for the specific tasks. The acquisition time was of 3 minutes for each specific task. According to ISO 2631-

1 (1997) guidelines the signal was acquired in a three-axis coordinate system to consider the entry points of 

vibration in worker’s body: the x-axis to measure vibration in the anterior posterior direction, the y-axis in 

the medial lateral direction, and the z-axis in the vertical direction. The guidelines are applicable to the 

vibration in the frequency range from 0.5 Hz to 80 Hz, transmitted to the body as a whole through the seat 

pad. As described above, the Italian Decree-Law 81/2008 establishes that the evaluation of the daily exposure 

A(8), expressed as the equivalent continuous root mean square (r.m.s.) acceleration over an height hour 

period, allows the evaluation of the risk to whole-body vibration. It is calculated as the highest (r.m.s.) value 

of the frequency-weighted accelerations, determined on the three orthogonal axes following the expression: 

 

 aw,max = max (Kx awx, Ky awy, Kz awz)  (1) 

 

where Kx = 1.4, Ky = 1.4, Kz = 1 and aw,max is the maximum value among 1.4·aw,x, 1.4 aw,y and 1·aw,z for a 

seated or standing worker. 

The frequency-weighted root mean square acceleration was calculated using the following expression: 

(8)
8

esp

w

T
A a=

 (2) 

where: 

A(8) is the daily dose expressed as [m/s2]; 

Tesp is the exposure time expressed as [hour]; 

aw is the equivalent continuous r.m.s acceleration also expressed as [m/s2]. 

3. Results 

The following graphs (Fig. 6, 7 and 8) highlights the trend of solicitation for the measurement realized 

on the tractors with the different processing configurations for olive harvesting. Each line represents the trend 

of the signal acquired with the instrument. The green line shows the signal along z-axis, the red line for y-

axis and finally the blue line is the signal of x-axis. The graph shows the acceleration values (m/s2) on y-axis 

and the time expressed in terms of seconds (s) on x-axis. Only the most significant graphs of the measurement 

campaign have been reported.   
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Figure 6. Time history of accelerations of the driver for New Holland TN55D. 

. 

 

Figure 7. Trend of the aw values for the driver of the tractor New Holland TD5.105. 

 

 

Figure 8. Time history of accelerations for the operator on New Holland TD5.105. 

 

The previous graphs represent the trend of the measurements carried out under all the conditions described 

above. The following graph (Fig. 9) represents the course of the frequency spectra expressed in terms of 

Hertz on the x-axis while the y-axis represents the acceleration values. The box at the top right in figure 9 

represents the analysis that was carried out. For each sequence, acceleration values along all three reference 

axes were analysed simultaneously. This is because the signal analysis software provides a value for each 

frequency expressed in terms of third octaves. 
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Figure 9. Time history of accelerations for the driver. 

 

Results show that in all of three directions and at different operations maximum amplitude of WBV 

energy which was transmitted to operator’s body through driver’s seat take place at low frequencies (less 

than 30 Hz). Tables 3, 4, 5 and 6 show the results obtained in terms of acceleration and frequency spectrum 

for the driver and for the operator. The results have been separated for each mechanical arm configuration; 

near to tractor (Pos.1), intermediate position (Pos.2) and maximum elongation (Pos.3). The table also shows 

the dominant frequency for each measurement and the respective calculation value of the parameter A(8). 

 

Table 3. Data obtained for driver on tractor TD5.105. 

  Tractor driver TD5.105   

 Pos.1  Pos.2 Pos.3 

Frequency-

weighted r.m.s. 

accelerations 

(m/s2) 

awx=0.03 awx=0.05 awx=0.03 

awy=0.10 awy=0.10 awy=0.02 

awz=0.3 awz=0.60 awz=0.04 

Dominant 

frequencies (Hz) 

DFx = 8 DFx =2.5 DFx = 12.5 

DFy =12.5 DFy =6.4 DFy =16 

DFz = 6 DFz =8 DFz =4 

Estimated daily 

exposure (8 h) 
0.36 0.83 0.32 

 

Table 4. Data obtained for harvesting arm operator on tractor TD5.105. 

Harvesting arm operator TD5.105 

 Pos.1  Pos.2 Pos.3 

Frequency-

weighted r.m.s. 

accelerations 

(m/s2) 

awx=0.32 awx=0.26 awx=0.32 

awy=0.33 awy=0.51 awy=0.42 

awz=0.17 awz=1.x26 awz=1.52 

Dominant 

frequencies (Hz) 

DFx =2  DFx = 6.4 DFx =16 

DFy =8 DFy =  DFy = 12.5 

DFz =12 DFz = 16 DFz = 1.3 

Estimated daily 

exposure (8 h) 
1.34 1.06 1.19 
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Table 5. Data obtained for driver on tractor TN55D. 

  Tractor driver TN55D  

 Pos.1  Pos.2 Pos.3 

Frequency-

weighted r.m.s. 

accelerations 

(m/s2) 

awx=0.03 awx=0.05 awx=0.03 

awy=0.10 awy=0.10 awy=0.01 

awz=0.30 awz=0.60 awz=0.04 

Dominant 

frequencies (Hz) 

DFx =4 DFx =8 DFx = 12 

DFy =8 DFy =12 DFy =6 

DFz =1.5 DFz =16.5 DFz =1.5 

Estimated daily 

exposure (8 h) 
0.24 0.44 0.28 

 

Table 6. Data obtained for harvesting arm operator on tractor TN55D. 

Harvesting arm operator TN55D 

 Pos.1  Pos.2 Pos.3 

Frequency-

weighted r.m.s. 

accelerations 

(m/s2) 

awx=0.35 awx=0.08 awx=0.10 

awy=0.19 awy=0.10 awy=0.20 

awz=0.44 awz=0.20 awz=0.05 

Dominant 

frequencies (Hz) 

DFx =8 DFx =4 DFx =16 

DFy =16 DFy = 1.6 DFy =8 

DFz =4 DFz =20 DFz =1.5 

Estimated daily 

exposure (8 h) 
0.52 0.43 0.50 

4. Conclusions 

This study consists of measurement and analysis of WBV on two different tractors during olive harvesting 

activities. Particularly the aim of this paper is highlighting the influence of the employing of a mechanical 

arm fixed on the rear of the vehicle on the WBV exposure for the operator and the driver. Vibration 

transmitted through tractor seat surface to human body were considered such as the vibration source signal. 

For the aim to better analysis of the amount of transmitted vibration energy to driver and operator’s body, 

WBV at different frequencies and in all three directions (x, y and z) were considered. 

The results clearly show that it is the operator who manoeuvres the harvesting arm who is most exposed 

to vibrations in mechanized olive harvesting operations, while the tractor driver is always exposed to lower 

levels. 

Although theoretically to decrease the WBV energy at lower frequencies and consequently the value of 

the A(8) parameter, the best way would be to define a position close to the olive tree so as to reduce the lever 

arms of the inertia forces, the results measurements do not always confirm this. 

One key aspect remain the limitation of the operator's working time with the farm tractor to the allowable 

exposure time, which ensures that the exposure limit is observed. The relatively small number of individual 

tractor/operation with mechanical arm combinations investigated may give an important contribute to the 

study of the WBV exposure but it doesn't permit to define a unique solution in order to define the correlation 

between activities and WBV effects. Others detailed studies in the similar boundary conditions are certainly 

necessary with aim to find the influence of the mechanical arm position on the vibration signal.   
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Abstract 

Dairy cows are typically fed a total mixed ration (TMR), which includes a blend of forage, cereals, by-products, 

supplements, vitamins, and mineral salts tailored to each farm's specific needs. Providing a quality ration is crucial for 

the production cycle, but optimizing feed bunk management is equally important to maximize TMR's nutritional benefits. 

Consistent feeding times, high-quality components, and frequent replenishment of the TMR near the feeding bunk ensure 

cows have a regular, high-quality diet 24 hours a day, every day of the week. The study involves monitoring the TMR 

leftovers from four dairy farms and one fattening bull farm in Northern Italy. These farms utilized automatic feeding 

systems (AFS) and mixing wagons for TMR processing, while leftover feed pushing occurred both manually (twice a 

day) and automatically using a rotary drum feed pusher and AFS. TMR leftover samples, collected just before the 

administering of fresh feed, underwent particle size analysis using a Penn State Particle Separator with screens of 19, 8, 

and 1.18 mm and a bottom pan. Data processing has pointed out that leftover particle size composition varies depending 

on feed-pushing techniques. The pushing-up action of the AFS results in a leftover particle size like the operator-based 

one and contains a high percentage of particles higher than 8 mm. On the other hand, pushing back the feed with a drum 

feed pusher results in leftover particle size with a high percentage of long fibres in the 19 mm and 8 mm screens, which 

results from the animal sorting activity against longer particles. These results indicate that the way feed is pushed back to 

the feeding trough affects the innate feed-sorting behaviour of the animals, interacting with the other factors resulting 

from the housing characteristics. 

 

Keywords: TMR quality, Penn State Particle Separator, Animal welfare, Automatic Feeding System 

1. Introduction 

Total Mixed Ration (TMR), as we know it today, did not exist before the 1950s; the first study about it appeared in 

1966. The introduction of TMR has brought several advantages to the farmer, such as i) increasing milk production, ii) 

reducing animal sorting between forage and concentrates, iii) providing a balanced diet and iv) the possibility of 

mechanising the operation of TMR feeding (Schingoethe, 2017). 

The hotspot for providing cows with a good TMR foresees high-quality feed, a good preparation practice, and, finally, 

managing the feeding bunk appropriately. TMR mechanisation is based on trailed mixer wagons or self-propelled loading 

mixer wagons; nowadays automation is catching on very fast in cow farming.  

The scientific literature provides many studies on evaluating the TMR quality, mainly using the Penn State Particle 

Separator (PSPS). The PSPS is an instrument composed of three sieves (19 mm, 8 mm, 4 or 1.18 mm) and a bottom pan. 

Placing a sample of TMR on the top of the sieving structure, followed by applying a constant shake, results in information 

on the homogeneity of the ration (Heinrichs and Jones, 2022). 

Moallem and Lifshitz (2020) compared using trailed and self-propelled mixing wagons to prepare TMR. The self-

propelled wagon has more intensive chopping action than the trailer wagon, as the resulting TMR contained 2.9 % fewer 

long particles (>19 mm) and 3.3% more short particles (< 8 mm). Dairy cows’ milk yields reflect such a difference in 

TMR homogeneity. Another study compares five typologies of mixing wagons: four trailed wagons and one self-propelled 

one. The self-propelled mixing wagon has achieved the best results, meeting the PSPS requirements; the other 

technologies have very large differences in results (Kowalik et al., 2018). Unfortunately, to our best knowledge, there 

isn’t literature on the effect of TMR particle size on automatic feeding systems (AFS). 

Good management of the feeding bunk is crucial to avoid the natural feed sorting behaviour of cows against long 

particles of TMR. This behaviour influences the TMR intake and reduces the nutritional supply across the day. When 

cows sort out the long forage, they end up consuming more concentrated feed, which can lead to changes in their milk 

composition and a decrease in pH levels (Miller-Cushon and DeVries, 2017). As well as chemical alterations, the activity 
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of sorting takes the availability of TMR away from cows making it necessary to push it back to the feed bunk (Barrett 

and Dahl, 2014). Such action is usually done more than 4 times a day manually or with the use of machinery, mechanical 

or automated (Romano et al., 2023). 

Mechanical feed pushing machines operated by an operator may be trailed or self-propelled and outfitted with a reel 

of rakes or brushes. However, manual pushing of the feed only happens when operators are not occupied with other 

farming tasks and does not occur more than four times a day, commonly. The innovative technology is the automatic feed 

pushing performed by an Automatic Feed Pusher (AFP) or AFS (the latter when not distributing the ration).  

AFPs play a crucial role in ensuring the availability of TMR in the feed bunk. Thanks to their automatic action, they 

can carry out this activity multiple times a day, providing numerous benefits to both cattle and farmers. (Barrett and Dahl, 

2014). The agricultural feed pushers (AFPs) available on the market are all electrically powered and can be divided into 

two main categories: automatic guided and self-propelled feed pushers. The automatic guided feed pushers follow a track 

that provides them with energy and direction, while the self-propelled feed pushers follow a path determined by various 

technical solutions such as a sequence of magnetic strips placed within the paving material, proximal sensors, or lidar 

scanning of the environment. When automated, the feed-pushing activity can occur up to twelve times daily using AFPs 

and AFSs. 

This study aims to evaluate the feed-sorting activity of cows with an evaluation of TMR leftovers given by PSPS 

instrument under different conditions of TMR distribution and following management of feeding through. 

2. Materials and Methods 

Between October 2021 and November 2022, TMR leftover sampling occurred on four dairy farms and one fattening 

bull farm in Northern Italy (Figure 1). TMR samples were collected before the distribution of fresh feed along the feeding 

bunk. The TMR leftovers underwent particle size analysis using the Penn State Particle Separator (PSPS) method 

(Heinrichs and Jones, 2022). 

 

 

Figure 1. Farm localisation in northern Italy. Placemarks (from A to E) provide indication for farming sites’ positions. 

2.1 Description of the sampling sites’ operativity 

A brief description of the farms is hereafter reported based on the kind of feed-pushing activity:  

• Automatic feeding system: two out of five cattle farms operated an automatic feeding system. Farm “A” (400 

lactating cows) and Farm “B” (1100 fattening bulls) both operated a self-propelled and self-loading automatic 

feeding system (Vector, Lely, Maassluis, The Netherlands) with two 2 m3 wagons with a vertical auger that 

provide for TMR preparation and distribution. Here, the system provides for leftovers pushing back because, 

when not delivering the feed, the AFS wagons act as drum-pushing systems. 

• Operator based feed-pushing: occurred in two farms. Farm “C” hosts 1,300 lactating cows and uses three 24, 27 

and 32 m3 self-propelled cutter mixing wagons (Rover Jumbo Up 24, Italmix srl, Ghedi, BS, Italy; SelfLine 500+ 

and Selfline 100+, Siloking, Tittmoning, Germany) with vertical augers to prepare and distribute the TMR. For 

leftovers management, one operator runs a self-propelled feed pusher with 5 hydraulically controlled rotating 
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reels equipped with brushes (Motobrush, Storti S.p.A., Belfiore, VR, Italy). Farm “D” hosts 250 lactating cows. 

Here, TMR preparation and distribution occurs running a trailed 20 m3 cutter mixing wagon with horizontal 

augers (Samurai5, Seko Industries Srl, Curtarolo, PD, Italy) while to push the feed back into the feedbunk, the 

operator runs a small tractor with a front-mounted rubber-coated metal mould. 

• Automatic drum feed pushing: Farm “E”, hosting 300 lactating cows, operates an automatic drum feed pushing 

machine. In this site, TMR preparation and administration occurs running one self-propelled 20 m3 cutter mixing 

wagon with a vertical auger (Dobermann SW 220 evo, Storti S.p.A., Belfiore, VR, Italy). TMR leftovers are then 

pushed back thanks to one automatic self-moving drum-pushing system (Ranger 2, Boumatic, Madison, WI, 

USA). 

Farms operating mixing wagons fed the TMR twice daily, typically between 5:00 and 6:00 AM and 4:00 and 5:00 

PM. In contrast, farms with AFS continuously fed TMR throughout the day, with frequencies up to twelve distributions. 

Figure 2 represents the different typologies of mechanical and automatic pushing utilized in the analysis. The loading 

sequence for farms using mixing wagons was long-stemmed hay requiring extended processing, grains or premixes, pre-

processed forages (e.g. silages), minerals and vitamins, and finally, water and other liquid ingredients. Farmers relied on 

their experience to assess the mixing-chopping time required (when asked about it, their mixing-chopping times ranged 

between 10 and 12 minutes). 

 

   

Farm “A” Farm “B” Farm “C” 

  
Farm “D” Farm “E” 

Figure 2. The feed-pushing machinery in the five farms under analysis: automatic feeding systems (Farm A, B), operator-

based feed pushing (Farm C, D), automatic drum feed pushing (Farm E).  

2.2 TMR leftovers sampling and analysis 

The dry matter content and particle size distribution of fresh TMR in each farm were evaluated by sampling five 

representative TMR samples (500g each) immediately before fresh TMR delivery along the feed bunks every 5 meters. 

For each sample, a subsample of approximately 300g underwent particle size analysis on-site using a Penn State Particle 

Separator with screens of 19mm, 8mm, and 1.18 mm, following the manual shaking procedure outlined by Heinrichs 

(2013) to determine the particle size of the administered TMR. Particle size distribution (%) resulted from equation 1: 

 𝑃𝑖,𝑗 =
𝑊𝑖,𝑗

∑ 𝑊𝑖,𝑗
4
𝑖=1

𝑥 100 (1) 

where Pi,j is the percentage weight of the particles that each separator screen retained and Wi,j is the amount of TMR 

fraction that the 19, 8, and 1.18 mm screens (i = 1, 2, and 3) and the bottom pan (i = 4) intercepted for each jth sampling 

site along the feed bunk (j = 1, 2, 3, 4 and 5). 

AgEng 2024 Proceedings

944



2.3 Data processing 

The data was analysed using Minitab 17 statistical software (Minitab Inc., 2010). First, the Levene test (p < 0.05) was 

used to check the equality of variances within the dataset, and the Kolmogorov-Smirnov test was used to assess the 

normality distribution of the data. Then, an analysis of variance (ANOVA) was conducted using the generalised linear 

model (GLM) multivariate procedure, followed by the Tukey post-hoc test (p < 0.05). The fixed factors considered in the 

study were the farms, PSPS screens (19, 8, and 1.18 mm, bottom pan, labelled S1 to S4), and the feed-pushing technology 

used. The dependent variable in the study was the weight percentage of TMR leftover sample that each separator screen 

retained (Si). 

3. Results and Discussion 

Figure 3 reports the results of the GLM processing on the weight percentage distribution of the TMR leftovers 

particles. The processing pointed out that the farm was not a significant factor. However, the interaction between the 

PSPS screens and TMR feed pushing technology was significant. When pushing back the sorted TMR with the AFS and 

the conventional operator-based feed pushing machines, the 8 mm screen intercepted the highest quantity of particles. In 

contrast, using the automatic drum feed pusher resulted in the highest quantity of particles retained by the 19 mm screen,  

meaning that somehow the used machinery has an effect on the ration eaten by the animals (the pushing-up action of the 

AFS results in a leftover particle size like the operator-based one and contains a high percentage of particles higher than 

8 mm, which provide evidence for increased feed sorting when using automatic feed pushers). 

 
Figure 3. Weight per cent distribution of the TMR leftovers particles retained by the PSPS screens at varying TMR feed 

pushing technology. The means not sharing a letter differ significantly (p<0.05). 

These results are in line with the study by DeVries et al. (2005) who found that increasing the feed delivery frequency 

reduced the feed-sorting activity of cows, especially when the ration was provided one to two times a day; no significant 

effects were restored when the TMR was delivered two to four times a day. Additionally, such findings partly agree with 

Endres and Espejo (2010). Their work, based on studying the feed delivery frequency of 50 herds in Minnesota, even 

though not directly addressing the feed sorting activity of cows, pointed out that feeding management practices could 

result in changes in TMR particle size over time (NDF content) and therefore implementing management changes (e.g., 

increasing feeding frequency to twice daily) could increase TMR consistency in time and, therefore, reduce the feed 

sorting activity of the animals. The same results were obtained by Sova et al. (2013) who pointed out a decrease in feed 

sorting in a twice-day TMR delivery compared to one a day. 

Based on our current understanding, there is a need for studies that specifically examine how TMR pushing practices, 

such as conventional operator-based feed approach and automatic feed pushers, impact the feed sorting behaviour of 

cattle. Leonardi and Armentano (2007) observed that feeding groups of cows in a free-stall barn leads to a significant 

tendency to sort the feed, which is more pronounced than in cows individually fed in a tie-stall barn. As a result, there is 

still a need to refine specific feeding strategies involving TMR distribution and approach. 

In the studied farm sites, operating an AFS resulted in small amounts of leftovers as animals tended to finish all the 

feed they were provided with. Therefore, the frequent TMR distribution rate (12 distributions daily in both the farms) 

allowed them to have fresh feed available many times during the day reducing their propensity to sorting, which explains 

the small per cent particle retention of the 19 mm screen. The same result occurred when pushing feed four times daily 

a 

b 

e 

b,c c,d 

d,e d,e 
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f,g f,g 

f,g g 
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as an operator-based farming task: in this case, the intervals between distributions were relatively long, so animals had 

fewer opportunities to selectively consume specific components of the ration. Feed sorting activity was not observed 

because the tendency of cows, in this case, was to consume the entire provided ration. 

Concerning the particle size analysis of TMR leftovers resulting from using an automated drum feed pusher, the high 

percentage of long fibres retained by the 19 mm and 8 mm screens, results from the animal sorting activity against longer 

particles. In this farm, the sampling of the leftovers occurred early in the morning, just before the TMR administration 

and therefore the resulting particle size composition reflected accounts for the number of feed rapprochements that the 

machine had carried out. Despite this, the animal feed sorting against long fibres was considerable as if animals were not 

stimulated enough in consuming it. DeVries et al. (2003) and Oberschätzl-Kopp et al. (2016) observed that, albeit frequent 

feed push-ups with automatic machinery provide continuous access to feed deliveries, they do not have the same 

stimulating effect on feeding activity provoked by the delivery of fresh feed. It should be considered that such a reduced 

stimulating effect may represent a potential threat for the animals: their high-sorting activity influences the amount of 

physically effective NDF (peNDF), important for chewing activity, with a diminution of ruminal pH and impairment of 

liver health variables (Kröger et al., 2019). 

4. Conclusions 

The findings underscore the importance of considering the type of TMR feed-pushing technology used, as it can have 

a significant impact on the particle size distribution of leftovers, which, in turn, reflects the natural feed-sorting behavior 

of the animals. 

Both the AFS and operator-based feed-pushing tasks produced similar results, with a small amount of TMR available 

in the feeding bunk at the time of sampling, indicating that the cows consumed all the TMR provided. However, when an 

automatic drum feed pusher with a thrust action that does not mix the TMR leftovers is used, a high proportion of long 

particles are discarded by the animals, suggesting that the sorting activity continues throughout the day. 

To gain a better understanding of feed sorting throughout the day, future studies need to focus on the specific 

interaction between cattle and the machinery used. 
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Abstract  

Olive (Olea europaea L.) was mainly distributed within the Mediterranean basin, being Spain the main 

producer with 2.77 million hectares. Modern olive orchards require high technology control systems to 

optimize agronomical behavior, and mechanized processes to keep costs under control. Harvesting requires 

the highest amount of labor hours for both, machines and workforce, thus, optimize harvesting date and 

resources required was highly important in areas in which olive supposes a monoculture. The aim of this 

research was to determine if harvesting date influence next year production of fruit or olive oil. For this 

purpose, production data of several orchards from two different farmers located in Jaén Province, 

southeastern Spain, were gathered. All data was obtained from multi-trunk traditional olive orchards, which 

have the highest requirements in terms of labor and machine work to be harvested. Harvesting date was 

considered as the date in which fruit was delivered to the olive mill. Dates were transformed into day of the 

year (DOY) and modified DOY which zero value was considered as 1st November. Harvesting dates for fruit 

harvested from the soil were not considered because it did not affect next year production. Fruit, oil and oil 

yield were analyzed to determine if olive productivity was affected by previous harvesting dates. Optimal 

harvesting data will help to plan labor and machine resources to maximize obtained olive oil in terms of 

quantity and quality. Harvesting date influence on olive oil quality was already demonstrated, but the present 

research provided new evidence to encourage farmers from some areas of southern Spain to came early 

harvesting. 

 

Keywords: time of harvest, olive yield, on year yield, off year yield, delay costs. 

 

1. Introduction 

The olive tree (Olea europea L.) is a fundamental crop in the Mediterranean area, especially in Spain, the 

world's largest producer and exporter of olive oil (IOC, 2021). It extends for 3,800 km from east to west in 

the Mediterranean basin and has a great adaptation to the Mediterranean climate, being resistant to drought 

and frost (Arenas-Castro et al., 2020). In addition to its expanse, the olive tree has a great historical and 

cultural importance influencing economic and social aspects (Ojeda-Rivera et al., 2018). In Spain, olive 

groves cover 2.78 million hectares, a quarter of the world's woody crop area (ESYRCE, 2023) Andalusia is 

the region with the largest olive grove area globally, with 1,638,320 hectares in 2021, representing 60.1% of 

the national area, 32.8% of the EU area and 14.2% worldwide. Most of the Andalusian olive grove is destined 

to olive oil production, while a small part is dedicated to table olive production (CAPDR, 2023). 

 

Although the olive grove is the most common permanent crop in the world. its expansion continues. 

especially between 30º and 45º latitude in both hemispheres (Oteros, 2014; Hernández, 2018). Despite this, 

most of the world's olive oil production remains concentrated in the Mediterranean basin, with the European 

Union as the main producer. As for the area of traditional mechanizable and intensive olive groves in Spain, 

according to AEMO 2023, they are 1,106,632 ha and 713,163 ha respectively. Most of the traditional olive 

grove is characterized by having several rootstocks, wide plantation frames and densities from 100 to 150 

trees ha-1, with variable yields depending on the cultivation system and water availability. 
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High density olive orchard used to be single trunk trained with 200 to 800 trees ha-1, while super high density 

hedgerow orchards were planted at 800 to 2,500 trees ha-1 (generally with irrigation and high unit 

productions). Field observation has shown that extending the distances between trees and rows improves 

sunshine and solar radiation capture, increasing the fat yield in olives and reducing crop management costs 

(Todolivo. n.d.). 

 

In contrast, traditional olive groves are gradually losing importance, from about 600,000 hectares in 2001 to 

about 420,000 hectares at present, being replaced by higher density types of olive groves (CAPDR, 2002). 

The high cultivation costs of traditional olive groves make them less competitive than the new intensive and 

super high-density orchards, which benefit from mechanization to optimize production (CAPDR, 2023). 

 

Olive oil production costs varied from 1.49 to 10.03 € kg-1 olive oil in general oscillating from 4.48 to 6.98 

€ kg-1 for traditional olive orchard suitable for mechanization, considering effects of inflation and drought 

(AEMO, 2023). Other source reported different costs for non-mechanized rainfed olive orchards it is around 

3-4.5 € kg-1 and 1.5-2 € kg-1 of oil for high-density irrigated olive orchards (CAPDR, 2023). Overall 

production costs have increased significantly between the 2012/13 and 2021/22 seasons, with harvesting 

being the most important expense, highlighting the importance of mechanization for farm profitability 

(AEMO, 2023). 

 

Detailed knowledge of the agronomic and technological characteristics of olive varieties is crucial to predict 

their performance in different growing areas and to optimize the profitability of new plantations (Barranco 

et al., 2005). In new high-density olive plantations, planting density and irrigation can bring forward the entry 

into production, seeking to maximize profitability (Todolivo. n.d.). Olive trees have a marked tendency to 

alternate between productive and non-productive years (Sola-Guirado et al., 2017). Olive orchard production 

is strongly influenced by several factors related to its management. The proper selection of varieties adapted 

to the local climate and soil together with soil management practices such as fertilization, irrigation, and 

pruning, are critical for success in obtaining productive olive trees. The implementation of sustainable 

cultivation techniques and integrated pest and disease management are essential to improve long-term 

productivity (Fernández Escobar et al., 2013). 

 

Climate change is bringing in advace the optimal harvest time of olive trees by several weeks (Lorite et al., 

2018; Benloch-González et al., 2019). This situation could motivate growers to bring forward harvesting, as 

they currently only perceive improvements in oil quality, although they face difficulties due to higher fruit 

holding strength (Dag et al., 2011; Castillo-Ruiz et al., 2018). In a context of below average olive oil yields, 

optimizing production is essential to mitigate current high prices (Castillo-Ruiz, 2023). Fat yield over wet 

matter, which usually increases during fruit ripening, is crucial for the producer (Lavee and Wodner. 1991, 

2004; Salvador et al., 2001). Another important factor for profitability is harvesting, which represents up to 

40 % of costs per hectare in traditional systems (AEMO, 2023). In addition to profitability, the quality of the 

olive oil obtained is also a key factor; a healthy and minimally damaged product is fundamental to obtain 

high quality oil (García. 1994; Garcia et al., 1996; Garcia and Yousfi, 2006; Fregapane and Salvador, 2013). 

However, too early harvesting can produce oils with excessive concentrations of polyphenols, resulting 

organoleptically unacceptable. 

 

Harvesting technology significantly affects both oil quality and associated costs (Saglam et al., 2014) 

although all available harvesting technologies make possible to detach the fruit with different vibration 

patterns (Sola-Guirado et al., 2014). It is important to start harvesting when all the oil is formed in the fruit 

to obtain maximum quality (García-Ortiz Civantos, 2003). Harvesting is not only costly, but also crucial for 

annual production and oil quality (Rallo, 2009). Harvesting criteria should consider both efficiency and oil 

quality (López-Villalta, 1996). In addition, olives damaged during harvesting can deteriorate rapidly, 

negatively affecting oil quality (Garcia and Yousfi, 2006). 

2. Materials and Methods  

Olive harvesting data from two different olive growers were collected from different harvesting seasons. 

These data included harvested fruit per harvesting date, olive oil yield and plot. These data were gathered 

and classified to be analyzed. All plots were in two different locations of southeast Spain which olive mill 
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was located in N 38°19'53.65" O 3°15'26.06" and N 37°32'38.94" O 3°56'24.29" 

 

The data collection process for the study involves obtaining olive harvest data from several seasons. Farmer 

1 data were extracted from the website of olive mill “Ntra. Sra. del Pilar”, based in Villacarrillo (Jaén, Spain), 

selecting information from the 2020/2021 season to the most recent 2023/2024 season. Farmer 2 data were 

obtained from olive mill “San José”, based in Castillo de Locubín (Jaén, Spain). Gathered data include several 

important values for the study: 

 

Date: Indicates the day on which the entry of fruit in the mill was recorded, which coincided with harvesting 

data to ensure olive oil quality. 

Origin: Information that distinguishes whether the olive comes from the ground or directly from the tree. 

Fruit weight: Quantity of olives harvested on the specified date. 

Oil yield: Percentage of oil contained per kg of olives. 

Plot: Identification of the specific location from which the olives were harvested. 

 

Once these data are collected, they are organized in a first daily database. The database consists of 10 

variables (Table 1). 

Table 1. Example of the daily database. 

Date DOY DOY 

modified 

Fruit 

weight 

(kg) 

Oil 

yield 

Oil 

weight 

(kg) 

Origin Plot Season Farmer 

03/12/2011 337 32 846 20.75 175.54 1 1 1112 2 

20/01/18 20 80 607 31.54 191.44 1 7 1718 2 

12/01/2022 12 72 16,940 24.73 4,189.26 1 18 2122 1 

… … … … … … … … … … 

 

Date: Corresponds to the day of entry of the olive. 

 

DOY (Day of the Year): Indicates the day of the year on which the olives were harvested. It is calculated 

from the date of entry and it could varied from 1 (1st of January) to 365 or 366 (31st of December) (1). 

 

DOY= Number of days elapsed from the beginning of the year to the given date (1). 

 

Modified DOY: The DOY value is adjusted to consider November 1 as the first day of the year in the study. 

This calculation assumes that harvesting always start after 1st of November, and then, DOY for harvesting 

dates varied from a lower to a higher number (2). 

If DOY > 305 modified DOY = DOY-305 (2) 

 

If DOY < 305 modified DOY = DOY+60 (2) 

 

Fruit weight: Quantity of olives harvested on the corresponding date. 

 

Oil yield: Percentage of weight of olive oil obtained per unit of weight of fruit. 

 

Oil weight: Quantity of oil obtained from the olives harvested (3). 

 

𝑶𝒊𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 =
𝑲𝒈 𝒐𝒍𝒊𝒗𝒆𝒔 ∗ 𝒀𝒊𝒆𝒍𝒅

𝟏𝟎𝟎
         (𝟑) 

 

Origin: A number is used to indicate whether the olive comes from the tree (1) or from the ground (2). 

 

Plot: Identification of the plot from which the fruit was harvested, classified by correlative numbers. 

 

AgEng 2024 Proceedings

950



Season: Indicates the season to which the olive entry belongs. It will be expressed using a four-digit format, 

for example, the season 1112 will correspond to 2011-2012 and so on with each one. 

 

Farmer: Identification of the farmer from whom the data was collected. 

 

A second database will be created with annualized data (Table 2) per plot calculated from the daily database. 

The variables related to fruit or oil production are calculated as the sum for each plot divided by the area of 

each plot, while the DOY and mean yield variables are calculated as weighted averages (4 and 5). It is 

important to indicate that we include the average DOY for each year, and the DOY of the previous year, in 

order to calculate the harvest date influences the amount of crop harvested the following year. 

 

𝒀𝒆𝒂𝒓𝒍𝒚 𝒐𝒊𝒍 𝒚𝒊𝒆𝒍𝒅 =
∑ (𝑭𝒓𝒖𝒊𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝒊 ∗ 𝑶𝒊𝒍 𝒚𝒊𝒆𝒍𝒅𝒊

𝒏
𝒊=𝟏 )

∑ (𝑭𝒓𝒖𝒊𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝒊)
𝒏
𝒊=𝟏

         (𝟒) 

 

𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑫𝑶𝒀 =
∑ (𝑭𝒓𝒖𝒊𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝒊 ∗ 𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑫𝑶𝒀𝒊

𝒏
𝒊=𝟏 )

∑ (𝑭𝒓𝒖𝒊𝒕 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝒊)
𝒏
𝒊=𝟏

          (𝟓) 

 

Table 2. Example of an annualized database. 

Plot Season 

Fruit 

weight 

(kg) 

Fruit 

production (kg 

ha-1) 

Yearly oil 

yield (%) 

Oil production 

(kg ha-1) 

DOY 

mod 

Previous 

DOY 

1 1213 1.236.74 624.62 17.01 125.74 42.72 69.67 

5 1819 5.462 6206.82 22.90 1.421.36 90.7 85.65 

13 2324 253.615 6549.97 18.59  41.47 40.96 

… … … … … … … … 

 

For statistical analysis, the SPSS software (Armonk. NY: IBM Corp.) was used. 

3. Results and Discussion 

First, the average data of fruit and oil production as well as the previous weighted average DOY by season 

and plot are obtained. A first step is to visualize the data by season for fruit production, olive oil and harvest 

date (Table 3). There are seasons for which data are missing because they were not available from the farmers. 

Table 3. Results of fruit production, olive oil and harvest date for the different plots and seasons analysed. 

Seas

on 

11/12 12/13 13/14 

Plot Fruit 

product

ion (kg 

ha-1) 

Oil 

product

ion (kg 

ha-1) 

Previo

us 

DOY 

Fruit 

product

ion (kg 

ha-1) 

Oil 

product

ion (kg 

ha-1) 

Previo

us 

DOY 

Fruit 

product

ion (kg 

ha-1) 

Oil 

product

ion (kg 

ha-1) 

Previo

us 

DOY 

1 6422.2 1528.5  624.6 125.7 69.7 5281.3 1183.0 42.7 

2 5988.4 1291.7  965.2 225.2 60.7 2502.7 540.1 48.7 

3 10294.4 2102.1  1151.5 228.7 34.3 10432.9 1872.7 33.0 

4 11328.4 2821.9  3672.0 915.4 70.8 7037.3 1696.0 56.4 

5 3647.7 764.6  727.0 149.9 78.4 3479.5 634.3 80.5 

6 6925.9 1604.7  4903.4 1170.0 72.6 1374.1 357.8 56.7 

7 8130.7 1941.6  3827.3 944.2 85.3 2624.5 640.9 68.2 

8 7027.0 2017.5  5785.0 1246.7 102.0    

9 6321.2 1271.2  469.8  42.9 6068.6 1489.2 60.0 

10 6161.0 1394.8  1144.3  63.2 8037.2 1748.1 60.0 

11          
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12 1260.8 396.6  542.4 135.1 109.4    

 14/15 15/16 16/17 

1       5020.2 1152.1  

2       4429.5 1080.3  

3       10471.9 2091.2  

4       7585.3 2069.3  

5       5811.4 1203.0  

6       11124.1 2487.4  

7       9444.0 2182.5  

8       5260.1 1323.5  

9 1415.3  43.7 4616.9  120.4 4665.3 931.3 32.0 

10 2096.0  85.5 4272.4  56.0 7278.6 1408.1 39.2 

11          

12       1335.1 362.2  

 17/18 18/19 20/21 

1 277.3 50.5 80.1 7211.6 1580.1 67.4    

2 2864.3 711.5 60.6 4542.0 1075.1 52.9    

3 8541.1 1737.3 50.0 13225.1 2064.4 36.4    

4 5954.9 1551.3 59.6 8668.6 2126.4 59.7    

5 2253.4 529.6 126.5 6206.8 1421.4 85.6    

6 6572.4 1614.8 68.2 11291.4 2343.0 89.7    

7 2616.2 672.4 81.7 11495.9 2638.3 75.9    

8 4638.5 1147.6 106.6 9756.8 2243.1 102.3    

9          

10          

11 2011.6 455.6  5327.2 1162.9 66.9    

12    843.5 178.2     

13       9428.7 1827.3  

14       10811.7 2160.2  

15       7905.0 2215.0  

16       6426.2 1788.4  

17       10473.1 2368.0  

18       11674.4 2582.4  

 21/22 22/23 23/24 

1 4986.9 848.3  .0 .0 60.6 49.0 9.6 .0 

2 5449.1 1010.3  1371.4 297.1 32.0 230.4 45.7 52.8 

3 7735.9 1303.5  14311.7 2636.2 17.5 3095.2 444.8 48.0 

4 10287.3 2420.6  1643.1 458.9 48.8 421.6 89.5 41.3 

5 6184.2 955.5  1171.6 152.9 81.1 84.1 17.0 78.3 

6 10244.8 2226.2  1256.9 290.5 73.1 606.9 130.4 56.7 

7 9124.5 1876.0  527.0 99.0 74.6 414.9 94.1 74.0 

8 6853.0 1500.1  962.8 179.2 88.2 675.7 136.7 83.0 

9          

10          

11 7530.9 1247.1  2271.4 382.1 71.1 1307.5 249.9 64.2 

12          

13 8252.8 1789.2 39.5 3091.4 676.4 41.0 6550.0 1217.6 41.5 

14 8461.3 1772.6 40.2 4723.4 971.6 42.3 7491.7 1401.0 35.1 

15 9649.7 2248.4 90.8 1400.0 338.9 58.6 9781.7 1829.2 66.6 

16 8941.1 2288.9 90.2 3433.1 850.7 76.0 8697.7 1937.0 87.5 

17 8299.2 2000.1 82.7 5040.1 1202.6 54.2 4965.9 1075.6 71.6 

18 11178.4 2882.9 55.3 6282.8 1279.2 80.3 11702.8 2419.0 33.2 

 

AgEng 2024 Proceedings

952



Fruit and olive oil production did not significantly correlate with harvesting date in the previous year while 

there was a significant correlation between harvesting date in the current and the previous year (Table 4). 

This fact indicated that the farmers used to harvest their plots in a very similar order between years, which 

could also interact with the hypothesis of fruit or oil production was correlated with harvesting date in the 

previous year. 

 

(Table 4). Correlation for all plots and seasons with data between fruit production, olive oil and harvest 

date of the previous year which is always represented as DOY modified. 

Variable 1 Variable 2 Correlación Pearson            Sig. 

Fruit production (kg 

ha-1) 

Harvesting date 

previous year 

-0.100 0.381 

Oil production (kg ha-

1) 

Harvesting date 

previous year 

-0.046 0.701 

Harvesting date in the 

current year  

Harvesting date 

previous year 

0.362 0.001 

 

The hypothesis of this research was not validated, this may be due to different causes such as the fact that 

early harvesting of the same plots always distorts the data. The results may also be influenced by climate 

change and the drought that has severely affected olive production in the last two seasons (2022/23 and 

2023/24), considering that drought affect olive photosynthetic activity, generates oxidative stress and 

imbalance in plant nutrition (Brito et al., 2019). Furthermore, climate change has come early several weeks 

optimal olive harvesting date (Lorite et al., 2018 and Benloch-González et al., 2019) which could lead to 

different requirements to keep high olive oil quality, mainly in harvesting machinery effective field capacity, 

which should be increased to avoid fruit falling to soil reducing olive oil quality and hindering harvesting. 

 
Figure 1: Regression between fruit production (kg ha-1) and harvest date of previous season. 
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4. Conclusions 

No significant relationship between fruit or oil production and the harvest date of the previous year was found 

with the data analysed, although this fact was considered true by many farmers and technicians. These 

findings imply that, under the conditions and data set analysed, there is insufficient evidence to establish 

significant relationships between fruit and oil production and harvesting date in the previous year. It is 

possible that other factors not considered in this analysis may influence the variables studied, or that a larger 

sample size or a different study design may be required to find significant relationships. The absence of this 

relationship could be due to interactions with other variables such as plot production potential, climate 

conditions, farmer practices or even interactions between these variables. Further research was needed to 

clarify these points. 
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Abstract  

Pruning is essential to keep olive (Olea europaea L.) in adequate conditions for both keep high olive 

production capacity, and adapt canopy volume, and shape to different harvesting systems. On this matter, 

there are different olive categories which could be simplified to three: Traditional olive orchards; high density 

olive orchards adapted to trunk shaker harvesting; and hedgerow orchards adapted to straddle canopy shakers. 

All these olive orchards require pruning, windrowing, and chipping or shredding operations to keep olive 

orchards in adequate condition. Currently, the most common practices were pruning using handheld 

chainsaws, windrowing manually, or using tractor hitched rotary vertical shaft windrowers, and tractor 

hitched auto feed shredders. All these operations were performed in different wipes which makes the orchard 

not available for other operations between pruning and chipping. The objective of this research was to 

develop a tractor hitched windrowing and chipping prototype for olive pruning management in an only tractor 

wipe to improve orchard availability and attempt to reduce pruning management costs. The prototype was 

developed, tested, and redesigned to achieve an adequate windrowing efficiency. The prototype consisted of 

two side windrowers, bottom and upper feeders, vertical and horizontal rollers as compression system, and 

disk blade mounted chipper. The rollers of the compression system included an automatic adjustment system 

that regulated rotary speed which made possible to adapt the fed amount of pruning to chip according to 

tractor engine load. This feature made possible to avoid chipper block or tractor overload when idle time was 

reduced as much as possible depending on available pruning amount. The prototype was designed to be 

adapted to all olive orchard categories except those which rows spacing were under 5 m. Furthermore, once 

the pruning residues were chipped, it is possible to lend them to cover soil or harvest them through a vacuum 

system to use as biomass. Final prototype theoretical weight and dimensions were 4,500 kg and 4.9 x 2.2 x 

3.32 m (width, height, and length). These features made the prototype heavier and wider than conventional 

shredders which varied from 1000 to 2500 kg, and 1,5 to 2,4 m. However, these features reduced labour 

requirements up to 81,8 % respect to manual windrowing and subsequent shredding. 

 

Keywords: shredding, chopping, soil cover, biomass harvesting, pruning residues. 

1. Introduction 

Olive is one of the most important woody crops in the world having 11.6 Mha distributed in 66 different 

countries (Vilar, 2023). Spain is the largest olive grower in the world with 2,8 Mha of which 88 % were 

olives for oil and 69 % were rainfed (ESYRCE, 2023). Olive growing required different essential labours 

such as weeding, fertilizing, spraying, pruning, and harvesting, of these labours at least weeding, pruning, 

and harvesting should be carried out annually to keep the crop in adequate condition. The risk of 

abandonment affects a great olive orchards surface, mainly of those plots non suitable for mechanization, 

which was estimated in 5,5 Mha in the world (ASOLITE, 2021). 

Pruning was a key labour for olives, but it produced an important amount of pruning residues which can 

varied from 10 to 60 kg tree-1 (700 to 4,800 kg ha-1) in a multi trunk traditional olive orchard (Castillo-Ruiz 

et al., 2017). To manage this volume of residues, they could be burnt which is highly inadvisable except in 

case of risk of Verticilium dahliae or other pathogens spreading (Michalopoulos et al., 2020). Other optionse 

were left chipped residues on the soil as a mulching protection, organic matter addition and to increase soil 
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moisture (Taguas et al., 2021) or harvested for energetic purposes, although a minimum amount of residues 

is required to be economically feasible having into account that this material has around 12,2 MJ/kg Lower 

Heating Value (LHV) (Kougioumtzis et al., 2022) depending on the moisture.  

Currently, available hand labour is scarce in Spain (Banco de España, 2024), as take place in many other 

countries, especially for agriculture purposes. This fact led farmers to mechanize all labours as much as 

possible to reduce hand labour requirements and to improve productivity and competitiveness. In this context, 

a Pre-Commercial Procurement project (European Commission, n.d.) was developed by University of 

Cordoba within Serrat mulchers participated to develop an olive pruning residues windrower, chipper, and 

harvester. This prototype could perform the three tasks in an only wipe to reduce hand and tractor labour 

requirements and to make easier olive pruning residues management shorting the time in which the orchard 

is not available from pruning to chipping.  

The prototype should be suitable for work at least in traditional and high-density olive orchards (BASF, 

n.d.) Firstly, traditional olive orchards used to be around 100 trees ha-1 sometimes irregular spacing and multi-

trunk trained. Secondly, high-density olive orchards were between 200 and 800 trees ha-1 single trunk trained 

vase-shaped to facilitate harvesting with trunk shakers that could include a reverse umbrella as a catching 

frame. Finally, super high-density olive orchards used to be planted at 800 to 2.500 trees ha-1 setting a hedge 

to be mechanically harvested using straddle canopy shakers, and sometimes they are also mechanically 

pruned which used to provide much smaller residues than traditional or high-density olive trees. 

The objective of this research was to develop a machine that could windrow and chip or shred olive 

pruning residues in an only wipe. This machine could leave the chipped residues on the soil or alternatively 

could harvest them. 

2. Materials and Methods  

The first step was to define the requirements that should be achieved by the prototype, which was included 

in the technical request by the University of Córdoba which previously gathered data from farmers, 

agricultural machinery builders and other actors in the olive sector. Additionally, 12 deliverables schedule 

was also defined along 44 months to establish a time development for the project to avoid delays that could 

affect the result. The process was competitive with 3 main phases: Exploratory phase or market inquiring, 

Initial 3D designs, and prototype development, building and testing. Along these phases, up to 6 different 

machinery developers participated, although finally, only 2 of them built a final prototype. 

The prototype should accomplish different requirements that were initially defined according to 

marketing inquiring phase: 

• The prototype should windrow pruning residues before chip or shred them. It was desirable that the 

prototype could chip or shred trunks up to 70 mm diameter. 

• The prototype could distribute the chipped residues in a homogenous way in the soil or alternatively it 

could harvest pruning residues for energetic purposes. In both cases, chipped residues should be as small 

as required for used and to avoid the development of pests, which meant that pruning residues length 

should be under 30 mm. 

• Pruning residues should be previously removed from under the trees canopy manually or by other 

machines. Once the residues were between the tree rows, the prototype should windrow them with high 

efficiency. 

• To make possible to achieve the windrow objective in traditional, high-density, and even super high 

density olive orchards, the windrow width should be adjustable from 4 or 5 m to 2 or 3 m. Windrowing 

devices should be adjustable in terms of width, angle and windrowing capacity. 

• Fuel consumption reduction of 15 % respect to conventional windrowers and chippers or shredders 

considering the two operations. 

• Smooth peak values for torque and power requirements of the machine respect to conventional chippers 

or shredders improving the performance of the tractor engine. 

• Improvement of the effective field capacity of the current around 20 % regarding current windrowers 

and chippers or shredders and including manual windrowing as a conventional practice. 

• Windrowing and chipping cost should be under conventional mechanical or manual windrowing and 

mechanical chipping or shredding. 
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3. Results and Discussion 

Prototype requirements were adapted to a wide range of working conditions, which made necessary to 

design and build several adjustable systems in the prototype with using the latest available technology in 

hydraulic systems. For instance, to control chipper feeding, the compression rollers should regulate their 

rotary speed according to tractor engine load. Furthermore, to work at different rows spacing, the windrowers 

could tilt to change prototype working width adapting the windrowers to the soil geometry. Selected 

windrowers were twin basket rake type with a horizontal axis. Moreover, windrowers could move in two 

main directions, vertically, and horizontally, to adapt to different soil plot conditions. Working width could 

be adjustable from 2 to 4.8 m in working conditions (Figure 1), although for transport, machine width could 

be reduced up to 1.5 m (Figure 2). 

 

Figure 1. Prototype design with maximum working width. 
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Figure 2. Prototype design with folded windrowers at transport position. 

After windrowing, the pruning residues were move up from the soil by a horizontal feeder at the bottom 

of the prototype to the compression system. To avoid the pruning residues to pass over the prototype, an 

upper feeder with auto-adjustable height was included, which also helped to compact residues previously to 

pass to the next step.  

Due to pruning residues high volume in relation to weight, they should be compacted previously to chip 

them. Moreover, this prototype presented a worse situation compared to manual windrowing, considering 

that pruning residues fell in a disorderly way which may affect the movement of these residues from feeding 

to chipping. For this reason, a compression system was included, to increase prototype working capacity by 

reducing the pruning residues bulk density. In this sense, previous studies have shown that pruning bulk 

density could also varied depending on pruning residues size (Castillo-Ruiz et al., 2021) and spatial 

variability of pruning residues amount depends on canopy volume, tree projected area (Rodriguez-Lizana et 

al., 2023), pruning system and intensity (Castillo-Ruiz et al., 2017). The compression system was divided 

into two steps, the first step was composed of two vertical rollers which could adjust the distance between 

them according to the resistance of the compressed material. Afterwards, the second step was composed of 

two horizontal rollers. All rollers include a rotation system moved by a hydraulic engine and each pair of 

rollers include a compression system composed of hydraulic cylinders.  

The compression system worked as an automatic adjustment of the prototype, considering that the rollers 

could rotate quickly or slowly depending on the chipping system load. The higher the chipping system load, 

the slower the rollers rotation up to stop the rollers if the chipping load was excessive for the tractor power. 

Furthermore, the rollers could rotate in the opposite direction to help the prototype to discharge pruning 

residues in case of chipping system blockage. These features made possible to avoid chipper block or tractor 

overload when idle time was reduced as much as possible depending on available pruning amount making 

possible tractor restart if necessary.  

After pruning residues compression, the prototype performed the material chipping by four blades 

mounted on a rotating disk which moves around an imaginary horizontal axis that was situated along the 

pruning residues feeding and compression path. The disk was the only prototype system that was directly 

moved by the power take-off from the tractor to ensure that the total tractor engine power could be transmitted 
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to the chipping system. The rest of the systems were moved hydraulically which made possible to adjust, 

control an automatize several tasks having much more versatile prototype. 

After chipping, the material was conducted to a fan which propelled it from the rear part of the tractor to 

a front loader basket hitched to a front loader system through a 300 mm diameter pipe to avoid blockages. 

This pipe could be detached from the chipper or from the front loader basket to distribute the chipping 

material as a mulching in the soil. 

The prototype was designed to be adapted to all olive orchard categories except those which rows spacing 

were under 5 m. Furthermore, once the pruning residues were chipped, it is possible to lend them to cover 

soil or harvest them through the fan system to use as biomass. Final prototype theoretical weight and 

dimensions were 4,500 kg and 4.9 x 2.2 x 3.32 m (width, height, and length). These features made the 

prototype heavier and wider than conventional shredders which varied from 1000 to 2500 kg, and 1,5 to 2,4 

m. However, these features reduced labour required to windrow olive pruning for the prototype which was 

one of the previous requirements, but made necessary to use tractors with high three-point hitch lifting 

capacity. 

The prototype was monitored by a modem device that sent data to a host control platform in order to 

analyse working time (Figure 3). During in field tests, the prototype provided high windrowing and chipping 

efficiency between 87 and 91 % while effective field capacity varied from 0.54 to 0.63 ha h-1 considering the 

windrowing, chipping and harvesting biomass process and including unloading of chipped material when the 

front loader basket was full (Figure 4). The main improvement of this prototype respect to manual or 

mechanical windrowing and subsequent shredding was the reduction of tractor wipes, from two or more in 

the conventional way, to one wipe with the prototype. If pruning residues were managed with manual 

windrowing and subsequent shredding with auto feed shredders, effective field capacity will be around 0.1 

ha h-1 and worker-1 for windrowing 1 to 2 ha h-1. However, if pruning residues were managed with mechanical 

windrowing, effective field capacity for mechanical equipment will be of 1 to 2 ha h-1 plus a highly variable 

on foot working requirements of 1 to 5 h ha-1. In the worst case, the prototype had the same effective field 

capacity than the conventional way of pruning management, while in the best case, this prototype could save 

up to 9 h ha-1 of working time. 

 
Figure 3. Recorded data on the host control platform during one day of in-field tests. 
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Figure 4. The prototype windrowing, chipping and harvesting olive biomass during field tests. 

The prototype harvest between 1.8 and 8.2 t h-1 of fresh biomass, which was a really high rate considering 

that the machine perform 3 tasks (windrowing, chipping and harvesting) in an only wipe Other shredder and 

biomass harvester, without windrowing in all cases, achieve an effective material capacity between 2.7 to 4.7 

t h-1 while other harvesters working in olives achieve an effective material capacity between 3 and 9 t h -1 

(Spinelli and Picchi, 2010). However, self-propelled forage harvester with a purpose-built coppice header 

achieves higher productivity which varied from 10 to 78 t h-1 harvesting hybrid poplar and excluding headland 

activities (Eisenbies et al., 2017). At this point, it should be noted that effective material capacity strongly 

depends on biomass amount. For this reason, further research is needed to compare effective material capacity 

in the same working conditions. 
 

4. Conclusions 

It is possible to windrow, chip and harvest olive pruning residues in an only wipe, but this complexity 

implies that the machine will be heavier and bigger than conventional windrowers or shredders, which lead 

to use tractors with high lifting capacity at the three-point hitch. Moreover, it is highly complex to design, 

build and test such a complex machine, which requires high technical level. It should be noted that this 

prototype was focused on the reduction of hand labour mainly for manual windrowing, considering that there 

are very few commercial windrowers that are feasible for olive residues windrowing in a reliable way. In this 

sense, results show that the designed prototype could save up to 9 h ha of working time which supposes 81,8 

% of the working time required for conventional way of managing pruning residues by manual windrowing 

and shredding. In the worst case, the prototype required the same working time than conventional 

management using mechanical windrowing and shredding when mechanical windrowing provided high 

efficiency. However, effective material capacity will depend on available amount of biomass, which along 

with high benefits provided by biomass mulching could make olive biomass harvesting only in a very few 

cases. 
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Abstract  
The low supply of mushrooms in the Philippines evident to 90% importation is ironic to the abundant biomass 

resource the country could offer. The low biomass utilization rate affected by the lack of appropriate technologies also 

applies to the low productivity in the bagging of substrate in the mushroom industry using manual labor with a capacity 

of 25 bags/hr. These problems enthuse the study to design, fabricate, and evaluate a mushroom substrate compactor-

bagger adaptable to local practices and mushroom production technologies in the country. The 1432mm x 741mm x 

2040mm (l x w x h) 140kg machine was designed using 152 x 305mm, 0.02 mil polypropylene plastic bags with a 

compaction height of 203mm and 95mm diameter. A weight of 750 grams of substrate per bag was determined as a 

setting using the CLSU formulation (70-30 RS-S) and BSU (80-15-5 S-RB-L) formulation. Performance evaluation of 

the machine using the two formulations was tested with different loading weights of 10kg, 15kg, and 20kg per batch. It 

was evaluated using simple CRD and means were compared using an LSD test. Results of the study revealed that CLSU 

formulation at 15kg loading gained 71.67% bagging efficiency, 70.78% filling efficiency, 204 bags/hr bagging capacity, 

and an average of 740.90 grams/bag. Using BSU formulation, the machine loaded with 20kg produced the highest 

bagging and compacting efficiencies of 88% and 83.48%. It had a capacity of 307 bags/hr with an average of 759 

grams/bag. The average weight per bag was within the acceptable weight of 750 ±50 grams. The cost analysis of the 

machine for a year of operation at six hours per day, three times a week with a custom rate of PhP1.5/bag could generate 

an income of PhP96,736.00-PhP191,749.00 per year and a payback period of 0.30-0.60 years for the BSU and CLSU 

formulations, respectively. With the developed machine, there would be increased biomass waste utilization, more 

production of oyster mushroom at lower cost and hence, more benefits to the farmers and the mushroom industry.  

 
Key Words: biomass utilization, compactor-bagger, oyster mushroom, substrate formulation  

 

 
1. Introduction  

According to economic analysts, mushrooms are seen as another significant crop of the country due to its growing 

local demand (Philippine News Agency, 2010). Being an agricultural country with well-endowed livestock and forestry 

products and cultivates major crops like rice, coconut, and sugarcane, the state can generate substantial amount of residues 

favorable for the production of mushrooms. However, the Philippine mushroom industry set its lowest production volume 

of 355 metric tons (MT) in 2009 and worsened since 1995 (Chang et al., 2014) as almost 90% of the mushroom consumed 

was imported from different countries of South East Asia (Business Diary Ph, 2015). 

 The lack of appropriate research for mushroom mechanization facing the country's small-scale and or village-

level mushroom industry could be observed in the bagging of substrate materials where manual labor is employed and 

described to be labor-intensive (De la Torre, 2010).  As Oei (2005) explained it, more people are needed to do the filling 

of bags than in other operations before bagging. Mechanization technology suited for the scale of production in the 

bagging or filling of substrate bags and other related operations could encourage the use of available biomass resource 

and could further boost the mushroom industry towards self-sufficiency of mushroom supply in the country.   

With these problems of low mushroom supply and the potentials of untapped biomass resource in the country, a need 

for efficient and cost-effective biomass utilization technologies and equipment compared to existing production 

technologies could be seen to encourage the cultivation of mushroom. Thus, the study aimed to develop an oyster 

mushroom (Pleurotus spp.) substrate compactor-bagger using locally available materials and fabrication technologies. 

The specific objectives of the study include the establishment of the optimum weight of substrate in bags; to design a 

substrate bagger adaptable to existing technologies of mushroom production in the Philippines; to fabricate the machine 

using local manufacturing technologies; to evaluate the operating performance of the machine in terms of capacity, 

efficiency, and uniformity in weight of substrate bags; and, to perform cost analysis in using the machine. 

With the study, bagging of the mushroom substrate would be made easier resulting in higher output in terms of 

mushroom substrate in bags. The creation of the machine could also lead to increasing biomass resource utilization which 

was not given too much attention. It would also provide opportunity to the local machinery industry as this machine 

could be added to the list of machines that could be fabricated locally, thereby may also increase the income of local 

machinery shops. Thus, the study would help improve the production of the mushroom substrate and the mushroom itself 

creating a more profitable farmer but also in the utilization of biomass resource for food production and profit creation.  
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2. Materials and Methods  

The study was set to design, fabricate, and evaluate a machine mechanizing the compacting and bagging of 

mushroom fruiting bags using two of the most commonly used formulation, the (a) 70 parts rice straw and 30 parts 

sawdust or CLSU Technology and (b) 80-15-5 parts of sawdust-rice bran-lime or BSU Technology. 

The study started with the gathering of benchmark data to support the claim of mechanizing the bagging of the 

mushroom substrate.  The data gathered in the form of a survey questionnaire was conducted related to the existing 

technologies in the country on bag cultivation.  Data gathered like the dimension of polypropylene plastic (PP) bag, the 

capacity of laborer and weight of substrate served as basis or design considerations for the fabrication of the machine. 

 

2.1 Establishment of optimum weight of substrate in bags. 

To standardize the weight of the substrate bagged by the machine, the establishment of the optimum weight of 

substrate in bags was conducted. It was used in the conceptualization of some settings for the fabrication of the machine. 

The planting spawn weighs 40 grams per bag placed in 102mm x 152mm PP bags plugged with cotton through a PVC 

neck.  It was sterilized in an autoclave for one and a half hour at 120 degrees Celsius, 21psi.   

Formulation of the substrate follows CLSU technology and BSU technology. The substrate was manually bagged 

using 152mm x 305mm PP bags with 0.02 mil thickness.   The bags were approximately uniform in volume since height 

was maintained at 203mm while diameter at 95mm. It was inoculated with the prepared spawn and was incubated in a 

dark room. It was then transferred to the fruiting area after full ramification.  

Data gathered include the number of days for full mycelial ramification, yield per bag, and flushing interval. 

Meanwhile, the statistical analysis used was (2x3) factorial by Completely Randomized Design.  Factor A of the study 

included the types of substrate mixture: (F1) 70% Rice Straw and 30% sawdust; and (F2) 80% sawdust, 15% rice bran, 

5% lime while Factor B was the different weight per substrate bag: (A) 500 grams, (B) 750 grams, and (C) 1000 grams 

compacted in the same volume (95mm diameter x 203mm height). \ 

 

2.2 Design of the mushroom substrate compactor-bagger 

The machine had the following components: the flywheel and compactor assembly, the conveyor-hopper assembly, 

the rotating disc assembly, the mechanism to rotate the rotating disc assembly, the frame assembly and the power 

transmission system. The hopper was designed to accommodate 32-35kg of substrate per batch. The volume of the hopper 

was determined using Eq (1) using density of uncompacted substrate for BSU formulation of 347kg/m3  and CLSU 

formulation with 320kg/m3 

𝑉ℎ =
𝑊1

𝜌
                 (1) 

   where Vh is volume of hopper, m3, W1 is weight of substrate per batch, kg,  and 𝞺 is density of substrate, kg/m3 

 

The design of the spiral conveyor was based from Henderson and Perry (1955) for screw conveyors. The diameter 

of the shaft was calculated using Eq (2) where the density of sawdust was used and the diameter of the spiral conveyor. 

CT = (D2-d2)/36.6) x P x V         (2) 

 

where CT is theoretical capacity (x 60%), ft3/hr., D is spiral diameter, in,  d is shaft diameter, in, P is pitch diameter, 

in (usually equals to D) and V is speed of shaft, rpm 

 

The size of the PP bags dictated that the diameter of the compression chamber was 95mm and the height was 295mm 

lower than the computed value of 305mm to facilitate easier mounting of PP bag wherein the remaining gap would be 

augmented by using the adjustable stopper depending on the type of substrate. After the dimensions and sizes of 

components were calculated, a final design plan was drawn using SolidWorks software. 

 

2.3 Fabrication and assembly of the machine 

Local technologies and skills of manufacturing industry in the country was utilized in the fabrication using mainly 

the instruments found in a local fabricating shop. Some of the equipment used were: welding machine, grinding machine, 

drilling machine, oxy-acetylene gas, and cutting disc. The assembled components were set to their proper timing before 

conducting the preliminary test. 

 

2.4 Machine testing and evaluation 

After the machine was fabricated, initial testing was conducted to validate the timing and functions of all 

components. The study was laid out in Completely Randomized Design, ANOVA was used to evaluate the effects of 

different weights per batch in the machine using two formulations. Since the two formulations used differed in physical 

property especially the bulk density of uncompacted materials, a separate evaluation of the machine using the two 

substrates was conducted. There were three varying weight per batch per kind of formulation. With this, there were three 

replications per treatment for each of the two formulations.   

The methods of preparation for the substrate materials in the testing for the machine were similar with the preparation 

of a substrate in the establishment of optimum weight per substrate bag. Data gathered during the evaluation include 

productive time, unproductive time, total bagging time, number of bags within the acceptable limit, total number of bags 

produced, and total weight of loaded inputs or substrate.  
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The bagging capacity of the machine was determined using the Eq (3) 

 

C= 
𝐵𝑖𝑛

T
    (3) 

 

 where C is  bagging capacity, bags/h, Bin is number of bags produced within the limit, and T total bagging time 

 

The bagging and filling efficiencies of the machine were calculated using Eq (4) and (5) 

 

𝐸𝑓𝑓𝐵 =   
𝐵𝑖𝑛

𝐵𝑇
 𝑥 100  (4) 

 

𝐸𝑓𝑓𝐹 =   
𝑊𝑖𝑛

𝑊𝑇
 𝑥 100 (5) 

where Effb is bagging efficiency, Bin is number of bags produced within the limits, BT is total number of bags 

produced, Win total weight of bags within the limit, and WT is the total weight of load input 

 

2.5 Cost analysis 

To evaluate the cost of using the machine, the following equations by Hunt (2001) as presented in Table 1 were used.  

 

Table 1.  Formula used for the simple cost analysis of the study. 

          Particulars          Formula 

Salvage value, (10% IC) SV = 10% IC 

Depreciation, PhP/yr D = (IC-SV)/n 

Interest on Investment, PhP/yr I = ((IC+SV)/2) i 

Fixed Cost, PhP/yr Fc = D+I+TIS 

Variable Cost, PhP/yr Vc = Cp+Cl+RM+Club 

Total bagging cost, PhP/yr Tc = Fc+Vc 

Bagging Cost, PhP/bag Bc = Vc/C*T 

Breakeven point, bag/yr BEP = Fc/Cr-Bc 

Net Income per year, PhP/yr NI = C*T*Cr-Tc 

Payback Period, yr PBP = IC/IN 

 

where Fc is annual fixed cost, PhP/yr., D is depreciation, PhP/yr.,  I is interest on investment, PhP/yr., TIS is tax, 

insurance and shelter, PhP/yr., Vc is variable cost, PhP/yr., Lu is lubricant cost, PhP/yr., Cp is fuel cost, PhP/yr., RM is 

repair and maintenance cost, PhP/yr., Cl is labor cost, PhP/yr., Tc is  annual cost, PhP/yr.,  C is bagging capacity, bags/hr., 

Vc is variable cost, PhP/yr., Bc is Bagging Cost, PhP/bag, Cu is cost of using the machine, PhP/bag,  T is annual operating 

time, hrs./yr., Cr is  custom rate, PhP/bag, BEP is break-even point is the number of bags that the machine would properly 

compact and bag to recover the capital investment, and PBP is payback period is the time it takes to recover the investment 

cost.  

To conduct the cost analysis of using the machine, assumptions were laid to facilitate computation.  Six hours were 

allotted for the total operating hours per day of the machine, considering 8-hr operation for the laborer. The labor cost 

per laborer is PhP300.00/day at 6hr/day.  

Assuming that in a community with several mushroom and fruiting bag producers, 3 days/week was allotted for 

custom hiring at PhP1.50/ bag. The custom rate is 75% of the manual bagging cost of PhP2.00 considering the cost of 

manual bagging for 25 bags/hour.  If the machine is used for a year, it would operate for 156 days or 939 hours. 

Considering that the machine uses 0.368kW of motor at 7.13 pesos per kilowatt hour rate, the cost per hour of operation 

is PhP2.64. 

 

3. Results and Discussion  

 

3.1 Optimum weight of substrates 

For the average mycelial ramification, the analysis of variance revealed significant difference between the 

formulation, weight of substrate, and their interactions. The comparison of means revealed that the 500g weight per bag 

with 26 days of full ramification vary significantly to that of the 750g and 1000g bags with 31 days and 40.6 days.  The 

mean ramification of 27.33 days for CLSU formulation varied significantly to the 37.73 days of BSU formulation. For 

the interaction of the factors, Table 2 shows that the least ramification days was recorded in CLSU formulation at 

500g/bag with 20 days only while highest at 41.20 days in 1000g/bag BSU formulation. The simple effects vary 

significantly with each other except to that of BSU at 750g and CLSU at 1000g with 40 days ramification period.  

 

Table 2.  Mycelial ramification (days) per formulation as affected by different weight of  substrate. 

Formulation 
Weight, g Mean 

A-500g B-750g C-1000g 
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   *Means with the same letter are not significantly different 

 

The results revealed that the higher the weight of substrate in bags the longer it would take for the mycelial run for 

both substrate formulations. This result is supported by a similar study on the mycelial run for Pleurotus  florida by 

Mondal et. al (2010) which resulted in lesser time for colonization in rice straw-based substrate than the traditional 

substrate of sawdust. 

The results of the analysis of variance of the average yield per bag as affected by substrate formulation and weight 

per bag show significant difference between the weight per bag and interaction while no significant difference in 

formulation. The comparison among means as affected by weight per bag presented in Table 3 would show that the 750g 

produced the average yield per bag of 130.25g and was significantly different to the 113.65g/bag of the 500g substrate 

bag and the 76.75g yield of the 1000g. For the interactions, yield for both formulations at 500g and 750g did not differ 

significantly with each other but differ significantly to that of the 1000g/bag. 

 

Table 3.  Yield (g) per formulation as affected by different weight of substrate. 

Formulation 
Weight, g Mean 

A-500g B-750g C-1000g 

CLSU 109.21v 133.50v 73.40w 105.37 

BSU 118.10v 127.00v 80.10w 108.40 

MEAN 113.65k 130.25j 76.75l 106.89 

*Means with the same letter are not significantly different 

 

The result in yield was similar to the results of Zireva et al. (2007) on oyster mushroom yield using tray method of 

cultivation whereby from 2kg to 10kg per tray, 6kg was seen to be favorable for growing. The results emphasized that 

the decrease in yield below the optimum weight was attributable to earlier depletion of nutrients due to limited substrate 

quantity while increasing the substrate quality did not increase in mushroom production but only a waste of resources. 

The comparison among means in Table 4 shows that the flushing interval means of BSU formulation with 11.40 

days significantly differed to CLSU with 18.07 days flushing interval. For the weight of bags, 750g per bag resulted to 

lowest flushing interval of 8.75 significantly different to the 14 days of 500g and 21.45 days of the 1000g. The interaction 

effects of the two factors were seen to be significantly different with each other where CLSU at 750g with 8 days flushing 

interval differ significantly to all other treatment combinations except with BSU at 750g with 9.50 days. The BSU 

formulation at 750g also did not vary significantly to BSU at 500g with 11.10 days but differed to other treatment 

combinations. Meanwhile, BSU formulation at 500g and 1000g did not differ significantly with each other but differed 

from the rest of the treatment combinations. 

 

Table 4.  Flushing interval (days) per formulation group as affected by different levels of weight. 

FORMULATION 
WEIGHT MEAN 

A-500g B-750g C-1000g 

CLSU 16.90 w           8.00 z          29.30 v      18.07a 

BSU 11.10  xy
         9.50 yz 13.60  x      11.40b 

MEAN 14.00k 8.75l 21.45j 14.71 

    *Means with the same letter are not significantly different 

 

Based on the results of the statistical analysis conducted, both formulations were affected by the different weight 

levels of substrate in bags. In selecting what type of formulation would be more favorable than the other, CLSU 

formulation revealed better results in terms of mycelial ramification (days) and flushing interval (days) than BSU mixture 

but had no difference in yield for two flushing periods.  

For the weight of substrate used in both formulations, although the 500g substrate recorded the least ramification 

span for both formulations, 750g had favorable results in terms of yield and flushing intervals. During the study, it was 

also observed that the 500g substrate formulation was difficult to manage as they were easily disintegrated and substrate 

materials would shrink with the use of the hanging method if hanged one after the other. Meanwhile, the heaviest weight 

recorded the highest span of ramification in days, lowest yields and the highest flushing intervals. The recommended 

setting of 750 grams for both formulations has been seen to prove the not too tight not too loose recommendation of 

various authors and books on mushroom cultivation. 

 

3.2 Description and operation of the machine 

The major components of the machine were the following: the four-cylinder rotating disc assembly, the molder or 

compaction chamber assembly, the piston compressor assembly, spiral-conveyor and hopper assembly, push-to-rotate 

CLSU 20 z 22 y 40.00w 27.33b 

BSU 32 x 40 w 41.20v 37.73a 

Mean 26l 31k 40.60j 32.53 
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lever assembly, the frame assembly, and the power transmission system as shown in Figure 1.  These components were 

fabricated and assembled to form an operational compactor-bagger machine. 

 

 
Figure 1.  The mushroom bagger-compactor 

 

The machine was made of locally available materials and was fabricated using local manufacturing technologies. It 

was powered using a 0.367kW electric motor and was equipped with wheels for mobility in the mushroom house. The 

machine was operated by three persons with a specified task. One who supervised the level of the substrate in the feeding 

hopper, the other in putting the PP bag in the molder, and the last person in charge of the exit of the substrate bags or the 

collector of the compacted and bagged substrate. 

  

3.3 Performance characteristics of the machine using CLSU formulation 

The machine was evaluated in terms of bagging efficiency, filling efficiency, and bagging capacity.  The average 

bagging efficiency of the machine as affected by different weights per batch using the CLSU formulation is presented in 

Table 5. Analysis of variance for the bagging efficiency revealed that the means of bagging efficiency as affected by the 

weight per batch differ significantly from each other at 5% level of significance.  

Comparison among means using Least Significant Difference (LSD) at 5% level of significance shown in Table 5 

revealed that weight per batch of 15kg with the highest bagging efficiency varies significantly with the 10kg and 20kg 

weight per batch.  

 

Table 5.  Bagging efficiency (%) as affected by different weight per batch. 

 *Means with the same letter are not significantly different 

 

It is also noted that using the weight per batch type, the machine produced acceptable weight per bag ranging from 

708.13 to 740.90g/bag and with an average of 725.42g/bag when using the CLSU formulation. On the filling efficiency 

of the machine as affected by weight per batch using CLSU formulation, analysis of variance showed that there was a 

significant difference in the mean effects of weight per batch in the filling efficiency of the machine at 5% level of 

significance.  

Comparison among means presented in Table 6 revealed that weight per batch of 15kg with 70.78% vary 

significantly with the 10kg and 20kg weight per batch. The lowest recorded filling efficiency is at 20kg weight per batch 

with only 16.75%.  

 

Table 6.  Filling efficiency (%) as affected by different weight per batch. 

Weight per batch, kg Replicate Mean 

I II III 

Weight per batch, kg Replicate Mean 

I II III 

10 46.15 38.46 53.85 46.15 b 

15 75.00 75.00 65.00 71.67 a 

20 2.63 17.65 21.88 14.05 c 
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10 42.40 35.6 49.40 42.47 b 

15 73.60 74.13 64.60 70.78 a 

20 3.75 21.60 24.91 16.75 c 

 

*Means with the same letter are not significantly different 

 

The summary of the machine’s bagging capacity as affected by different weight per batch is presented in Table 7. 

The analysis of variance of the bagging capacity affected by the weight per batch at 5% level of significance revealed no 

significant difference between means at 15kg and 10kg weight per batch but varied significantly with 20kg weight per 

batch.   

 

Table 7.  Bagging capacity (bags/hr) as affected by different weights per batch. 

Weight per batch, kg Replicate Mean 

I II III 

10 171.43 130.43 201.6 167.82  a       

15 214.29 215.14 180 203.14   a       

20 8.18 53.33 64.62 42.04     b      

 

 

Means with the same letter are not significantly different 

 

3.4 Performance characteristics of the machine using BSU formulation 

The average bagging efficiency of the machine as affected by weight per batch and BSU formulation is presented in 

Table 8. The highest bagging efficiency was computed in the 20kg weight per batch with 88% decreasing as the weight 

per batch decrease with 15kg at 84.21% and 10kg at 83.33%. Analysis of variance shows that the weight per batch had 

no significant effect on the bagging efficiency of the machine when using the BSU formulation at 5% level of 

significance.      

                

Table 8.  Bagging efficiency (%) at different weight per batch. 

Weight per batch, kg 

Replicate 

Mean I II III 

10kg 83.33 83.33 93.33 83.33 

15kg 84.21 84.21 84.21 84.21 

20kg 88.00 88.00 88.00 88.00 

 

Also, the bagged substrate using the BSU formulation resulted to uniform weight per bag of substrate within the 

acceptable limit with an average of 755.25g/bag close to the 750g/bag.  Meanwhile, the results of the analysis of variance 

for filling efficiency revealed that the treatment means varied significantly with each other. Comparison among means 

using LSD as presented in Table 9 shows that the three weights per batch differed significantly with each other with 20kg 

as the highest filling efficiency of 83.48%.  

 

Table 9.  Average filling efficiency (%) as affected by different weight per batch. 

Weight Per Batch, Kg Replicate Mean 

I II III 

10 75.90 75.90 75.80 75.87c 

15 79.60 79.60 80.20 79.80b 

20 84.00 83.35 83.10 83.48a 

*Means with the same letter are not significantly different        

 

Based on Table 10, the bagging capacity as affected by weight per batch in the BSU formulation recorded 306.59~ 

307 bags/hr when using the 20kg weight per batch. It was followed by the 15kg weight per batch of 302.11 bags/hr and 

10kg with 292 bags/hr. Results of the analysis of variance revealed significant difference in the mean bagging capacity 

as affected by weight per batch. A comparison of means presented in Table 10 shows that the bagging capacity in 20kg 

and 15kg weight per batch did not vary significantly but differed significantly from the 10kg weight per batch.  

 

Table 10.  Average bagging capacity (bags/hr) as affected by different weights per batch 

Weights per batch, kg Replicate Mean 

I II III 

10 300.00 288.00 288.00 292.00b 

15 303.16 300.00 303.16 302.11a 
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20 306.98 304.62 308.17 306.59a 

*Means with the same letter are not significantly different 

Other observations during the evaluation of the machine include the elimination of PP bag breakage which was 

observed in the manual bagging of substrates. This could be attributed to the controlled force of compaction as compared 

to manual labor with varying forces exerted during bagging.  

 

3.5 Cost of Using the Machine for the two types of formulation 

To determine whether the machine was cost-effective in bagging substrates, a simple cost analysis was conducted. 

The analysis used the highest capacity recorded for both formulations as a result of evaluating the performance of the 

machine using the treatments.  For the CLSU formulation, 204 bags/hour were used as the bagging capacity as it showed 

significant results based on the findings of the study while 307 bags/hour when using the BSU formulation.  

The machine was assumed to be operational thrice a week with a total of 156 days/year or 939 hours per year total 

operating time for every six-hour per day operation. There were three operators for the machine with PhP300.00 per 

laborer as labor cost. The custom rate of PhP1.5/bag was based on the 75% cost per bag for manual bagging with 

PhP2.00/bag pegged at PhP300.00 per day at 6-hour per day. It was used since there was no existing bagger in the locality.  

While the calculated values are presented in Table 11.  

Table 11 shows that the total bagging cost per year in using the machine is PhP190,731.92 with labor as the main 

contributor with PhP140,785.71 for the three operators for a year. The bagging cost for the CLSU formulation resulted 

to 0.995~1.00 peso per bag while 0.66 pesos per bag for BSU formulation. The difference is due to the higher capacity 

of the later contributing to a higher net income per year with a total of PhP191,749.00. Meanwhile, the net income for 

CLSU formulation is PhP96,736.00. 

The computed breakeven point for the CLSU formulation is 32,997 bags per year with a projected payback period 

of 0.60 years of machine operation for the investment to be recovered. When using the BSU formulation, 0.304 years is 

the payback period of the machine considering the assumptions. The breakeven point for bags per year is calculated at 

22,119 bags/year using the custom rate of PhP1.50/bag.  

 

Table 11.  Comparison of cost analysis results for the two substrate formulations. 

PARTICULARS CLSU BSU 

Specifics 

Salvage value, (10% IC) 5,825.70 5,825.70 

Depreciation, PhP/yr 
 

10,486.26 10,486.26 

Interest on Investment, PhP/yr 6,728.68 6,728.68 

Taxes, Insurance and Shelter, PhP/yr (5% IC) 2,912.85 2,912.85 

Fixed Cost, PhP/yr 
 

20,127.79 20,127.79 

Variable Cost, PhP/hr 
 

181.77 181.77 

Total bagging cost, PhP/yr 190,731.92 190,731.92 

Bagging Cost, PhP/bag 0.995 0.66 

Breakeven point, bag/yr 32,997.00 22,119.00 

Net Income per year, PhP/yr 96,736.00 191,749.00 

Payback Period, yr 
 

0.60 0.304 

 

The cost curve of using the two formulations in the machine is shown in Figure 2. The figure shows that the area 

covered by the net income of the BSU formulation in using the machine is greater than that of the CLSU formulation and 

that the custom rate is higher than the cost of producing per bag for the two formulations.  
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Figure 2.  The cost curve of the machine using the two formulations. 
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Abstract 

Aerial photography using affordable UAVs is an invaluable tool for monitoring crop growth, soil changes, 

pest invasion, and plant diseases. These images typically undergo photogrammetry algorithms, such as 

rectification and bundle adjustment, before further processing. Obtaining overlapping images for structure-

from-motion algorithms is not always feasible due to time or cost limitations. The Monoplotting technique 

can be used for georeferencing, involving Ground Control Points (GCP) and a Digital Elevation Map. 

Alternatively, UAV sensor readings (GPS coordinates, barometer altitude, and camera metadata) can 

facilitate Monoplotting without GCPs. We introduce a Terrain Aware Monoplotting framework for 

generating georeferenced 2D images compatible with GIS tools like QGIS. Unlike methods relying solely on 

UAV sensor readings, our approach leverages terrain properties. Our first algorithm uses ray tracing to 

calculate terrain intersection points of rays from the camera through image pixels. A least-squares approach 

fits a plane parallel to the xz-plane to minimize geometric error, allowing a direct affine transformation from 

image to geographical coordinates. Our second algorithm generates a warped image in the image space, 

considering perspective constraints such as foreshortening due to terrain altitude differences. Ray tracing 

identifies camera ray and terrain intersection points, fitting a minimum rotated rectangle to their 2D 

geographic coordinates. This rectangle serves as the image canvas, where real-world terrain coordinates for 

each pixel are calculated. Rays are shot back toward the camera center, and bilinear interpolation calculates 

color values, filling the canvas with a perspectively correct projection of the mapped area. The resulting 

image can be georeferenced with a basic affine transformation. Visual and measurement results of our 

algorithms are provided. 

Keywords: Monoplotting, UAV, Ray Tracing, GIS 

1. Introduction 

The advent of unmanned aerial vehicles (UAVs) has significantly transformed agricultural monitoring, 

offering a new dimension of precision and efficiency. UAVs provide high-resolution, real-time imagery of 

vast agricultural fields, enabling farmers and researchers to gain critical insights into various aspects of crop 

production, soil conditions, pest infestations, and plant diseases. This technology facilitates timely 

interventions and enhances the overall management of agricultural practices, contributing to increased 

productivity and sustainability. One of the primary methods for processing UAV imagery in agriculture is 

photogrammetry. This technique involves capturing multiple overlapping images and employing algorithms 

to stitch them together into a comprehensive and accurate 3D model of the terrain. Photogrammetry 

encompasses several key processes, including image rectification, point matching, camera calibration, and 

bundle adjustment. These steps result in unified and georeferenced images that are essential for detailed 

analysis and decision-making (Linder, 2009, Ghosh 2005). 

 

Despite its advantages, photogrammetry requires a significant amount of overlapping imagery, which can 

be challenging to obtain due to time, cost, and environmental constraints. In such cases, Monoplotting offers 

a viable alternative. Monoplotting is a technique that georeferences single images using known ground 

control points (GCPs) and a digital elevation model (DEM) (Makarovič, 1973). This method can also 

leverage UAV sensor data, such as GPS coordinates, barometric altitude, and camera metadata, to achieve 

accurate georeferencing without extensive overlapping images. 
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The application of Monoplotting in agricultural fields provides a practical solution when traditional 

photogrammetry is not feasible. By utilizing terrain properties and UAV sensor data, Monoplotting can 

generate georeferenced 2D images that are compatible with geographic information system (GIS) tools like 

QGIS (Moyroud, 2018). This approach allows for the creation of accurate maps and imagery under 

suboptimal conditions, offering significant benefits for agricultural monitoring and management. Classical 

applications of Monoplotting employ terrestrial oblique photography, however, this is usually an under-

utilized approach due to the difficulty of extracting geospatial data from single images (Bozzini et al. 2011). 

(Bozzini et al. 2011) developed a user-friendly Monoplotting tool, the “WSL Monoplotting Tool”, that 

requires mapping of key points in an oblique image with their actual geospatial coordinates. Using camera 

collinearity equations that are employed in Photogrammetry applications (Ghosh 2005) and using the image 

– real-world coordinate mappings, this tool calibrates the camera, by finding the actual camera extrinsic 

parameters like the camera position, orientation, and intrinsic parameters like the focal length. The 

application uses a Digital Elevation Map (DEM) for this purpose. It is used for mapping historical landscapes, 

reconstructing past natural events, and monitoring current environmental processes. (Gabellieri, Watkins 

2019) assesses the WSL Monoplotting Tool for georeferencing and vectorizing historical landscape 

photographs to measure land-use changes over time. They first digitize historical photographs and 

georeferenced them using technical maps and Digital Terrain Maps (DTMs). Control points were identified 

to align photographs accurately with geographic coordinates, allowing for the creation of vectorized maps 

that illustrate historical land-use patterns and changes.  

 

(Bayr, 2021) controls the accuracy of the geospatial data obtained through monoplotting of historical 

landscape photographs. In this study, again the WSL Monoplotting tool has been utilized. The study uses 

oblique landscape photographs from Norway, georeferenced with the WSL-MPT using control points and 

DTMs of different resolutions (1m and 10m). The accuracy of spatial data is assessed by comparing the 

georeferenced points and polygons against corresponding features on aerial photographs. The paper 

concludes that the WSL Monoplotting Tool is effective for extracting accurate geospatial data from historical 

landscape photographs, facilitating the study of long-term landscape changes. In a similar study, (Altmann 

et al. 2023) explore long-term landscape changes in a lateral moraine section of the Gepatsch glacier in the 

Ötztal Alps, Austria. Using a combination of historical terrestrial oblique photographs and aerial photos, the 

study quantifies morphodynamic and land-cover changes from 1890 to 2020. The paper demonstrates the 

effectiveness of the WSL Monoplotting Tool in quantifying long-term landscape changes using historical 

photographs. It provides a comprehensive analysis of the morphodynamic and land-cover changes over 130 

years, offering significant contributions to the understanding of glacial and paraglacial processes. (Crouzy et 

al. 2015) employs monoplotting to georeference terrestrial photographs for identifying avalanche detachment 

zones. This technique integrates digital elevation models (DEMs) and control points with the photographs to 

accurately map two-dimensional image data to three-dimensional coordinates. Monoplotting ensures precise 

spatial data, which is crucial for calibrating the stochastic model used for avalanche prediction, thereby 

enhancing the accuracy and reliability of the study's avalanche analysis. It turns out that Monoplotting is a 

common tool to use in avalanche prediction analysis. (Mitterer et al. 2016) also utilizes monoplotting to 

georeference terrestrial photographs of avalanche releases, transforming oblique photos into accurately 

georeferenced polygons. This process provides detailed spatial data on avalanche areas, lengths, and slope 

angles, which is crucial for validating and refining snow cover models like SNOWPACK. The precise 

georeferenced data obtained through monoplotting enhances the accuracy of wet-snow avalanche predictions 

and improves the understanding of avalanche dynamics.  

 

 One of the issues that hinders the widespread usage of the Monoplotting technique is the manual 

mapping of image key points to the actual world coordinates (Bozzini et al. 2011). (Golparvar, Wang 2021) 

proposes a study that aims to facilitate this otherwise tedious step. The paper introduces an AI-supported 

semi-automatic monoplotting framework designed to georeference oblique visual data from sources like 

drones and smartphones. This new method automates key point detection using ORB and improves camera 

parameter estimation with regularized gradient-based optimization, significantly reducing the need for 

manual input. The framework's effectiveness is demonstrated through numerical experiments, showing its 

potential for large-scale and real-time geospatial data processing, enhancing the accessibility and scalability 

of monoplotting for various applications. 
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As can be seen in the literature, the use of Monoplotting is mainly limited to the assessment of historical 

landscape changes, glacier analysis, and avalanche prediction applications. It is also apparent that such 

methods generally use oblique photos of the landscape obtained at different points in time. The usage of 

aerial, orthogonal UAV images is uncommon in the Monoplotting literature. Also, the domain of agricultural 

usage is missing. 

 

In our paper, we explore the potential of Monoplotting techniques for UAV-based agricultural 

monitoring. We present a Terrain Aware Monoplotting framework designed to enhance the accuracy of 

georeferenced images by incorporating terrain properties into the process. In difference to the other methods 

in the literature, we do not depend on the use of manually paired images and world points, known as Ground 

Control Points (GCPs) for camera calibration. We use the assumption of the near orthogonality of the UAV 

images and camera metadata for a simple mathematical camera model. To georeference the UAV images, 

our framework includes two algorithms that employ efficient ray tracing and least-squares optimization to 

minimize geometric errors and produce perspectively correct projections. The resulting images can be 

seamlessly integrated into GIS tools, facilitating comprehensive analysis and informed agricultural decision-

making. We have also developed supporting image processing algorithms that coherently spatially cluster 

large sets of images, collected by UAVs to produce georeferenced images that have manageable sizes for 

storage and efficient viewing in GIS tools. 

 

2. Materials and Methods  

In this work, we present a Terrain Aware Monoplotting framework designed to generate georeferenced 

2D images that are compatible with GIS tools like QGIS. Unlike simple methods that rely solely on UAV 

sensor readings for georeferencing, our approach utilizes terrain properties. Our first algorithm uses efficient 

ray tracing to determine where camera rays intersect the terrain through image pixels. By applying a least-

squares method, we fit a plane parallel to the xz-plane to minimize geometric errors between the plane and 

the terrain intersection points, creating a horizontal mathematical approximation of the terrain surface. This 

enables a direct affine transformation from image coordinates to geographical coordinates. We call this 

method Horizontal Fitting. Our second algorithm, called Warped Fitting, creates a warped image in the image 

space while adhering to perspective constraints like foreshortening due to terrain altitude differences. 

Utilizing ray tracing, it determines where camera rays intersect with the terrain and fits a minimum rotated 

rectangle to their 2D geographic coordinates. This rectangle serves as the image canvas, from which real-

world terrain coordinates for each pixel are calculated. Rays are then projected back to the camera center 

from these coordinates, intersecting with the sensor plane, to indicate sampling locations in the original 

image. Bilinear interpolation calculates color values, filling the canvas with a perspectively correct projection 

of the mapped area. The resulting image can be georeferenced with a basic affine transformation. In this 

section, we will give more details on both algorithms. 

2.1. Horizontal Fitting 

Horizontal fitting treats the problem of georeferencing a planar image as a horizontal approximation 

problem. Georeferenced images contain an affine transformation that converts the pixel in the image space 

to real-world space, such that each pixel’s width and height consist of horizontal and vertical components. 

(Esri, 2015) defines the following affine transformation: 

 

[
𝑥′

𝑦′] = [
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹

] [
𝑥
𝑦
1
] 

 

Where 𝐴 is the dimension of a pixel in map units in the x direction, 𝐵 and 𝐷 are rotation terms, 𝐶 and 𝐹 are 

translation terms (representing the x and y coordinates of the upper left pixel’s center), and 𝐸 is the negative 

dimension of a pixel in map units in the y direction (since in image coordinates, the y dimension increases 

downwards). This transformation is global, applying uniformly to all image pixels and allowing only for 

rotation, translation, and scaling of the original pixel coordinates. It does not permit individual pixel-wise 

transformations to convey perspective-warping effects caused by the terrain surface. 

AgEng 2024 Proceedings

973



One way to address this issue is to include terrain surface information with a horizontal approximation. Using 

the pinhole camera model, each pixel in the image plane is formed by shooting a ray from the center of the 

camera, passing through a pixel center, and intersecting with the terrain. In this model, the terrain is 

represented by a Digital Elevation Model (DEM). Imagining a hypothetical horizontal approximation plane 

𝜋 that represents the georeferenced image in real-world coordinates, the image rays would also intersect this 

plane. 𝜋 is assumed to be strictly parallel to the xz-plane due to the restrictions imposed by the affine 

transformation. Each of the rays can be represented as 𝑟𝑖(𝑡) = 𝑐 + 𝑡𝑑𝑖,  where the ray that passes through the 

𝑖𝑡ℎ image pixel also passes through 𝑐, the camera center, and follows the direction vector 𝑑𝑖 Each ray 

intersects the elevation model at points 𝑞𝑖 and the horizontal approximation plane at points 𝑝𝑖(𝑡) = 𝑐 + 𝑡𝑑𝑖.  

The setting is displayed in Figure 1. 

 

 

Figure 1. The geometrical setting for the Horizontal Fitting approach. 

 

 

In this formulation, the best horizontal approximation to the terrain surface is assumed to be the scalar 

parameter 𝑡 that minimizes the total distance between 𝑞𝑖 and 𝑝𝑖(𝑡) for every image pixel 𝑖. Mathematically, 

it can be represented with the following squared distance: 

 

𝐿(𝑡) = ∑||𝑞𝑖 − 𝑝𝑖(𝑡)||2

𝑁

𝑖=1

= ∑||𝑞𝑖 − 𝑐 − 𝑡𝑑𝑖||2

𝑁

𝑖=1

 

 
This least squares problem can solved analytically by taking the derivative of 𝐿(𝑡) with respect to 𝑡, setting 

it equal to zero: 

 

𝑑𝐿

𝑑𝑡
= ∑∑−2𝑑𝑖𝑗(𝑞𝑖𝑗 − 𝑐𝑗 − 𝑡𝑑𝑖𝑗)

3

𝑗=1

𝑁

𝑖=1

= 0 

 

Solving for 𝑡 then yields: 

𝒕 =
∑ ∑ 𝑑𝑖𝑗𝑞𝑖𝑗

3
𝑗=1

𝑁
𝑖=1 − ∑ ∑ 𝑑𝑖𝑗𝑐𝑗

3
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝑑𝑖𝑗
23

𝑗=1
𝑁
𝑖=1

 

 

In both calculations, 𝑗 runs over x, y, and z coordinates. Setting 𝑡 in that way leads to the optimal distance of 

the horizontal approximation plane from the camera, in a way the discrepancy between the terrain surface 

and the horizontal approximation is minimized. The affine transformation between the image and horizontal 
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approximation planes still needs to be calculated. For this, a few steps are required. In the first step, image 

pixel dimensions are scaled to be equal to the real-world dimensions. We build the following scaling matrix 

for this operation: 

𝑆 =

[
 
 
 
 
𝑆𝑤𝑡

𝑃𝑤𝑓
0 0

0 −
𝑆ℎ𝑡

𝑃ℎ𝑓
0

0 0 1]
 
 
 
 

 

 

Here, 𝑆𝑤 is the sensor width in real-world units (meters), 𝑡 is the calculated optimal horizontal altitude, 𝑃𝑤 is 

the sensor width in pixels,  𝑓 is the focal length of the camera, 𝑆ℎ is the sensor height in real-world units 

(meters) and 𝑃ℎ is the sensor height in pixels. The minus sign in the y-axis handles that in image coordinates, 

y increases while moving downwards. In the second step, we translate the image center to the world origin: 

 

𝑇1 =

[
 
 
 
 1 0 −

𝑆𝑤𝑡

2𝑓

0 1
𝑆ℎ𝑡

2𝑓
0 0 1 ]

 
 
 
 

 

 

The third step includes the rotation of the image according to the compass heading 𝜃. To handle negative 

headings, we define the angle 𝜙 = 𝐼[𝜃 > 0]360 − 𝜃, where  𝐼[. ] is the indicator function that outputs 1 in 

case of true conditions and 0 in case of false conditions: 

 

𝑅 = [
cos 𝜙 − sin𝜙 0
sin 𝜙 cos𝜙 0

0 0 1

] 

 

The final step translates the image to the actual geographical coordinates of the UAV (usually longitude, and 

latitude): 

 

𝑇2 = [
1 0 𝑋
0 1 𝑌
0 0 1

] 

 

The compound transformation from the image coordinates to the world coordinates is then given as: 

 

[
𝑥𝑤𝑜𝑟𝑙𝑑

𝑦𝑤𝑜𝑟𝑙𝑑

1
] = 𝑇2𝑅𝑇1𝑆 [

𝑥𝑝𝑖𝑥𝑒𝑙

𝑦𝑝𝑖𝑥𝑒𝑙

1
] 

 

2.2. Warped Fitting 

We saw in Horizontal Fitting that an affine transformation alone is not sufficient to reflect the pixel-wise 

perspective distortion. To account for each pixel’s perspective distortion, one needs to compute the actual 

3D positions of every pixel in the georeferenced image, considering the Digital Elevation Model, and then 

project rays towards the camera center. The points where rays from the ground intersect the image plane will 

constitute the locations where the actual color for that ground point should be calculated. By transforming 

these intersection points into image-space coordinates, one can use techniques like bilinear interpolation to 

calculate ground colors. It is also possible that the rays intersect the image plane outside of the image 

rectangle. Such points lie outside of the camera frustum and will be assigned a value of 0 in the alpha channel 

to render them transparently in GIS applications. The algorithm first starts with ray tracing of each pixel, 

starting from the camera point, going through the center of every image pixel, using the same approach as in 

the horizontal fitting. The intersection points with the terrain is calculated by utilizing the Digital Elevation 
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Map (DEM) afterward. In our implementation, we use the QuadTree algorithm for efficient ray-terrain 

intersection comparisons. 

 

 
 

Figure 2. The geometrical setting for the Warped Fitting approach. Red pixels receive no color (will 

become transparent) where green ones will receive bilinearly interpolated colors from the UAV image.  

 

 

 

After the intersection points on the terrain are determined, the tightest bounding rectangle around these 

points is calculated. The 2D tightest bounding rectangle is divided into pixels with a predetermined pixel 

count. These pixels are called Ground Pixels since they will contain the perspective-aware colors for the 

underlying terrain surface. From the centers of these pixels, their corresponding Ground Points are calculated. 

These ground points contain the same real-world coordinates as ground pixels, however their height value is 

equal to the surface of the DEM. Finally, from these ground points, rays are shot towards the camera center. 

These rays intersect the camera plane at various points; if these points belong inside the actual image 

boundaries, the ground pixel color is calculated by bilinear interpolation. Otherwise, no color is calculated. 

The calculated colors will constitute the perspective-aware monoplotting image. This process is called 

Warped Fitting and is described in Figure 2. The final step involves the calculation of an affine transformation 

matrix from the image coordinates to ground coordinates. Only considering x and y coordinates, we easily 

determine this transformation by solving the following system of linear equations: 

 

[
 
 
 
 
 
 
 
𝑥𝑖𝑚𝑎𝑔𝑒

0 𝑦𝑖𝑚𝑎𝑔𝑒
0 1 0 0 0

0 0 0 𝑥𝑖𝑚𝑎𝑔𝑒
0 𝑦𝑖𝑚𝑎𝑔𝑒

0 1
. . . . . .
. . . . . .
. . . . . .

𝑥𝑖𝑚𝑎𝑔𝑒
𝑁−1 𝑦𝑖𝑚𝑎𝑔𝑒

𝑁−1 1 0 0 0

0 0 0 𝑥𝑖𝑚𝑎𝑔𝑒
𝑁−1 𝑦𝑖𝑚𝑎𝑔𝑒
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 With the solution of this system, the perspective-warped images can be used as monoplotting results 

in GIS applications. 
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Figure 3. The warping effect of the Warped Fitting Method. Yellow points are camera ray – terrain 

intersection points; projected to 2D coordinates. 

 

3. Results and Discussion 

To evaluate the effectiveness of our algorithms, we applied them to a custom UAV flight on a field, with 

markers placed on the ground. The UAV maintained a constant barometric altitude of 12 meters relative to 

its starting point. We obtain images with a resolution of 4000x3000. We captured overlapping images 

throughout the flight to later generate a reference image using OpenDroneMap software, allowing us to 

compare the deviation of both methods from the ground truth. We used five markers, and during the flight, 

collected a total of 325 images. We manually selected the images that contained markers and measured the 

distance from their corresponding ground truth locations in the OpenDroneMap image. We selected 30 

random samples for each algorithm, measuring deviations from the ground truth image using QGIS software. 

The DEM used for the evaluation method is the 1-meter resolution Austrian Height Map (Bev 2024), The 

results were as follows: 

 

Table 1. Deviation of the Horizontal Fitting and Warped Fitting Methods from a Ground Truth 

Photogrammetry application. 

Method Mean Error (meters) Std. Dev. Error (meters) 

Horizontal Fitting 2.82 1.19 

Warped Fitting 2.41 0.92 

On average, the Warped Fitting method produced slightly better estimations of the actual marker 

locations, with a lower standard deviation. However, the Warped Fitting method involves ray tracing from 

the fitted locations back to the camera, resulting in a heavy computational load. In contrast, the Horizontal 

Fitting method uses a linear approximation for Monoplotting, making it much more efficient in terms of 

computation. 

4. Conclusions 

To efficiently render orthogonal images from UAV flights, we developed two different Monoplotting 

algorithms that do not require image overlapping like advanced photogrammetry methods or Ground Control 

Points (GCPs). Our only assumption is that the UAV photos are taken in a near-orthogonal manner. The first 

method, Horizontal Fitting, uses a horizontal approximation to the Digital Elevation Map (DEM) surface 

with a least squares approach. The second method, Warped Fitting, casts rays from the camera's ray-terrain 

intersection points back to the image plane and uses bilinear sampling to gather color values from 

corresponding locations. We tested both methods in a custom UAV flight with markers to measure their 
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deviation from a photogrammetry application obtained from OpenDroneMap software. The results showed 

that Warped Fitting slightly produced better results, but it required longer processing time compared to 

Horizontal Fitting. 
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Abstract 

The need for drought tolerant and well adapted to environmental stresses grapevine seedlings is essential 

for a successful establishment in the vineyard. Nursery plants hardening can be enhanced by arbuscular 

mycorrhizal fungi (AMF) symbiosis. The scope of the experiment was to evaluate an organic compost that 

included untreated wine lees used to grow grapevine nursery plants of “Debina” wine variety and to test the 

production of AMF-inoculated grapevine plants under limited water conditions aiming to produce robust 

grapevine seedlings. 

The experimental treatments included two deficit irrigation treatments and inoculated plants with two 

types of mycorrhizal inoculums. The applied irrigation water amount was set at 90% of ETc (moderate stress) 

and at 75% of ETc (substantial stress). Plant growth parameters were measured, and the relative growth rate 

(RGR) was computed. Plants mycorrhizal colonization was detected by histological examination. Leaves 

total chlorophyll content, total phenolics and proline content were measured as stress indicators. Also the 

Water Footprint (WF) at whole plant basis was computed. The compost did not inhibit plant growth. 

Mychorrhiza colonization was not affected by the untreated wine lees neither by the applied deficit irrigation. 

Inoculated plants irrigated at 90% ETc, showed higher shoot, leaves and roots dry weight, total biomass and 

relative growth rate,  compared to no-inoculated plants. Plants inoculated with a single fungus inoculum 

under water stress, showed higher phenolic content in comparison to no-inoculated plants. Deficit irrigation 

did not affect the chlorophyl content of leaves neither the proline content. Plants irrigated at 75% ETc resulted 

in a lower WF. The practical value of the research is the evaluation of usage of wine lees as composting 

material and the successful production of grapevine saplings with high potential to thrive under water stress 

conditions. 

Keywords: Debina seedlings; Arbuscular mycorrhizal fungi; water stress; water footprint 

1. Introduction 

Grapevine (Vitis vinifera L.) cultivation and winemaking is an important agricultural activity in Greece. 

According to FAO for 2022 in Greece the harvested area of grapes was 84.260 ha (FAOSTAT, 2024). 

Vineyards in Greece are found in many regions from mainland to islands where wines with special 

characteristics are produced. The Hellenic Statistical Authority states that total vineyards in Greece in 2021 

was 1.029.349 acres from which the 62,5% were wine vineyards (Maniatis, 2023). 

Grapevine seedlings production in Greece is a dynamic agricultural sector. Nurseries play an important 

role in the production of high-quality grapevine seedlings as well as in the preservation and propagation of 

local and traditional grape varieties. The increase of grapevine cultivation has led to an increase of need for 

grapevine seedlings production which reveals the need for guidelines regarding viability of the vineyard 

(Ronga, et al., 2019). Given the fact that recent climatic change has affected grapevine cultivation, grapevine 

nurseries should produce plants that are resilient to new climatic conditions for vineyards to adapt to new 

weather conditions and traditional varieties should also be preserved well-adapted to environmental stresses 

(Paraskevopoulou, et al., 2022). Especially for Greek vineyards that their majority are located at semiarid 

areas, like islands and hills, the production of drought tolerant grapevine seedlings is essential for a successful 

establishment of the vineyard.  

Peat is the most widely used material as growing medium for grapevine seedlings in nurseries. At the 

same time, peat is a non-renewable resource which must be protected from depletion. In this framework, 

organic composts could be used instead of peat as an alternative growing media in nurseries (Ronga, et al., 

2019). Wineries produce large quantities of organic wastes like grape pomace, grape seeds and stems and 
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wine lees. These organic residues can be recycled and valorized through composting and can be used as a 

nutritious growing media for plants. However, little information is available regarding the composting 

method of wine lees and the effect of the produced organic soil amendment to grapevines (Pinto, et al., 2021) 

The use of grapevine crop residues as compost materials is a common practice in sustainable viticulture. 

The Common Agricultural Policy (CAP) encourages the sustainable use of compost in agriculture and 

through the recently introduced Eco-schemes, promotes the composting of grapevine pruning residues and 

the general use of organic composts (Ministry of Rural Development and Food, 2023). Furthermore, the EU 

Soil Strategy for 2030 encourages the recycling of agricultural residues (European Commission, 2021). Since 

the direct disposal of wine lees can be harmful for the soil and the underground water, the use of wine lees 

as compost component can be an alternative solution instead of discharging the lees at the environment. The 

addition of wine lees at composting material can improve the nutrient content of the organic compost and 

improve the composting C/N ratio (Moldes et al., 2008) while the composting process appeared to reduce the 

total phenolic content of the compost material with initial ratio C/N of 10/1 (Lampraki, et al., 2023).  

Water footprint (WF) is an environmental indicator that can be calculated as the water volume consumed 

and polluted per unit of product. In the framework of sustainable viticulture WF is used as a tool for efficient 

water management (Mekonnen & Hoekstra, 2011). It is consisted of three components, the WFgreen, which 

accounts for the usage of precipitation water, the WFblue, which is the applied irrigation water and the WFgrey, 

which is the amount of fresh water that is needed to assimilate the pollutants of the water and restore it to 

specific quality standards (Mekonnen & Hoekstra, 2011).  

ʻDebinaʼ is a Greek white wine grape variety which is mainly cultivated at the region of Epirus where it 

represents the 55,8% of the wine vineyards. The total area of ʻDebinaʼ wine grape in Greece is 171.76 ha, of 

which 136.26 are found at the municipality of Zitsa (Western Greece, Epirus) (OPEKEPE, 2022). It produces 

dry, sparkling dry and sparkling semi-sweet wines with the EU Protected Designation of Origin (PDO) 

(Tsiraki & Savvaidis, 2022). 

Grapevine is a drought tolerant plant, and this attribute varies with the rootstock of the plant. Grapevines 

have been found to form symbiotic mychorrhizas with arbuscular mycorrhizal fungi (AMF). This formation, 

among other benefits, favors the growth of the vines and the quality of the berries through enhanced nutrient 

uptake, while increases the durability of grapes to water stress condition (Torres et al., 2021). The symbiosis 

with AMF can benefit nursery plants too. It has been found that the inoculation of saplings with AMF at the 

greenhouse, can enhance their rootstock resistance to pathogens after their transplanting to the vineyards 

(Moukarzel, et al., 2022). Regarding the effect of compost addition to AMF colonization, it has been observed 

that it depends on the mycorrhiza species. Glomus intraradices and Glomus mossaea have been found to 

increase the roots colonization with the organic compost addition (Cavagnaro, 2015).  

The scope of the experiment was to evaluate the usage of an organic compost with untreated wine lees to 

grapevine nursery plants and to test the production of AMF-inoculated grapevine plants under limited water 

conditions for the purpose of having grapevine seedlings well-adapted to water scarcity. The wine lees was 

used without any treatment for removing phenolic compounds. Seedlings were irrigated at different fractions 

of ETc and chlorophyll content, proline concentration and total phenolics of leaves were determined. 

2. Materials and Methods  

The experiment was conducted in a glasshouse of the Department of Agriculture of the University of 

Ioannina, cited at the University campus of Arta, Epirus, northwest Greece (Tsirogiannis, et al, 2010). The 

saplings of Vitis vinifera var. ‘Dedina’ were grafted onto 110R rootstocks. The indoor glasshouse relative 

humidity and temperature were continuously monitored with a microclimate sensor - Passive Radiation 

Shield (ATMOS-l4 w, Meter Group, Inc.). The indoor solar radiation (W/m2) was recorded every 30 min 

with a pyranometer (PYR Solar Radiation Sensor, Meter Group, Inc.). During the experimental period the 

average air temperature ranged from 35,7°C το 24,9°C and the relative humidity ranged from 65,1% to 

61,5%.  

2.1. Compost production 

The composting process took place in compost bins with self-aeration. The materials used were grapevine 

crop residues, vine shoots and leaves from plants Vitis vinifera var. ‘Dedina’ and wine lees from red grapes. 

The portion of the added wine lees was 10% and it was in untreated form while the initial compost ratio C/N 
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was 30/1 (Yin Quan Wang & Schuchardt, 2010). According to a preliminary experiment that was carried out 

in 2021, it was observed that the addition of small amounts of untreated wine lees in compost material does 

not negatively affect the growth of Debina grapevine saplings, while the composting process appeared to 

reduce the total phenolic content of the compost material with initial ratio C/N of 10/1 (Lampraki, et al., 

2023). 

2.2. Irrigation and substrate water content 

Irrigation was performed through a micro irrigation system using 8 L h-1 drippers. of. The applied water 

amount was determined according to the actual water needs by calculating the crop evapotranspiration ETc 

which was calculated by weighing periodically representative (same) pots from each treatment. During the 

experimental period the ETc calculation was made five times. Because plants were growing very fast, more 

frequent measurements would probably provide more accurate results.. Irrigation was provided as a 

percentage of actual water needs.. During the experimental period two deficit irrigation treatments were 

applied. The irrigation water amount was applied at 90% of ETc as a moderate water stress -IRR1 and at 75% 

of ETc as a substantial water stress – IRR2. The initial goal was the 100% and 75% of ETc, but this was not 

achieved. The moisture of the growing substrate for selected pots of all treatments was monitored daily with 

a portable soil moisture sensor (model SM150T, Delta-T Devices, UK). Measurement was made daily at the 

same time in the morning at depth of 0-6 cm. As a result of the applied water stress practice the substrate 

moisture remained under the theoretically estimated container capacity (Savvas and Gruda, 2018) for a long 

period. 

2.3. Plant inoculation with mycorrhizal fungi and colonization detection 

Two different commercial inoculums (AMF1, AMF2) were applied to inoculate with mycorrhizal fungi 

the plants in pots. The first inoculum AMF1 (one mycorrhizal species) was the commercial inoculum OZOR 

(Bioplanet, Italy) containing 500 reproduction fungal particles (spores and hyphae g-1). The second inoculum 

AMF2 (a combination of two mycorrhizal species) was the commercial inoculum ATTRIVA 

MICROGRANULE (Hello Nature International Srl, Italy), containing two natural strains (50 fungal spores 

g-1) belonging to two Glomus species (Italpollina S.p.A strains), 25 spores g-1 of Glomus intraradices and 

25 spores g-1 of Funneliformis mosseae. Plants were inoculated three times by watering with 200 ml of fungal 

suspension. The pot substrate mixtures had not been sterilized before the transplanting. 

Mycorrhizal colonization was made from root samples randomly selected, 45, 90 and 120 days post 1st 

plants’ inoculation. Root clearing and staining was accomplished using modifications on (Giovannetti et al., 

2001) protocol. The mycorrhizal colonization of plants root has been verified based on the presence of key 

fungal features in root specimens (Brundrett M., 2004). 

2.4. Pot experimental design 

The pot experiment with grapevine saplings was conducted from June to October 2022 (140 days). Two 

years old saplings of ʻDebinaʼ cultivar (Vitis vinifera L.) were planted in 10 L pots with a mixture of peat 

and perlite 1:1 and 30% of the produced organic compost. Saplings were at the same growth stage and similar 

shape and had a central stem with average height of 65 cm. The thirty-six (36) pots were placed in a 

completely randomized design on the greenhouse benches. Six experimental treatments were designed which 

included two regulated deficit irrigation treatments (IRR1 and IRR2) for inoculated plants with two types of 

mycorrhizal inoculums (AMF1 and AMF2) and for no-inoculated plants.  

The following treatments of irrigation at 90% ETc (moderate water stress) were implemented: 

1. Plants with peat, perlite, organic compost – not inoculated (IRR1)  

2. Plants with peat, perlite, organic compost inoculated with AMF1 (AMF1_IRR1) 

3. Plants with peat, perlite, organic compost inoculated with AMF2 (AMF2_IRR1) 

and the corresponding treatments of irrigation at 75% ETc (substantial water stress) 

4. Plants with peat, perlite, and organic compost– not inoculated (IRR2) 

5. Plants with peat, perlite, organic compost inoculated with AMF1 (AMF1_IRR2) 

6. Plants with peat, perlite, organic compost inoculated with AMF2 (AMF2_IRR2) 
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2.5. Plant development 

Plant growth parameters were measured during and at end of the experimental period.  The height of the 

central stem was measured from above the graft union to the top. The length of all the lateral shoots was 

measured from the base to the top. The growth of the central stem and the lateral shoots were summed to the 

total plant height. The increase rate was calculated among the first and the last aggregate measurement of the 

central stem and the lateral shoots. The diameter of the central stem at the 6 cm of the graft union was 

measured and the increase rate between the beginning and the end of the experiment was calculated. Also, 

the number of the leaves and the number of the internodes was counted and the increase rate among the first 

and the last measurement was calculated. Plant biomass was estimated for two plants per treatment at the end 

of the experiment. Also, the Relative Growth Rate (RGR) of the plants was calculated (Cambrollé et al., 

2013). The total leaf area was estimated at the end of the experiment by using the ImageJ software (Schroeder 

et al., 2020). 

2.6. Total Chlorophyll, phenolic content, and proline content 

Total chlorophyll content was measured during the experimental period as a stress indicator.  

Measurements were made with the portable leaf chlorophyll meter SPAD-502 in the morning of fully 

sunshine days. For the correlation of SPAD readings, leaf chlorophyll concentration was determined in 

mg/cm2 through leaf extraction with acetone and the chlorophyll extract was measured in the 

spectrophotometer at two wavelengths, 661 nm and 644 nm (Uddling et al., 2007). 

Total phenolics were measured as a physiological indicator that can be affected from abiotic stress. 

Measurements were made three times during the experiment at the beginning (Day 25), middle (Day 70) and 

near the end (Day 114). Phenolic content was extracted and measured as described by Folin-Ciocalteu method 

according to (Katalinić, et al., 2009) protocol. 

Proline content was measured three times during the experiment at the beginning (Day 25), middle (Day 

70) and near the end (Day 114). Proline was extracted and measured as described by (Bates et al., 1973) 

protocol with slight modifications.  

2.7. Water footprint computation 

The water footprint (WF) for all treatments of grapevine plants was computed according to WFN method 

(Hoekstra et al., 2011) where the WF results from the sum of WFgreen, WFblue and WFgrey and is computed using 

the following equation (1): 

𝑊𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑊𝐹𝑔𝑟𝑒𝑒𝑛 + 𝑊𝐹𝑏𝑙𝑢𝑒 + 𝑊𝐹𝑔𝑟𝑒𝑦 (1) 

Since the WF is expressed as water volume per yield, yield was each item of vine plant (Fotia et al., 2022). 

Given the fact that the grapevine plants were kept in a glasshouse and there was no rain, the WFgreen is zero. 

The WFblue is represented from the amount of the irrigation water applied which was a percentage of their 

actual water needs and is equal to crop water used. Since the plants were irrigated at two different water 

deficit levels, 90% ETc and 75% ETc, using adequate water flow, there was no water leaching during the 

experiment and thus the WFgrey is assumed to be zero.  

2.8. Statistical analysis 

Statistical analyses were performed with SPSS software (SPSS 20.0, IBM Corp., Armonk, NY, USA). 

The analysis of Variance (ANOVA) was applied, and means were compared by LSD test at the 5% level. 

3. Results and Discussion 

3.1. Mychorrhiza colonization confirmation 

45 days after the 1st inoculation with AMF1 AMF2, all inoculated plants, regardless treatment, were found 

colonized by the mycorrhizal fungi. Control plants found negative for mycorrhizal colonization. Mycorrhizal 

fungi formed vesicular-arbuscular mycorrhizae (VA) in cortex cells in rather limited sites of plants’ root.  90 

days post 1st inoculation, G. intraradices alone (AMF1) or in combination with F. mosseae (AMF2) and 
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regardless treatment developed hyphal network, arbuscules and vesicles and/or spores in the cortex cells of 

plants’ roots. 120 days post 1st inoculation both mycorrhizal fungi and regardless treatment formed a well-

developed intra and inter-radical hyphal network, arbuscules and vesicles/spores in high extent of the root. 

The results ensure the establishment of the mycorrhizal symbiosis (early stages) for both species and 

regardless treatment, 45 days post 1st inoculation. Previous reports also have shown that Funneliformis 

mosseae and Rhizophagus intraradices form a vesicular-arbuscular mycorrhizae (VA) in cortex cells of 

grapevines, frequently after 2-4 months after first inoculation of host plants (Eftekhari et al., 2010; Torres et 

al., 2021). 

It appeared that mychorrhiza colonization was not affected by the organic compost with untreated wine 

lees which encourages the usage of mycorrhiza inoculums after the addition of organic compost. Also, the 

applied deficit irrigation practices did not affect the mycorrhiza presence after inoculation which is in 

accordance with (Torres et al., 2021) where the implemented water amount did not affect the colonization. 

3.2. Plant development 

The substantial water stress of 75% ETc did not affect the growth rates of shoot length, number of leaves 

and inter nodes and stem diameter, in comparison to the moderate water stress situation of 90% ETc and 

neither affected the plants leaf area at the end of the experiment. The increase rates of the inoculated plants 

did not differ significantly from non-inoculated plants. This finding has been observed in other studies too 

where the inoculation of vine plants does not affect the growth of the plants (Holland et al., 2019). 

Differences were detected at shoot, leaves and roots dry weights of the plants. In particular, the 

AMF1_IRR1 and AMF2 _IRR1 treatments showed the highest shoot dry weight with significant difference 

from others, which indicates the positive effect of mycorrhizal fungi under moderate water stress level (Ye 

et al., 2022). The shoot dry weight seems to be affected negatively from the substantial water stress status of 

75% ETc and the mycorrhizal inoculation did not manage to alleviate this negative effect.  

The inoculation with the two fungi inoculum (AMF2) significantly increased the dry weight of the leaves 

under moderate water stress status. The same positive effect with significant difference was detected with the 

single fungus inoculum (AMF1). The substantial water stress status reduces the leaves dry weight among 

inoculated plants with significant difference between AMF2 treatments. As for the root development, the 

highest root dry weight was produced from AMF1 treatment under moderate water stress status, with 

significant difference from non-inoculated plants under the same irrigation level. The highest plant biomass 

with significant differences from other treatments was performed from the inoculated plants under moderate 

water stress level. The substantial water stress to inoculated plants resulted to reduction of plant biomass with 

no significant differences of the non-inoculated plants. This finding is in accordance with the fact that one of 

the restricted factors for the mycorrhizal development is the water deficit.  

 
Table 1. Dry weights at the end of the experiment 

Treatment 
Shoot dry weight 

(g) 

Leaves 

dry weight (g) 

Root dry weight 

(g) 
Plant biomass (g) RGR (%) 

IRR1 18,6 ab 20,5 a 56,8 a 95,9 a 1,14 a 

IRR2 15,1 a 28 b 49,9 a 93 a 1,12 a 

AMF1_IRR1 21,9 b 33,6 b 67,3 b 122,7 b 1,32 b 

AMF1_IRR2 15,7 a 24,7 ab 56,9 ab 97,36 a 1,16 a 

AMF2_IRR1 20,7 b 35,3 c 60,6 ab 116,59 b 1,28 b 

AMF2_IRR2 14,6 a 23,3 ab 52,3 a 90,31 a 1,10 a 

 

The observed increase in dry weights of shoots, leaves, roots, and total biomass at inoculated plants under 

greenhouse conditions are in accordance with the findings of other studies were the inoculation with Glomus 

intraradices enhanced the plant growth (dry weight) of grapevine saplings in Richter 110 rootstock in 

comparison to no-inoculated plants at a greenhouse cultivation (Popescu, 2016). The beneficial effect of 

mycorrhizal inoculation on saplings growth has been confirmed from other studies too (Eftekhari et al., 

2010).  

Regarding the RGR, the inoculated plants under moderate water stress had the highest RGR with 
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significant difference from other treatments which indicates the positive effect of inoculation. The presence 

of mycorrhiza did not manage to alleviate the negative effects of the substantial water stress to RGR %. 

3.3. Leaf total phenol content 

Some researchers point out that leaves total phenolic content reduces under various abiotic stresses (Krol 

et al., 2014) or it can increase (Weidner, et al., 2009b) while other represent leaf phenolics as a physiological 

plant indicator that is increased when plant is under abiotic stress condition (Weidner et al., 2009a), (Petridis 

et al., 2012). On day 114, at AMF2 treatment, the 75% ETc water stress caused reduction of the leaf’s phenolic 

compounds with a statistically significant difference among them which is in line with the fact that water 

stress can decrease the content of phenolic compounds at leaves (Krol et al., 2014). The AMF1 inoculation 

treatments, on day 114, have statistically significant higher phenolic content from other treatments which is 

in accordance with Eftekhari et al. (2010) where leaves of inoculated plants presented increased phenolic 

compounds. 

3.4. Leaf proline and chlorophyl content 

Proline is an organic compound that under water stress condition can accumulate in plants as an 

osmoticum and helps plants to preserve their photosynthetic activity. Some researchers support that under 

water stress AM fungi increases proline concentration in plants (Ye et al., 2023) while others found that with 

AMF plants have lower proline concentration (Valentine et al., 2006). 

Leaves proline content did not differ significantly among treatments, either at the midterm or near the end of 

the experimental period. From this it can be concluded that AMF did not have the time to act protectively for 

the plants by increasing proline concentration. 

Various studies support that AMF inoculation enhances chlorophyl content of leaves through alleviation 

of the adverse effects of water stress (Ye et al., 2022) or indirectly through the increase of specific nutrients 

(Moukarzel et al., 2022). At our study, the water deficit practice did not affect the chlorophyl concentration. 

This is in line with the findings by Giorgi et al. (2019). Despite the findings form other studies, in our case 

the mycorrhizal inoculation did not affect the chlorophyl concentration of leaves. This finding is in 

accordance with leaves proline concentration where no differences among treatments were detected and this 

can reinforce the possibility that AMF did not act supportively to the plants probably due to little time from 

their establishment. 

3.5. Water Footprint 

The amount of irrigation water applied for the irrigation water amount was applied at 90% of ETc - 

substantial water stress -IRR I and at 75% of ETc – moderate water stress – IRR2 was 88,01 L/pot for the 

IIR1 treatments and 73,31 L/pot for the IRR2 treatments. The WF per treatment was estimated at the end of 

the experiment as the amount of irrigation water in L that was applied to each plant. Plants irrigated at the 

75% of ETc had lower total WF per plant. 

Table 2. The water footprint of grapevine seedlings per irrigation treatment  

 
CWUblue 

(L/plant) 

CWUtotal 

(L/plant) 

WFblue 

(L/plant) 

WFtotal 

(L/plant) 

IRR1 treatments 88,01 88,01 88,01 88,01 

IRR2 treatments 73,31 73,31 73,31 73,31 
 

4. Conclusions 

The usage of organic compost with untreated wine lees did not inhibit plant growth. Inoculated plants 

irrigated at 90% ETc, showed highest shoot, leaves and roots dry weight, highest total biomass and RGR% 

compared to no-inoculated plants. The presence of AMF at 75% ETc irrigated plants did not increase the 

plants growth parameters. Plants inoculated with the single fungus inoculum AMF1 under both water stress 

levels, had higher phenolic content in comparison to no-inoculated plants. Water deficit irrigation did not 

affect the chlorophyl content of leaves neither the proline content. Regarding the water management, plants 
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irrigated at 75% ETc had lower water footprint.  

The above findings reveal that the inoculation of grapevine saplings with AMF improves water use 

efficiency of plants under deficit irrigation practice. The combination of mycorrhizal inoculation and reduced 

irrigation at glasshouse, can be used as a water saving practice. Further research is needed to optimize the 

water use efficiency of grapevine saplings.  
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Abstract 

This paper presents the result of a Training Needs Analysis (TNA) conducted with both training providers 

and learners across four partner EU countries (Greece, Italy, Portugal, and Sweden). These results are based 

on a survey with 196 respondents. Based on multiple presented data points and sources we reach three main 

conclusions. Education and training in bioeconomy reflects megatrends associated with the green transition 

in terms of generating hybrid and emerging knowledge subfields, often embedded in traditional scientific 

disciplines such as farming or forestry that require a fast adaptation to new and promising professional 

profiles. Moreover, our results also reflect digitalization megatrends. Specifically, education and teaching 

institutions are still biased towards in-person teaching methods, while learners show a significant preference 

for blended or online learning methods, especially among those with higher qualifications (agronomists, 

consultants, and policymakers). Importantly, significant trends in bioeconomy education and training were 

also detected. For instance, due to its novelty, bioeconomy education and training is becoming more relevant 

across the European Union, but developments are not homogeneous. Importantly, secondary education 

programs and VET supply seem to be slowly adapting to the demand for competencies and skills in this 

sector.  

Finally, we highlight that according to the learners involved in our training needs analysis it is vital to 

disseminate comprehensive curricula in the bioeconomy sector, targeting technical, but also digital, 

entrepreneurial, soft, and transversal skills to address current professional requirements. Based on our 

conclusions, we offer some recommendations which may improve the quality and effectiveness of programs, 

in this field. Our recommendations cover issues such as curricula content, skills update of teachers and 

trainers, human-centred approaches to training design or appropriate use of digitalization. 

Keywords: Bioeconomy; education; training; training needs analysis; HEI; VET. 

1. Introduction 

Bioeconomy is the production, utilization, conservation, and regeneration of biological resources, including 

related knowledge, science, technology, and innovation, to provide sustainable solutions (information, 

products, processes, and services) within and across all economic sectors and enable a transformation to a 

sustainable economy (Kalnbalkite et al., 2022). Bioeconomy corresponds to a complex, hybrid subfield of 

knowledge, stemming from the inputs of several scientific fields. It is also a sector strongly informed by the 

major driving forces of current societies and economies. The dual transition, namely the green transition and 

digitalization, are among these drivers that help shape the bioeconomy’s present and future. 

The European bioeconomy is one of the EU’s largest and most important sectors, encompassing agriculture, 

forestry, fisheries, food, bioenergy, and bio-based products. It has an annual turnover of around 2 trillion 

euros and employs around 18 million people. The first EU bioeconomy strategy, ‘Innovating for Sustainable 

Growth: A Bioeconomy in Europe,’ was adopted in 2012 and took action through existing policies in various 

sectors (Common Agriculture Policy, Common Fishery Policy). The main goals of this strategy were: 

• Ensure food and nutrition security. 

• Manage our natural resources sustainably. 

• Reduce dependence on non-renewable, unsustainable resources. 
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• Mitigate and adapt to climate change. 

• Create jobs across Europe. 

Considerable gaps exist in our understanding of the existing practices around bioeconomy-related training 

and education. This can partly be explained by the relative newness of the bioeconomy as a concept 

(Kalnbalkite et al., 2022), but also because multiple educational practices and approaches that are 

conceptually within the bioeconomy are not explicitly labeled as such. A range of previous projects and 

studies have investigated bioeconomy education programs and approaches (BRANCHES - Boosting Rural 

Bioeconomy Networks). However, a critical review of training methods and approaches across higher 

education (HE) and vocational education and training (VET) is lacking. This is especially relevant as previous 

studies have highlighted that education, training, and knowledge development in bioeconomy sectors vary 

widely across Europe. According to the European Commission, there is a particular lack of training on 

bioeconomy for small enterprises and at low levels (Hakovirta & Lucia, 2019; Pubule et al., 2020; Watkinson 

et al., 2011; Ciriminna et al., 2021). Various recent publications investigate bioeconomy-related education 

and programs. Pubule et al. (2020) analyze 10 master’s programs in bioeconomy and highlight the 

interdisciplinary nature of the approaches used. Kalnbalkite et al. (2021) look more widely at education for 

the bioeconomy. Ruxandra et al. (2018) investigate the role of universities in developing human capital for a 

sustainable bioeconomy. Masiero et al. (2020) explores bioeconomy-related perceptions among 1400 

students in 29 universities. Less recently, Watkinson et al. (2011) conducted a review of advanced bioenergy 

education and training in Europe, and Ray et al. (2016) highlighted the importance of linking bioeconomy 

development with education in developing countries, emphasizing the potential of e-learning courses. 

In recent years, numerous platforms have emerged to support education processes by hosting and sharing 

relevant bioeconomy knowledge. These include the Rural Bioeconomy Portal, the European Bioeconomy 

Network, the European Bioeconomy Library, the Bio-based Industry Consortium's (BIC) bioeconomy 

platform, the European Bioeconomy University, the European Bioeconomy Alliance, and the Circular 

Bioeconomy Alliance. These platforms, which sometimes overlap, generally support bioeconomy knowledge 

and information sharing, stakeholder collaboration, policy development, and provide tools and support for 

relevant stakeholders. 

In this study, we present the results of a Training Needs Analysis (TNA) conducted with both training 

providers and learners across the four partner countries of the RELIEF consortium (Greece, Italy, Portugal, 

and Sweden). This survey included 196 respondents and offers multiple insights that can be triangulated with 

the information collected in the previous three sections resulting from desk research. We organize the main 

findings according to the concepts of megatrends, trends, and weak signals. These concepts are time- and 

data-driven and, therefore, help to establish a prospective analysis of education and training programs in the 

bioeconomy sector. 

2. Methodology  

In the RELIEF project, an analysis was conducted of the current education and training provisions at the vocational 

education and training (VET) and higher education levels in the field of bioeconomy within the farming sector across EU 

countries. This task involved an online desk research approach comprising two main steps. Firstly, utilizing a pre-

organized course form developed and provided by some project partners (TERINOV, CESIE, and OTC), the consortium 

gathered relevant information related to bioeconomy course provision in the field of agriculture across European Union 

countries. This process expanded to include detailed information from training provisions available across EU countries 

that do not formally integrate into the project’s consortium. The main criterion for inclusion in this mapping was that the 

training offer must be currently active and/or accepting new learners. Subsequently, data was extracted directly from 

higher education institutions and VET providers' curricula available on the institutional websites of each organization 

and from publicly available databases from official bodies responsible for accrediting training provisions (e.g., Direção-

Geral do Ensino Superior and Direção-Geral da Educação, Portugal). Figure 2 depicts full education and training 
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programs as well as programs with curricular units on bioeconomy across the EU by country, as identified through the 

mapping procedure. 

                                       
Figure 1. Training Curricula on bioeconomy by EU country 

The Training Needs Analysis (TNA) approach followed the principle of multiple informants to better 

understand the learning needs in the bioeconomy and, therefore, to target commonalities and differences 

among different stakeholders. Potential participants from higher education institutions and VET providers 

were identified and contacted to participate in the study directly by the partners of the consortium. Potential 

learners, including farmers, agronomists, consultants, and policymakers, were identified and contacted with 

the invaluable help of local, regional, and national farmers’ associations, universities, and government bodies, 

who kindly shared the questionnaires with their stakeholders. A total of 95 questionnaires for higher 

education institutions and VET providers and 230 questionnaires for potential learners were sent out via 

email but also made available in paper-and-pencil format. The questionnaires were filled in between October 

20, 2022, and May 12, 2023. To conduct a comprehensive TNA, the RELIEF consortium developed two 

questionnaires. The first questionnaire targeted training providers. The first part of this questionnaire aimed 

to characterize the training providers in terms of active training fields associated with the bioeconomy sector, 

institutional typology (VET provider, professional training, higher education, or other), and degrees awarded 

(if any). This part of the questionnaire also included a depiction of learning courses/programs offered by 

training providers, covering elements such as training types, duration, learning methods, or fees. In the second 

part of the questionnaire, participants were asked about the opportunities and challenges of their training 

packages, including strengths and weaknesses, elements of effective training, or non-technical skills covered. 

The questionnaire also comprised some open-ended questions regarding expected training updates, 

improvements, or partnerships for program implementation. The second questionnaire focused on learners. 

Learners covered by this questionnaire were farmers or farming companies, agronomists, farming 

consultants, and policymakers. In many ways, this questionnaire mirrored the questionnaire for training 

providers to ensure comparability. The first part of the instrument covered personal information about the 

learners in terms of the highest educational qualification achieved, duration of the latest qualification, number 

of curricular units associated with bioeconomy attended, and professional identity (e.g., agronomist, farmer, 

etc.). The second part focused specifically on farmers’ perceptions and expectations regarding bioeconomy 

learning needs. This section of the questionnaire included questions about the level of interest in learning 

more about the sector, preferred learning language, or preferred learning methods. This section also 

encompassed a series of questions using a 5-point Likert scale (from 1 “not at all” to 5 “extremely important”) 

to rate the relevance of promoting different entrepreneurial (e.g., creativity), digital (e.g., digital content 

creation), and transversal skills (e.g., self-efficacy). The third part of the questionnaire aimed specifically at 

agronomists, farming consultants, or policymakers, covering largely the same questions and items rated using 

the 5-point Likert scale. Both the second and third sections of the questionnaire for learners included some 

open-ended questions. 
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2.1. Data Analysis 

The results from the questionnaires for training providers and learners were categorized into three parts: (a) 

description of training supply by training providers; (b) learners’ qualifications; and (c) learning needs. We 

conducted a descriptive statistical analysis using primarily two approaches. For characterization questions, 

we depicted response frequencies and percentages. For Likert scale questions aimed at learners, we presented 

mean values. The results are presented in graphical displays in the results section. 

3. Results  

The survey targeting training providers commenced by identifying the fields of education related to the 

bioeconomy sector offered by the institutions represented by these participants. The consortium identified a 

total of 55 training curricula on bioeconomy or including curricular units on bioeconomy subjects in the 

farming sector across 13 countries. The distribution of curricular programs included in the RELIEF database 

ranged from 2 in Portugal and Sweden to 10 in The Netherlands. Importantly, of the 55 education and training 

curricula added to our database, 48 (87.2%) were delivered by public universities. The results show that 

training offers were more often made available in the agriculture field (25.2%; n = 26), followed by forestry 

(23.3%; n = 24), environment and sustainability (13.6%; n = 14), biorefineries and green chemistry (13.6%; 

n = 10), and renewable energies (13.6%; n = 10). Notably, a portion of the training providers indicated that 

they did not provide training in any of the proposed areas of the survey (11.7%; n = 12). 

 

Regarding the educational levels offered by the VET providers, VET equivalent to different certification 

degrees (EQF 3 to 5) (55.1%; n = 27) was the most frequently offered education level according to the 

institutions involved, followed by a mix of education levels (26.5%; n = 13), tertiary education (16.3%; n = 

8), and other (2.0%; n = 1). Most of the VET providers' courses offer more than 5 UCs (credit units) on 

bioeconomy (71.1%; n = 32), followed by those providing 1 UC (13.3%; n = 6), 2 UCs (6.7%; n = 3), and 5 

UCs (2.2%; n = 1). Some training providers did not provide any answer to this question (6.7%; n = 3). 

 

Regarding the main aims of the current bioeconomy-related courses, Goal 8 “other” (27.2%; n = 22) was the 

most selected one by the participants, followed by Goal 5 “Methodologies for environmental impact 

assessment” (24.7%; n = 20), Goal 6 “Necessary skills to deal with the biomass to energy chain” (22.2%; n 

= 18), Goal 7 “Necessary skills to deal with the biorefinery and Green Chemistry topics” (6.2%; n = 5), Goal 

3 “Knowledge on bioeconomy strategies” (6.2%; n = 5), Goal 2 “Systematic approach to conduct economic 

analysis to evaluate costs and benefits” (6.2%; n = 5), Goal 4 “Knowledge on biomass markets” (4.9%; n = 

4), and Goal 1 “To provide the key concepts in microeconomics” (2.5%; n = 2). According to the surveyed 

training providers, bioeconomy-related training most often lasted for 2 years (40.4%; n = 19), followed by 

training courses with a duration of 3 years (27.7%; n = 13). Short-term training courses were less common, 

whether they lasted less than 3 months (17.0%; n = 8), 4 to 6 months (8.5%; n = 4), or finally 7 to 12 months 

(6.4%; n = 3). 

 

The primary teaching language of the current bioeconomy-related courses, bioeconomy-related courses are 

more often delivered in English (29.8%; n = 14), followed by a similar share of courses provided in Greek 

and Portuguese languages (both 21.3%; n = 10). Courses in this area provided only in Italian (14.9%; n = 7), 

and Swedish (12.8%; n = 6) were less common. The most common methodological approach to training in 

the bioeconomy-related training courses, according to the participants, is in-person training (59.6%; n = 31), 

followed by the blended method (28.8%; n = 15), online (9.6%; n = 5), and other (1.9%; n = 1). Overall, 

tuition fees were implemented by half of the training providers (50.0%; n = 23). Among these, tuition fees 

ranged considerably from being less than 1000€ (17.8%; n = 8) to more than 6000€ (11.1%; n = 4), with 

some falling between 1000€-3000€ and 3000€-6000€ (both 8.9%; n = 4). It is important to note here, 

nevertheless, that tuition variability certainly overlaps with the variety of training opportunities provided by 

the surveyed training institutions, according to the results displayed in Figure 6. It is also important to note 

that most of the training providers did not provide any answer to this question (53.3%; n = 24). 

 

 
 

AgEng 2024 Proceedings

990



According to the training providers the key conclusions form the TNA where the following: 

Agriculture and forestry account for almost 50% of the training areas offered by VET providers. Interestingly, 

emerging areas associated with the green transition already account for almost 39.8% of all bioeconomy 

related training. 

• VET is the predominant training approach to bioeconomy. 

• In most cases, bioeconomy is nonetheless a relevant dimension of the training curricula. More than 70% of 

the training providers indicated that they offered at least 5 curricular units related to the sector. 

• The goals associated with the provided bioeconomy training opportunities cover multiple targets, showing 

that the approach followed by the training providers inquired by the RELIEF project acknowledges the hybrid 

nature of the sector. 

• Bioeconomy training is mostly provided as part of long-term curricula (lasting for 2 or 3 years). Short-term 

training is therefore less recurrent, raising the question of how much specialization is offered in the sector. 

• Almost a third of bioeconomy training is provided in English. 

• Blended and online forms of training already account for almost 40% of the training delivered by the 

training providers enrolled in our survey. 

 

Learners’ qualifications and learning need. 

 

The data analyzed in the following subsection refer to the Training Needs Analysis (TNA) conducted by the 

consortium with learners. According to the survey, the participants were very diverse regarding their 

educational background. The most common qualification among the participants was a bachelor’s degree 

(22.5%; n = 34), followed by a high school diploma (21.2%; n = 32), a master’s degree (20.5%; n = 31), a 

high school dropout (7.9%; n = 12), other (6.6%; n = 10), a doctoral degree (5.3%; n = 8), a summer course 

(4.6%; n = 7), a post-graduate course (4.0%; n = 6), VET (2.0%; n = 3). Eight learners did not provide any 

answer to this question (5.3%; n = 8). The graduation years ranged from 1976 to 2023. 

 

Unsurprisingly, given the distribution by level of qualification, the duration of the latest qualification, course, 

or degree attained by the learners was long-term, whether it was more than 3 years (43%; n = 65), 3 years 

(19.2%; n = 29), or 2 years (12.6%; n = 19). However, some of them were enrolled in 7-12 months (4.0%; n 

= 6), less than 3 months (2.6%; n = 4), or 4-6 months courses (0.7%; n = 1). Importantly, 24 of the learners 

did not answer this question (53.3%; n = 24). Additionally, regarding the number of curricular 

units/disciplines related to bioeconomy, most learners reported 0 UC’s (credit units) (68.4%; n = 104), 

followed by 1 UC (5.9%; n = 9), 2 UC’s (4.6%; n = 7), 3 UC’s (3.9%; n = 5), more than 5 UC’s (2.6%; n = 

4), and 4 UC’s (0.7%; n = 4). Some learners did not provide any answer to this question (13.2%; n = 20). 

One of the learners considered this question not to be applicable (NA - 0.7%; n = 1). 

 

The participants clearly stated a preference for agriculture as the most interesting area for promoting further 

bioeconomy training, irrespective of being farmers (25.4%; n = 71) or having another professional 

background (agronomists/farmer's consultants/policy makers) (11.1%; n = 31). Training expectations 

associated with Environment and Sustainability (agronomists/farmer's consultants/policy makers - 10.4%; n 

= 29; farmers - 9.3%; n = 26) came second, followed by renewable energies, widely mentioned by farmers 

(8.9%; n = 25) and agronomists/farmer's consultants/policy makers (7.9%; n = 22). Bioenergy (e.g., energy 

crops, forestry use for energy, biofuels, etc.) also captured some attention among the respondents, although 

with different distributions among agronomists/farmer's consultants/policy makers’ answers (6.4%; n = 18) 

and farmers (4.6%; n = 13). Bioeconomy was equally selected by both groups (5.0%; n = 14); Forestry was 

selected mostly by farmers (3.9%; n = 11) compared to agronomists/farmer's consultants/policy makers’ 

(1.4%; n = 4). The option "other areas" was selected only by one farmer (0.4%; n = 1), while only one learner 

(i.e., agronomists/farmer's consultants/policy makers) answered "Biorefineries, Green Chemistry" (0.4%; n 

= 1). 

 

Based on the outcomes of the survey, the preferred teaching language for training differs depending on the 

country of the learner. Importantly, English is not the top preference for both farmers (8.0%; n = 13) and 

agronomists/farmer's consultants/policy makers (4.3%; n = 7). In general, both groups show a preference for 

their native languages as the most wanted teaching language for training. As for the methods, the online 

method covers a great number of preferences in total. This was particularly true among agronomists/farmer's 

consultants/policy makers (25.1%; n = 52) who more often preferred the online method when compared to 
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farmers (14.5%; n = 30). The blended method (in-person/online) comes next and is preferred in almost even 

numbers by agronomists/farmer's consultants/policy makers (17.4%; n = 36) and farmers (15.5%; n = 32). 

Farmers showed more interest in learning in person (17.9%; n = 37) than agronomists/farmer's 

consultants/policy makers (9.7%; n = 20). Regarding the willingness to pay for the courses, most farmers are 

not willing to pay tuition fees for bioeconomy-related training (43.7%; n = 66), similar to 

agronomists/farmer's consultants/policy makers (21.9%; n = 33). A group of farmers (20.5%; n = 31) were 

available to pay tuition fees, with a few more agronomists/farmer's consultants/policy makers choosing this 

option as well (21.9%; n = 20). "Circular economy standards and assessment method" was the most often 

chosen option by both groups, especially by farmers (24.7%; n = 59), compared to agronomists/farmer's 

consultants/policy makers (17.6%; n = 42). "Energy management and conservation" came next among 

farmers (21.8%; n = 52) and agronomists/farmer's consultants/policy makers (7.9%; n = 19). Lastly, 

"sustainable waste management" (waste classification and environmental impact, supply chain management 

and the 5Rs - Reduce, Reuse, Refurbish, Repair, and Recycle) was chosen by farmers (19.7%; n = 47) and 

agronomists/farmer's consultants/policy makers (8.4%; n = 20). 

The final questions of the RELIEF survey for learners focused on the importance of different sets of skills to 

undertake bioeconomy activities. The selected skills are inspired by DigitComp and the EntreComp 

competences frameworks presented in section 3 of this report. Our inquiries are, thus, aligned with the EU 

skills framework for digitalization and entrepreneurship. Mean results for the different items are presented: 

the adopted Likert scale ranges from 1 (not at all) to 5 (extremely important). In general, both farmers and 

agronomists, consultants, and policymakers give great importance to digital skills, with mean values above 

4, contrary to information and data literacy and to communication and collaboration, with mean values below 

1. It is also relevant to stress that mean values are similar across the two groups in each of the different digital 

competences/skills assessed. 

Overall, the pattern of mean results for both learners’ groups found for entrepreneurial and soft skills is 

similar to the one found for digital competences and skills. Indeed, both farmers and agronomists, consultants, 

and policymakers display considerably high values for all the proposed entrepreneurial and soft skills that 

might be relevant for the bioeconomy sector. There are, however, a few differences. For instance, farmers 

tend to give less importance, on average, to creativity, valuing ideas, ethical and sustainable thinking or self-

awareness and self-efficacy compared to agronomists, consultants, and policymakers. The reverse trend can 

be observed regarding financial and economic resources. Again, as it happened with the digital and with the 

entrepreneurial and soft competences as skills, both farmers and agronomists, consultants, and policymakers 

had strong average perceptions, above level 4, about the relevance of transversal skills for undertaking 

bioeconomy activities. 

The RELIEF consortium also wanted to understand which were the strengths and weaknesses of the 

bioeconomy training programs. Therefore, the final part of the survey was dedicated to these two points, 

covering a wide range of factors which can constitute both pros and cons to implement educational and 

training programs in this emerging sector. 

Summarizing the results provided by the respondents regarding the strengths of the bioeconomy training 

programs: the most often selected strength among farmers (8.1%; fi = 21) and agronomists/farmer's 

consultants/policy makers (6.6%; fi = 17) was applicability to real life/working environments and contexts. 

Importantly, the most selected option was other, especially among farmers (20.1%; fi = 52) but also with a 

relevant number of answers among agronomists/farmer's consultants/policy makers (7.7%; fi = 20). 

Unfortunately, only rarely did the participants specify which other strengths they had in mind. 

One important trend emerging is that farmers more often identify weaknesses compared to agronomists, 

consultants, and policymakers. That mismatch is clear regarding factors such as applicability to real 

life/working environments’ contexts - farmers (12.4%; fi = 55); agronomists/farmer's consultants/policy 

makers (4.8%; fi = 21), followed by weak connection with industries and the business sector - farmers 

(11.5%; fi = 51); agronomists/farmer's consultants/policy makers (7.9%; fi = 35), lack of available tools (e.g., 

access to labs and software) - farmers (11.3%; fi = 50); agronomists/farmer's consultants/policy makers 
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(6.3%; fi = 28) - or not well-defined scope - farmers (11.1%; fi = 49); agronomists/farmer's consultants/policy 

makers (5.7%; fi = 25). 

Finally, the key conclusions stemming from the TNA for the learners are the following: 

• The number of curricular units dedicated to bioeconomy is often low. 

• The fact that farming is the main area of bioeconomy training indicates the need for training 

associated with practical knowledge (short-term training, upskilling/reskilling, VET). 

• Programs delivered in English language are not a priority among learners, whether they are farmers 

or agronomists/consultants/policymakers. 

• Learners are somewhat open to the use of digitalization – although that seems to be more the case 

with agronomists, consultants, and policymakers. 

• The perceived importance of almost all digital skills is very high. 

• High importance is given to all sets of skills beyond the technical skills, namely those covered by 

the DigiComp and the EntreComp frameworks. Still, it is relevant to underline that some skills 

related to direct management of these activities - funding - are more important, on average, for 

farmers. 

• Weaknesses of training packages are very often selected by farmers. 

4. Discussion 

Our discussion will integrate three key elements. Firstly, we will specifically analyze the results provided by 

RELIEF’s critical review, incorporating the identification of professional areas, mapping of education and 

training opportunities, and assessment of training needs in the bioeconomy area as reported by both training 

providers and learners. Secondly, by triangulating data and informants, we aim to highlight the most 

significant findings emerging from our diverse sources of information. Lastly, considering the prospective 

nature of this report, we will further elucidate these findings by interpreting them through the lens of future-

oriented concepts such as megatrends, trends, and weak signals. 

 

Megatrends 

 

Megatrends represent significant shifts in society, policy, markets, and education and training, driven by 

environmental, social, and technological factors. These overarching trends have the potential to produce 

profound societal impacts on a global or continental scale. Examples of megatrends relevant to the aims of 

RELIEF include the green transition, digitalization, and globalization. Megatrends often interact with each 

other, creating synergies that lead to major innovations and societal transformations. 

 

Trends 

 

Trends are clear-cut developments in society, economy, or technology supported by credible sources and 

statistics. Unlike megatrends, trends may have more localized impacts and can vary in their scope and 

intensity within different territories. Trends are typically identified through longitudinal studies or expert 

analysis of recent developments within specific fields. Examples of current trends include the growth of 

sustainable consumption and the rise of populism in Western countries. 

 

Weak Signals 

 

Weak signals refer to unusual or unexpected issues that may have significant implications for future changes 

in organizations, societies, or environments. Identifying and analyzing weak signals is crucial for anticipating 

future developments and relevant prospects for bioeconomy education and training. Incorporating weak 

signals into scenario planning allows for a deeper exploration of potential future scenarios and their impact 

on education and training initiatives in the bioeconomy sector. 
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4.1 Bioeconomy education and training and megatrends 

Several findings from the RELIEF project align well with key megatrends, particularly the green transition 

and digitalization. The green transition signifies a shift towards sustainable economic growth, reducing 

reliance on fossil fuels and promoting circular economy practices. In the European Union, this transition is 

driven by initiatives like the European Green Deal, which aims for net-zero greenhouse gas emissions by 

2050 and sustainable economic growth. 

 

Two aspects of bioeconomy education and training identified in our research are closely linked to the green 

transition megatrend. Firstly, these programs are designed to address unsustainable production models that 

compromise environmental and social sustainability. Our analysis, including critical reviews, mapping of 

educational programs, and Training Needs Assessment (TNA), indicates a strong focus on environmental 

sustainability goals within bioeconomy education and training. For instance, Vocational Education and 

Training (VET) providers prioritize methodologies for environmental impact assessment over purely 

economic considerations. 

 

Secondly, our data suggests that bioeconomy education and training are adapting to the complexity of 

sustainability challenges posed by the green transition. The bioeconomy sector faces multifaceted or 

"wicked" problems, requiring innovative and interdisciplinary approaches to address them effectively. Our 

findings indicate that education and training programs in this field are evolving to meet these challenges, 

incorporating diverse perspectives and methodologies to tackle complex environmental and economic issues. 

 

In summary, the alignment between bioeconomy education and training and megatrends like the green 

transition underscores the importance of sustainability and innovation in shaping the future of education and 

training in the bioeconomy sector. 

Two additional findings from the RELIEF project align with another significant megatrend: digitalization. 

Digitalization refers to the sociotechnical process of applying digitizing technologies to broader social and 

institutional contexts, involving the conversion of analogue signals into digital form. 

 

Firstly, a notable discrepancy emerged between the predominant teaching methodologies reported by learners 

in our Training Needs Assessment (TNA) and those identified in our mapping of existing education and 

training programs by providers. While most programs in our database were delivered in person according to 

providers, learners expressed a stronger preference for online or blended teaching methods. Interestingly, 

farmers showed the least preference for teaching methods other than in-person instruction. This discrepancy 

may reflect the shift towards digitalized education, especially following the COVID-19 pandemic, which has 

become more prevalent in lifelong learning contexts. However, it's important to note that our mapping and 

survey primarily focused on higher education programs, where in-person teaching remains the standard. 

Thus, this contradiction requires careful consideration. 

 

Secondly, learners with higher professional qualifications, such as agronomists, consultants, and 

policymakers, displayed greater openness to digital alternatives in bioeconomy education and training 

compared to farmers. This inclination can be attributed to their increased exposure to digital tools in their 

daily work routines. Leveraging digital tools for online learning may be an effective means to reach farmers, 

particularly in remote areas with limited training resources. However, challenges related to digital literacy 

and connectivity, especially in rural areas, must be addressed. These challenges contribute to digital 

inequalities, which are pertinent issues in the field of bioeconomy education and training. 

 

Furthermore, the RELIEF survey highlighted the importance of digital skills and competencies among 

learners, as evidenced by high average ratings for digital skills items inspired by the DigiComp framework. 

However, lower mean values for data literacy warrant attention. It's crucial to recognize that perceived digital 

literacy often exceeds actual digital literacy, emphasizing the need to improve digital literacy across EU 

countries. When designing educational programs, both delivery methods and digital skills development 

should be carefully considered. 

 

Moreover, the perception that collaboration is not inherent in the development of digital skills, particularly 

among farmers, requires nuanced interpretation. Qualitative studies suggest that farmers utilize digital skills 
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and tools for collaboration, especially in rural areas where official support may be lacking. Therefore, this 

finding may not universally apply or may vary across different contexts. 

 

In summary, addressing digital inequalities and integrating digital literacy into educational programs are 

essential steps in leveraging digitalization for effective bioeconomy education and training. Additionally, 

recognizing the collaborative potential of digital skills among diverse learner groups is crucial for fostering 

innovation and knowledge exchange in the bioeconomy sector. 

Globalization refers to the spread of trans planetary connections between people, increasingly extending to 

sup aterritorial realms. It signifies how the world has become more interconnected and interdependent 

through trade and technology exchanges (Scholte, 2008). Communication is a crucial aspect of globalization, 

as it facilitates exchanges between individuals and organizations on a global scale. The use of a common, 

standardized language is essential for enabling interactions across different geographic locations, cultures, 

and societal groups. 

 

English has emerged as a symbol of international communication, particularly in the education and training 

sector. The RELIEF project investigated the extent to which education and training in the bioeconomy 

domain is becoming more international by adopting English as the primary teaching language. Our findings 

reveal nuanced trends that may initially appear contradictory. 

 

Our mapping of training programs indicates that nearly three-quarters of the programs in our database are 

delivered in English. However, data from our Training Needs Assessment (TNA), gathered from both training 

providers and learners, suggests a lower proportion of programs delivered in English and a preference for 

native languages among learners. It's important to note that our mapping predominantly covered advanced 

courses, such as master’s programs. 

 

The prevalence of international programs taught in English is on the rise across Europe, spanning various 

knowledge domains, including bioeconomy and related fields. However, our TNA also captured a significant 

portion of individuals without tertiary education who may not be proficient in international languages. For 

these individuals, accessing learning environments in their native languages is particularly relevant and 

impactful. 

 

4.2 Bioeconomy education and training trends 

As previously mentioned, trends are emerging social, economic, or technological developments supported 

by multiple data points and sources. In the realm of education and training in the bioeconomy sector, trends 

primarily reflect promising or relevant developments in the supply and demand nexus of training. One 

prominent trend evident from the various data sources utilized by the RELIEF project, particularly from our 

critical review, is the increasing significance of bioeconomy in curricula across Europe. This trend is 

corroborated by training providers surveyed, with over 70% indicating the inclusion of at least five curricular 

units related to the bioeconomy sector. However, the dissemination of bioeconomy education and training 

programs is uneven and not yet fully independent as a training field. 

 

Our Training Needs Assessment (TNA) also reveals that agriculture and forestry comprise nearly half of the 

bioeconomy-related training opportunities offered by providers. Notably, emerging areas associated with the 

green transition are gaining prominence in bioeconomy training. Both farmers and agronomists, consultants, 

and policymakers recognize the importance of integrating bioeconomy into traditional knowledge fields like 

farming and new, hybrid curricula driven by megatrends such as the green transition. However, a significant 

proportion of learners noted the absence of bioeconomy topics in the programs they attended, particularly 

those enrolled in Vocational Education and Training (VET) courses. 

 

From a supply and demand perspective, the field of education and training in bioeconomy is undergoing a 

transitional phase marked by unbalanced and somewhat contradictory developments. While bioeconomy is 

increasingly relevant in advanced training, the basics of bioeconomy appear less prioritized in VET programs. 

The lack of VET programs or curricular units dedicated to bioeconomy is evident in our critical review and 

mapping efforts. 
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Another trend associated with this transitional process is the limited access to bioeconomy curricula for VET 

learners. VET is considered crucial for enhancing educational attainment across all knowledge areas, as 

emphasized by strategic policies like the European Skills Agenda. However, the scarcity of intermediate-

level professionals equipped with practical skills hinders progress in sectors vital to regional economies, 

particularly in rural areas. 

 

Addressing the gap in bioeconomy training supply within the VET sector is a trend that needs to be addressed 

in the future. Additionally, our research highlights the importance of a comprehensive set of competencies 

and skills for success in the bioeconomy sector. Learners recognize the significance of skills beyond technical 

expertise, aligning with frameworks such as EntreComp and DigiComp. Notably, farmers exhibit a greater 

inclination toward developing managerial skills, such as funding, reflecting the daily challenges they face in 

managing their farms and balancing profitability with sustainable production practices. 

 

4.3 Bioeconomy education and training weak signals   

Weak signals are current anomalies or peculiarities that can help anticipate future changes. Throughout our 

research efforts, the RELIEF project has identified some weak signals associated with bioeconomy education 

and training. While further research is needed, these weak signals could serve as starting points for innovation 

and the future dissemination of bioeconomy educational programs. 

 

One weak signal we have detected relates to the duration of curricula. Bioeconomy training is primarily 

offered as part of long-term curricula lasting 2 or 3 years. Consequently, short-term training opportunities 

are less common, raising questions about the level of specialization offered and required in the sector. 

However, given the anticipated increase in the need for upskilling/reskilling due to technological 

advancements, the prevalence of lifelong learning paradigms, and the European ambitions outlined in the 

European Green Deal, we anticipate that short-term training opportunities will become more frequent. 

 

The assessment of weaknesses, particularly those identified by farmers, has caught our attention as a potential 

weak signal. Farmers have shown keen interest in highlighting several gaps in bioeconomy education and 

training packages. This indicates an imbalance between the importance placed on advanced training and the 

lack of short-term, problem-solving oriented courses for professionals, as discussed in the previous 

subsection. We interpret this as farmers representing a target group that will become increasingly relevant in 

the bioeconomy sector in the future, a development that has not been adequately addressed thus far. 

 

Additionally, it is essential to consider that a significant portion of learners showed little to no motivation to 

pay tuition for training in bioeconomy. This weak signal from the data is crucial for authorities considering 

expanding knowledge in this field. If prioritized, the allocation of public resources must be carefully 

considered to ensure that on-the-ground professionals, particularly farmers, are adequately enrolled in 

educational packages. 

 

5.Conclusion   

The depiction of bioeconomy education and training across the European Union evokes the image of someone 

in adolescence, experiencing a period of transition filled with both opportunities and uncertainties. 

Undoubtedly, the bioeconomy is an emerging sector. Over recent years, there has been a notable increase in 

knowledge production, professional occupations, and associated training packages, as highlighted by our 

critical review and identification of professional pathways. Our mapping and TNA of bioeconomy 

educational and training programs further indicate a growing relevance of learning opportunities in this 

sector. These developments are influenced by megatrends, particularly the green transition, which has led to 

the emergence of hybrid bioeconomy training packages or curricular units integrated into traditional scientific 

disciplines like farming or forestry. These programs aim to adapt to the evolving demands of the green 

transition and its associated professional profiles. 
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Digitalization is another significant driver of bioeconomy development. Learners are increasingly drawn to 

online and blended teaching environments, although educational institutions still predominantly favor in-

person teaching methods. This shift towards online learning is especially pronounced among individuals with 

higher qualifications, such as agronomists, consultants, and policymakers. 

Moreover, the RELIEF project has identified notable trends in bioeconomy education and training. While the 

sector is gaining relevance across the EU, developments are not uniform across countries and educational 

levels. Secondary education programs and vocational education and training (VET) opportunities related to 

the bioeconomy remain limited. However, there is a gradual adaptation of education and training offerings 

to meet the demand for practical competencies and skills in this field. 

It is crucial to emphasize the importance placed by learners in our TNA on disseminating comprehensive 

curricula in the bioeconomy sector. These curricula should encompass technical as well as digital, 

entrepreneurial, soft, and transversal skills to address current professional requirements. 

In conclusion, our report underscores the need to balance sustainability principles with the management 

requirements of training programs in the bioeconomy field. It advocates for continuous professional 

development and updating of trainers and teachers, thoughtful digitalization of learning programs to mitigate 

digital inequalities, particularly among farmers, and the expansion of VET curricula associated with 

bioeconomy activities to facilitate integrated training pathways from secondary education to advanced 

tertiary education. 
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Abstract 

This perspective paper provides an overview of the current research results and expected outputs of the 

Horizon Europe P2GreeN project which pilots four innovative technology and implementation systems in 

Germany, Sweden and Spain that capture and turn human sanitary waste into safe bio-based fertilizers for 

agricultural production. This paper presents the current status of the implementation of these technologies in 

the pilot regions and the first results of the field trials of the project. Initial results document the process of 

setting up each pilot region and indicate that the bio-based fertilizers produced are safe for agricultural 

production and in line with the production efficiency as compared to conventional chemical fertilizers. A 

policy and governance analysis for the implementation and scaling of these technologies in the pilot regions 

and the EU is also presented. 

In parallel the project explores the potential of implementing and scaling these systems to other areas in the 

EU with a particular focus on Italy, Greece, Hungary and France. In this regard the project undertakes a 

number of feasibility studies evaluating the potential of each system in specific cases. Initial results document 

the cases to be explored in each follower region for the final feasibility studies. The paper also presents the 

results of expert consultations from focus groups and workshops. Results from the focus groups indicate 

broad support amongst experts for the implementation of these types of technologies and fertilizers 

emphasizing their potential in various regions, despite challenges such as implementation costs. Various 

social considerations centered around acceptance and quality were also highlighted. While there is a need for 

the development of a supportive policy framework at both EU and national levels. 

Keywords: circular nutrient flows, farm to fork, air and water pollution control, fertilizer, wastewater 

management 

 

1. Introduction 

Nutrient losses in the environment are a major threat to the functioning of terrestrial and aquatic ecosystems. 

Nitrogen (N) and phosphorus (P) flows are considered the most critical, as high N & P loads are associated 

with problems such as groundwater pollution, eutrophication of aquifers and loss of biodiversity (too much 

to lose). The agri-food sector plays a key role here as it is significantly contributing to N & P pollution on 

the one hand but at the same time the agricultural production in Europe depends on mineral fertilisers, with 

an estimated consumption of approximately 11 million tonnes N & P per year (Eurostat,). Current 

mainstream production methods for N & P fertiliser are not sustainable. Mineral N fertilisers (the most used 

nutrient in the EU in terms of volume) result from energy-intensive industrial processes that are heavily 

dependent on fossil fuels (for energy use and as a feedstock) and are a major source of industrial and 

agricultural emissions in the EU. Mineral P fertilizers are sourced outside of the EU and often mined under 

precarious and unsustainable conditions (Vermeulen et al., 2012). Furthermore, the supplies of N & P are not 

guaranteed due to increased costs and limited supplies. Higher energy prices impact on N fertilizer 
production and the world’s P reserves may be exhausted at the end of the 21st century if today’s fertilization 
practices continue. Together, these factors challenge the EU’s food security. Moreover, nutrient losses of N 

& P include diffuse emissions from agriculture and point emissions from wastewater treatment plants 

(WWTPs.) (Desmit et al., 2018). The intensive use of fertilizers in agricultural production is a major factor 

for N & P pollution. High nutrient concentrations are also found in human sanitary waste streams from where 

they are ultimately released to rivers and coastal zones, including effluxes from WWTPs. Nutrient removal 

in WWTPs is very energy intensive and also in modern WWTPs not all N can be removed from 

wastewater.  
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The removed N is ultimately ending up in the atmosphere as molecular nitrogen (N2) and to a lower share (~ 

1%) as the very potent greenhouse gas nitrous oxide (N2O). For P, only 34% of WWTP inputs are recycled 

by spreading sewage sludge on agricultural fields. The use of sewage sludge for fertilization, however, is 

connected to problems such as micro pollutants, which are rarely removed by WWTPs (Gianico et al., 2021). 

2. P2GreeN’s novel concept 

P2GreeN’s goal is to develop the nutrient cycle between urban settings with high levels of nutrients in 

wastewater (blue infrastructure) and rural areas with a high demand of nutrients for agricultural production 

(green infrastructure). Various innovative and safe approaches have been developed to efficiently recover 

nutrients from human excreta. However, these have yet to be scaled up to fulfil their true potential. About 

3.1 Tg (i.e. 109 kg) N and 0.6 Tg P are excreted every year by the EU’s population, corresponding to 30% 

and 55% of the amount of mineral fertilisers applied on agricultural fields in the EU. P2GreeN addresses this 

potential and will transform nutrient streams on a regional level to close N & P cycles from sanitation (via 

new bio-based fertilisers) to agricultural production (from waste to farm to fork). To facilitate systemic 

change, co-creation strategies including the participation of all relevant stakeholders,(Larsen et al., 2013) as 

well as harmonised governance frameworks that foster innovations  will be key to P2GreeN. Collaborative 

innovation networks of technology provider, industry, farmers, scientific communities, public administration 

and citizens will help maximise the value of knowledge production, circulation and use of the project’s 

transformative approaches. The involvement of local municipalities and regional governments as well as the 

interaction with policy makers on the national and EU level will also be a key part of P2GreeN.  

 

P2GreeN’s envisaged transformation (Fig. 1) will (i) reduce municipal waste streams, thereby helping to 

achieve the 2030 targets of the EU’s Zero Pollution Action Plan, the Urban Waste Water Treatment Directive 

(UWWTD) and Sewage Sludge Directive (SSD); (ii) increase self-sufficiency of P in the EU; (iii) save water 

resources ; (iv) reduce harmful production practices of mineral fertilisers; (v) reduce nutrient losses of N & 

P; (vi) enable tailored fertilisers, reducing nutrient loss further; (vii) minimise cropland expansion through 

optimal fertiliser use increasing yield on the existing agricultural area17; (viii) open new market potentials 

for bio-based fertilisers, and (ix) simultaneously enable micropollutants such as pharmaceutical residues or 

hormones to be more easily removed. Overall, the circular systems will help to increase sustainability and 

resilience of the agri-food system and will contribute to the EU objectives on reducing nutrient losses by 50% 

until 2050. 

                                                
Figure 1. P2GreeN's envisaged transformation to circular nutrient streams in Europe. 

To achieve its objectives, P2GreeN will draw upon innovative technological approaches to efficiently recover nutrients 

from human excreta close to source and will further develop these approaches in 3 pilot regions towards multi-sectoral 

circular governance solutions where discarded N & P from urban sanitary systems become a valuable resource. This will 

be done through the implementation of 4 different “waste-recycling technologies for the agri-food value chain by reusing 

sanitary waste as bio-based fertilisers, thus closing N & P nutrient cycles between rural and urban environments. 
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2.1. Methodology 

The P2GreeN Concept is built upon a holistic and circular multi-sectoral systems approach encompassing 

the upscaling of innovative technologies, the development of circular business models, the engagement of 

stakeholders along the entire value chain, the mobilisation of policymakers and the creation of adequate 

governance models that will enable the envisaged nutrient system transformation. The concept will be 

validated and demonstrated in P2GreeN’s 3 pilot regions and upscaled to 4 follower regions in year 3 of the 

project. The application of recycling fertilisers in P2GreeN will be based on the nutrient demand of each 

crop, considering the aim of the Farm to Fork strategy to restrict fertiliser use to a sustainable level, and 

following existing regional guidelines. This includes determining the nutrient content of soils prior to 

fertilisation, calculation of plant N and P demand according to local soil conditions and climate and limiting 

surplus fertilisation as far as possible. If the composition of recycling fertilisers does not allow to supply 

crops with all nutrients in the needed amounts (without supplying one nutrient in excess), single nutrients 

will be added in the form of mineral fertilisers. Up-to-date and efficient fertilisation practices will be used to 

reduce pollution by N and P leaching as well as gaseous N emissions: 

• Urea fertilisers used for barley cultivation in the Swedish pilot region will be incorporated into soil 

during sowing to limit N losses from ammonia emissions and leaching. Further measures such as 

the use of nitrification inhibitors to reduce nitrate leaching and nitrous oxide emissions will be 

considered as well. 

• N and P fertilisation in the German pilot region will be done according to the German Fertilising 

Ordinance, which already sets strict limits to reduce nutrient pollution, and following 

recommendations from DIN-SPEC 91421. The faecal composts produced will be applied to 

agricultural fields (rye, buckwheat) prior to sowing according to the existing recommendations for 

compost fertilisers (max. 510 kg N/ha in 3 years). To fully cover crop N demands, supplemental 

fertilisation will be done with urine-based fertiliser using state-of-the-art application techniques (i.e. 

by umbilical injector). In case the P demand is already covered by the faecal compost, the application 

of urine-based fertiliser will be restricted to avoid excess P fertilisation. The addition of biochar and 

clay minerals during the composting process contributes to the reduction of N and P leaching and 

nitrous oxide emissions through the formation of stable organic-mineral complexes. In addition, 

nutrients bound to it are released slowly in the course of cultivation so that they can be efficiently 

taken up by the plants. 

• The Spanish pilot will demonstrate a nutrient monitoring tool integrated in the MBR-based 

RichWater reclamation system. This technological solution will be designed to perform an adequate 

nutrient balance that takes into account nutrients contained in the effluent of the MBR (i.e. reclaimed 

water). According to existing literature (1), farmers disregard nutrients in reclaimed water leading 

to negative environmental impacts and economic losses. Thus, fertilisation and irrigation 

(fertigation) will be performed according to the crop demand. An experimental test site will be 

arranged with sub-tropical crops (e.g. avocado and mango trees) in the region of La Axarquia to get 

on site data. Online nutrient analysis together with the mixing station and soil sensors will allow to 

adjust the composition of the nutrient solution depending on input nutrient concentrations contained 

in the reclaimed water and momentary crop needs, according to the growth stage and soil and 

weather conditions. Thus, the optimal number of fertilisers will be used maximising crop 

management efficiency and minimising environmental risks. 

3. Results and Discussion 

3.1 Pilot Regions 

The pilot regions in Sweden, Germany, and Spain were chosen because they face similar pressures from 

nitrogen and phosphorus flows, such as poor chemical and ecological status of water bodies. They also 

represent different framework conditions along a north-south trajectory, reflecting the heterogeneity of EU 

regions. Gotland (Sweden) and Malaga (Spain) are comparable in terms of tourism pressure and water 

scarcity, despite being exposed to very different climates. Lower Saxony (Germany) is vulnerable to 

fundamental dietary changes due to its large-scale meat industry, which is dependent on international market 

trends. 
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These pilot regions exhibit distinct urban-rural interdependencies and territorial scales. They all include urban 

settlements where nutrients from human excreta are fed into central wastewater treatment systems but are not 

yet effectively recovered. Surrounding these urban areas are rural regions with intensive agricultural 

production, which necessitates the use of fertilizers. All three pilot regions are located less than 160 km from 

coastal zones with high nutrient loads and associated problems such as eutrophication. 

 

Local initiatives in these regions have developed distinct strategies and technological approaches to address 

the issues caused by linear nutrient flows and to create new value chains based on the efficient and 

decentralized recycling of nutrients from human excreta. P2GreeN aims to build on these initiatives and their 

innovative solutions to mainstream circular nutrient flows into the European agri-food system and transfer 

these newly created value chains to other EU regions. Each regional system offers a suitable solution for 

circular nutrient flows, building on successfully evaluated technologies and local value chains. However, 

these technological set-ups are limited by the current governance framework. The immature governance 

framework inhibits investments in business scale-up and larger value chain innovations. Therefore, further 

developing this framework will be a key focus of the project. 

 

 

Gotland region, Sweden 

The Swedish pilot region of Gotland features a urine-drying system provided by Sanitation360. This portable, 

off-grid system processes urine on-site in the toilets. It has been optimized and deployed at various locations 

on Gotland using the existing network and maintenance contracts of mobile toilet provider Touch Down. 

Key locations include public toilets in the city of Visby and nearby facilities. 

In the Swedish Pilot, urine serves as a valuable resource collected, processed, and utilized to cultivate barley, 

subsequently brewed into beer. The technology for producing solid urine fertilizer originated from the 

Swedish University of Agricultural Sciences (SLU), with Sanitation360 (S360), a spin-off from SLU, 

established in 2019 to further develop this innovation. In a bid to bolster urine collection efforts and foster a 

closed-loop system, Touch Down (TD), a local toilet rental company, and Gotlands Bryggeri, a local beer 

brewer, have partnered to form a circular value chain. 

 

Under the P2GreeN initiative, the goal is to collect 150 m3 of urine by project completion to refine into a dry 

fertilizer compatible with conventional farming equipment. Present operations are concentrated in Gotland, 

Uppsala, and Malmö. Over the next three years, expansion plans involve scaling up urine collection efforts 

to encompass additional regions in Sweden and neighboring countries like Norway. Collection sources 

encompass both rural and urban areas, inclusive of public and private buildings, contingent on the installation 

infrastructure. 

 

A key aspect of the project entails the development of methods for removing pharmaceuticals and other toxic 

substances from urine, ensuring the provision of a quality-assured fertilizer. Consequently, tailoring the urine 

fertilizer to meet the specific needs of farmers represents a significant focus of the endeavor. 

 

In 2023, subcontracted farmers used the pelletized recycling fertilizers in field trials (covering 3-6 hectares) 

with barley on Gotland. These trials demonstrated a highly effective fertility impact on the crops. The local 

brewery Gotland Bryggeri is currently validating the suitability of barley grown with urine-based fertilizer 

for beer production. Within the project timeline, they aim to produce commercially available beer, thereby 

closing the value chain. 

The island of Gotland is situated amidst a "dead zone" within the Baltic Sea, a consequence of eutrophication 

and rising temperatures. In Sweden, over 15,000 tons of nitrogen are discharged annually into the aquatic 

system by small and municipal wastewater treatment plants, accounting for approximately 30% of total 

anthropogenic nitrogen emissions. To address this issue, HELCOM's Baltic Sea Action Plan aims to reduce 

nutrient inputs from wastewater. Gotland faces challenges with old and partially non-functional decentralized 

sewage treatment plants, exacerbated by high seasonal peaks of nutrient loads from tourism. These discharges 

impact both groundwater and surface water, necessitating new solutions to enhance nitrogen and phosphorus 

retention. 
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Support from Science Park Gotland, local NGOs, and government organizations will facilitate source 

separation and urine drying expansion in Visby, with the technology provided by SLU and S360. The dried 

urine powder will be delivered to local farmers for barley cultivation, with the harvested product used by GB 

for beer production in Visby. This initiative creates a new value chain bridging the urban area of Visby with 

the surrounding rural area, thereby reducing nitrogen and phosphorus loads in wastewater and mitigating 

pollution in the coastal zone of Gotland. 

 

Field trials conducted by SLU will assess the impact of bio-based urine fertilizer on barley yield, quality, and 

agro-ecological parameters. Additionally, stakeholders' perceptions and attitudes towards new sanitation 

systems and technologies will be evaluated to understand the socio-technical system. The knowledge gained 

from the Gotland region will be instrumental in developing a blueprint for remote areas with high tourism 

activity. 

 

                          
Figure 2. Gotland pilot region, value chain scheme 

                    

 

La Axarquaia region, Spain 

In the Spanish pilot region of La Axarquia, Bioazul has installed a water reclamation plant to treat and 

transform municipal wastewater from the wastewater treatment plant of Algarrobo into nutrient-optimized 

irrigation water for customized agricultural application. TROPS is currently applying the treated water to 

avocado and mango plots (120 trees total) in an optimized way, supported by a Smart Fertigation Tool, a 

technology under development by AgriSmart Data. This tool focuses on the smart addition of nutrients 

tailored to the specific nutritional demands of the crops. This approach adds significant value for producers 

by promoting the reuse of wastewater resources for crop fertigation. 

The Axarquía region encompasses a group of municipalities in the province of Malaga, located in Southern 

Spain, and stands as the primary producer of subtropical crops in Europe. It features a blend of rural areas 

with robust agricultural activity in the interior and densely populated coastal zones that experience a high 

influx of tourists, especially during the summer months. However, the region grapples with water scarcity 

issues, characterized by groundwater overexploitation, depleted water reservoirs, and the looming threat of 

desertification. Wastewater from various sources, alongside significant nitrogen and phosphorus runoff from 

agricultural activities, directly flows into the Mediterranean Sea, leading to eutrophication along the coastal 

zones. Approximately 40% of river waters face potential non-compliance with the European Union's Water 

Framework Directive (WFD). 

The circular value chain in the Axarquía pilot region initiates with the collection of sewage from Algarrobo 

municipality and neighboring areas. This wastewater is then conveyed to the Algarrobo Municipal 

Wastewater Treatment Plant (WWTP) managed by AXARAGUA, receiving an average influent of 2,150 

m3/day (equivalent to 12,247 population equivalents) and with a maximum capacity of 24,000 population 

equivalents. AXARAGUA, a public company formed by the "Association of Municipalities of the Costa del 

Sol-Axarquía," oversees not only Algarrobo but also wastewater treatment in Vélez-Málaga, Rincón de la 
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Victoria, Torrox, and Benamocarra municipalities. Upon entry into the WWTP, raw wastewater undergoes 

primary and secondary filtration, sedimentation, and flocculation processes to meet the optimal treatment 

standards stipulated by European Directive 91/271/EEC. Following secondary treatment, the treated effluent 

is discharged into the sea through an underwater outfall. Notably, due to the absence of a denitrification 

process, the nitrogen discharge from the Algarrobo WWTP into the Mediterranean Sea is relatively high, 

totaling 28.8 tN/year. 

BIOAZUL oversees the operation of the Water Reclamation Plant as the coordinator of the pilot region. 

Within the P2GreeN project, the irrigation system will be enhanced with a nutrient monitoring tool to 

optimize fertilization practices and prevent over-fertilization of crops irrigated with reclaimed water, thereby 

advancing its Technology Readiness Level (TRL) from 6 to 8. A decision support system will be 

collaboratively developed with ASD, a provider of smart irrigation tools. Field trials will be conducted in 

partnership with local avocado and mango farmers from the TROPS producer association, with 

agroecological and agronomic impacts monitored by the water research center, CET (WP2). The formulation 

of regional governance mechanisms will involve close collaboration with local public authorities (AXA, 

Algarrobo municipality, Malaga province). 

 

Wastewater reclamation efforts address the region's vulnerability to droughts while yielding ecological 

benefits by reducing the demand for mineral fertilizers and curbing nitrogen, phosphorus, and micropollutant 

emissions into water bodies, thereby aligning with the objectives of the WFD. This approach holds promise 

for widespread adoption not only in southern Spain and the Mediterranean region but also in other water-

stressed areas across Europe. In the P2GreeN project, facilitating the transferability of this approach involves 

defining financial considerations related to water reclamation, ensuring compliance with EU Regulation 

2020/741 on wastewater reclamation, devising a risk management plan, and formulating a strategic roadmap 

for expanding reclaimed water usage while fostering societal acceptance. 

In this context, the Smart Fertigation Tool will serve as a comprehensive solution for monitoring the crucial 

nutrients and elements in the soil that significantly influence crop development. It facilitates the integration 

of sensors and transducers embedded in the soil, which gather data on various parameters. Moreover, the tool 

enables automated management of irrigation and fertilization processes based on real-time data from the plant 

roots. It will also incorporate information from water sensors installed in the deposit tank containing 

reclaimed water. 

 

Furthermore, the tool features remote control capabilities to regulate fertilizer dosage and water source 

mixture automatically, leveraging an integrated Decision Support System (DSS). By analyzing data, the 

Smart Fertigation Tool can determine whether additional nutrients are required in the reclaimed water, 

allowing for the incorporation of mineral fertilizers. Additionally, it can assess the necessity of diluting the 

nutrient-rich effluent with local water sources, primarily groundwater. This intelligent fertigation approach 

helps prevent excessive nutrient application, thereby reducing the risk of polluting leachates entering water 

bodies, including nitrogen (N) and phosphorus (P) emissions into surface and groundwater. 

 

                     
Figure 3. Axarquia pilot region scheme 
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Hamburg- Hanover region, Germany 

The German pilot region of Hamburg-Hannover includes the housing cooperative ecovillage hannover, 

which plans to install commercially available ceramic urine-diverting flush toilets for 230 residents. They 

aim to collect approximately 100 m³ of urine per year in cooperation with Goldeimer. The urine will be 

processed at the ecovillage in a central facility using the urine treatment system provided by VunaNexus, 

which will also handle necessary adjustments, operation, and maintenance of the system. The resulting 

Aurin® fertilizer will be marketed by VunaNexus. 

These areas face significant nitrogen (N) and phosphorus (P) pollution in water bodies due to intensive 

agriculture in rural zones and effluents from urban wastewater treatment plants (WWTPs). The river basins 

of the Elbe and Weser, as well as the coastal areas of the North Sea, are particularly affected, with 

approximately 90% of water bodies classified as being in moderate to poor ecological and chemical 

condition. Mitigation measures are necessary to comply with the OSPAR agreement and reduce pollution in 

the North-East Atlantic. Additionally, groundwater quality is compromised, with nitrate levels exceeding 50 

mg N/L due to agricultural runoff. WWTPs remain significant contributors to N and P emissions into aquatic 

environments, with high energy consumption associated with N and P removal processes. 

 

Two pilot cases have been identified in the region. The first case involves the housing cooperative EVH in 

Hanover, which plans to construct a new city district with 500 dwellings. These dwellings will be equipped 

with urine-separating flush toilets, allowing for the adsorption of micropollutants and the recovery of 

nutrients from human excreta. A treatment plant for collected urine will be established and operated at the 

EVH site by the Swiss technology provider VN, aiming to scale up their Aurin® technology from TRL 6 to 

TRL 8. 

 

The second pilot case focuses on the establishment of a faecal composting plant in Ollsen, south of Hamburg. 

GE is active in collecting dry toilet contents and separating urine from various sources in the region. A new 

composting plant for dry toilet contents will be implemented at the Vagtshoff farm (VH) in Ollsen, using an 

automated container-based approach developed by Finizio and IGZ. The resulting faecal compost will be 

applied in field trials at VH to improve soil health and reduce nutrient leaching. Additionally, Aurin® 

fertilizer produced at EVH will be added as needed to meet crop nitrogen demand. The agronomic and agro-

ecological effects of using faecal composts and urine-based fertilizers will be monitored by IGZ. 

 

Overall, the P2GreeN solutions in Lower Saxony will benefit from the lighthouse effect of EVH and the 

extensive network of GE with other sustainable sanitation initiatives, facilitating the scaling up of these 

innovative approaches. During the 2023 season, Goldeimer collected dry toilet contents from festivals, 

allotment gardens, and off-grid nature tourism destinations. A thermophilic container-based composting plant 

for faeces is being set up, further automating the technology developed by Goldeimer’s network partner 

Finizio. This facility will be operated by Goldeimer on the Vagtshoff farm in Lower Saxony near Hamburg. 

The Vagtshoff farmers provide industrial waste heat and biochar for the composting facility, as well as 

agricultural land (6 hectares) for fertilizer application. 

                      
Figure 4.Hamburg-Hanover pilot region scheme 
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3.2 Policy  

Despite Sweden's pioneering efforts in developing resource recovery sanitation solutions since the 1990s, the 

adoption rates of these systems have remained stagnant for decades (Bengtsson & Tillman, 2004; Söderholm 

et al., 2023). The reasons for this stagnation are multifaceted, including expanded sanitary regulations, a lack 

of acceptance and awareness of alternative solutions, and the highly centralized nature of the Swedish 

sanitation system, which presents a significant technological lock-in barrier (Söderholm et al., 2023). 

Moreover, the governance framework introduces uncertainty for source separation systems due to the absence 

of explicit definitions for urine, sludge, and wastewater in regulations, complicating their classification. 

Source-separated fractions, including urine, do not align neatly with existing regulations such as the water 

and wastewater provision regulation (SFS 2006:412), the sludge regulation (SNFS 1994:2), or the waste 

management regulations (SFS 1998:808, SFS 1998:899, and SFS 1998:944). Specifically, the regulation 

governing the use of plant nutrients in agriculture (SJVFS 2004:62), although explicitly addressing sludge, 

does not mention human urine (M. Ahlström, personal communication, November 17th, 2023).  

In practice, urine is permitted for use in conventional farming in Sweden, allowing S360 to market the urine 

fertilizer to conventional farmers, who can then legally sell their produce. However, there's a historical aspect 

to this permission: prior to Sweden's accession to the EU in 1994, urine was also allowed in organic farming. 

EU membership obligated Sweden to adhere to the EU's regulations for organic farming, which do not permit 

urine as a fertilizer. In Sweden, another prevalent certification for sustainable farming is KRAV, which could 

potentially accommodate urine as a fertilizer. However, to become KRAV certified, a farmer in Sweden must 

first obtain EU organic certification. 

As for the Germany pilot region, the primary entry barriers for P2GreeN products revolve around legal 

compliance and ensuring their safety. Additionally, in the process of transitioning from waste to a qualified 

resource fit for production, various barriers exist across different sectors and laws. While yellow water 

collected from sources with less than 50,000 population equivalents appears suitable for nitrogen (N) and 

phosphorus (P) recycling as sewage sludge under the CMC regulation, the same cannot be said for contents 

from dry toilets. Dry toilet contents face hurdles stemming from municipal statutes based on the Water 

Household Act (WHG §55/56), the Circular Economy Act (BioAbfV §3), and the Fertilizer Act (DüMV 

Annex II, Table 7). Moreover, there is a lack of guidance for the waste classification of sanitary waste from 

dry toilets (91/689/EEC; AVV), which contradicts the waste hierarchy principle of Prevention, Reuse, 

Recycle, Recover, Dispose, as outlined in the federal Circular Economy Act (KrWG §6). The source 

separation and local treatment of yellow water have not yet been authorized for the Ecovillage Hannover. As 

a result of these delays, the engineering of the decentralized wastewater system for EVH has been put on 

hold. However, there have been multiple insights into the Water Household Act and its subordinate rules 

concerning yellow water. In Germany, the overall technological and legislative approach to sanitary waste 

strictly encompasses it as wastewater. The updated sewage sludge regulation AbfKlärV 2017, along with its 

governance framework, is directing stakeholders towards the mono-incineration of sewage sludge, aiming 

for phosphorus reclamation from ashes. However, this approach compromises the soil-regenerating and 

nitrogen (N) potentials of sanitary waste. 

With the recent implementation of Regulation (EU) 2020/741 of the European Parliament and the Council 

dated 25th May 2020 on minimum requirements for water reuse, a unified European legal framework now 

exists for all member states. This regulation sets out provisions for the utilization of reclaimed water in 

agriculture, imposing stringent requirements on water quality and monitoring. However, while this regulation 

will be directly applicable in each national context, there are numerous existing regulations within the 

Spanish and Andalusian frameworks that require updating. The implementation of this regulation offers 

guidance and assurance to farmers and consumers by establishing high water quality standards to adhere to. 

However, meeting other new obligations, such as the submission of a Risk Management Plan, presents 

challenges. Addressing this challenge is a key focus within P2GreeN, as one of our governance solutions 

includes the preparation of a Risk Mitigation Plan for the Axarquía pilot. A revision of the current Spanish 

regulation on water reuse (i.e., Royal Decree 1620/2007) is imperative to align with the provisions of 

Regulation (EU) 2020/741. Additionally, procedures for granting licenses to users of reclaimed water must 

be adapted to the new situation by the regional government of Andalusia and water basin authorities, which 

hold the authority for licensing water reuse permits. National and regional actors must collaborate to conduct 

a comprehensive revision of the existing legal framework. 
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3.3 Follower regions 

Greece 

As part of the project, Greece is one of the four follower regions. The Greek follower region, under the 

leadership of CERTH, will be divided into three distinct case studies. These studies will evaluate the 

implementation of various technologies in different contexts to ascertain their feasibility and potential impact. 

 

The first case study will be conducted in T.O.E.V Tavropou, where organizations oversee extensive land 

improvement works, particularly irrigation projects. The focus here will be on assessing the barriers to 

implementing BioAzul's RichWater technology, which involves irrigating and fertilizing nearby agricultural 

fields with treated municipal wastewater. 

 

The second case study will take place at the Agricultural University of Athens. Research will be conducted 

in a renovated three-story building to evaluate the implementation of Vuna Nexus technology in existing 

toilet systems. The objective is to utilize the resulting fertilizer in the university's agricultural fields. 

 

For the third feasibility study, a partnership will be established with a toilet renting company that services 

festivals in the city of Athens. The aim is to demonstrate the implementation of sustainable toilet technologies 

and establish a twinning relationship between the pilot region and a following region. This twinning initiative 

is intended to facilitate the scaling up of the technology's impact. 

Each of these case studies will provide valuable insights into the challenges and opportunities associated with 

the adoption of sustainable technologies in Greece, contributing to the broader objectives of the project. 

Italy 

In Italy, the highway station provider Chef Express is considering implementing urine separation and 

collection in their toilets to produce fertilizer using VN's treatment system. This innovative approach would 

enable the creation of urine-based liquid fertilizer, which could then be marketed in small bottles directly at 

the service stations. Additionally, the Finagricola agricultural cooperative in Campania is exploring the 

possibility of using BioA's RichWater technology to irrigate and fertilize crops with treated wastewater 

sourced from the municipality of Battipaglia. However, they are also open to the idea of utilizing fertilizer 

produced from source-separated urine. This demonstrates a growing interest in sustainable agricultural 

practices and the utilization of alternative resources within the Italian agricultural sector. 

 

Hungary 

In Hungary, the feasibility study aims to thoroughly analyze how P2GreeN's solutions can be effectively 

implemented within the Eastern European context. This study will also identify potential partners who can 

contribute to forming a Hungarian follower region. The key components of the feasibility study include: 

 

(i) Analysis of national and regional policies and regulations: This will involve a comprehensive examination 

of existing policies and regulations related to water management, wastewater treatment, and agricultural 

practices in Hungary. 

 

(ii) Identification of relevant institutional/governance framework and funding pathways: This aspect of the 

study will focus on identifying the key institutions, stakeholders, and governance structures involved in water 

and agriculture sectors in Hungary. Additionally, potential funding sources and pathways for implementing 

P2GreeN solutions will be explored. 

 

(iii) Analysis of technical, economic, and social aspects relevant for implementation: This will entail 

assessing the technical feasibility, economic viability, and social acceptance of implementing P2GreeN 

solutions in Hungary. Factors such as technological adaptability, cost-effectiveness, and societal attitudes 

towards sustainable water management practices will be evaluated. 

 

The study aims to identify three suitable sites for replicating different technological approaches from the pilot 

regions and initiate the transfer of project results at the conclusion of the P2GreeN project. This process will 

facilitate the dissemination and adoption of innovative water reuse and resource recovery solutions in 

Hungary, contributing to sustainable development in the region. 
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France 
In this follower region the City of Paris has already started the transition in the block of buildings in Saint-Vincent-de-

Paul. More specifically, the building of Chaufferie has already started the process of implementing a storage of collection 

and recycling of urine. The work began in 2021 and should be completed in 2027. The wastewater transport networks, 

and that for urine, were built in 2021/2022. The buildings of the different lots will be built gradually from 2024. The 

urine treatment plant should be built in 2025. The case study of this follower region is going to work as a preliminary 

stage and as reference point to the development of the feasibility studies in the other follower regions. City of Paris will 

give the opportunity to the P2GreeN partners to extract important results on social-economic level.  

 

4. Conclusions 

P2GreeN’s has already completed the first year successfully extracting important results both in the pilot 

regions and the follower regions. The feasibility studies have already started in all the four follower regions 

with the help of the interested stakeholders.   
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Abstract 

This study presents a critical review of the current status of the European Bioeconomy, containing all the 

main 5 themes (agriculture, water systems, forestry, bioenergy, biomaterials) as well as the existing 

bioeconomy national strategies, trends. Across the EU the largest consumption of the biomass is food and 

feed, followed by energy and biomaterials. The EU economy is transforming from an economy based on 

linear economic models to circular economic models, this transformation is still at its early stages and will 

require the transformation of existing production systems and value chains as well as the creation of new 

innovative value chains. In recent years EU policy has become very supportive of the development of a 

sustainable EU bioeconomy and the updated EU bioeconomy strategy operates in parallel to multiple other 

policy initiatives such as the new CAP, Green Deal, Farm to Fork strategy and the Circular economy action 

plan. In the short term, the further development of national strategies dedicated to the bioeconomy will 

strengthen the policy environment. In addition, the development of the bioeconomy has a crucial 

environmental dimension and current policy is supportive of efforts that support and strengthen 

environmental services and biodiversity. 

Keywords: circular bioeconomy, biobased solutions, biomass flows 

1. Introduction 

Over the past decades, the concept of the bioeconomy has emerged as a central pillar in the EU policy 

discourse, aiming to harness the potential of biological resources to drive economic growth, enhance 

environmental sustainability, and foster rural prosperity. Within this framework, the bioeconomy, 

encompasses the food and agriculture, forestry, water based, biomaterial and biorefinery and bioenergy 

sectors, has garnered increasing attention as a key driver of regional development and innovation. 

Simultaneously, As the EU moves to achieve its ambitious sustainability goals outlined in the European 

Green Deal and the Circular Economy Action Plan, there is growing recognition of the need to transition 

from a linear to a circular model of economic production and consumption. The concept of the circular 

bioeconomy, which emphasizes the regeneration and reuse of biological resources, presents a compelling 

vision for achieving this transition while addressing pressing environmental challenges such as climate 

change, biodiversity loss, and resource depletion. 

The current EU bioeconomy continues to rely on non-renewable materials and fossil-based raw energy, 

such as nitrogen fertilizers, organic chemicals and polymers which are predominantly derived from petroleum 

and gas. For the EU to meet its medium and long term goals it is clear that on the one hand the bioeconomy 

needs to transition towards more circular production and consumption patterns whilst also expand to become 

a major supplier of renewable materials. 

Against this backdrop, this article critically reviews the current status of the EU rural bioeconomy and 

explores the challenges and opportunities associated with its transition to a circular bioeconomy. By 

synthesizing existing literature, policy documents, and empirical evidence, we aim to provide a 

comprehensive understanding of the key dimensions shaping the rural bioeconomy landscape in the EU and 

the pathways towards a more sustainable and resilient future. 

Specifically, this review seeks to address the following questions: 

• What is the current state of the EU rural bioeconomy in terms of its structure, performance, and 

contribution to regional development and sustainability? 

• What are the key drivers, enablers, and barriers influencing the transition from a linear to a circular 
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bioeconomy in rural areas? 

• What are the policy implications and governance challenges associated with promoting a circular 

bioeconomy agenda in the EU rural context? 

• What are the emerging trends, innovations, and best practices that offer potential solutions to 

accelerate the transition towards a circular bioeconomy in rural areas? 

By critically examining these questions, we aim to shed light on the opportunities and constraints facing 

the EU rural bioeconomy and to offer insights for policymakers, practitioners, and researchers engaged in 

shaping the future trajectory of rural development and sustainability within the EU and beyond. 

There are a variety of relevant bioeconomy related publications to the current status of the bioeconomy 

published by Eurostat (Home - Eurostat, n.d.) These publications focus on the different material flows that 

exist in the EU, giving the opportunity to develop a database for all the available information that all the 

Member States can extract every year. Using this, the JRC has developed a Sankey Biomass tool that depicts 

biomass flows according to bioeconomy sector from supply to use (Gurria et al., 2017) . Other studies, take 

a different approach, Hamelin et al (2019) investigates the residual biomass potential in the EU finding that 

around 8500 PJ y−1 residual biomass is available, equivalent to the combined primary energy consumption of 

Italy and Belgium (Hamelin et al., 2019). Popp et al. (2021) investigate biomass supply and demand in the 

EU highlighting the complex interrelations between the demand of biobased products and land use and also 

advocating for a transformation towards the production of biobased chemicals (Popp et al., 2021). This 

highlights the complexity of dealing with biobased value chains and encompassing them under one term. 

While, Antar et al (Antar et al., 2021)  provide a global overview of biomass production and utilization (Antar 

et al., 2021). A number of studies have been conducted that investigate the development of the bioeconomy 

on a national level. Hayek et al. (Hájek et al., 2021) for the Czech Republic, Wozniak and Twardowski 

(Woźniak & Twardowski, 2018) and Szarka et al. (Szarka et al., 2021) in Germany, Ahlqvist and Sirvio 

(Ahlqvist & Sirviö, 2019) in Finland. 

2. Materials and Methods  

2.1 Conceptual framework 

2.1.1 The bioeconomy 

The concept of the bioeconomy encompasses various definitions and approaches, ranging from broad to 

specific interpretations. The European Commission defines it as the utilization of renewable biological 

resources from both land and sea, including crops, forests, fish, animals, and micro-organisms, to generate 

food, materials, and energy. Further elaboration provided in the EU Bioeconomy Strategy expands this to 

encompass all systems reliant on biological resources, such as biomass, animals, plants, and organisms, along 

with their associated functions and principles. This includes not only land and marine ecosystems but also 

primary production sectors like agriculture, forestry, fisheries, and aquaculture, as well as all economic and 

industrial sectors utilizing biological resources to produce food, feed, biobased products, energy, and 

services. 

Based on this definition, the bioeconomy can be conceptually divided into five main themes, aligned with 

the EU bioeconomy strategy: 

• Food and agriculture systems, which cover the entire value chains involved in farming and the 

production of food and biological feedstocks across the EU's 10.5 million farms. 

• Forestry and natural habitats systems, which serve as sources of environmental public goods, raw 

materials, and services, encompassing the management and utilization of the EU's 182 million 

hectares of forests. 

• Water systems, which include all aquatic environments and related economic activities such as 

fisheries, aquaculture, and aquatic biomass production. 

• Bioenergy, referring to energy derived from organic sources, representing the largest renewable 

energy source in the EU, accounting for 12% of total energy demand. 
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• Biomaterials and bio-based products, which are produced from renewable biological feedstocks and 

include both conventional products like timber and textiles, as well as advanced products like bio-

plastics and pharmaceuticals produced in biorefineries. 

2.1.2 The circular bioeconomy  

Simply put the circular bioeconomy refers to applying and integrating circular economy principles 

into the bioeconomy. Key concepts include use of waste residues as productive inputs into other processes. 

Resource efficiency Cascading use of biomass (Stegmann, Londo and Junginger, 2020). A circular 

bioeconomy is also interpreted as an idea to stimulate the economic growth of developed economies that 

combines the ‘what’ (circular economy) with a feasible, viable ‘how’ (bioeconomy)(Giampietro, 2019). 

Alternatively, a circular bioeconomy is simply interpreted as a more efficient resource management of bio-

based renewable resources by integrating circular economy principles into the bioeconomy (D’Amato, 

Veijonaho and Toppinen, 2020). It is also a framework for an economic model which aims to create 

economic, natural, and social capital based on three core principles: 

• Design out of waste and pollution. 

• Keep products and materials in use and carbon products in the loop. 

• Regenerate natural systems. 

2.1.3 Biobased solutions 

Bio-based solutions are innovative technologies, processes and/or end-products based on circularity that 

produce or utilise biomass sustainably as compared to mainstream technologies or processes that produce 

non-innovative end products or utilise biomass without significant innovations or sustainable outputs. An 

adopter must either produce an innovative/sustainable biobased end-product or use a sustainable technology 

or sustainable process during the production of a biobased product.  

 
Figure 1. Authors’ interpretation of bio-based solutions 

 

In particular, for the production of raw biomass/feedstocks we consider sustainable practices and 

technologies to be biobased solutions. For the processing of biomass/feedstocks we consider sustainable 

technologies, processes and end products to be biobased solutions. This distinction exists as in the production 

of biobased feedstocks it is generally the process and technologies used in the producing of the feedstock that 

determines its level of sustainability/circularity. While for processed and finished products it’s a combination 

of efficient production systems (efficient technologies and processes) and the production of a sustainable bio 

end-product that distinguishes it from mainstream/traditional processing practices. 

2.2  Data sources, Search strategy, Data collection, Selection process 

The process of selecting studies involved several meticulous steps.  Initially direct consultations 

were held with bioeconomy experts from: research organizations, associations and extension services, 

industry SMEs, innovation brokers and NGOs, in order to identify key topics bioeconomy topics relevant for 

our review as well as initial data. This approach was chosen since the bioeconomy concept is relatively new 

yet broad, as such the inputs of a diversity of experts helped us identify key bioeconomy topics. Research 

organizations that were included: the Institut fur ZukunftsEnergie Stoffstromsysteme (IZES), the University 

of Aarhus (AU), the Institute for Soil Science & Plant Production (IUNG), Vytauto Didziojo Universitetas 

(VDU), Latvijas Lauksaimniecibas Universitate (LLU), University of Coimbra (UC), and University of 

Ljubliana (UL). Relevant associations/extension services included: DELPHY, AVEBIOM, Centro da 
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Biomassa para a Energia (CBE), Associazione Italiana Energie Agroforestali (AIEL), Asociata Green Energy 

(GEA). Industry SMEs included NaturePlast (NP) and AlgEn (ALGEN). Innovation borkers and NGOs 

included: Valorial, Green Growth Platform (GGP), Food Scale Hub (FSH) and InCommOn (ICO).  

Afterwards, potentially relevant studies were pinpointed by conducting keyword searches on 

SCOPUS and Google Scholar. Keywords used in these searches included ‘bioeconomy’ and key concepts 

topics that were deemed relevant to the review. These keywords included: ‘biomass flows’, ‘biobased value 

chains’, bioeconomy policy,  ‘biorefining’ and ‘bioeconomy learning’ as well as specific keyword searches 

related to each of the 5 main bioeconomy themes summarized in the conceptual framework. 

Identified studies and papers were screened and evaluated based firstly on relevance and reliability, 

particularly focusing on journal articles sourced from reputable publications and peer-reviewed journals. 

These selected studies were chosen due to their focus on the bioeconomy and one of the identified themes. 

Information from these studies was systematically extracted, organized, and categorized based on various 

aspects relevant to the bioeconomy themes.  

2.3 Limitations 

There are a number of key limitations associated with the present review. Conceptually, the bioeconomy 

is a general term which can be extended to include any economic processes thing including biological 

material and processes. In effect, in its current interpretation by the European Commission and key actors it 

combines results from a number of large sectors, that were previously considered separate, including food 

and agriculture, water systems,  bioenergy, biomaterials. 

Moreover as the bioeconomy, and in particular the circular bioeconomy, is a relatively new concept there 

are relatively few publications that focus specifically on the bioeconomy. In effect, these limitations are 

conceptual. In our view, these limitations are acceptable, for a general review as the present review but in the 

future it is clear that the bioeconomy concept, its boundaries and terms needs to become more specific. These 

are also addressed in our discussion section. 

3. Results and Discussion 

3.1 Current status 

3.1.1 Key figures: Employment and Value Added 

 

Overall, based on the latest data from the JRC around 17.42 million people are employed in the EU 

Bioeconomy, representing around 9% of the entire EU workforce. Around 50% of these are employed in 

agriculture, 26.4% in food beverage and tobacco production, 7.6% in wood products and furniture, 4.5% in 

bio-based textiles, 3.6 in paper production, 3% in forestry, 2.7% in biobased chemicals, plastics and rubber, 

0.9% in fishing and agriculture, 0.1% in bio-based electricity and 0.1% in liquid biofuels (Figure 2). 

 
 

Figure 2.Employment by bioeconomy sector in EU27 (2019) (number of people employed). (JRC, 2022) 
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The number of people employed in the bioeconomy sector as a whole has been steadily decreasing 

from 20.15 million people in 2008 to 17.42 in 2019. The largest decreases are observed in the agricultural 

and textile sectors. By contrast large increases are observed, from a low base, in biobased electricity and 

biofuels sectors, and to a lesser extent in the biobased-chemicals sector (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Development of the number of people employed in selected sectors (EU27, 2008-2019). (JRC, 

2022) 

 

The entire EU Bioeconomy has an annual turnover of around €2.2 trillion with an added value of 

657 billion euros. The food, beverage and tobacco sector accounts for 36.2%, followed by agriculture at 

29.4%, biobased chemicals, plastics and rubber at 9.8%, wood products and furniture at 7.6%, paper at 7.3%, 

bio-based textiles at 3.9%, forestry at 3.8%, fishing and aquaculture at 0.9%, bio-based electricity at 0.8% 

and liquid biofuels at 0.5% (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.Value added by sector in EU27 (2019) (million €) Source: (JRC, 2022). 

 

In contrast to the trends in employment all sectors have experience gains in the total valued added 

by the bioeconomy increasing from 515 billion euros in 2008 to 657 billion euros in 2018. In particular the 

liquid biofuels and biobased electricity sectors have seen rapid growth over a 100%. This contrast between 

a decrease in employment but increase in value added suggests considerable improvements in productivity 

in the bioeconomy in recent years. 

 

3.1.2 Biomass flows 

 

The following section provides an overview of the biomass flows according to the 5 bioeconomy 

themes; these flows are particularly useful in providing an overview of biomass supply, processing and 
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consumption. There is considerable variation in the types and geographic availability of biomass across the 

EU, the main biomass supply types originate from the following sources, including: forests (thinning, logging 

residues), by- products of the wood industry, energy crops, agricultural by-products, biomass from waste 

streams, by- products from agro-food industry, aquatics biomass. The EC’s JRC produces regular overviews 

in their EU Biomass Flows tool, more detailed data is available there (Gurria et al., 2017). 

Overall, the total production of biomass in the EU consisted of around 1.1 billion tons of dry matter 

of which 95% is produced locally and 5% imported. Agriculture is the biggest supply sector (65% dry matter). 

The level of contribution in this biomass flow differs according to the country and their potentials for example 

countries like Greece, Malta, Hungary and Cyprus have a number 0f 90% because of the agricultural and 

field areas but on the other hand Finland has only 13% because instead of agricultural areas the country is 

covered by forests, and this is the reason why the forestry contribution numbers 87%. On the other hand, the 

fishery sector is not so well developed and numbers less than 1% where the agriculture and forestry sectors 

play the most important role. Although the agriculture and forestry sector an in high levels, Europe faces a 

problem with the unused and abandoned areas which represent about 15.8% of the total land use in EU 28.  

 

 

 

Figure 5. Biomass flows in Europe. Source: (Gurria et al., 2017a) 

 

 

3.1.3 Bioeconomy related Policies 

The first EU Bioeconomy strategy was launched in 2012, “Innovating for sustainable growth – A 

bioeconomy for Europe” (European Commission, 2012) with a main goal to accelerate the deployment of a 

sustainable bioeconomy and to transform the EU’s approach to the production, consumption, processing, 

storage, recycling, and disposal of biological resources. The latest EU Bioeconomy strategy was updated in 

2018 and in 2022 a report was released that asses the progress made in the implementation of the Bioeconomy 

strategy (European Commission, 2022a).  

Bioeconomy policies take a cross-sectoral perspective to improve policy coherence, identify and resolve 

trade-offs like land and biomass demand. These policies are designed around 3 sustainability dimensions. 

According to the latest EU Bioeconomy Strategy Progress Report (EU Bioeconomy Strategy Progress 

Report, n.d.), there are actions on track to enhance the main objectives of Bioeconomy strategy. Increasing 
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number of national and regional bioeconomy strategies promoting cross-sectoral cooperation and 

sustainability principles and invest in bioeconomy innovations. The EU bioeconomy strategy enables a green 

transition covering all the 3 dimensions of sustainability (environment, society, economy)  

• Environmental sustainability: By optimizing the use of biological resource from land and sea, the 

bioeconomy maximizes co-benefits. Production of biomass, mitigating the climate change and 

enhancing the biodiversity are some factors that safeguard and benefit the ecosystem services. 

• Economic sustainability: Bioeconomy policies boost sustainable innovation and create solutions for 

sustainable food and bio-based products, bio-based and bioderived chemicals, advanced biofuels, 

and the bioenergy for the future. 

• Societal sustainability: Bioeconomy policies enables a green transition developing sustainable 

business models based on the principles of diligence, and by promoting sustainable trade and social 

fairness in Europe. 

The updated Bioeconomy strategy builds upon and stresses the continued importance of the goals of the 

2012 bioeconomy strategy to ensure food and nutrition security; manage natural resources sustainably; 

reduce dependence on non-renewable, unsustainable resources; and limit and adapt to climate change; 

strengthen European competitiveness and create jobs. The associated bioeconomy action plan outlines 14 

actions to accelerate the development of the EU Bioeconomy including: 

• “Strengthen and scale up the biobased sectors, unlock investments and markets. 

o mobilize stakeholders in developing and deploying sustainable biobased solutions. 

o launch a €100 million circular bioeconomy thematic investment platform. 

o analyze enablers and bottlenecks for the deployment of biobased innovations. 

o Promote and develop standards. 

o facilitate the deployment of new sustainable biorefineries. 

o develop substitutes to fossil-based materials that are biobased, recyclable and marine 

biodegradable. 

• Deploy local bioeconomies rapidly across the whole of Europe. 

o launch a strategic deployment agenda for sustainable food and farming systems, forestry 

and biobased products. 

o launch pilot actions for the deployment of bioeconomies in rural, coastal and urban areas. 

o support regions and EU countries to develop bioeconomy strategies. 

o promote education, training and skills across the bioeconomy. 

• Understand the ecological boundaries of the bioeconomy. 

o enhance knowledge on biodiversity and ecosystems. 

o monitor progress towards a sustainable bioeconomy. 

o promote good practices to operate the bioeconomy within safe ecological limits. 

o enhance the benefits of biodiversity in primary production.” (European Commission, 

2018a) 

The 2022 EU Bioeconomy Strategy Progress Report highlights a number of key important trends in 

the development of the EU Bioeconomy. These include that national bioeconomy strategies are developing 

across Europe, the main use of biomass continues to be for food and feed while biomass sourced from wood 

is increasingly utilized, important innovations are happening across the EU bioeconomy, in particular in food 

and bio-based industries, that research and innovation results have shown considerable promise and should 

continue to be strengthened (European Commission, 2022b). 

One of the main actions highlighted in the 2018 updated strategy was the necessity to develop 

detailed national policies, enabling countries and regions to design transition pathways according to their 

specific challenges and opportunities benefiting a non-prescriptive integrated and systemic framework (‘EU 

Bioeconomy Strategy Progress Report’, no date) supporting the development of strong societies, a resilient 

environment and sustainable economy.  

AgEng 2024 Proceedings

1015



Currently, multiple EU members have already developed multiple strategies, while others have 

strategies under development. Finland, France, Italy, Poland, Spain, and Sweden have developed an intense, 

regional strategic actions to deploy bioeconomy. Additionally, there are 15 countries having at least one 

region with bioeconomy relevant strategy in regional level (Austria, Belgium, Croatia, Czechia, Denmark, 

Germany, Greece, Hungary, Ireland, Latvia, Lithuania, Netherlands, Portugal, Romania, and Slovakia). In 

these countries the number of regional strategies vary between 1 and 17. A few member states have yet to 

develop their national strategies (Bulgaria, Cyprus, Estonia, Luxemburg, Malta, Slovenia).  

The following map (Figure 6) illustrates the members’ states according to the status of their 

strategies. Other have already developed strategies, other are under development but some others have 

strategies related to bioeconomy. Austria, Germany, Denmark, Latvia, Netherlands, France, Portugal, Spain, 

Finland, Ireland, and Italy are some of the members that have a developed strategy for bioeconomy having it 

updated lately. In addition, some others like Greece have national strategies for energy, climate, agriculture 

referring to bioeconomy. 

 

 

 

 

 

 

 

 

 

 

Figure 6. EU Bioeconomy strategies. Source: (Bioeconomy Strategy | Knowledge for Policy) 

3.2 Discussion 

This report provides an overview of the current bioeconomy status in the EU and the transition to a 

circular bioeconomy.  On the one hand overall employment is decreasing while the overall value of the 

bioeconomy is increasing. The decrease in employment can be attributed to a number of trends, there is a 

notable decline in the agricultural sector which is driven by demographic changes and a consolidation of farm 

holdings. On the other hand, large increases in employment are observed in the bioenergy sector and the 

biomaterials and bioindustry sectors (JRC and Novo-Institute, 2022). These trends are expected to continue as 

the transition towards a more circular European economy is heavily dependent on the replacement of fossil 

energy and fossil-based products. 

Regarding biomass flows, the JRC provides detailed overviews of biomass flows within countries, 

per sector and for the EU as a whole (JRC, 2022). The continued update and effective dissemination of this 

knowledge, across all main primary and secondary sectors, is crucial for our understanding of the 

development of the bioeconomy. It is clear that current biomass flows are dominated by agricultural 

production for supply and food and feed for use/consumption. It is unlikely that the importance of the food 

and agricultural sector will diminish, but it is clear that for a sustainable transition and to achieve EU climate 

goals, both supply and use in other sectors that replace fossil fuels and fossil-based products will need to 

expand rapidly.  

In this sense, there are important considerations around the availability of sufficient biomass supply. 

On the one hand feedstocks that do not compete with land for food and feed need to continue to be developed. 
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Multiple studies have shown for instance that Perennial biomass crops (PBC) are a crucial feedstock for the 

development of biomass supply that is not in competition for land used for food production. (Choi et al., 2019). 

Other sources such as algal feedstocks have been shown to also have considerable potential. On the other 

hand, biomass supply can be improved by increases in the efficiency of biomass production but also the reuse 

of bio-waste into productive sectors. Improvements in productive efficiency output for biomass grown on 

land currently under production is a complex issue with important environmental considerations. In the past 

considerable production efficiency improvements have been achieved through the increased application of 

synthetic fertilisers and pesticides in combination with fossil energy. It is now well documented that increased 

production efficiencies will need to be combined with decreases in synthetic and fertiliser use as well as fossil 

fuels and that this will require a transformation of the production of EU biomass supply. Alternative 

approaches that can support such a transition include practices based on conservation agriculture or 

agroforestry  (Paris et al., 2022). 

The EU is often considered as a leader in the recovery and reuse of biowaste. Despite this and 

considerable policy efforts considerable amounts of bio-waste are not or under-utilised. Numerous studies 

have indicated that the effective use of this bio-waste could provide large amounts of sustainable feedstocks 

for the wider EU bioeconomy (EEA, 2020). The total potential capture of biowaste per kilogram per person 

per year in the EU is 222, while currently only 77kg is collected (Favoino, Giavini and Rupp, 2020a). The 

development of effective value chains that collect and process this waste into functional raw materials is 

especially important for certain agricultural wastes and urban-bio waste. For instance, large amounts of bio-

waste from urban areas are currently landfilled in the EU, the development of effective biowaste optimisation 

processes are required (Favoino, Giavini and Rupp, 2020b). In particular, Fava et al. (2015) highlight that 

there are also many opportunities’ for integrating biowaste feedstocks into biorefineries (Fava et al., 2015).  

One of the key goals of the Updated EU bioeconomy strategy is to ‘strengthen and scale-up the bio-

based sectors’ (European Commission, 2018b).  The overview presented in this report indicates that the 

development of a circular bioeconomy is still in its relatively infant stages but that important initiatives 

towards circularity exist throughout the biobased economy. In this sense, small scale biobased solutions, 

which have the potential to scale rapidly are crucial to the transformation of the EU economy. This report 

clearly documents a large number of small-scale biobased solutions and initiatives relevant to the circular 

transition and in order to accelerate their impact these need to be supported through relevant policy 

mechanisms and continued access to significant research and innovation funding. 

The production of bioenergy in the EU has experienced a transformation in the past decade currently 

accounting for the majority of renewable energy produced. This has happened in tandem with considerable 

developments in feedstock supply and conversion methods. Mandley et al (2020) investigate the potential of 

bioenergy development in the EU until 2050 highlighting that despite large uncertainties EU biomass 

production has the potential to facilitate future bioenergy demand while also experiencing large increases in 

the import of biomass (Mandley et al., 2020).  

There are a number of important niche sectors that have the potential to considerably scale in the 

future. The development of biobased industries and biorefineries supported by biobased innovation processes 

are a key priority for the EC. The 2022 EU blue economy report highlights the importance of preserving and 

enhancing the natural capital of water bodies in the EU while also the importance of the ‘blue biotechnology’ 

sector as one of the key emerging sectors within water systems. Particularly promising is the development of 

the algae sector as well as related biorefineries, offshore aquaculture, the use of fish by-products and cellular 

mariculture and cell-based seafood (European Comission, 2022). The 2021 EU Forest Strategy for 2030 

highlights the importance of supporting the socio-economic functions of forest while enhancing the forest 

based bio-economy within sustainable boundaries, key to this is the development of sustainable raw wood 

biomass supply, the sustainable use of wood products in particular for bioenergy, promoting the non-wood 

bioeconomy and services for instance through eco-tourism, whilst simultaneously protecting, restoring and 

enlarging EU forests ensuring climate resilience and biodiversity (European Commission, 2021).  

AgEng 2024 Proceedings

1017



This study identifies a number of key areas for future research including more detailed overviews of the 

bioeconomy for all EU member states; an in-depth analyses of specific bio-based value chains; the 

relationship between economy, society and the environment; the relationship between the bioeconomy, other 

sectors and the circular economy; indicators that measure the impact and potentials of the bioeconomy and 

its sectors are being developed and need to be strengthened further; and future research providing projections 

and scenario analyses on the future state of the bioeconomy in the medium and long-term. In addition, the 

conceptual understanding of the bioeconomy by relevant stakeholders appears limited, for instance, at times 

the terms bioeconomy and bio-based economy as well as biorefineries and bio-based industries appear 

mislabelled. Important steps are being made by the EC to correct this and continued policy efforts need to be 

implemented through for instance the development of unified national bioeconomy strategies for all member 

states. Furthermore, on a geographical and regional level, it is clear that the bioeconomy plays a crucial role 

in economies across the EU but that recent developments are unequal. For instance, the development of 

biorefineries is more prevalent in north western Europe. More research into these geographical variations and 

research that distinguishes the linear bioeconomy with a circular bioeconomy and how its value chains differ 

are needed. 

4. Conclusions 

This study provides a review of the current status of the European Bioeconomy, containing all the main 

5 themes (agriculture, water systems, forestry, bioenergy, biomaterials), as well as the existing bioeconomy 

national strategies, trends and opportunities that exist in the EU together with successful small-scale biobased 

solutions.  

The information presented in this report illustrates the diversity and complexity of the EU bioeconomy. 

There are a number of important trends occurring in the EU bioeconomy: overall employment in the 

bioeconomy is decreasing while the overall value of the bioeconomy is increasing. Certain sectors, including 

the bioenergy and biomaterials sectors that are still relatively small as compared to their fossil-based 

equivalents, are experiencing rapid growth, these sectors are expected to continue to grow rapidly in the 

medium and long-term supporting sustainable transitions across the economy.  

The EU economy is transforming from an economy based on linear economic models to circular 

economic models however, this transformation is still at its early stages and will require the transformation 

of existing production systems and value chains as well as the creation of new innovative value chains.  

In recent years EU policy has become very supportive of the development of a sustainable EU 

bioeconomy and the updated EU bioeconomy strategy operates in parallel to multiple other policy initiatives 

such as the new CAP, Green Deal, Farm to Fork strategy and circular economy action plan. In the short term, 

the further development of national strategies dedicated to the bioeconomy will strengthen the policy 

environment. In addition, the development of the bioeconomy has a crucial environmental dimension and 

current policy is supportive of efforts that support and strengthen environmental services and biodiversity. 
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Abstract 

To reduce drying time for biomass wet-extruded plates while minimizing deformation, we aim to develop 

a vacuum freeze drying method enhanced by high-frequency dielectric heating. Cylindrical plates made from 

wood powders were prepared as samples and subjected to drying experiments using a lab-scale vacuum 

chamber equipped with a high-frequency dielectric heating system. Combining high-frequency heating with 

vacuum freeze drying accelerated the drying rate, particularly in the latter half of the process, while only 

raising the sample temperature by a few degrees. The effect of high-frequency heating on accelerating drying 

was more pronounced with higher irradiation power, leading to a reduction in drying time by several tens of 

percent. Additionally, near-infrared spectroscopic imaging, visible imaging, and material strength 

measurements were conducted to evaluate the chemical, morphological, and mechanical characteristics of 

the samples after drying. No significant differences were observed except for the near-infrared absorption 

band of water at 1940 nm. Samples dried under irradiation at 25 W exhibited significant shrinkage and 

deformation, resulting in weaker material strength compared to those dried under other conditions. These 

results suggest that high-frequency dielectric irradiation at 20 W is optimal for this combined drying method. 

In conclusion, by integrating high-frequency dielectric heating with vacuum freeze drying of biomass wet-

extruded materials made from wood powder, drying time can be significantly reduced while preserving 

chemical quality and preventing significant deformation of the sample after drying. 

Keywords: wood powder, drying characteristics, near-infrared spectroscopic imaging, shape analysis. 

1. Introduction 

Japan Clean Ocean Materials Alliance (CLOMA), a platform dedicated to accelerating solutions for 

marine plastic litter, has been established to promote the 3Rs of plastics, as well as the development and use 

of biodegradable plastics and paper products in Japan (Japan Clean Ocean Materials Alliance, 2019). While 

paper, a cellulosic material, is guaranteed to be metabolized within the Earth's purification capacity, it is not 

a sufficient substitute for plastic products. It lacks the versatility of plastics, being unable to be injection- or 

extrusion-molded. Moreover, it is crucial to utilize biomass resources holistically, without favoring cellulose 

over other components. Responding to this need, Nonaka et al. have promoted research and development of 

"all-biomass molded products" by enhancing the plasticity and shape retention of biomass powder through 

the use of a water-soluble cellulose derivative as an auxiliary agent, rather than combining it with plastic. 

This approach involves wet extrusion molding (Kawamura et al., 2018; Matsuoka and Nonaka, 2020, Nonaka, 

2023). However, deformation and shrinkage during drying after molding pose significant challenges in the 

production process, making a drying method that minimizes deformation while reducing drying time highly 

desirable. This study focuses on a vacuum freeze drying (VFD) method combined with high-frequency 

dielectric (HFD) heating for shortening the drying time while minimizing deformation. 

2. Materials and Methods  

2.1. Drying samples  

The mixture of wood powders, hydroxypropyl methylcellulose (HPMC) and deionized water was 

extruded into a sheet. The cylindrical plates (47 mm x h4.3 mm) were cut from the sheet. The plates were 

frozen in a freezer at 253 K overnight and used as the drying samples. 
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2.2. Drying experimental apparatus 

Drying experiments were performed in a Lab-scale vacuum chamber (Espec Co., Ltd., Osaka, Japan) 

equipped with a high frequency dielectric heating system. A scheme of the drying equipment is presented in 

Figure 2. The upper ⑦ and lower ⑧ electrode plates are equipped in the vacuum chamber ①. The output 

power of the high frequency dielectric heating is automatically adjusted to a set point by the matching box 

⑨ during freeze-drying. A vacuum pump was used for maintaining the vacuum in the chamber. The data of 

the pressure, high frequency traveling wave power and high frequency reflection wave power are recorded 

using the data logger ⑭. 

 

 

Figure 1. Schematic diagram of high frequency dielectric heating with freeze-dryer. 

2.3. Drying experiments 

Six frozen biomass samples were put on the Teflon® plate (82× 82× 10.5 mm) kept in a freezer set at 253 

K overnight. to avoid the heat transfer from the lower electrode to the samples. After the pressure was reduced 

to 100 Pa, and the samples were irradiated with high-frequency waves (0 to 25 W). The moisture content of 

the samples was measured by sampling over time. Near-infrared (NIR) spectroscopic imaging and shape 

measurements were performed to characterize the samples after drying. 

2.4. Measurements of dried sample characteristics 

2.4.1. NIR spectroscopic image measurement 

The NIR spectroscopic image acquisition was performed using a hyper spectral imaging system 

(Compovision, Sumitomo Electric Industries, Ltd., Osaka, Japan) equipped with a halogen lamp as the light 

source was used, and the diffuse reflectance spectrum at each pixel on the sample was collected in the range 

from1000 to 2350 nm. 

2.4.2. Size and shape 

The diameter (D), thickness (h) and apparent thickness (happ) of the sample plate were measured using a 

caliper. Using these values the volume and shape characteristics were obtained. 

3. Results and Discussion 

3.1. Drying characteristics 

The influences of the HFD power on the combined vacuum freeze drying characteristics of the frozen 

biomass plates were experimentally studied. Figure 2 shows the influences of the HFD power on the time 

① Vacuum chamber, ② HFD introduction part, ③ Optical fiber, ④ Thermometer, ⑤ Drying samples, ⑥ Thermal and 

electrical insulator, ⑦ Upper electrode, ⑧ Lower electrode, ⑨ Matching box, ⑩ Vacuum exhaust valve, ⑪ Piping 

leak valve, ⑫ HFD power source (13.56 MHz), ⑬Oil-sealed rotary vacuum pump, ⑭ Data logger (Pressure, HFD 

power), ⑮ PC, ⑯Teflon○,R O-ring, ⑰ Teflon○,R plate 
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courses of the normalized moisture content (/0) relative to the initial one (0 [kg-H2O/kg-dry material) of 

the frozen biomass plate. The temporal change in the normalized moisture content could be fitted by a two-

stage exponential functions as follows (Hashimoto et al., 2018). 

 𝜔 𝜔0 = exp(−𝑘1𝑡)⁄  (1) 

 𝜔 𝜔0 = {(𝜔 𝜔0⁄ )𝑐 − 1} + exp{−𝑘2(𝑡 − 𝑡𝑐)}⁄  (2) 

Here, : moisture content based on dry weight [kg-H2O/kg-dry material], t: drying time [h], k: drying rate 

constant [h-1], and the subscripts 1 and 2 refer to the first and second stages of the drying process. The 

subscripts 0 and c are the initial value and the critical value at the first and second stages of drying, 

respectively. 
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Figure 2. Influence of HFD power on time courses of normalized moisture content. 

The time at which the normalized moisture content is 0,001 (1/1000 of the initial moisture content) 

is then defined as the drying time (td). The drying time td was 9.76 h at 0 W (vacuum freeze-drying), 7.7 h at 

10 W, 6.3 h at 20 W, and 5.9 h at 25 W, respectively. The drying time could be shortened under all conditions 

by using HFD heating in combination, and the shortening rate was 21% from 0 W to 10 W, 36% from 0 W 

to 20 W, and 40% from 0 W to 25 W, respectively, with the shortening rate increasing with the increase in 

HFD power. It was also found that the higher the HFD power, the earlier the start time of the second stage. 

Therefore, the combination of HFD heating with vacuum freeze-drying of the biomass material could reduce 

in drying time. 

For press forming after heating and drying, the time (t20) required for the moisture content to decrease to 

lower than about 20% of the wet basis moisture content and the reduction of the drying time using the 

combination of HFD heating at that time were calculated using the above fitting parameters. The calculated 

drying times t20 were respectively 4.0 h at 10 W, 3.3 h at 20 W, and 2.7 h at 25 W by combining HFD heating. 

The drying time reduction rate was almost the same as that for td. These results experimentally indicate that 

the combination of HFD heating can shorten the drying time and that increasing the HFD power can further 

improve the drying time reduction effect. These results mean that the power consumption required for drying 

can be reduced by several tens of percent along with the reduction in drying time. 

Using the above fitting parameters, the intersection points (𝑡𝑐, (𝜔 𝜔0⁄ )𝑐) of the curve fitting curve in the 

first and second drying stages were obtained. The intersection time 𝑡𝑐  and normalized moisture content 
(𝜔 𝜔0⁄ )𝑐 respectively became shorter and higher as the HFD power increased. Additionally, the drying rate 

coefficient 𝑘2 for the second stage became smaller as the HFD power increased. These results suggest that 

heating could be very effective in the early stages of drying. 

3.2. Material characteristics after dryings 

Since the effectiveness of HFD heating combination of VFD of all biomass wet-extruded plate, we studied the 

influences of HFD heating on the dried products. The NIR image analysis and size and shape change measurements were 

performed respectively as the chemical and physical properties. 
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3.2.1. NIR spectroscopic image characteristics 

Figure 3 shows the examples of the second derivative spectrum of absorbance in the NIR region of the 

biomass plate after drying. The characteristic absorption peak bands were observed around 1210, 1350, 1460, 

1580, 1710, 1810, 1940 and 2080 nm mainly relating to C-H stretching (cellulose), C-H stretching and 

deformation (hemicellulose), O-H stretching (water and cellulose), C-H stretching vibration (hemicellulose), 

water and lignin, O-H stretching and C-H deformation (cellulose), respectively. 
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Figure 3. Examples of NIR reflectance spectra of sample plates after drying. 

By focusing on these absorption bands, the NIR absorption images were generated, and the absorption 

intensity differences were compared between the images of the samples after VFD and combined drying. The 

examples of the images were indicated in Figure 4. No significant differences were observed in the absorption 

intensity distribution between the cases with and without HFD heating. However, the differences were 

observed only for the images generated using the spectral information at 1940 nm, where the strongest water 

absorption band is observed. This suggests that the samples after combined drying at 20 and 25 W of HFD 

power were drier than the control samples without HFD heating (0 W). In addition, the absorption intensity 

distribution was almost uniform in all images, and the distribution of components in the dried samples was 

also almost uniform. It was then considered that influences of the combined use of HFD heating could be 

chemically negligible. 

Figure 4. Examples of NIR spectroscopic images of sample plates after drying. 
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3.2.2. Size and shape characteristics 

The shrinkage and deformation of the dried samples were investigated. Figure 5(a) shows changes in the 

volume ratio before and after drying, and the volume was calculated using the above measurement values. 

The influences of the HFD power on the volume ratio could be experimentally negligible and depended on 

the moisture contents. The vertical axis of the Figure 5(b) is the changes in the ratio of happ to D before and 

after drying and means the shape changes. The deformation for the sample during VFD (0 W) increased as 

the dry basis moisture content decreased. and the shape could be maintained until the dry basis moisture 

content value below 0.2 kg-H2O/kg-dry material for the HFD power conditions of 10 and 20 W. However, 

in the case of the HFD power of 25 W, the ratio was larger than that samples dried under the other conditions 

in the region of the dry basis moisture content lower than 0.5 kg-H2O/kg-dry material. This is thought to be 

due to the rapid decrease in the moisture content. 
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Figure 5. Influences of HFD power on size and shape changes during drying. (a) volume ratio before and 

after drying, (b) ratio of happ to D before and after drying. 

4. Conclusions 

To shorten the drying time of wet-extruded wood flour compacts while suppressing deformation caused 

by drying, HFD heating was combined with the VFD method. NIR imaging results showed that the combined 

use of HFD heating had no significant effect on the chemical properties and uniformly dried the samples. 

Furthermore, it was confirmed that drying time could be shortened by using HFD heating and increasing the 

HFD power, and this behavior was quantitatively demonstrated. Compared to VFD alone (HFD power of 0 

W), no significant changes in shape or shrinkage were observed after drying at HFD powers of 10 and 20 W. 

The shrinkage behavior was primarily influenced by the decrease in moisture content and not by the presence 

or absence of HFD heating. However, the sample dried under 25 W of HFD power exhibited different 

shrinkage behavior compared to the others. In conclusion, the VFD method combined with HFD heating 

successfully reduced drying time by several tens of percent without compromising the chemical and 

morphological characteristics of the samples after drying. Considering the characterization of the dried 

samples, the optimal HFD power under the experimental conditions of this study was determined to be 20 

W. 

  

Acknowledgements 

We would like to thank the financial support for this research by the Environmental Restoration and 

Conservation Agency (JPMEERF20221C03). 

 

References 

Japan Clean Ocean Materials Alliance, 2019. Alliance creates new innovation.  https://cloma.net/english/. 

Hashimoto, A., K. Suehara, T. Kameoka, and K. Kawamura, 2018. Effects of assistance of high frequency 

dielectric and infrared heating on vacuum freeze drying characteristics of food model. In Proceedings of 21st 

International Drying Symposium. Valencia, Spain. September 11-14, 2018. Valencia, Spain: Universitat 

Politècnica de València. Ed. J.A. Cárcel. 795-802. http://dx.doi.org/10.4995/ids2018.2018.7461. 

AgEng 2024 Proceedings

1024

https://cloma.net/english/
http://dx.doi.org/10.4995/ids2018.2018.7461


Kawamura, K., T. Abera, and H. Nonaka, 2018. Extrusion molding of cellulosic fibers using cellulose 

derivative. Japan TAPPI Journal. 72 (3) 321-327. https://dx.doi.org/10.2524/jtappij.72.321. 

Matsuoka, T., and H. Nonaka, 2020. Wet extrusion of wood powder using a cellulose derivative. Japan 

TAPPI Journal. 74(5) 516-524. https://dx.doi.org/10.2524/jtappij.74.516. 

Nonaka, H, 2023. Extrusion molding of biomass powder with cellulose derivatives. Glycoforum. 2023 

26 (6), A22. https://dx.doi.org/10.32285/glycoforum.26A22. 

 

 

AgEng 2024 Proceedings

1025

https://dx.doi.org/10.2524/jtappij.72.321
https://dx.doi.org/10.2524/jtappij.74.516
https://dx.doi.org/10.32285/glycoforum.26A22


Composting off-gas as alternative source of carbon dioxide for spirulina cultivation 

– a preliminary study 

Kelechi E. Anyaohaa,1, Felix Krujatzb, Isla Hodgkinsona, Roman Maletza, Christina Dornacka*  

a Technische Universität Dresden, Chair of Waste Management and Circular Economy, Pirna, Germany 
b TU Chemnitz, Chair of Automatic Control and System Dynamics, Chemnitz and Biotopa gGmbH, Center for Applied 

Aquaculture & Bioeconomy, Radeberg, Germany 

*Corresponding author. Email: christina.dornack@tu-dresden.de 

Abstract 

Climate change increases drought, erosion, glacial melt, and flooding, and reduces groundwater reserves, and 

soil fertility among other global challenges. Avoidance, reduction, and sequestration of greenhouse gas 

emissions are measures to mitigate climate change. Sequestration of emissions from biological processes 

such as composting contributes to negative emissions. This study investigated the dynamics of carbon dioxide 

(CO2) evolution from a passive composting system and compared composting off-gas and air as CO2 sources 

on Spirulina biomass productivity. Three plastic bag composting reactors were used to compost food waste 

and sawdust (5:1 mixing ratio) in a ‘staged’ composting process. The gas produced is pumped from one 

reactor to the next to increase the CO2 concentration in the off-gas. Three samples were used in a composting 

cycle for a total retention time of 21 days. Four treatments consisting of air (AirA and AirB) and off-gas 

(ofgA and ofgB) as sources of CO2 were used in the spirulina cultivation. AirB and ofgB received additional 

air and CO2, respectively. A different composting experiment was used in Spirulina cultivation and the 

percentage of CO2 used in the Spirulina experiment ranged from 2.93 to 4.87 %. The result of the composting 

experiment shows that the concentration of CO2 in the off-gas was between 2.93 and 8.47 % throughout the 

duration of the experiment. The results of the Spirulina experiment showed the maximum biomass 

productivity of 20.7, 19.5, 16.9 and 14.0 mg/L/day for ofgB, ofgA, AirB and AirA, respectively. The study 

demonstrated the possibility of increasing the CO2 concentration of composting off-gas using a novel staged 

composting system and its importance as a carbon source for Spirulina cultivation. 

Keywords: Composting, off-gas, spirulina, carbon sequestration, negative emissions. 

1. Introduction 

Climate change has been linked to changes in drought and flood regimes precipitation patterns, 

groundwater reserves, erosion, glacial melt and soil fertility, low agricultural incomes, reduced infrastructural 

lifespan, social insecurity, mortality, and acute hospital visits (Anyaoha et al., 2024). While carbon dioxide 

(CO2) emissions from biomass are carbon neutral, any effort to capture them will result in negative emissions. 

One process through which biomass or bio-waste emits greenhouse gases including CO2 and methane is 

composting.  While CO2 is the main GHG emitted through composting off-gas, the others (methane and 

nitrous oxide) are influenced by the process parameters of composting. Composting takes place either in the 

open (Luskar et al., 2022) or closed systems (Soto-Herranz et al., 2021). While the closed systems allow 

better control over some parameters such as airflow and temperature, the generated off-gas is released directly 

into the atmosphere.  

There are ongoing efforts to reduce GHG emissions from composting directed towards factors such as 

composting different substrates (Komilis & Ham, 2006) and aeration (Qasim et al., 2018). Qasim et al. (2018) 

used airflow rates of 0.25, 0.50 and 0.75 L/min/kg Organic Matter (OM) to investigate variations in 

temperature, ammonia and carbon dioxide emissions, pH, electrical conductivity, organic matter and the seed 

germination index during mixture of chicken manure, sawdust and wood shavings composting. The report 

showed that more CO2 emissions occurred at the earlier stage of the composting process for all airflow rates, 

while the 0.75 L/min/kg OM treatment resulted in the highest variation. On the other hand, Komilis & Ham 

(2006) demonstrated CO2 emissions of 150, 220 and 370 g CO2–C for individually composted mixed paper 

waste, yard waste and food waste, respectively. The report showed a large variation in CO2 emissions from 

different substrates. A total of CH4 and N2O ranging from 0.084 to 7.82 gCO2-eq./kg are emitted by 

composting different combinations of organic materials (Lv et al., 2018; Chen et al., 2019; Raza et al., 2021) 

while Chen et al. (2019) reported up to 358.2 gCO2-eq/kg Dry Matter (DM) CH4 emission. Most composting 

reports have shown varying levels of CH4 and NO2 emissions.  
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The capture or sequestration of CO2 remains a visible option for climate change mitigation in the bio-

waste management sector. Therefore, the use of photosynthetic organisms offers an opportunity for the 

sequestration of CO2 from composting. Spirulina (Arthrospira platensis) are photosynthetic cyanobacteria 

that use CO2 and carbonate for biomass production and contribute to efforts to reduce GHG emissions and 

climate change. Spirulina adaptation in alkaline environments eliminates competing species in the growth 

culture (Phang et al., 2000).  

There is limited research in harnessing and sequestering CO2 from composting off-gas using 

photosynthetic microorganisms (Abid et al., 2017; Lu et al., 2019). Interestingly, these two reports did not 

actively influence the concentration of CO2 in the off-gas. A key factor in the effective use of CO2 from 

composting off-gas is the concentration of CO2 in the off-gas relative to other gases, including oxygen, 

methane and N2O. This explains the advantage of the expensive commercial source of 100 % CO2. To 

increase the effectiveness of CO2 sequestration from composting off-gas, it is necessary to rethink the 

composting process to increase CO2 the concentration in the off-gas. It is reported that the O2 concentration 

should be 10 % or more to avoid metabolic activity inhibition (Zeng et al., 2018). However, the rate of 

microbial activity decreases as the organic matter is degraded and consequently less O2 is required for 

metabolic activity as composting processes. As CO2 concentration increases, that of O2 reduces. To the 

authors knowledge, there is limited literature report on this subject. Therefore, the research aims at harnessing 

CO2 from a novel closed composting system for Spirulina cultivation. The specific objectives are (1) to 

investigate the dynamics of CO2 evolution from a passive composting system and (2) to compare the 

Spirulina dry weight, biomass productivity and specific growth fed with composting off-gas and air. 

2. Materials and Methods  

2.1. Organic waste characteristics and culture medium 

The food waste (84.07 % moisture content) was collected from a restaurant in Pirna (Saxony, Germany), 

and consisted of a mixture of food preparation waste and unsold food. The sawdust was obtained from 

Pollmeier Massivholz GmbH & Co.KG (Creuzburg) and of beech wood chips. The sawdust was used as 

delivered. In the first composting experiments, 800 g of food waste and sawdust mixture was used. The 

mixture was first homogenised and stored at -20 oC. Before use, each sample was thawed for up to 24 hours 

in the autumn period. In the second composting experiment, used for Spirulina cultivation, 1000 g of food 

waste-sawdust mixture was used for each sample. The mixing ratio of food waste and sawdust was estimated 

to be 5:1 using an assumed carbon/nitrogen (C/N) ratio of 30.  

      Spirulina, which was grown in a commercial photobioreactor under 24-hour light was sourced from 

PUEVIT GmbH (Dresden, Germany). Modified KG medium (NaNO3 – 1.0 g/L, K2HPO4 – 0.5 g/L, K2SO4 

– 0.5 g/L, NaCl – 0.5 g/L, MgSO4·7H2O – 0.2 g/L, CaCl·2H2O – 0.04 g/L and Hutners trace elements – 0.1 

mL/L) without NaHCO3 was used as the nutrient source for the experiment. Prepared KG nutrient medium 

(200 mL) in ultra-sterilised water (200 mL) was poured into clean 2 litre borosilicate glass bottles and then a 

concentrated suspension of microalgae (200 mL at 1.15 optical density) was added to make up 600 mL 

volume. The initial pH of the culture was 9.78 at 24.5oC. 

2.2. Composting experiment and Spirulina platensis cultivation 

The composting experiment consisted of three vacuum bags (made of polyethylene and measuring 100 x 

80 cm in size) used as reactors, and another for the off-gas storage in the second experiment. In the system, 

each sample is composted for a total of 21 days. During the loading period of the first experiment, which 

took place between September and October 2023, sample 1 is placed in reactor 1 with a total air volume of 

0.188 m3/kg DM supplied using an electronic air pump (Dirk Rossman GmbH, Germany) as inlet pump 

through an 8 mm internal diameter silicon hose for 3 minutes at 13.5 L/min with a flow meter (LZQ-7 Flow 

Meter 2-20LPM Acrylic Air Oxygen Flow Meter). The produced off-gas was evacuated for one minute and 

fresh air was introduced every three hours. After seven days, sample 2 was introduced and placed in reactor 

2. Reactor 2 was connected to the inlet pump as described above, while another pump was connected between 

reactor 2 and reactor 1, which evacuated the off-gas in reactor 2 for one minute every three hours and it 

became feed gas of reactor 1. After a further seven days, sample 3 was introduced into reactor 3, completing 

the loading period. Reactor 3 replaced reactor 2 above, another pump was introduced between them, which 
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evacuates the off-gas of reactor 3 for one minute every three hours and it became the feed gas of reactor 2. 

After a further three hours, the off-gas in reactor 2 was evacuated as feed gas for reactor 1. Finally, after a 

further three hours the off-gas in reactor 1 was evacuated or stored in the air bag for use as a CO2 source for 

spirulina cultivation during the second experiment. In summary, after the evacuation of reactor 1, the off-gas 

from reactor 2 was pumped into reactor 1, followed by the off-gas in reactor 3 to reactor 2 and finally fresh 

air to reactor 3. This was done every three hours for the duration of the experiment. The pumps were 

controlled by a mechanical timer (Masterclear – Wermelskirchen, Germany). After 21 days, sample 1 is 

removed and the composted waste allowed to cure, sample 2 is moved to reactor 1, sample 3 is moved to 

reactor 2 while fresh sample (sample 4) was introduced into reactor 3. This is repeated every seven days to 

ensure a continuous system. The connections between the three reactors and air bag are shown in Figure 1. 

The second composting experiment took place between November and December 2023, using 1000 g of each 

sample and adjusting the total volume of air accordingly. The thermometer was placed in the centre of the 

composting matrix for each sample. 

 

 
 

Figure 1. The sketch of the composting reactors and photobioreactor. 1 – air pump; 2- rotameter; 3 – 

perforated grate for biomass; 4 – reactor 1; 5 - one-way valve; 6 and 7 – composting reactors, 8 - thermometer 

inserted inside the composting matrix, 9 – off-gas sampling point, 10 – off-gas storage, 11 – aquatic pump 

connected with a sparger, 12 – photobioreactor. 

 

      Spirulina cultivation was carried out using borosilicate glass bottles (Simax) as photobioreactors (600 

mL working volume) placed in a heated water bath set at 34oC (FEDOUR 25 W Mini Aquarium Heating 

Rod) for seven days. Three LED bulbs (Philips warm white 2700K – 806 lumens each) mounted 20 cm from 

the top of the photobioreactors were used to provide 1 hour 30 minutes of illumination and 30 minutes of 

darkness between 14:00 and 07:30 throughout the experiment. Similar studies have reported a 24-hour 

photoperiod for Spirulina cultivation (Jung et al., 2023). The experiment was conducted by replacing the 

carbon source (Na2CO3/NaHCO3) in the nutrient solution with CO2 in air (0.04 % v/v) for treatments AirA 

and AirB and composting off-gas (between 2.93 and 4.87 % CO2 recorded) for treatments OfgA and OfgB. 

AirB and OfgB were additionally injected with air and off-gas every three hours for two minutes, 

respectively. An aquarium air pump (FEDOUR 3 W Quiet Aquarium Air Pump) was used to inject the air 

and off-gas in the mixture through a porous stone sparger placed on the bottom of the photobioreactors at 

0.24 vvm for 3 minutes at 02:00, 07:00, 11:00, 16:00, and 21:00 hours throughout the trial while the additional 

sparging lasted for 2 minute only every 3 hours. Mechanical timer was used to control the LED bulbs and air 

pumps. 

2.3 Analytical methods and Measurements 

    Culture samples obtained on the first day of the experiments were filtered using a Sartorius membrane 

filter (Göttingen, Germany) and filter paper (Whatman, GF/F) pre-dried in an oven at temperature of 60oC 

for 24 hours. The biomass and the filter paper were then dried overnight at a temperature of 60oC. The 

difference in weight was used to estimate the initial dry weight of biomass. Similarly, the optical density of 

the cultures was measured using a Thermo Scientific™ GENESYS™150 UV-Vis spectrophotometer at 750 

nm. The corresponding optical density and dry weight values were used for the standard growth curve 

(equation 1). The optical density of each culture (5 mL) was measured daily and used for subsequent 

calculation of dry weight using equation 1. Cultures received 5 mL nutrient solution after each sampling. The 

pH and temperature of the culture were measured daily using a pH meter (WTW pH 323). The maximum 

biomass productivity and specific growth were calculated using equations 2 and 3, respectively. 
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                                𝐲 = 𝟎. 𝟖𝟒𝟐𝟖𝐱 + 𝟎. 𝟎𝟔𝟒𝟑          𝐑𝟐 = 𝟎. 𝟗𝟔𝟏𝟏                                                                                 (1)                                       

 

where y and x are biomass concentration (g L–1) and OD750, respectively. 

 

                           𝑷 =
𝑿𝒕−𝑿𝟎

𝒕𝒕−𝒕𝟎
                                                                                                                                     (2) 

 

where p is maximum biomass productivity, mg/L/day, Xt and Xo are maximum concentration at time tt and 

initial biomass concentration at time to, respectively. 
 

                           µ𝒎𝒂𝒙 =
𝑰𝒏(𝑿𝒕−𝑿𝟎)

𝒕𝒕−𝒕𝟎
                                                                                                                           (3) 

 

         where µmax is specific growth rate, per day. 

 

The composition of the off-gas in the reactors and air-bag were measured using Dräger X-am 8000 gas 

analyser (Germany). Room and sample temperatures were measured using a digital and an analogue 

thermometers, respectively.  

 

Statistics 
Analyses were performed in replicates and means with standard deviation were reported using EXCEL 

(Microsoft Office Enterprise, 2016) where applicable. The analysis of variance (ANOVA) was performed 

using R 4.3.2 software. 
 

3. Results and Discussion 

3.1. Variation of substrate temperature 

     The composting operation occurred within the temperature range for mesophilic micro-organisms (25-

55oC) (Wang et al., 2022). Temperature variation allows the survival of the different mesophilic, moderate 

thermophilic, and hyperthermophilic microorganisms. Due to the low ambient temperature in autumn, it took 

at least 12 hours for the temperature of the substrates to change, which marks the start of the composting 

process. In Table 1, the temperature of samples 1, 2 and 3 varied between 22 to 35oC, 22 to 31oC and 26 to 

30oC, respectively. There was a rapid increase in temperature at the beginning of the composting process for 

each of the samples. Higher temperatures indicate high biological activity and degradation. The mesophilic 

temperature range recorded was due to the low temperatures in the autumn period and because the reactors 

were not insulated. Similarly, the novelty of the composting system means that the water vapour released by 

substrate decomposition remains in the reactor, contributing to a low temperature. Most of the heat produced 

was lost. However, this did not stop the decomposition of the organic materials. For example, the substrate 

temperature of sample 1 was above 25oC in the first 13 days of composting, which is within the minimum 

temperature for mesophilic microorganisms (Wang et al., 2022). Similar results were observed for the first 

six days of samples 2 and 3, indicating higher microbial activity at the earlier stages of the composting 

operation. While there were consistently higher substrate temperatures than ambient, the differences 

decreased as composting progressed. The maximum temperature reached was 35oC in sample 1 during the 

first two days. 

 

Table 1. Temperature readings and Compositions of the off-gas from composting experiment 

Sample/parameter Substrate Temperature (oC) Room Temperature (oC) CO2 (%) Oxygen (%) 

Day 1 

Sample 1 30.00±0.00 27.30±0.00 2.00±0.00 18.60±0.00 

Day 2 

Sample 1 35.00±0.00 25.78±1.30 6.77±4.40 13.90±2.38 
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Day 3 

Sample 1 27.00±1.41 24.25±2.05 2.90±0.14 18.35±0.07 

Day 4 

Sample 1 27.33±2.52 25.07±2.18 2.97±0.31 18.47±0.41 

Day 5 

Sample 1  27.00±4.24 24.95±3.18 3.15±0.21 17.85±0.21 

Day 6 

Sample 1  27.00±0.00 24.60±0.00 3.10±0.00 18.00±0.00 

Day 7 

Sample 1 29.00±0.00 28.30±00 0.70±0.00 19.70±0.00 

Sample 2 31.00±0.00  2.80±0.00 18.50±0.00 

Day 8 

Sample 1 27.00±1.41 24.55±0.78 4.37±0.31 17.23±0.29 

Sample 2 29.50±2.12 5.30±0.99 16.55±1.06 

Day 9 

Sample 1 27.00±0.00 25.27±0.47 4.00±0.42  16.60±0.71 

Sample 2 28.33±0.58 3.70±0.35 17.23±0.75 

Day 10 

Sample 1 23.67±1.53 22.13±2.00 2.77±0.40 18.17±0.51 

Sample 2 25.33±0.58 2.43±0.32 18.73±0.39 

Day 11 

Sample 1 23.25±0.50 22.53±0.56 7.73±0.49 12.20±0.29 

Sample 2 24.00±0.82 7.13±1.04 14.20±0.81 

Sample 3 30.00±0.00 5.9±0.35 15.55±0.31 

Day 12 

Sample 1 23.00±0.00 22.35±0.07 7.35±0.35 13.75±0.21 

Sample 2 23.00±0.00 5.70±0.14 15.55±0.07 

Sample 3 28.50±0.71 4.35±0.07 16.90±0.00 

Day 13 

Sample 1 22.20±0.42 21.30±1.07 

 

5.50±1.32 15.48±1.40 

Sample 2 22.00±0.00 4.73±0.27 16.30±0.41 

Sample 3 27.33±0.58 3.80±0.26 17.20±0.26 

Day 14 

Sample 1 22.00±0.00 20.75±0.86 6.65±0.42 13.47±0.62 

Sample 2 22.00±0.00 4.10±0.28 16.90±0.28 

Sample 3 26.75±0.96 3.25±0.06 17.78±0.10 

Day 15 

Sample 1 24.00±2.83 23.30±3.11 

 

6.02±0.86 14.52±1.30 

Sample 2 27.00±4.36 3.50±0.20 17.6±0.26 

Sample 3 27.67±2.08 2.90±0.26 18.23±0.38 

 

3.2. Gaseous emissions and Spirulina platensis cultivation 

         In the biological process, oxygen and carbon in the biomass were reduced to carbon dioxide after the 

injection of ambient air into the reactor. A decrease in oxygen concentration and an increase in CO2 are 
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indications of the composting process or biological activity. This is reflected in the observed changes shown 

in Table 1. The concentration of CO2 ranged between of 0.7-7.73 % while that O2 is 12.2-19.7 % for sample 

1. The CO2 concentration ranges for samples 2 and 3 are 2.4-7.13 % and 2.9-5.9 %, respectively. It should 

be noted that the highest CO2 recorded for sample 1 occurred after the loading period, with fresh air entering 

only through sample 3. No methane was recorded during the entire sampling period, which is a clear 

indication of the system’s contribution in GHG emissions reduction. sample 1 recorded the highest CO2 and 

temperature during the same period before the introduction of sample 2. 

          The final off-gas from the composting experiment conducted between November and December 2023 

was collected in a bag and the composition was sampled daily and used for Spirulina cultivation. The results 

are shown in Table 2. The highest CO2 concentration in the bag was 4.87 % with a corresponding O2 content 

of 16.4 %. The lower temperature of the approaching winter may have played a significant role in the 

relatively lower concentration of CO2 due to low microbial activity compared to the results in Table 1. 

 

Table 2. Composition of the off-gas in the air-bag. 

Parameter/Day Carbon dioxide (%volume) Oxygen (%volume) Hydrogen (%volume) 

Day 1 4.0±0.00 16.4±0.00 0.06±0.00 

Day 2 4.3±0.06 17.0±0.00 0.05±0.01 

Day 3 4.1±0.15 16.9±0.00 0.08±0.00 

Day 4 4.4±0.1 16.5±0.00 0.08±0.00 

Day 5 3.9±0.06 17.4±0.12 0.07±0.01 

Day 6 4.5±0.00 16.7±0.00 0.04±0.02 

Day 7 4.9±0.06 16.4±0.00 0.03±0.01 

Day 8 4.3±0.00 16.9±0.06 n/a 

Day 9 3.2±0.06 18.0±0.00 0.03±0.00 

Day 10 3.7±0.06 17.3±0.00 0.13±0.01 

Day 11 2.9±0.06 18.1±0.00 0.06±0.00 

Day 12 3.7±0.00 17.6±0.06 0.06±0.00 

 

3.3. Characteristic of the spirulina 

       Spirulina is known to thrive in an alkaline environment typically pH of 9.5 – 10.5 (Jiménez et al., 2003). 

Another advantage of this pH range is the prevention of contamination by phototrophic microorganisms. 

However, the process of Spirulina cultivation reduces the alkalinity of the environment by dissolving CO2, 

which tends to decrease H+ and carbonic anhydrase (Chen et al., 2020; Aditya et al., 2023). An active increase 

in CO2 injection reduces the pH of the culture medium, resulting in the inhibition of Spirulina growth. In this 

study, the pH of treatments AirA and AirB remained within the recommended range, with the lowest values 

of 9.55 and 9.28 recorded on the last day, respectively. Further sparging of AirB increased CO2 available in 

the medium, resulting in reduced pH as observed in Figure 2. However, this means more CO2 available in 

the medium for photosynthesis, resulting in higher Spirulina biomass productivity (16.9 and 14.0 mg/L/day) 

and specific growth (0.108 and 0.088 per day) compared to AirA. A similar improvement was observed for 

the biomass concentration (dry weight) of AirB compared to that of AirA. After seven days, AirB recorded 

220 mg/L dry weight (DW) compared to 209 mg/L DW of AirA (Figure 3). Figure 2 shows the temperature 

of the culture as measured by the pH metre. Except for the first day, the temperatures were maintained within 

the temperature range for Spirulina (25 – 35oC), ensuring the optimal environment for growth of the 

organism. 
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Figure 2. pH of the four treatments and temperature of the cultures during pH measurement. pH and 

temperature of treatment fed with off-gas (ofgA and ofgAT), off-gas with sparging (ofgB and ofgBT), air 

(AirA and AirAT), air with sparging (AirB and AirBT), respectively. RT is room temperature. 

 

      On the other hand, ofgB had the highest biomass productivity of 20.7 mg/L/day and specific growth of 

0.126 per day. This was as a result of increased CO2 injection and sparging. The biomass productivity and 

specific growth of ofgA were 19.5 mg/L/day and 0.114 per day, respectively. While both ofgA and ofgB 

received the same amount of CO2 from the air bag, resulting in a decrease in the pH of the cultures when 

compared to AirA and AirB, the additional sparging of ofgB increased its alkalinity more than that of ofgA 

and as well balanced the culture solution for optimal conditions. Notably, ofgA had a higher biomass dry 

weight in the first two days than ofgB. ofgB showed a sharp increase in pH in the last few days. Figure 3 

shows the increase in the dry weight from day 1 to day 7 of the measurement; cultures that receiving off-gas 

CO2 showed higher concentrations. At the end of the experiment, ofgB recorded 243 mg/L dry weight (DW) 

compared to 242 mg/L DW for ofgA (Figure 3). This clearly demonstrates the benefits of combining 

composting with Spirulina cultivation. Despite the improvements due to the off-gas, no significant difference 

in dry weight was observed between all the treatments.  

 

Results from other studies are presented in Table 3 and compared with this study. The maximum specific 

growth in this study is lower than in the others. Many factors may be responsible for this, including the 

difference in photobioreactor type. For example, De Morais & Costa (2007) compared flask and vertical 

photobioreactor in their experiment and recorded higher maximum specific growth with the vertical 

photobioreactor.  

 

Table 3. Comparisons of maximum specific growth with other literature reports 

Parameter  (De Morais & Costa, 2007) (Lu et al., 

2019) 

(Phang et al., 2000) This study  

CO2 conc. (%) 0.04 6 12 18 

  

2.93-4.87 

% 

(µmax) per day 0.24 0.18 0.19 0.16 0.49  0.51 0.62 0.57 0.126 

Culture media Zarrouk medium without 

bicarbonate 

Zarrouk’s 

medium 

Kosaric 

Medium 

Digested 

sago effluent 

KG 

medium 

Number of days 20 12 16 7 

µmax  - maximum specific growth   
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Figure 3. The biomass concentration of the culture for the 7 days of growth. 
 

4. Conclusions 

This study investigated the dynamics of CO2 evolution from a passive composting system and compared 

the dry weight, biomass productivity and specific growth of Spirulina fed with composting off-gas and air. 

Through a novel ‘staged composting’, the CO2 concentration of off-gas collected in an air bag increased to 

up to 4.87 %. A maximum of 7.73 % CO2 and no methane was also detected in a composting reactor. By 

replacing CO2 from the air with that from the composting off-gas, the study showed an increase of up to 32 

% in biomass productivity and 30 % in specific growth compared to reference experiments. These results 

demonstrated the importance of composting in providing a cheap source of CO2 in spirulina cultivation. 

Furthermore, the study demonstrated the possibility of increasing the CO2 concentration of composting off-

gas using a novel staged composting system. However, while the combination of composting and Spirulina 

cultivation in this study demonstrated innovation, further work is needed to optimise the composting process 

and increase the rate of conversion of CO2 to biomass using spirulina. Other parameters such as light intensity 

and CO2 concentration need to be optimised to ensure a pH balance, which is a limiting factor with increased 

CO2 supply in the Spirulina culture. Despite this limitation, this study contributes to existing the literature on 

harnessing CO2 for biomass production and provides new insights in organic matter composting through the 

staged process.  

Time (Day) 
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Abstract 

The wine-making industry plays a significant role in the agri-food sector and there has been an increasing 

emphasis on assessing its environmental impact. However, the estimation of emissions from field operations 

may lead to inaccurate analysis due to the lack of site-specific data. It is essential to examine the factors 

contributing to the environmental impact of grapevine cultivation, particularly due to its vulnerability to 

climate change while holding significant potential to mitigate it by acting as a C sink. The European project 

Oenotrace aims to establish a data-based infrastructure for tracing sustainable practices in grapevine growing. 

A major challenge within the project is to quantify the environmental impact of grapevine cultivation 

comprehensively. Therefore, novel sustainability metrics shall be used within the wine-making sector and to 

communicate with customers. Initially, the prevailing aspects contributing to the environmental impact have 

been identified in two different territories, Italy and Germany. An experimental sensor-based data acquisition 

architecture has been designed to estimate the CO₂ balance from anthropogenic and natural origins. The 

system leverages a carbon balance model to estimate the net CO₂ emission of the agroecosystem coupled 

with data from various sensors. A machine telemetry module allows for monitoring machine-related 

emissions during field operations. A further IoT-architecture was designed to transfer this approach to a 

commercial winery in Germany. This architecture encompasses the entire value chain to transfer the 

vineyard-related sustainability metrics to the customers. A thorough mapping of the state of the use case 

winery highlighted significant technical challenges. These will be overcome by means of IoT technology and 

a data platform, which will serve as a pivotal point for automated data aggregation and management, as well 

as the involvement of stakeholders. These first results propose a starting point for developing precise data-

driven environmental impact analysis approaches for future viticulture. 

 

Keywords: Grapevine cultivation, Sustainability assessment, Agro-environmental modelling, IoT system 

1. Introduction 

In the last decades, climate change has been identified as one of the most important threats to 

mankind because of its detrimental effects on politics, economics and society. Agriculture can be 

negatively affected by this phenomenon because of its fundamental changes in weather conditions, 

which can affect negatively crop growth (Droulia and Charalampopoulos, 2022). Meanwhile, the 

agricultural sector is responsible for about 30 % of the global anthropogenic emissions (both direct and 

indirect) contributing to climate change (Lal, 2021). Among the different sectors, the viticulture industry 

has undergone a profound transformation, spurred by a growing recognition of the urgent need for 

sustainability (Jackson, 2008). What was once primarily a pursuit of quality and yield has evolved into 

a complex balancing act between ecological stewardship, economic viability, and social responsibility 

(Pretty, 2008). Thus, the environmental impact of vine cultivation, being one of the most diffused crop 

worldwide, has received increasing importance throughout the wine-making industry. Specifically, the 

assessment of the wine-making carbon footprint has drawn enhanced attention because of its 

contribution to global warming (Navarro et al., 2017), while having the potential to mitigate its effects, 

by acting like a carbon sink (Tezza et al., 2019; Schultz H., 2022).  
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Since the 2000s, efforts to assess and mitigate the environmental impact of grape cultivation have 

evolved significantly, with Life Cycle Assessment (LCA) methodologies playing a pivotal role  

(Falcone et al., 2016). LCA can provide a comprehensive framework for evaluating the environmental 

performance of viticultural systems across all stages of production, from vineyard establishment to wine 

distribution focusing primarily on quantifying the environmental impacts associated with vineyard 

inputs, such as water, energy, fertilizers, and pesticides (Happonen et al., 2021). However, as the field 

has matured, the researchers have increasingly recognized the importance of considering A broader 

system boundaries and accounting for indirect impacts (Rouault et al., 2020). In viticulture, LCA 

involves a multi-step process defining the system boundaries, collecting data on grape production inputs 

and outputs, using a life cycle inventory model to measure environmental flows associated with each 

stage of the grape growing process and the results are analyzed and interpreted to identify opportunities 

for improving the environmental performance (Volanti et al., 2021).  

Moreover, recent advancements in environmental monitoring techniques have facilitated more 

precise assessments of agriculture environmental impact (Zaks and Kucharik, 2011). For example, eddy 
covariance methods, originally developed for atmospheric research, have been adapted for use in 

vineyard ecosystems to measure carbon dioxide (CO2) exchange between the canopy and the atmosphere 

(Baldocchi et al., 2001). By continuously monitoring fluxes of CO2, these techniques provide valuable 

data for quantifying the carbon sequestration potential of vineyards and identifying opportunities for 

emissions reduction (Callesen et al., 2022). Eddy covariance systems consist of gas analyzers and a 

sonic anemometer mounted on towers in vineyards to measure carbon dioxide exchange between the 

vine canopy and the atmosphere. Therefore, monitoring CO2fluxes over time allows for the evaluation 

of management strategies to reduce emissions and understanding the level of carbon sequestration in 

vineyard soils (Ibrom et al., 2007).  

Nevertheless, the two abovementioned methodologies while giving fundamental insights about the 

environmental impact of production value chain at different magnitudes, they also face some drawbacks 

for high-resolution analysis. Specifically, LCAs rely on databases encompassing data acquired at the 

regional or national level when primary data is not available and the Eddie Covariance system is used 

to analyse the agro-ecological emissions fluxes at the whole field, accounting for the entire agro-

ecosystem (Chiriacò et al., 2019). 

To overcome such limitations, in this paper, a novel IoT architecture designed to quantify the CO₂ 

emissions produced during grapevine cultivation and to transfer this information to the bottle is depicted. 

The architecture leverages an array of sensors and agronomical models to account for anthropological 

and biological gas emissions following a Precision Agriculture approach aimed at assessing the 

variability of carbon emissions up to the plant level. The aim is to create an infrastructure for addressing 

the environmental impacts of grape cultivation at higher spatial resolution, based on field-specific data 

and to provide information to the different actors playing in the wine value chain, from the farmer to 

consumers and other stakeholders. 

2. System description  

At first, the wine-making value chain of the Rhein Valley has been explored to identify the different 

actors and production steps involved in the wine making to understand the technical boundaries of the sector 

in Germany. The resulted information flow is illustrated in Figure 1. Subsequently, tree main areas have been 

detected where the establishment IoT architecture would be required for carrying out the sustainability 

assessment: (i) Empirical assessment of gas fluxes during the cultivation phase; (ii) Emissions data transfer 

through the winery stage; and (iii) Data collection in a cloud platform. 

To achieve this, the first step was to identify the stakeholders, which directly contribute to the production 

value chain. To achieve that, a state winery with variegate production cycles has been identified as use case. 

A collaboration with a winegrower association has been established to explore the intricate dynamics between 

farmers needs and law regulations. The potential consumer response has been assessed based on the expertise 

of the consortium as a whole and the results of a literature review. 
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Figure 1. Conceptual structure of the IoT architecture boundaries and involved stakeholders. 

2.1. Field empirical data  

The acquisition of the carbon emissions in the field from human operations and within the agro-ecosystem 

are assessed using data acquired by different sensors, which are utilised as inputs in an agro-environmental 

model in order to process and quantify CO2 emissions. . A scheme of the different type of data required is 

illustrated below (Figure 2). The agro-environmental model integrates the GRASSVISTOCK model (Bellini 

et al., 2023), which simulates the daily accumulation of biomass and carbon fluxes in grasslands, with the 

Roth C module (Coleman and Jenkinson, 1996), used for estimating organic carbon turnover and soil 

respiration. The model is trained with empirical data retrieved from field trials during the growing season in 

two different vineyards located in Rüdesheim am Rhein, Germany (49° 59' 20.70'' N, 7° 55' 58.29'' E) of 

approximately 1 ha, and another located Castelnuovo Berardenga, Italy (43° 22' 59.83'' N, 11° 29' 14.81'' E) 

of 4 ha. The field trials follow a data acquisition protocol.  

This protocol considers various factors, such as plant physiological parameters, weather data, and soil 

data, to determine the carbon balance of the vineyard ecosystem, considering the above-ground biomass of 

both vines and weeds. Initially, the vineyard is divided into a minimum of three sub-parcels based on the 

vigour of vines, allowing for a comprehensive characterization of the plant diversity within the field. The 

data acquisition protocol includes the following parameters for measurements on one hectare:  

- Weather data: A weather station equipped with sensors for measuring precipitation, air temperature, and 

humidity is used to acquire daily microclimate data.  

- Soil data: Four soil probes are used to monitor the daily soil moisture at 10, 30, and 50 cm, while in 

parallel soil texture measurements are used to estimate the plant water availability.  

- Vines: On a monthly basis, the geometrical parameters of the canopy (e.g. height, leaf area and shoot 

length), are measured using a light detection and range (LiDAR) laser scanner, an RGB and 
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hyperspectral cameras. Whereas   canopy light interception is determined by means of ceptometers. 

Additionally, the harvested grapes’ °Brix, fresh and dry weight are recorded. To ensure the accuracy of 

these measurements, a destructive validation analysis is required, which involves counting the bud-to-

shoots ratio, manually weighing and measuring the shoots, and leaf defoliation.  

- Inter-row weeds: The presence of weeds in the inter-row of a vineyard can significantly impact the 

carbon balance of the entire ecosystem. To monitor this, the height of the weeds is obtained for each 

row, considering the various species present. Ceptometers are utilised to evaluate the extent of ground 

cover by the weeds. To validate the data, one sub-sample per homogeneous sub-parcel undergoes 

analysis of its dry weight.  

- Upscaling data: In order to acquire meaningful information at larger scale, as vigour variability, spectral 

indices measurements (e.g. NDVI) is carried out at least three times during the growing season. 

- Machine data: a machine telemetry module is utilised to monitor machine-related emissions during field 

operations. The module, known as the EXAtrek T2 module (EXA Computing GmbH, Hamm, Germany), 

is an established telemetry device that connect to the ISO/CAN bus system of the tractor. It is capable 

of monitoring and recording machinery usage and calculating operational costs of agricultural machines 

and implements, as well as fuel consumption. Moreover, the module provides an estimation of CO₂ 

emissions produced by the machinery based on the executed operations. This data will be integrated into 

the agro-environmental module to account for machine emissions throughout the year as part of the 

cultivation carbon balance. 

As shown in Figure 2, data from the various sensors is sent to a custom online platform. This platform 

stores the algorithm for the abovementioned model and machine-related emissions estimation. It also stores 

the resulting information and generates a QR code for the specific field data to be printed on the 

corresponding wine bottle, allowing it to be shared with the different parties involved in the wine production 

process. 

 

 

 

Figure 2. Schematic representation of the different type of data for the in-field emission assessment. 

2.2. Grape emission traceability 

The proposed architectural plan has been expanded to incorporate the inclusion of a commercial winery. 

This addition aims to assess its suitability and to evaluate the impact of grape harvesting and transportation 

on the processing facilities in a real-world commercial environment. The state-owned winery Kloster 

Eberbach was selected as the initial point to establish a concrete data flow for the development of an IoT 

system. The resulting architecture is illustrated in Figure 3. The previously developed system is employed to 
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assess the actual growing conditions in an experimental field and validate them in the commercial vineyard 

case study. Furthermore, the first analysed product will adhere to the one-vineyard-one-bottle approach, 

where a wine label is created with grapes from a single vineyard. As a first step, this simplifies the data 

acquisition process while being representative of a commonly employed technique in the Rhine Valley wine-

making region.  

In the initial phases, the transportation of grapes from the fields to the processing facility is a pivotal 

process for ensuring product traceability. A potential solution lies in the utilisation of the data platform in 

conjunction with the EXAtrek tracking device, which holds significant promise in addressing these 

challenges. Specifically, the telemetry device’s capacity to monitor machinery movements facilitates the 

tracing of the origin of harvested batches. Furthermore, the integration of the latest online interface with the 

project’s data platform via API facilitate the automated management of this information. 

The use of software tools is prevalent in managing various processes; however, there is significant 

diversity as four different types of software are utilised for specific tasks. This diversity is evident in the 

vineyard, where distinct tools are employed for documentation and task management. Furthermore, separate 

software applications are utilised for grape reception at the cellar and winemaking. Additionally, the winery 

encounters challenges in meeting legal documentation required by the regulative administration, such as the 

“Herbstbuch”, necessitating manual extraction of information related to yield, harvest data, and grape must 

quality. This analysis underlined the lack of a certain degree in the interoperability between the management 

tools. Leading to loss of information (Figure 3 “Winemaking”) and impeding the possibility of data collection 

automation. 

 
Figure 3. Schematic of the commercial winery value chain with specification of the different subsystems. 

2.3. Data platform 

All data is aggregated and stored on a data cloud. The steps along the value chain can be verified using 

blockchain technologies. On a central web application, data analysis and information provision take place. 

Its backend contains the acquired data of the analysed production cycle, integrating the machine data 

analytics as well as the agro-environmental model for calculating the sustainability indicators. These provide 

information about the CO2 footprint at the field and winery level. Another important aspect of the data 

platform layer is the link to external web resources providing open data related to weather, as well as the 

connection to external applications of associated partners using their APIs. 

In the platform frontend, the accessibility to information is tailored to provide the necessary data for other 

subsystems management or the value chain actors. There are possibilities for data exchange to provide 

additional field data from hyperspectral imagery and LiDAR laser scanning of the grapevines, which is 

mainly processed in the ecosystem model. Additionally, using the sustainability indicators, the frontend 

provides means for grower associations and public authorities to evaluate the sustainability of different 
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production realities. A digital product passport is provided as a mean to communicate to consumers the 

sustainability indicators related to the specific bottle of wine they purchase., offering easily understandable, 

yet fact-based and quantified information. 

Interoperability between the different layers, as well as future scalability and adaptability, is ensured by 

the development of suitable APIs and the adoption of current standardized data exchange models for 

managing information from different domains. This includes support for standardized and open data formats 

such as XML, JSON, PHP, and HTML protocol. 

3. Discussion 

As described above, the wine value chain has been divided in the focal parts contributing negatively to 

CO₂ emission. Subsequently, two principal phases have been described, indicating the necessity to apply 

different systems because of their intrinsic distinct characteristics, the field management and the 

transformation facility. In the first, the main contributors to the gas emissions have been identified in the 

agricultural machinery usage and the plants’ respiration. On one hand, the machinery emissions can be 

estimated with relative ease, on the other hand the contribution of plants can be complex due to their dual 

role in emitting and immobilizing the atmospheric CO₂. Therefore, among other the devices, various optical 

sensors are implemented to estimate the plants’ biomass growth. This is considered an important aspect 

because of the contribution of the biomass to the soil carbon balance. The soil is considered as a factor into 

the carbon balance model by using the agro-environmental data as a proxy for its contribution in the vineyard 

system. 

The second phase for the sustainable practice’s traceability is the transformation stage from grape 

transportation to the bottle. During this phase examination various challenges have been encountered. 

For example, most high-quality wines are more suitable for a traceability solution like Oenotrace, because 

they are bottled directly by producers. This allows them to oversee the entire value chain up to the bottle, 

where sustainability information is communicated using methods such as QR codes on the label. On the 

contrary, utilising only one commercial case study cannot be fully representative of the complex variability 

in the different business models pursued from all the wineries, especially when comparing different countries. 

This limitation is overcome by the focus of the project on the assessment of sustainable practices, which 

could be performed by the methodology proposed. In this context, a fundamental aspect is the scalability of 

the methodology leveraging open-access data on broader surfaces, like satellite imagery, to facilitate its 

adoption at wide scale. 

Furthermore, a discrepancy has been found between consumer demands as reported by experts and 

findings from literature. While literature indicates that customer behaviour is a key driver in implementing 

sustainable production practices (Dangelico and Vocalelli, 2017), and that consumers increasingly demand 

sustainable wine and are willing to pay premium prices for environmentally friendly production (Baiano, 

2021), experts observed a gap between consumers’ expressed desire for sustainability and their actual 

purchasing behaviour, with a tendency to choose cheaper products. Therefore, both literature and expert 

feedback agree that information needs to be easily understandable, considering the brief time consumers 

spend acquiring such information while shopping. 

In the context of data stewardship, a significant outcome was the recognition of growers’ heightened 

sensitivity towards data privacy. While the industry generally embraces novel data-driven business models, 

it necessitates a discernible value proposition. Notably, it is crucial that the sustainability monitoring 

envisioned in Oenotrace does not devolve into a form of digital surveillance. Therefore, it should not be 

employed for direct comparisons among wineries, given the substantial variability in their operational 

contexts, but should focus on the comparison between different cultivation management. 

4. Conclusions 

Oenotrace aims to apply interoperability techniques by means of precision viticulture technologies in 

order to enhance the sustainability of the wine value chain. This architecture provides new metrics for 

customers to improve their consciousness regarding environmental sustainability of wine production while 

supporting a fair product value for farmers’ economical sustainability. The capability of the technology is 

not limited only to the wine industry but has the potential to be adapted to other food value chains, particularly 

those associated with specialty crops such as olive oil and fruit juices, without excluding its use on arable 
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farming. This would be possible considering and adapting the system to the intrinsic variability of each 

production reality. Simultaneously, this approach presents an opportunity for IT companies to offer new 

services based on the principals for automated traceability digital infrastructure. For instance, growers could 

receive immediate feedback on the financial impact of implementing Precision Agriculture practices. Which 

still is a deterring question in novel technologies adoption. In this regard, it is crucial to ensure an appropriate 

level of anonymity to preserve growers' privacy. Furthermore, public authorities and professionals of the 

sector could gain objective insights into the sustainability of growing practices to guide their decisions. 
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Abstract 

Minimising water and fertiliser consumption is of high importance for the sustainability of greenhouse 

cultivation in the Mediterranean.  Cascade soilless systems, have the ability to increase the water and nutrients 

use efficiency, while significantly reducing the water and nutrients leaching into the environment. In this 

study, a cascade cropping system in which the drainages from a hydroponic cucumber crop were recycled to 

irrigate a hydroponic melon crop was evaluated. The results showed that the recycled nutrient solution did 

not affect the yield of the melon plants compared to those irrigated with a standard nutrient solution. 

Additionally, the leaching of nitrates and phosphates into the environment was decreased by 75% and 86%, 

respectively. Finally, the implementation of the cascade system, increase by 22% the water use efficiency 

compared to the cucumber monoculture system.  

Keywords: drainage management; water recirculation; fertilisers use efficiency; water productivity; 

greenhouse. 

1. Introduction 

The high productivity of greenhouse crops is related to high resource consumption. The soilless 

cultivations where they are growing in a substrate, are aver-irrigated (25-40%) in order to avoid salt 

accumulation in the rhizosphere. In closed hydroponic systems, the drained nutrient solution is collected and 

reused, maximising the water and nutrient use efficiency while significantly reducing the environmental 

impact of agriculture (Thomson et al., 2007; Massa et al., 2020). However, the use of low-quality irrigation 

water prevents the application of a totally closed hydroponic system (Katsoulas and Voogt, 2014). 

Consequently, after a certain number of recycles, it becomes necessary to remove the drainage nutrient 

solution to prevent the high concentration of toxic ions in the rhizosphere (Carmassi et al., 2005; Massa et 

al., 2010). As a result, many growers in the Mediterranean region act their systems as open hydroponic 

systems polluting the groundwater, due to the leaching of nitrate and phosphate ions.  

A sustainable approach is the recycling and reusing of the drainage nutrient solution, to meet the needs 

of a secondary crop with higher salinity tolerance through a cascade hydroponic system. In these systems, 

the drainage of a primary (donor) crop, is collected and reused for the irrigation of a secondary (receiver) 

crop, which is more resistant to salinity (Karatsivou et al., 2023). While the drainage solution is reused, it 

becomes progressively more saline, but the concentration of nutrients such as nitrate and phosphate ions 

significantly decrease (Muñoz et al., 2010). A cascade hydroponic system is based on the idea of the circular 

economy, where according to the EU (EU 2008), resources remain within the system for the purpose of reuse 

and reducing waste in the environment. Additionally, a cascade hydroponic system is compatible and 

economically sustainable for lower-tech hydroponic installations, which are predominant in the 

Mediterranean region (Elvanidi et al., 2020). 

Some preliminary studies were conducted on soil-grown cultivations such as in California's San Joaquin 

Valley. The system was developed to reuse high-conductivity drainage irrigation water on plants with 

moderate sensitivity to salinity as well as on halophytes (Grieve and Suarez, 1997; Shannon et al., 2000). 

However, there were difficulties concerning its technical application. In experiments conducted by Muñoz et 

al. (2010), the drainage solution from a hydroponic tomato crop was used to irrigate a soil-grown tomato 

crop. The adoption of this system resulted in a 21% reduction in the environmental footprint of the secondary 

crop.  

More recent studies, focuses on the strategy of reusing drainage solution in crops with progressively 

increasing salt tolerance and lower input requirements. One of the main issues is finding alternative cultivated 

species that remain productive under high salinity conditions (Grieve and Suarez, 1997). Additionally, the 

heterogeneity of crops within a system may necessitate greater technical specialisation in system 

management (Massa et al., 2020). Moreover, the ratio of the cultivated area of primary to secondary crops 
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required by each system is one of the key factors in selecting the appropriate "pairing" of species to be 

cultivated. The economic performance of the secondary crop can significantly limit the income of producers, 

as the cultivation of lower input-demanding crops often results in reduced yield per unit area. Therefore, 

further investigation is necessary to find suitable combinations and develop profitable cascade cropping 

systems. 

Aim of this study was to evaluate the sustainability and the performance of a cascade hydroponic 

cultivation system, in which the drainages from a cucumber (donor) crop were collected and reused to meet 

the needs of a melon (receiver) crop. The findings of this research are expected to significantly contribute to 

the advancement of cascade cultivation systems, while simultaneously providing solutions for minimising 

water and fertiliser requirements in the agricultural sector. 

2. Materials and Methods  

2.1. Experimental Design 

The experiment was conducted at the greenhouse park of the Laboratory of Agricultural Constructions 

and Environmental Control, of the Department of Agriculture Crop Production and Rural Environment at the 

University of Thessaly, in the area of Velestino (39° 22', 22° 44', 85 m). 

The transplanting of the primary cucumber crop (Cucumis sativus cv. Columbia) took place on March 15, 

2023, in two compartments of a gothic-type greenhouse with a polyethylene roof covering, each with a total 

area of 240 m². Each compartment consisted of 6 hydroponic channels, each 20 m in length. The roof of each 

compartment was equipped with a continuous opening for ventilation, and the cooling system consisted of a 

wet pad and a fan. The plants were received in rock wool cubes (Grodan, Netherlands) (7.5x7.5 cm) and 

placed in perlite bags (Hydroperl, NORDIA AGRO, Athens, Greece), with a total volume of 33 L. The 

planting density was 1.08 plants m-2. The primary crop was fertigated with a nutrient solution for cucumber 

crops in open systems (Savvas, 2011). The climate was automated controlled via a climate computer (Sercom, 

Netherlands). The irrigation system was activated through an automation system (Argos Electronics, Athens, 

Greece). 

The secondary crop was developed in a modified simple arched greenhouse, with a total ground area of 

160 m² and a cultivated area of 86 m². Eight hydroponic channels, each 12.5 m long, were installed inside 

the greenhouse. A fog system (Air Petri, Lucca, Italy) was used for greenhouse cooling, while climate and 

irrigation were automatically controlled (Argos Electronics, Athens, Greece). Transplanting took place on 

April 10, 2023, and the cultivation period lasted a total of 101 days. The melon seedlings (Cucumis melo cv. 

Masada) were received in rock wool cubes (Grodan, Netherlands) (7.5x7.5 cm) and placed in perlite bags of 

33 L (Geoflor, Athens). The planting density was set at 2.25 plants m-2. The experimental design included 

two treatments: the "control" treatment, where the melon crop was irrigated with a standard hydroponic 

solution for melon crops in open systems according to Savvas (2011), and the "cascade" treatment, where the 

melon plants were irrigated with 100% drainage nutrient solution from the cucumber crop, after pH 

adjustment. 

To evaluate the system's performance, a series of measurements were conducted concerning the total 

water uptake, nitrogen leaching, and water use efficiency. These measurements were carried out on a weekly 

basis, allowing for monitoring the system's progress. 

2.2. Statistical Analysis  

The comparison of mean values was performed using One Way ANOVA at a 95% confidence level (p ≤ 

0.05) with the statistical package SPSS (Statistical Package for Social Sciences, IBM, Armonk, NY, USA). 

Additionally, the Least Significant Difference (LSD) method was used at a 5% significance level. 
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3. Results and Discussion 

3.1. Water Consumption 

A necessary condition for the proper design and implementation of a cascade cropping system is the 

proper ratio of cultivated area in order for the volume of the drainage nutrient solution from the primary crop 

to meet the water consumption needs of the secondary crop. 

The total volume of the irrigation and drainage nutrient solution in the primary crop was 331.5 L m-2 and 

136.2 L m-2, respectively. For the irrigation of the secondary crop cascade during the cultivation period, a 

total of 385.8 L m-2 of the drainage solution of the primary crop was used, with a leaching fraction of 24%. 

The nutrient solution absorption in the cascade treatment did not differ from that in the control. According to 

the aforementioned values, the drainages from 1 m2 of the primary cucumber crop were sufficient to meet 

the irrigation needs of 0.35 m2 of the secondary melon crop. The ratio of cultivated area between the primary 

and secondary crops was, therefore, 3:1. More specifically, 1 m² of the cascade system studied was composed 

of 0.74 m² of the primary crop and 0.26 m² of the secondary crop. Additionally, the drainage nutrient solution 

that was ultimately discharged into the environment amounted to 9.6% of the initial irrigation solution 

volume of the primary crop, contrary to the 40% of the single cucumber crop (Table 1). Few studies have 

evaluated the ratio of the cultivated area between primary and secondary crops. García-Caparrós et al. (2018), 

reported a 1:4 ratio in a rosemary crop when irrigated with 100% drainage from a hydroponic melon crop. 

Incrocci et al. (2003) used the discharged solution from a semi-closed tomato cultivation system to irrigate a 

more salt-tolerant tomato crop. Their conclusions indicated that the discharged solution was sufficient to 

meet 50% of the secondary crop's water needs. However, contrary to the present study, Neocleous and Savvas 

(2016), in a hydroponic melon cultivation, observed that the crop consumed significantly less water when a 

slight increase in EC was recorded. 

Table 1. Cumulative nutrient solution irrigation and drainage (L m-2) during the cultivation period 

 Irrigation  Drainage 

Primary Crop (cucumber) 331.5 136.2 

Secondary crop control (melon) 401.7 109.9 

Secondary crop cascade (melon) 385.8 90.2 

Cascade system (cucumber+melon) 245.4 23.6 

3.2. Water Use Efficiency 

Water use efficiency (WUE) was calculated as the total fruit production (kg m⁻²) in relation to the total 

water consumption (m³ m⁻²). The results indicated a significant increase of the WUE when the cascade system 

was implemented. More specifically, the application of the cascade system increased the WUE by 22.1 and 

131.8% compared to the cucumber and melon monoculture system, respectively (Table 2).  

Similar results were also presented by Muñoz et al. (2017) where the reuse of drainages from a soilless 

tomato crop did not affect the WUE of a soil-based tomato crop. In case the cascade cropping system is 

considered as a single system and the drainage solution used for the irrigation of the secondary crop is not 

considered as a separate input to the system, then the WUE of the secondary crop increases significantly 

(Elvanidi et al., 2020). 

Table 2. Water use efficiency (kg m-3) (± S.E.) of the primary, secondary crop control, secondary crop 

cascade, and cascade system. Different letters indicate the statistically significant differences (p<0.05) 

 WUE 

Primary Crop (cucumber) 46.7±1.5 b 

Secondary crop control (melon) 24.6±1.4 c 

Secondary crop cascade (melon) 26.4±3.2 c 

Cascade system (cucumber+melon) 57.1±1.3 a 

3.3. Total nitrate and phosphate leaching into the environment 

The total leaching of N and P into the environment throughout the cultivation period, for both the primary 

and secondary crops as well as the combined cascade cropping system, are shown in Table 3. The total nitrate 
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drainage from the control and the cascade melon treatment presented similar results. The higher values 

recorded in the control treatment were a result of the higher drainage volume. Considering the two crops as 

a combined system, a significant reduction in nitrate leaching into the environment was observed. 

Specifically, from 1 m² of the primary crop resulted in an 70% reduction in nitrate ion leaching into the 

environment compared to the amount that would have been released without the implementation of the 

cascade cropping system. A significant reduction was also observed in the total phosphate discharge. As 

shown in Table 3, the total phosphate leaching from the cascade treatment was 50% lower than that of the 

control. Notably, the reduction was even more significant with the cascade cropping system where phosphate 

leaching from 1 m² of the primary crop decreased by 80%. This system effectively absorbs significant 

amounts of key macronutrients responsible for groundwater pollution. 

Table 3. Mean total nitrogen and phosphorus leaching (g m-2) (±S.E.) of the primary, secondary crop 

control, secondary crop cascade, and cascade system. Different letters indicate the statistically significant 

differences (p<0.05) 

 Nitrogen leaching Phosphorus leaching 

Primary Crop (cucumber) 18.4±0.1 c 2.8±0.1 c 

Secondary crop control (melon) 22.4±1.6 a 4.0±0.2 a 

Secondary crop cascade (melon) 20.9±0.2 b 2.1±0.1 b 

Cascade system (cucumber+melon) 5.44±0.1 d 0.6±0.1 d 

The results of related studies conclude that the implementation of a cascade cropping system significantly 

reduces environmental impacts (Incorci et al., 2003; Muñoz et al., 2010; García-Caparrós et al., 2015; 

Elvanidi et al., 2020). García-Caparrós et al. (2018) emphasised that the application of a cascade cropping 

system resulted in water savings and nitrate removal, which is a significant advantage in arid and semi-arid 

regions, such as the Mediterranean. 

3.4. Crop Yield 

To assess of the productivity of a cascade cropping system, the evaluation of the yield of the secondary 

crop in considered necessary. In this study, the fruit harvest for both treatments began on the 71st day of the 

experiment and lasted for 32 days. As shown in Figure 4, the total cumulative yield did not differ between 

treatments. Specifically, at the last harvest, the total yield for both treatments was 9.8 kg m-2 and 9.7 kg m-2 

for the control and the cascade treatment, respectively. 

 
Figure 4. Cumulative yield (±S.E.) of the secondary crop (kg m-2). Empty dots indicate the control treatment; 

filled dots indicate cascade treatment.  

Melon is characterised as a moderately sensitive to salinity crop, as opposed to cucumber crops that are 

in general more susceptible to salinity (Savvas, 2011). Bar-Yosef (2008) reported that an increase in EC in 

the root zone from 2.1 to 4.6 dS m-1 in a closed hydroponic melon cultivation system reduced yield by 19.6%. 

The adverse effects of high EC in the root environment of melon plants can be mitigated by using grafting 

techniques (Colla et al., 2006). Indeed, the results of this study are consistent with those of Romero et al. 

(1997), where grafted melon plants did not show a reduction in yield even when exposed to an EC of 4.6 dS 

m-1. Similar studies have recorded a decrease in the yield of the secondary crop with the application of a 

coupled system (García-Caparrós et al., 2018, Elvanidi et al., 2020, Avdouli et al., 2021, Karatsivou et al., 
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2023). In experiments where the secondary crop was grown in soil (Muñoz et al., 2010; Muñoz et al., 2017), 

there was no significant decrease in yield, making it a sustainable solution for waste management. 

4. Conclusions 

The combination of primary and secondary crops is the main factor for the sustainability of a cascade 

cropping system. The composition of the drainage solution from the primary crop should meet the nutrient 

needs of the secondary crop. The reusing of cucumber drainages to meet the needs of a soilless melon crop 

proves to be a sustainable combination. The reuse of the drainage solution did not negatively affect the yield 

of the melon crop. At the same time, significant amounts of major pollutants were removed, making the final 

discharged solution safer for the environment. The simplicity of implementing the system and the lack of 

need for specialised knowledge for its application make it an ideal solution for addressing the environmental 

impacts caused by greenhouse production. 
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Abstract 

Lavandin (Lavandula x intermedia) is an aromatic species widely cultivated for its essential oil (EO), 

leading to many commercial applications. However, since its EO yield is typically within the range of 1-5%, 

the vast majority of the plant material arises as residual biomass, comprising more than 95% of the raw 

vegetal material. This underscores the importance of exploring comprehensive biomass utilization and 

strategies to minimize waste generation. Hydrothermal liquefaction (HTL) has emerged as leading technique 

for residual biomass conversion, using reactors operating under standardized conditions. This process 

generates different fractions, including a solid (known as hydrochar) a liquid and a gas phase, with rich 

chemistry. The liquid fractions may hold promising applications in the development of green alternative 

phytosanitary products for agriculture. Hydrochar has previously demonstrated notable efficacy as an 

agronomic soil improver; whereas along this study demonstrated promising potential as a natural and low-

toxicity herbicide for the liquid phase, showing anti-germinative effects on test model seeds, including 

Lactuca sativa and Lolium perenne. Results showed full inhibitory effects at concentrations exceeding 5-

10% (v/v). These findings may lead to the development of novel plant-based phytosanitary treatments derived 

from residual sources, aligning with the principles of the circular bioeconomy as outlined in the UN's 2030 

Agenda. Harnessing lavandin biomass in this manner not only minimizes waste release but also promotes 

sustainable agricultural and environmental practices. 

 

Keywords: circular bioeconomy, hydrothermal liquefaction (HTL), Lavandula x intermedia, residual 

biomass valorization, zero-waste generation. 

1. Introduction 

Lavandin (Lavandula x intermedia) is as a hybrid species resultant by the crossing between lavender (L. 

angustifolia Mill.) and spike lavender (L. latifolia Medik.), with its development primarily focused towards 

the increase of essential oil (EO) yields. Traditionally associated with regions such as French Provence, its 

cultivation has spread globally, experiencing a notable expansion in countries belonging to the Mediterranean 

basin. Despite lavandin possesses a distinct chemical composition to lavender (renowned for its use in high-

value perfumes), its production generates significant demand in many industrial sectors, especially as a 

versatile flavouring agent. Specifically in Spain, lavandin cultivation has shown a substantial increase, from 

1,600 hectares in 2009 to a notable 7,200 hectares by 2021, predominating the varieties 'Super' and 'Grosso' 

(Ortiz de Elguea-Culebras et al., 2024). Consequently, an emerging culture has prospered in certain Spanish 

regions, such as La Alcarria in central Spain, where annual festivals and concerts attract many national and 

international tourists. These events also include different gastronomic experiences around the cultivation of 

lavandin, along with the development of plant-based products such as ice creams, soaps, aromatic liqueurs, 

etc. 

Essential oils are generally extracted through distillation processes, which may involve hydro-distillation 

in stills or Clevenger-type apparatus, especially for home-scale production. However, on a larger industrial 

scale, steam distillation emerges as the predominant technique to efficiently extract these vegetable oils. 

Considering that extraction yields rarely exceed 5% (Kara and Baydar, 2013; Kara and Üniversitesi, 2012; 

Périno-Issartier et al., 2013; Pokajewicz et al., 2023), this causes the release of more than 95% of an 

undervalued plant biomass that is accumulated in the distillery’s facilities, thus requiring an appropriate 
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management. Despite being traditionally used as a source of thermal energy by burning it in the boilers of 

the distillers, many of them currently use more efficient alternative sources of energy production.  

Considering that distilled plants of lavandin still retain different non-volatile metabolites with significant 

biological potential, subsequent extracts can find applications across diverse industrial sectors. For example, 

Ortiz de Elguea-Culebras (2017) extensively advocated for their utilization in the development of 

agrochemicals. This author demonstrated the efficacy of using lavandin ethanolic extracts as biocontrol 

agents, unveiling their (1) repellent capabilities against model phytophagous insects such as Leptinotarsa 

decemlienata, Spodoptera littoralis, Myzus persicae or Rhopalosiphum padi; (2) for its phytotoxic effects on 

test seeds such as Lactuca sativa and Lolium perenne; along with (3) antifungal properties against Aspergillus 

flavus, a common phytopathogen in numerous crops. Although this approach offers a promising alternative 

for utilizing agroforestry waste and increasing the overall profitability of its cultivation, a non-extractable 

fraction remains, primarily composed of lignocellulosic material. Therefore, it is essential to valorise this 

fraction to achieve zero-waste generation, aligning with the bioeconomy principles of the UN's 2030 Agenda. 

Alternatively, the hydrothermal liquefaction (HTL) is becoming a leading technique for biomass 

decomposition, using reactors under rigorously controlled conditions. This process covers temperature ranges 

from 250 °C to 450 °C and pressures exceeding 100 bar. The thermal process generates a wide range of 

fractions, covering a solid (hydrochar), liquid (water soluble phase and bio-oil)  and gas phase (Castello et 

al., 2018; Toor et al., 2011), standing out for its rich chemistry. The published results anticipate promising 

properties for the development of phytosanitary eco-products with potential for application in agroforestry. 

For instance, Barbero-López et al., (2024) demonstrated the potential of the hydrothermal liquids as a low 

ecotoxicity antifungal agent against wood-decaying fungi. 

This study assesses the potential phytotoxic effects of the aqueous phase derived from the hydrothermal 

liquefaction (HTL) of distilled lavandin biomass. The objective of the research is to explore the viability of 

the development of plant herbicides from agro-industrial residues, through comprehensive valorization of the 

solid waste generated after EO extraction of cultivated lavandin. 

2. Materials and Methods  

2.1. Vegetal material collection 

Vegetal samples of Lavandula x intermedia Super and Grosso were harvested in 2022 during the 

flowering season by Vallejondo Esencial SL (Villares del Saz, Cuenca). Following harvest, essential oils 

were extracted through steam distillation using an industrial distillery. Subsequently, the distilled biomass 

was dried and then provided to the Department of Chemistry of the University of Eastern Finland for further 

processing. 

2.2. Hydrothermal liquefaction (HTL) process 

The HTL process was executed according to the following procedure: Initially, a mixture comprising 

20% dry distilled biomass of L. x intermedia Super or Grosso and 80% water was prepared and introduced 

into the HTL reactor. Subsequently, a pressure of 10 bars of nitrogen was introduced into the atmosphere 

within the HTL reactor. The temperature was set at 300°C and maintained for 90 minutes, while ensuring 

continuous stirring to facilitate optimal reaction kinetics and product yield. The mixture was then cooled 

down in the reactor overnight. After the reaction, the two remaining fractions were mechanically separated: 

the solid (or hydrochar) from the liquid aqueous phase, with the latter subsequently stored in a refrigerator at 

5°C. Previous to biological evaluation, the liquid fraction was decanted and filtered using a 0.45 µg syringe 

filter. 

2.3. Phytotoxic evaluation of the aqueous phase 

The potential herbicidal capacities of the aqueous phase produced from the hydrothermal liquefaction 

(HTL) process of L. x intermedia were evaluated by conducting assays with model seeds of Lactuca sativa 

L. var. Carrascoy (dicotyledonous) and Lolium perenne L. var. certified (2n) (monocotyledonous) obtained 

from Semillas Fitó (Spain). The experiment involved 2.5 cm diameter paper filters introduced in 

quadruplicate in 12-well plates, with 10 seeds each (L. perenne were prehydrated for 24 hours). Subsequently, 
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700 µl of each sample, prepared in concentrations ranging from 0-100% (v/v) in H2O were added to the wells. 

The plates were then sealed in plastic bags and incubated at 22°C with a photoperiod of 16:8 (L:D). 

Germination rates were recorded every 24 hours for 7 days for L. sativa and 10 days for L. perenne. Finally, 

25 random seedlings were collected and the lengths of roots (L. sativa) or roots and leaves (L. perenne) were 

measured using the Image J software. 

3. Results and Discussion 

 

The germination inhibition percentages (%GI) for L. sativa and L. perenne seeds, following the 

assessment of the HTL aqueous phase of lavandin Super and Grosso, are presented in Tables 1 and 2, 

respectively. 

 

Table 1 Germination (%) of L. sativa seeds in the presence of Lavandin Super and Grosso HTLs. 

Concentration 

(% HTL/H2O)  

1 day 4 days 7 days 

Super Grosso Super Grosso Super Grosso 

100.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

50.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

25.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

12.50 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

6.25 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

3.13 0.00±0.0 0.00±0.0 77.50±9.6 65.00±12.9 100.00±0.0 100.00±0.0 

1.56 0.00±0.0 0.00±0.0 65.00±26.5 90.00±8.2 100.00±0.0 100.00±0.0 

0.78 2.50±5.0 0.00±0.0 87.50±9.6 97.50±5.0 100.00±0.0 100.00±0.0 

Control 95.00±10.0 95.00±10.0 100.00±0.0 

 

Table 2 Germination (%) of L. perenne seeds in the presence of Lavandin Super and Grosso HTLs. 

Concentration 

(% HTL/H2O)  

3 days 6 days 10 days 

Super Grosso Super Grosso Super Grosso 

100.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

50.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

25.00 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

12.50 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 

6.25 7.50±9.6 2.50±5.0 47.50±9.6 10.00±20.0 97.50±5.0 82.50±12.6 

3.13 40.00±8.2 50.00±28.3 77.50±17.1 95.00±5.8 87.50±9.6 100.00±0.0 

1.56 72.50±9.6 70.00±0.0 92.50±9.6 100.00±0.0 100.00±0.0 100.00±0.0 

0.78 70.00±28.3 70.00±20.0 90.00±8.2 87.50±18.9 100.00±0.0 97.50±5.0 

Control 85.00±12.9 95.00±5.8 100.00±0.0 

 

 

Full inhibition was observed at concentrations near to 10% in the tested model seeds. L. sativa seeds were 

more sensitive to the presence of HTLs, showing significant inhibition at concentrations below 3%, with both 

HTLs from lavandin Super and Grosso exhibiting similar effects. Although seeds exposed to lower HTL 

concentrations eventually achieved complete germination by the end of the experiment (7 days for L. sativa 

and 10 days for L. perenne), strong inhibition was noted during the initial 2 days. However, this inhibitory 

effect decreased after 3 days, with over 50% of seeds germinating after 4 days for all assayed concentrations. 
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Additionally, root growth for L. sativa and both leaf and root growth for L. perenne were measured to 

assess the growth inhibition potential of distilled lavandin HTLs. The results are exposed in Figures 1 and 2 

for L. sativa and L. perenne, respectively. 

 

 
Fig.  1 Growth inhibition (%) capacities of lavandin Super and Grosso HTLs on L. sativa roots after 7 days. 

 
Fig.  2 Growth inhibition (%) capacities of lavandin Super and Grosso HTLs on L. perenne roots after 10 

days. 

HTLs exhibited similar growth inhibition profiles with an IC50 (concentration that inhibits 50% of plant 

growth) of 3% and a minimum inhibitory concentration (MIC) around 6% for L. sativa. For L. perenne, low 

inhibitory effects were observed at concentrations below 2%. However, inhibition potential increased 

thereafter, with an IC50 value ranging between 6-7%, whereas the MIC was determined to be over 12%. 

Among the samples, the HTL of lavandin Super showed moderately higher inhibition effects on L. sativa 

roots, whereas that of lavandin Grosso was more effective against the roots and leaves of L. perenne 

seedlings. 

 

Previously, Barbero-López et al. (2024) showed antifungal potential for the HTL liquid fraction derived 

from spent mushroom substrates of Pleurotus ostreatus and Agaricus bisporus in wood preservation, with 

lower ecotoxicity than the commercial wood preservatives used in industry. Similarly, complete fungal 

inhibition was also observed in concentration near to 10%. Chemical characterization of this HTL liquid was 

conducted via NMR, revealing the presence of main organic radicals such as ketones (being the main 
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responsible for plant protecting against pathogens and hervibores), alcohols and aliphatic hydrocarbons. This 

suggests the necessity for evaluating the chemical composition of the HTL liquid of distilled lavandin to 

elucidate the components responsible for its phytotoxicity (work currently in progress). 

4. Conclusions 

This study shows the potential of HTL technology to process distilled lavandin biomass, producing an 

aqueous phase with potent phytotoxic effects. This presents promising applications for weed control in 

various sectors such as agriculture, photovoltaic parks, gardening, etc. In particular, low concentrations of 

HTL demonstrated substantial inhibition capabilities in the model seeds tested, with phytotoxic effects 

ranging from moderate to high. These findings imply that additional evaluations could contribute to the 

development of an effective herbicide, along with optimal agricultural management practices for specific 

applications. Consequently, additional tests should be performed at the greenhouse or field scale to validate 

and determine appropriate HTL concentrations for practical use. Despite this being a preliminary study on 

the valorisation of an underestimated agroindustrial by-product, it is crucial to identify the chemical 

compounds responsible for these effects to optimize the operating conditions of the HTL reactors and obtain 

fractions enriched with phytotoxic components. Furthermore, it is also essential to evaluate the possible 

ecotoxic effects on sensitive flora and fauna. This research aligns with the principles of a circular economy 

by transforming waste products into valuable agricultural inputs, thereby reducing waste and promoting 

sustainable practices. The integration of HTL technology in the management of lavandin by-products 

contributes to waste reduction, provides an environmentally friendly solution for weed control, improves the 

value of a traditional crop in many Mediterranean countries and shows potential to improve the general 

sustainability of agricultural and horticultural practices. 
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Abstract 

In recent years, there has been an increase in the use of robotic applications in agriculture, such as 

Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs), which are used for monitoring 

crops. Their use can enhance productivity and profitability for the producer while also providing workplace 

safety. However, even commercially available UAVs and UGVs for agricultural use often operate as 

autonomous solutions rather than part of a combined system where the two types of vehicles collaborate. The 

main drawback of electrically powered UAVs and UGVs is their limited operational time due to the restricted 

storage capacity of electrical energy. This issue is exacerbated in agriculture due to difficulties in accessing 

charging points, as these vehicles often operate in areas remote from the local power grid. A possible solution 

is the adoption of microgrids, small-scale local energy systems that can operate independently from the grid 

and are designed to provide reliability, resilience, and incorporate renewable energy sources. 

Purpose of this research involves the design and development of an Energy Management System (EMS) 

for the operation of an autonomous precision viticulture system based on the activities of electrically powered 

UAVs and UGVs. These vehicles charge at small-scale photovoltaic charging stations in a microgrid 

topology. The EMS is responsible for determining the charging power of each vehicle's battery using Fuzzy 

Cognitive Maps, without violating the operational constraints of the microgrid. The EMS takes into 

consideration the State-Of-Charge of the vehicles' batteries, the State-Of-Charge of the microgrid's batteries, 

and the energy generated by the photovoltaic panels. The proposed EMS ensures smooth operation in the 

charging process of the electric vehicles and strengthens the microgrid’s autonomy by covering the system’s 

energy needs in the most efficient way. 

Keywords: Energy Management System, Electric Vehicles, Photovoltaic charging stations in Microgrid, 

Variable Charging, Fuzzy Cognitive Maps 

1. Introduction 

The continuous increase in population demands the expansion of agricultural production, which is 

jeopardized by many challenges such as climate change, labor shortages, and productivity performance costs 

(EU, 2017). In recent years, the use of Smart Agriculture Technologies is rapidly increasing and appears to 

be a reliable solution for the above challenges (EPRS, 2016). Smart Agriculture Technologies include Farm 

Management Information Systems (FMIS), precision agriculture systems (PA), agricultural automation, and 

robotic applications that increase yield, improve product quality, make the use of inputs rational and efficient, 

reduce energy consumption and protect soil and water resources (EPRS, 2016; Zheng et al., 2011; Fountas 

et al., 2005). 

While Smart Agriculture Technologies related to FMIS, PA methods, and automation have been 

commercially developed, only a few cases of robotic systems are at a commercial level (Shamshiri et al., 

2018; Pedersen et al., 2006). Nevertheless, robotics is showing significant progress, with autonomous 

Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV) gradually incorporating 

advanced technological equipment for crop monitoring and the application of agricultural practices. Their 

use can increase productivity, profitability, work safety, and environmental sustainability (Bac et al., 2014). 

However, even the commercially available UAVs and UGVs for agricultural use, function as standalone 

solutions and not as a combined system where the two kind of robots assist each other. There is research 

regarding the interconnection of ground and aerial means (Vu et al., 2018; Salah et al., 2017; Hood et al., 

2017), but it has not yet resulted in commercial solutions for combined use and control in the field. 

Such systems could find multiple agricultural applications, but ideally in high-value crops that, due to 

their specialized requirements (e.g., high final product quality), and the high income they provide to the 
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producer, allow their initial adoption. An example of such a crop is wine grapes, which require continuous 

monitoring and extensive agricultural practices during their cultivation (Nuske et al., 2014). 

Regarding the powering of autonomous vehicles, electrification is now the optimal solution for all types 

of UAVs and UGVs (with few exceptions), as they benefit from zero emissions (Ma et al., 2012), high engine 

efficiency, up to 90-92% (Jorgensen, 2008), their contribution to the integration of renewable energy sources 

into the energy system (Richardson 2013), lower operating costs compared to fossil/liquid fuels (Thomas, 

2009), and charging during the night, which can smooth the operating cycle of power plants and reduce their 

additional startups (Clement-Nyns et al., 2010). The main disadvantage of electric UAVs and UGVs is the 

reduced operational range due to limited energy storage, which is exacerbated in agriculture due to limited 

access to a charging source as they often operate in areas remote from the local power grid. One potential 

solution is to adopt microgrids, which are small-scale local energy systems capable of operating 

independently from the main grid, integrating renewable energy sources. 

The purpose of this research is to design and develop an Energy Management System (EMS) for operating 

an autonomous precision viticulture system utilizing electrically powered UAVs and UGVs. These vehicles 

are charged at small-scale photovoltaic stations within a microgrid topology. The EMS uses Fuzzy Cognitive 

Maps to determine the charging power for each vehicle's battery while ensuring the operational constraints 

of the microgrid are not violated. 

2. Materials and Methods  

2.1. System Topology  

In Fig. 1, the microgrid with all of its components is presented. Microgrid consists of: a) a renewable 

energy production source: photovoltaic charging station with an array of typical monocrystalline silicon 

panels, b) a storage system: deep discharge solar lead-acid battery bank, c) electrically powered UAVs and 

UGVs, as energy consumption units. 

 

 
Figure 1: Proposed system topology 

2.2. Fuzzy Cognitive Maps 

Kosko (1986) developed a Fuzzy Cognitive Map (FCM) based on the fuzzy logic introduced by Zadeh 

(1965). Since then, numerous researchers have applied FCMs in various fields. FCM is a soft computing 

method that can be used to recognize, describe, and model complex systems (Stylios et al., 2004; Zhang et 

al., 1989). It serves as a general term for a set of methods that helps decision-makers obtain a graphical 

depiction of a person's perception in relation to a particular discussion or problem, making it easy to 

understand and providing valuable insights into the structure of information (Langfield-Smith, 1992; Spicer, 
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1998). FCM represents a network of elements and relationships of a complex phenomenon as a graph or map, 

offering a qualitative model that illustrates how a system operates (Avdeeva et al., 2018; Bakhtavar et al., 

2019). Rather than predicting numerical values, the FCM method demonstrates the behavior of the system 

based on the relationships between concepts and the initial state of those concepts (Rezaee et al., 2017). 

In Fig. 2, a typical FCM example can be seen. In this context, 𝐶𝑖 represents nodes or concepts connected 

by weighted arcs (Papageorgiou et al., 2017; Salmeron et al., 2016). Each relationship between the concepts 

𝐶𝑖 and 𝐶𝑗 has a weight 𝑊𝑖𝑗 (the weight between the 𝑖-th and 𝑗-th nodes), which can be positive, negative, or 

neutral (indicating that there is no relationship between the two concepts) (Coban et al., 2017). Based on 

Kosko's FCM (1986), the relationship between concepts has transformed from states {0,1} or {−1,0,1} to a 

range of states represented by a number in the interval [0,1] or [−1,1], or by fuzzy linguistic terms (Salmeron 

et al., 2019). 

 
Figure 2: A typical Fuzzy Cognitive Maps example 

After creating the map, mathematical formulas are used for modeling. To find the values of a node, the 

values of other nodes connected to it must be determined through Eq. (1) (Bakhatavar et al., 2021). 

                                            𝐴𝑖
𝑘+1 =  𝑓 ( 𝐴𝑖

𝑘 + ∑ 𝑊𝑖𝑗𝐴𝑗
𝑘

𝑛

𝑗=1,𝑗 ≠ 𝑖

)                                                                          (1) 

where 𝐴𝑖
𝑘+1 is the value of concept 𝐶𝑖 in iteration, 𝐴𝑖

𝑘 is the value of concept 𝐶𝑖 in iteration and 𝑓 ( 𝑥) is 

the activation function.  

In literature, there are four activation functions, the sigmoid, the hyperbolic, the step and the threshold 

function. The most used activation function is the sigmoid (Bueno et al., 2009), which was also used in this 

study. The sigmoid activation function can be seen in Eq. (2). 

                                                      f(x) =  
1

1 + 𝑒−𝜆𝑥
                                                                                            (2) 

where λ, is the parameter that describes the steepness of the curve. When λ is large, the transition between 

0 and 1 becomes steeper, when k is small, the transition is more gradual. The parameter λ usually take the 

value 1, as it provides good results (Karavas et al., 2015). 

2.3. FCM control of the microgrid 

The simulation of the microgrid system was conducted using the MATLAB platform. All components of 

the system were designed and simulated in MATLAB. The analysis and data were processed on a per-minute 

basis, reflecting the dynamic nature of the environment. Each component may change its actions every 

minute, depending on the gathered data and the behavior of the other components. 

In Fig. 3, the logical diagram for the control of the microgrid is presented. The EV operates in the field 

until it reaches the minimum discharge threshold, which is recommended by the manufacturer to minimize 

battery degradation. Upon reaching this threshold, the EV moves to the photovoltaic station to recharge. At 

the station, the EV charges at a variable percentage of its maximum nominal charging power, depending on 

the state of various components within the system. 

The Variable Charging algorithm considers the EV's State-of-Charge (SOC), the battery bank's SOC, and 
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the power produced by the photovoltaic (PV) panels to determine the charging power for the EV every 

minute. The PV power production is calculated based on solar radiation and air temperature data from a 

meteorological station. The EV charges with the calculated power, and the Energy Management System 

(EMS) checks if the SOC has reached 100%. If the EV is not fully charged, the EMS recalculates the charging 

power and continues charging until the SOC reaches 100%. Once fully charged, the EV is ready to be 

deployed back to the field. The EMS checks the EV's SOC every hour between 10:00 and 17:00 and deploys 

the EV back to the field if it is fully charged. This time period is chosen because UGVs and UAVs monitor 

crops during the daytime to gather valuable data on plant health. 

 
Figure 3:The proposed Energy Management System 

2.4. Scenarios 

In the current study, the system includes typical monocrystalline PV modules of 400 Wp, a battery bank 

of 1000 Wh, and the “Anafi” UAV manufactured by Parrot. The “Anafi” drone has a maximum power 

consumption of 52 W and a battery capacity of 20.52 Wh. A fleet of 10 “Anafi” UAVs operates within the 

system, with a total maximum power consumption of 520 W, considering that all drones are operating and 

charging together. Experiments were conducted to determine the UAV's discharge rate during operation, 

which was essential for designing the drone’s behavior. Meteorological data, collected at 15-minute intervals, 

were processed through linear interpolation to match the EMS's per-minute analysis. The simulations cover 

a two-day period and it is considered that the fleet must operate twice per day. Initial SOC for both the 

batteries and the drones is 100%. The EMS-controlled microgrid was compared with a typical microgrid to 

determine which system provides better results. 
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3. Results and Discussion 

Fig. 4 presents the power generated by the PV, indicated by the green color, and the charging power, 

indicated by the red color, as was calculated by the proposed EMS. Fig. 5 presents the EV’s SOC, indicated 

by the red color, and the battery bank’s SOC, indicated by the green color. As can be seen in Fig. 5, the fleet 

go to operate in the field at 10.00 and their SOC starts decreasing. They operate for 14 minutes until they 

reach their minimum discharging threshold (35%) and they go to charge. They start charging at 10.15 with 

power of 436 W, as it has been calculated by the EMS (Fig. 4). At 10.15, PV produces 81 W (Fig. 4), so the 

battery bank provides the remaining 355W and as a result the batteries’ SOC starts decreasing (Fig. 5). In the 

next minutes, the EMS keeps calculating and charging the EVs with a decreasing rate (Fig. 4) because of the 

FCM control, the system provides lower power as EV’s SOC is increasing and system’s batteries’ SOC is 

decreasing in order to ensure its smooth operation. At 11.00, EVs are still not fully charged, so EMS keeps 

them at the charging point (Fig. 5). At 11.30 the EVs reach 100% and the energy that the PV produces is 

directed to the system’s batteries, charging them (Fig. 5). At 12.00, EMS sends the UAVs back to the field. 

The batteries of the system keep charging until 12.15, when the UAVs return to charge and the batteries need 

to provide energy in order to cover the load. After the two days span, the system’s batteries are at 81% SOC. 

 
Figure 4:Power generated by the PV (green colour) and charging power calculated by the EMS (red colour) 

 

Figure 5:EV's SOC (red colour) and battery bank's SOC (green colour) utilizing the FCM EMS 
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Fig. 6 presents the power generated by the PV, indicated by the green color, and the power demand, 

indicated by the red color, in a typical microgrid. Fig. 7 presents the EV’s SOC, indicated by the red color, 

and the battery bank’s SOC, indicated by the green color in a typical microgrid. As can be seen in Fig. 6, 

without the proposed EMS, the power demand is always at its maximum value, i.e. 520 W. Although, in the 

first charging process, at 10.15, the system is able to cover the demand, in the second charging process, at 

12.15, it falls short and the system’s batteries reach the lowest allowed limit at 20%. While the system 

manages to charge the UAVs with support from the PV, the batteries only charge up to 60% by the end of 

the day. As a result, it is even more challenging for the system to meet the high demand on the second day. 

During both charging processes, the batteries struggle to provide adequate power due to their insufficient 

charge. After the two days span, the system’s batteries are at 66% SOC. 

 
Figure 6: Power generated by the PV (green colour) and power demand (red colour) in a typical microgrid 

 
Figure 7: EV's SOC (red colour) and battery bank's SOC (green colour) in a typical microgrid 

As shown in Fig.7, the typical microgrid system fails to cover the energy demands, experiencing three 

battery disruptions totaling almost four hours across four charging processes and by the end of the second 

day, the battery SOC is at 66%. On the contrary, the EMS-controlled microgrid meets the energy demands 
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with no disruptions and ends the second day with an 81% SOC (Fig. 5). The proposed EMS seems to respect 

the operational constraints of the microgrid, ensure smooth operation during the charging process of the EVs 

and strengthen the microgrid’s autonomy by covering the systems needs with an efficient way. 

4. Conclusions 

 The integration of robotic applications, such as Unmanned Aerial Vehicles (UAVs) and Unmanned 

Ground Vehicles (UGVs), in agriculture has demonstrated significant potential in enhancing productivity, 

profitability, and workplace safety. However, the limited operational time of these electrically powered 

vehicles, due to restricted energy storage capacity and difficulties accessing charging points, poses a 

challenge. This research addresses this challenge by proposing a microgrid system with an Energy 

Management System (EMS) for the efficient operation of autonomous precision viticulture using UAVs and 

UGVs charged at photovoltaic stations. 

The EMS, utilizing Fuzzy Cognitive Maps, dynamically determines the optimal charging power for the 

vehicles based on real-time data, including the State-of-Charge (SOC) of the vehicles' batteries, the 

microgrid's battery bank, and the power generated by photovoltaic panels. The proposed system was 

compared to a typical microgrid without EMS, and the results indicate a significant improvement in energy 

management and system performance. The EMS-controlled microgrid effectively manages the charging 

process, ensuring smooth operation and avoiding battery disruptions, as evidenced by maintaining an 81% 

SOC after two days of operation. In contrast, the typical microgrid experiences multiple battery disruptions 

and struggles to meet energy demands, ending with a lower SOC of 66%. The EMS respects the operational 

constraints of the microgrid, ensuring that energy demands are met efficiently, thereby enhancing the 

microgrid's autonomy and reliability. 

The EMS-controlled microgrid demonstrates greater autonomy, resulting in shorter idle periods for the 

EVs and allowing them to complete tasks more quickly. If the system reaches its minimum energy limits, the 

EVs remain idle until sufficient energy is available for charging. This efficient energy management enables 

the EMS-controlled microgrid to complete operations in significantly fewer days compared to a typical 

microgrid. 

Overall, the proposed EMS demonstrates its capability to optimize the charging process of electric 

vehicles within a microgrid, ensuring continuous operation and strengthening the system's autonomy. In the 

lon This approach not only addresses the energy storage limitations but also promotes the use of renewable 

energy sources, contributing to sustainable agricultural practices. 
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Abstract 

Miscanthus x giganteus (miscanthus) is a renewable raw material and a climate-friendly alternative to 

fossil fuels. However, to utilise the energy crop economically, technical prerequisites are required to 

cultivate, harvest and transport miscanthus in large quantities. As there is little knowledge about the material 

behaviour of miscanthus, tests were carried out on miscanthus round bales. The test results provide 

information about the compression behaviour of miscanthus and thus form the basis for optimising large-

scale processing of miscanthus.  

During the tests, conventional round bales of miscanthus were compressed in a customised pressing box 

by a descending hydraulic pressing plunger. In each of five test series, a round bale of miscanthus was first 

compressed up to a pressure of 4 MPa and then up to a pressure of 8.5 MPa.  

The pressure increases approximately linearly to the density of the bale at the beginning of the pressing 

process. The linear increase in force is transitioning into a nonlinear compaction behaviour as soon as the 

bale has reached the density of the previous maximum compaction. The measuring points of all test series in 

this range can be described by a single trend line, which can be approximated by a quadratic function.  

When the plunger is lifted, the bale is relieved and its density decreases. The decompression of the bale 

corresponds to the linear curves that describe the compression behaviour at the start of the subsequent 

pressing process.  

In summary, three key characteristics of the pressing process were identified from the pressing tests: The 

initial linear increase of the pressing force, the subsequent quadratic progression and the relaxation behaviour. 

The approximated curves for describing these findings describe the measurement results with a normalised 

absolute deviation of 8.8 % and make it possible to describe the pressing process schematically. 

Keywords: Bioenergy, Renewable raw material, Miscanthus, Material properties, Compression tests 

1. Introduction 

One of the biggest challenges of our time is to move materials management towards circularity. This 

requires the development of bioeconomic value chains. Miscanthus, a perennial plant that originally comes 

from the East Asian region and occurs in different species, represents a potential raw material for such a 

value chain (Greef and Deuter, 1993). The genotype Miscanthus x giganteus (Greef and Deuter, 1993) was 

brought to Denmark by Aksel Olsen in the 1930s and cultivated there for the first time in Europe (Linde-

Laursen, 1993). It has been observed that the plant has good adaptability and is suitable for the climatic 

conditions in Europe and North America (Linde-Laursen, 1993). This makes miscanthus one of the few C4 

grasses that occur naturally in temperate climates (Lewandowski et al., 2000). C4 grasses are characterised 

by the property that they have a special photosynthetic pathway. Compared to C3 grasses, they have the 

advantage that they have higher efficiencies in terms of radiation, water and nitrogen consumption (Long, 

1983). Due to these properties, miscanthus is predestined for the production of sustainable electricity, heat 

and synthetic fuel. 

Even though there is great global potential for miscanthus as a raw material, it has not yet been possible 

to utilise this economically due to a lack of technology and machinery. One of the biggest challenges on the 

way to highly scalable utilisation of miscanthus currently lies in the compression of the material. For 

example, conventional baling presses used to harvest miscanthus achieve densities of 150 to 250 kg m-3. In 

order to make the transport of miscanthus economical, significantly higher densities should be achieved.  

This requires the development of new pressing processes. However, there is little knowledge about the 

material behaviour of miscanthus. Kaack and Schwarz (2001) have investigated the mechanical properties of 

miscanthus as a function of various influencing factors. Initial findings on the compression behaviour of 

miscanthus can be found in the research of Miao et al. (2015). It was shown that there is a non-linear 

relationship between the contact pressure and the density.  
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The pressing tests presented in this article are intended to provide further information about the 

compression of miscanthus, especially miscanthus round bales. The aim is to demonstrate the relationship 

between the contact pressure and the density by means of a schematic diagram. The results of the tests should 

form the basis for designing new baling processes. 

2. Materials and Methods  

2.1. Analysed miscanthus round bales  

The material analysed is Miscanthus x giganteus, which was grown in southern Germany. The material 

was harvested in spring 2022 and wound into round bales using a conventional baler. Subsequently, the round 

bales were stored for about a year. At the time of the trials, the bales had a moisture content of approx. 11%. 

During the trials, five round bales were analysed, which differed in size and weight according to Table 1. 

Table 1. Characterization of the examined miscanthus bales. 

Bale no. Volume in m3 Mass in kg Density in kg m-3 

1 0.178 28.3 159 

2 0.181 28.8 159 

3 0.257 46.2 180 

4 0.236 41.3 175 

5 0.126 25.1 200 
 

The mechanical properties of the individual miscanthus stems were randomly sampled. The values 

measured were within the ranges determined by Kaack and Schwarz (2001) as part of a large-scale field study 

for Miscanthus stems. According to them, miscanthus stems consist of 8 to 13 internodes, each of which is 

120 to 260 mm long and 7 to 12 mm in diameter. Both the length and the diameter of the internodes tend to 

decrease with increasing height. In total, the miscanthus stems reach a length of 1.6 to 2.4 m. (Kaack and 

Schwarz, 2001) 

The trend that the values decrease with increasing height of the internodes and nodes also applies to the 

moment of inertia, the modulus of elasticity and the bending stiffness. In addition, there are differences 

between the material properties of the nodes and the internodes, with the nodes having a higher modulus of 

elasticity but a lower bending stiffness than the corresponding internodes. The modulus of elasticity of 

miscanthus ranges from approx. 2 GPa at the highest internode to approx. 8 GPa at a node near the ground. 

The flexural rigidity assumes values in the range between approx. 0.5 and 5 N m2, the moment of inertia 

ranges from 10,000 to 65,000 m4. (Kaack and Schwarz, 2001; Kaack et al., 2003) 

2.2. Experimental setup and test procedure 

A Wagner P800 hydraulic press and a customised pressing box were used to press the miscanthus round 

bales. The schematic structure of the test stand is presented in Figure 1. The pressing system has a nominal 

force of 8 MN and a stroke of 830 mm. The internal dimensions of the pressing box are 776 mm wide and 

596 mm deep, and it is open at the top so that the pressing stamp can enter from above. 

 

 

Figure 1. Experimental setup. 
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The pressing tests involve five test series, in each of which a different miscanthus round bale was 

analysed. Each test series consists of two consecutive compressions. In the first compression, the pressure is 

increased to approx. 4 MPa, in the second compression to approx. 8.5 MPa. Between the pressings, the 

pressing plunger is moved upwards to relieve the pressure on the bale. During the pressing processes, the 

path travelled by the plunger and the pressing force applied are recorded. From the position of the plunger 

and the dimensions of the pressing box, the volume and thus the density of the miscanthus bale can be 

determined at any time. The contact pressure is calculated from the pressing force and the area of the pressing 

stamp.  

2.3. Evaluation methods 

To derive a characteristic scheme for the pressing process, functional equations are required to 

approximate the recorded measuring points. These functional equations are optimised and evaluated using 

the following key indicators. 

The mean absolute error (MAE) is regarded as an easy-to-interpret key indicator. It represents the mean 

value of the difference between the predicted value 𝑦′ and the measured value 𝑦 for a number of 𝑛 measuring 

points (Eq. (1)). By dividing the MAE by the mean value of the measured values �̅�, the normalised mean 

absolute error (NMAE) can be determined (Eq. (2)).  

 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦′ − 𝑦|𝑛
𝑘=1  (1) 

 

 𝑁𝑀𝐴𝐸 =
𝑀𝐴𝐸

�̅�
 (2) 

 

Similarly, the mean square error (MSE) is defined as the average of the squared differences between the 

predicted value 𝑦′ and the measured value 𝑦 of 𝑛 measurement points (Eq. (3)). In addition to the distance 

between the predicted and measured values, the MSE also takes into account the scatter of the predicted 

values. It is therefore well suited for evaluating the quality of an approximation. 

 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦′ − 𝑦)2

𝑛

𝑘=1
 (3) 

3. Results and Discussion 

3.1. Observations 

The pressure-density curves determined for the five test series are shown in Figure 2. During the first 

pressing processes of the five test series, the pressure initially increases approximately linearly to the density. 

From a certain density, in the range between 250 and 300 kg m-3, the relationship between the pressure and 

density changes to a non-linear one. The contact pressure increases to approx. 4 MPa until the first pressing 

process is completed. The plunger then moved upwards to relieve the pressure on the bale. It was not 

technically possible to record the pressure during the relaxation process. However, it was observed that the 

density of the bale was noticeably reduced by the relaxation. 

An approximately linear relationship between contact pressure and density can also be recognised at the 

start of the second pressing processes. The linearity is given until the density is reached up to which the 

miscanthus bale was compressed during the first pressing process. During the subsequent compression, the 

contact pressure increases non-linearly to the density. Again, the contact pressure is increased up to a fixed 

value, in this case approx. 8.5 MPa. In contrast to the first pressing process, the maximum contact pressure 

is maintained for a few seconds during the second pressing. The bale is compressed even further while the 

contact pressure remains the same. However, compression is much slower and eventually comes to a 

standstill. Relieving the pressure on the bale leads to its relaxation again. 

The consideration of all determined pressure-density curves shows that the gradient of the linear curves 

at the beginning of a pressing process is approximately the same. Only the second pressing process of the 

fifth test series represents a recognisable outlier, in which the gradient is significantly smaller. For this reason, 

this pressing process was not taken into account for the further analysis of the linear curves.  
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(a) 1st test series 
 

 
 

(b) 2nd test series 
 

 
 

(c) 3rd test series 
 

 
 

(d) 4th test series 
 

 
 

(e) 5th test series 

 

 

Figure 2. Visualisation of the measuring points of the five test series. 
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3.2. Interpretation 

According to the observations described, the pressing processes can be divided into four areas: a linear 

area at the start of a pressing process, a non-linear area during further compaction, the post-compaction when 

the maximum contact pressure is maintained and the relaxation. The post-compaction was not investigated 

further, as it is primarily highly dynamic pressing processes that are of interest. 

To further analyse the initially linear and subsequently non-linear relationship between contact pressure 

and density, the measuring points of all tests were divided according to their affiliation to the two areas, see 

Figure 3. 

 

 

Figure 3. Allocation of measuring points into linear and non-linear behaviour. 

3.2.1. Linear material behaviour 

For the linear progressions of the 𝑖 pressing processes, the assumption was made that they can be 

described by the set of functions 𝑝𝑖(𝜌). In the corresponding linear equation Eq. (4), the gradient 𝑚 is the 

same for all pressing processes, while the Y-intercepts 𝑐𝑖 differ. 

 

 𝑝𝑖(ρ) = 𝑚 ∙ 𝜌 + 𝑐𝑖  (4) 

  

An optimisation was carried out using the MSE to identify the common gradient 𝑚 and the Y-intercepts 

𝑐𝑖. The parameters determined are listed in Table 2. Figure 4 contains the visualisation of the linear equations 

with the corresponding measurement points. The quality of the linear approximation can be indicated by the 

evaluation indices shown in Table 3. 

 

Table 2. Parameters for linear approximations. 

 𝑖 𝑚 𝑐𝑖 

1st test series, 1st compression 

1st test series, 2nd compression 

2nd test series, 1st compression 

2nd test series, 2nd compression 

3rd test series, 1st compression 

3rd  test series, 2nd compression 

4th  test series, 1st compression 

4th  test series, 2nd compression 

5th test series, 1st compression 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

0.0964 

-20.87 

-25.94 

-21.88 

-27.16 

-23.00 

-30.71 

-21.93 

-32.07 

-24.14 
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Figure 4. Linear approximations of measuring points. 

 

Table 3. Evaluation of the approximations of the measuring points using the MAE and MSE. 

 MAE in MPa NMAE in % MSE in MPa2 

Measuring points of linear area 

Linear set of functions 

 

0.173 

 

10.5 

 

0.046 

Measuring points of non-linear area 

Quadratic function 

Exponential function 

Power function 

 

0.413 

0.409 

0.418 

 

8.4 

8.3 

8.5 

 

0.289 

0.304 

0.301 

All measuring points 

Linear set of functions + 

quadratic function 

 

0.257 

 

8.8 

 

0.356 

3.2.2. Non-linear material behaviour 

Three different approaches were investigated to approximate the measuring points in the area with non-

linear behaviour: a quadratic function, an exponential function and a power function (Eq. (5-7)). The function 

parameters 𝑎, 𝑏, 𝑐 were determined by optimisation using the MSE and can be obtained from Table 4. 

 

 p(ρ) = 𝑎 ∙ 𝜌2 + 𝑏 ∙ 𝜌 + c (5) 

 

 p(ρ) = 𝑎 ∙ 𝑒𝑏∙𝜌 (6) 

 

 p(ρ) = 𝑎 ∙ 𝜌𝑏 (7) 

 

The quality of the approximations using the three different approaches differs only slightly according to 

the key indicators listed in Table 3. Even though the MAE is smallest with the exponential approach, the 

quadratic approach proves to be the most promising due to the lowest MSE. Figure 5 shows the measuring 

points associated with the non-linear range and the determined quadratic approximation. 

 

Table 4. Parameters for non-linear approximations. 

 𝑎 𝑏 c 

Quadratic function 

Exponential function 

Power function 

0.000018992 

1.338 

0.002266 

0.002928 

0.00338 

1.2941 

1.040 

- 

- 
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Figure 5. Quadratic approximation of measuring points. 

3.2.3. Relaxation behaviour 

It was observed that the bale relaxes, i.e. that the density of the bale decreases as soon as the contact 

pressure also decreases. However, no measurement data could be generated when the pressing stamp was 

raised. Therefore, the observations of the subsequent pressing process are used in order to make statements 

about the relaxation behaviour of the bale. 

It is assumed that the pressure required to retain the bale at a certain density during the relaxation process 

corresponds to the pressure required to compress the bale to this density in the subsequent compression 

process. Taking this assumption into account, the linear relationship found between pressure and density can 

also be applied to the decompression. 

4. Conclusions 

The pressing tests carried out allow the conclusion that the pressing process can be divided into 2 sub-

processes with different behaviour. Firstly, the increase in contact pressure over the density can be described 

using a linear approximation. The linear relationship exists until the density is reached up to which the 

material was compressed in a previous pressing operation. From then on, the compression behaviour is non-

linear and can be approximated using a quadratic function. The approximations found can be used to 

reproduce the measuring points of the five test series with a MAE of 0.257 MPa. In relation to the mean value 

of the measuring points, this corresponds to a percentage deviation of 8.8 %.  

If the contact pressure is reduced after pressing, the density decreases again. Assuming that the relaxation 

corresponds to the start of the subsequent pressing process, the linear approximation found is also valid for 

the relaxation process. 

These findings can be summarised in a schematic diagram, see Figure 6. The diagram also contains the 

course of an exemplary pressing process and is intended to show how the pattern can be used as a basis for 

the design of compression processes for miscanthus. In the exemplary case, a bale with an initial density of 

250 kg m-3 is compressed up to a contact pressure of 6.6 MPa. The bale thus reaches a density of 470 kg m-3 

in the compression box. After the bale has been relaxed, it finally has a density of 400 kg m-3.  

Further material tests with miscanthus are planned to confirm the relationships found. In particular, the 

evaluation of the different approaches for describing the non-linear material behaviour and the process of 

relaxation requires further measurement data. 
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Figure 6. Scheme for the compression of miscanthus round bales including an example. 
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Abstract 

On-farm energy use for livestock farming is a major contributor to CO2 emissions. The integration of 

renewable energy sources (RES) is an important step to mitigate these emissions. RES4LIVE is an EU 

Horizon 2020 project focused on reducing fossil fuel usage in livestock farms. During the project, a hybrid 

solar thermal system was installed on a typical pig farm under Belgian weather conditions. This hybrid system 

converts solar radiation into both electrical and thermal energy. The electrical energy is directly used by the 

barn’s feeding pumps and ventilation system, whereas the thermal energy is stored in an 800 liter buffer tank 

used as a heat source for a 60 kW heat pump installation. The hybrid solar system consists of 24 photovoltaic 

thermal (PVT) flat plate collectors installed in four groups of six panels with a total aperture area of 45.12 

m². The PVT system has an installed electrical and thermal capacity of 8.4 kWelectrical and 28.8 kWthermal.  The 

heat transfer fluid (HTF) consists of 35 % propylene glycol and its flow in the system is dynamically 

controlled by a modular solar central control unit. The electrical and thermal performance parameters of the 

system are recorded every minute, including the temperature of the HTF, its flow rate and the incoming solar 

radiation. The data collected from the hybrid solar system is continuously being analyzed to evaluate thermal 

and electrical performance. During an average summer day of 2023, the HTF has gained a maximum 

temperature rise of about 30 °C relative to the ambient temperature. From July to February, the hybrid solar 

system generated approximately 4.5 MWh of thermal energy. During the five months from October to 

February, it produced around 2.3 MWh of electrical energy. In December 2023, the system recorded the 

lowest thermal and electrical energy production, corresponding with the month's lowest solar insolation. The 

analysis also showed that both thermal and electrical energy generated varied primarily based on the amount 

of insolation. The performance evaluation has shown the capability of such hybrid solar system to reduce 

carbon emissions and effectively replace fossil fuel consumption in the livestock sector in real working 

conditions. 

 

Keywords: livestock, pig farm, renewable energy, hybrid solar thermal, photovoltaic thermal panels. 

1. Introduction 

Livestock farming represents a significant challenge in the context of climate change mitigation efforts, 

primarily due to its substantial carbon footprint stemming from energy consumption, waste production, and 

land use change (Steinfeld et al., 2006). Among various mitigation strategies, the integration of renewable 

energy sources (RES) into agricultural operations has garnered attention for its potential to reduce greenhouse 

gas emissions while ensuring sustainable production (Thornton, 2010). 

The RES4LIVE project, supported by the EU's Horizon 2020 program (grant agreement nr. 101000785), 

exemplifies this approach by focusing on the implementation of renewable energy technologies in livestock 

farms to diminish reliance on fossil fuels . This initiative aligns with broader European efforts to transition 

towards a low-carbon economy and mitigate climate change impacts across sectors, including agriculture 

(European Commission, 2018). Solar energy, in particular, holds promise for on-farm energy generation due 

to its abundance and scalability. Solar photovoltaic (PV) systems have been increasingly adopted in 

agricultural settings worldwide, offering opportunities for decentralized electricity production and reduced 

operational costs. However, the intermittent nature of solar PV necessitates complementary technologies to 

ensure reliable energy supply, especially in settings with high energy demands such as livestock farming 

operations (Jäger-Waldau, 2007). 
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Hybrid solar thermal systems, which combine photovoltaic and thermal energy conversion technologies, 

present a compelling solution to address this challenge. By simultaneously generating electricity and heat 

from solar radiation, these systems offer enhanced energy yields and greater flexibility in meeting diverse 

on-farm energy needs. The integration of solar thermal technology in agriculture has been explored in various 

studies, highlighting its potential to improve energy efficiency and reduce greenhouse gas emissions in 

farming operations (Sakhare et al., 2022). Additionally, advancements in hybrid solar systems have 

demonstrated their applicability across different climatic conditions, with notable success in temperate 

regions such as Europe (Hussain et al., 2016). 

The installation of a hybrid solar thermal system on a typical pig farm, as described in the RES4LIVE 

project, represents a novel application of this technology in the livestock sector. By leveraging both electrical 

and thermal energy outputs, the system addresses the multifaceted energy demands of modern farming 

practices while contributing to carbon emission reductions. The main objective of this study is to quantify 

the thermal and electrical performance of the hybrid solar system based on real life measured data.  

2. Materials and Methods  

The study is performed on a pig farm located in Melle ( Flanders, Belgium). The farm is managed by 

ILVO, UGENT and HoGent for research and educational purposes alongside commercial production. It is a 

farrow-to-finish pig farm, housing around 105 sows, 600 piglets and 750 fattening pigs. The total building 

area is around 2,500 m². It is constructed out of concrete with polypropylene insulation panels dividing the 

compartments and partially slatted concrete floors above the manure pits. Heating is provided by a 60 kW 

gas boiler with a yearly fossil gas consumption of 220 MWh. Additionally heating is provided by heat lamps 

and a diesel powered heat cannon. The heating system is steered based on ambient temperature measurements 

at the animal compartments and on the stage of production. Table 1 shows heat demand (in terms of 

temperature) and the existing heating system with the respective production stage.  

Table 1 Heat demand in the ILVO pig farm 

Production stage Heating demand Heating system 

New-born piglets  35 - 37 °C Floor heating (boiler) and heat lamps 

Weaned piglets  28 °C at the start and 

reducing to 25 °C  

heating of incoming air (boiler) and 

floor heating (boiler) 

Fattening pigs 20 - 25 °C Gas cannon heating of incoming air 

Sows 18 - 23 °C no need for extra heating 

Two modular heat pumps of 25 and 40 kW were installed to provide heating at different temperature 

levels. Besides, 24 PVT collectors were installed as described in Section 2.1.1. 

2.1. Solar thermal system description  

Figure 1 (A) shows a simplified schematic overview of the installed renewable energy technologies that 

makeup the solar-thermal system. The main components are 24 hybrid solar panels on the roof (Figure 1 C), 

a solar control system (Figure 1 B), two modular heat pumps of 30 kW each, and 800 liter thermal energy 

storage tank.  

The heat transfer fluid is 35 % glycol solution heated up in the solar hybrid panels and stores the energy 

in the thermal storage tank. The two modular heat pumps – a high and a medium temperature heat pump - 

raise the temperature of water that will be circulating in the domestic hot water, air heaters and floor heater 

circuits of the pig farm. The thermal energy stored in the tank will be a source for the heat pumps with the 

aim to increase the COP. On the other hand electricity is not stored but either directly used or injected into 

the electricity grid. 

2.1.1. Hybrid solar collector panels 

The hybrid solar collector panels used in ILVO pig farm are Abora aH72SK panels (Abora, Zaragoza, 

Spain). They are flat plate PVT thermal collectors with  Mono-crystalline. This model is capable of 

generating a peak electrical power of 350 W with a module rated efficiency of 17.8 % and 1200 W of thermal 
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power. The hybrid solar collector system consists of 24 collectors installed as four groups of six panels, 

resulting in a total aperture area of 45.12 m² on the roof of the pig farm. The PVT system has an installed 

electrical and thermal capacity of 8.4 kWelectrical and 28.8 kWthermal, respectively. The PVTs are connected to 

an inverter (FIMER, Millano, Italy)  on the farm for electricity supply directly to the farm. 

 

 

Figure 1 A) Schematic overview of the installed solar-thermal system, B) picture of the installed solar control 

system and C) picture of the installed hybrid solar panels on the roof of the pig farm at ILVO. Where: the red 

and blue lines represent supply and return pipe lines, respectively. The solid lines show passage lines for the 

35 % glycol solution whereas the dotted lines indicate water pipes. 

2.1.2.  Solar station unit and central controller description (MG) 

 The solar station is the main pumping system to transfer heat from the solar thermal collectors to the end 

user. The solar station used was designed by MG Sustainable Engineering AB (Sweden) with the goal to 

standardise solar stations for mid-size PVT applications such as in livestock farms. It was manufactured by 

KEterm AB in Sweden. The pump transfers heat from the solar field to the solar station heat exchanger; and 

an intermediate circuit transfers heat from the heat exchanger to the storage tank through another pump. Heat 

stored in the storage tank is used by the heat pumps to deliver the final heat to the farm. 

The control system used is a RESOL MX solar controller with a RESOL DL2 datalogger which 

communicates data in real time to a server. The control algorithm was developed by MG Sustainable 
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engineering. The controller activates the solar circuit pump as soon as the solar collectors are hotter than the 

tank, or if solar irradiance is above a threshold (>200 W/m2 for 60 seconds. There are two heat flow meters; 

one for the heat delivered from the solar collectors to the solar station and one for the heat delivered to the 

tank. The pumps are not operated on variable speed and the flow rate in the solar circuit is ca. 30 l/min. 

2.2. Data processing 

Solar energy increases the temperature of HTF and the amount of heat transferred (𝑄) in kilowatts (kW) 

to the HTF can then be calculated using the equation given below. 

𝑄 =  �̇�𝐶𝑝∆𝑇 

Where �̇�[𝑘𝑔/𝑠] is the mass flow rate of the HTF, 𝐶𝑝[
J

kg K
]  is the specific heat capacity of the HTF at 

constant pressure, and ∆𝑇 [𝐾] is the temperature difference between the hot and cold sides of the hybrid solar 

collector. Note that, the value of 𝐶𝑝 of propylene glycol, which is the heat transfer fluid, is estimated using 

the weighted average method considering 65% water and 35% propylene glycol from Table 2. 

 

Table 2. Physical properties of the heat transfer fluid 65 % water and 35 % propylene glycol (Murali et 

al., 2024).  

 Water Propylene glycol 

Specific heat capacity, 𝐶𝑝 [
𝐽

𝑘𝑔𝐾
] 4186 2200 

Density, 𝜌 at 25 ℃  [
𝑘𝑔

𝑚³
] 1000 1110 

3. Results and Discussion 

3.1. Solar irradiance levels 

Figure 2 shows the solar irradiance data from July 2023 to February 2024 as a carpet plot. In four months 

July, August, September and October more than 1000 W/m² insolation was recorded. The maximum solar 

irradiance recorded was 350 W/m² in December 2023. 

3.2. Hybrid solar system performance analysis 

3.2.1. Thermal performance analysis 

Figure 3 shows the daily amount of thermal energy produced by the hybrid solar system during the 

measurement period from August 2023 to February 2024. The solar irradiance values integrated over time 

for each day are also shown as blue bars in Figure 3. There were days when the daily thermal energy 

production was higher than 100 kWh in the months of August (early August) and September (early 

September). On the contrary, negligible heat generation is recorded in the months of December 2023 and 

January 2024. The produced thermal energy is as expected directly correlated the respective solar insolation 

data. Higher solar insolation corresponds with the higher thermal energy produced and conversely, low 

thermal energy output corresponds to low insolation. During the month of August 2023, the thermal energy 

production was nearly consistent, except for some days at the end of the month which were cloudy.  

 Figure 4 shows the monthly average amount of thermal energy produced by the hybrid solar system 

during the measurement period from August 2023 to February 2024 with the corresponding solar radiation. 

The produced thermal energy trend is correlated the respective solar radiation. The heat energy production 

reached its peak during the midday hours when the irradiance was highest. In the summer the days are longer 

and hence the thermal energy production is also longer. There are momentary dips in heat production around 

midday during winter, these are due to the circulation of relatively warm heat transfer fluid to the colder PVT 

panels. 
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Figure 3 Daily thermal energy production (red bars) and insolation (blue bars) during the months of August to 

December 2023 and January and February of 2024. 

 
Figure 4 Average monthly heat energy generated (Blue) and solar radiation collected (Red) in kW during hours of a 

day,. 
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3.2.2. Electrical performance analysis 

Figure 5 shows the daily amount of electrical energy produced by the hybrid solar system during the 

measurement period from October 2023 to February 2024. There were days when the daily electrical energy 

production was not recorded as the integrated system was on performance tests. Likewise the heat energy 

production the electrical energy production of the hybrid solar system is in varying in relation to the solar 

insolation. 

 
Figure 5 Daily electrical energy production (green bars) and insolation (blue bars) during the months of October 2023 

and February of 2024 

3.2.3. Electrical and thermal performance combined 

Table 3 summarizes amount of average thermal and electrical energy produced by the hybrid solar system 

during the measurement period from August 2023 to February 2024 per day. During the seven consecutive 

months around 4.5 MWh thermal energy was generated by the hybrid solar system. In the five consecutive 

months from October to February around 2.3 MWh electrical energy was produced by the installed hybrid 

solar system. The month of December 2023 has days with the lowest thermal and electrical energy production 

that corresponds with its lowest solar isolation.  

Table 3 Daily average thermal and electrical energy generated in each of the measurement months with respect to the 

solar isolation. 

Month 

Daily average 

Thermal energy 

generated [kWh] 

Daily average 

Electrical energy 

generated [kWh] 

Daily average 

Insolation [kWh] 

August 51 - 465 

September 52 - 434 

October 16 25 213 

November 6 14 82 

December  0 7 44 

January 10 14 87 

February 13 19 115 
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4. Conclusions 

A hybrid solar system comprising 24 collectors was installed at the ILVO pig farm. The system is being 

monitored based on the temperature and flow rate of the heat transfer fluid (HTF), as well as radiation and 

ambient temperature. Commissioned in mid-July 2023, the system's performance has been analysed over the 

following seven months. 

 

From July to February, the hybrid solar system generated approximately 4.5 MWh of thermal energy. 

During the five months from October to February, it produced around 2.3 MWh of electrical energy. In 

December 2023, the system recorded the lowest thermal and electrical energy production, corresponding with 

the month's lowest solar insolation. The analysis also showed that both thermal and electrical energy 

generated varied primarily based on the amount of insolation. The performance evaluation has shown the 

capability of such hybrid solar system to reduce carbon emissions and effectively replace fossil fuel 

consumption in the livestock sector in real working conditions. 
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 Assessing the environmental benefits of switching to renewable energy sources in 
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Abstract 

This study presents an environmental Life Cycle Analysis (LCA) of the PDO ‘Kasseri – kefali’ cheese which was 

produced in a dairy industry in Western Macedonia, Greece. The main objective was to evaluate the environmental 

benefits of installing photovoltaic panels to supply the energy needs of the production process at the dairy. The 

Environmental Footprint 3.1 method was used to align with the PEFCR guidelines and standardize the 

environmental impact assessment. A comparative approach was followed, considering two scenarios: cheese 

production with the current reliance on the conventional energy grid versus a theoretical scenario, where the dairy's 

energy needs are met exclusively by the installed photovoltaic solar panels. The comparison was made for 1 kg 

of packaged and ready-to-supply ‘Kaseri Kefali PDO’ cheese, at the gate of the dairy unit. The study revealed that 

switching to photovoltaic energy resulted in a 6.2% reduction of the carbon footprint (CF) of the cheese for the 

entire cradle-to-dairy-unit supply chain. Specifically, the study focused on energy inputs, and found a 41% 

reduction in the CF associated solely with energy inputs, highlighting the potentially critical role of renewable 

energy sources, particularly solar energy, in enhancing the environmental profile of the Greek cheese production 

industry. 

Keywords: Life Cycle Assessment, Carbon Footprint, Green Energy, PEFCR, Cheese Production, Greece 

1. Introduction 

Sustainability is vital to maintain the well-being of current and future generations. It plays a crucial role in 

ensuring environmental, social, and economic balance and longevity in all sectors, including the food industry. 

The adoption of environmentally sustainable practices in the food industry is increasingly recognized as critical 

for several reasons. Firstly, food production and processing contribute significantly to greenhouse gas (GHG) 

emissions (Canellada et al. 2018; Breen, Upton, and Murphy 2020; Ghinea and Leahu 2023) and embracing 

sustainable practices can greatly reduce their carbon footprint (CF) and help mitigate climate change. Moreover, 

responsible practices aid in preserving resources such as water, energy, and raw materials, which is essential to 

maintain ecosystems and ensure their availability for future generations. Additionally, there is a growing emphasis 

on social responsibility. Consumers are increasingly concerned about the environmental impact of their dietary 

choices, leading to a demand for products produced in an ethical and sustainable way. It is therefore imperative to 

embrace environmentally sustainable practices in the food industry to ensure a balance between environmental 

and social concerns. 

In the agri-food sector, energy consumption, water utilization, and environmental impact are emerging issues 

to be addressed in response to climate change. The use of fossil energy in agricultural processes exacerbates 

climate change through both on-farm emissions from fuel combustion and off-farm emissions from the production 

and transport of agricultural inputs. The efficient use of fossil resources and increased adoption of renewable 

energies are essential for developing more sustainable agro-food production systems (Murgia et al. 2013). The 

Greek energy sector's greenhouse gas (GHG) emissions accounted for 69.17% of the country's total GHG 

emissions in 2021 (Ministry of Environment and Energy 2023). These emissions have decreased by approximately 

33.02% compared to 1990 levels, mainly due to the integration of natural gas and renewable energy sources (RES) 

into the electricity production system. Conducting Life Cycle Assessment (LCA) studies that focus on the 

integration of RES in the food industry can provide useful insights into the potential environmental benefits 

associated with such initiatives. Notably, the EU promotes RES across all sectors and industries. The 

Commission's proposal to increase the target in the Renewable Energy Directive to 45% by 2030 underscores the 

commitment to integrating RES in industries and sectors that currently rely on conventional resources (European 

Comission 2022).  

This study focuses on conducting an environmental LCA of the PDO ‘Kasseri – kefali’ cheese in Western 

Macedonia, Greece primarily aiming to evaluate the potential environmental benefit of integrating photovoltaic 

panels within the dairy unit to meet the energy requirements for the production. The study underscores the 
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opportunities and benefits associated with utilizing solar energy and intends to provide valuable insights into the 

environmental sustainability of cheese production.  

2. Materials and Methods 

The functional unit (FU) of this study was defined as “the production of 1 kg of PDO ‘Kasseri – kefali’ cheese, 

packaged, at the gate of the dairy unit”. This choice aligns with the Product Environmental Footprint Category 

Rules (PEFCR) guidelines for dairy products and the proposed approach for environmental burden allocation 

(European Dairy Association 2018). The system boundaries (Fig. 1) included milk inputs, production process 

ingredients (such as rennet, salt, etc.), packaging materials, cleaning agents, electricity, natural gas and water. In 

addition, transport activities from the suppliers to the dairy industry, involving the transport of raw milk, 

ingredients of the production process, cleaning agents, packaging materials and all the other transport processes 

in the supply chains of the inputs to the dairy industry, were included within the system boundaries.  

 
Figure 1. The study's system boundaries (cradle-to-dairy-unit-gate). 

In this study, the Environmental Footprint 3.1 method was used (European Commission. Joint Research 

Centre. 2020). This method offers many advantages, especially when aligned with the guidelines provided by the 

PEFCR rules (European Dairy Association, 2018). By following this method, a standardized approach for 

assessing the environmental footprint was ensured. Compliance with the PEFCR guidelines ensures transparency 

in the assessment process and enhances the reliability of the findings. 

The dairy unit, located in Grevena, has an important production capacity for North Greece, focusing on 

producing a variety of dairy products. It produces eleven different dairy products, with Kasseri cheese being the 

primary product at 14 tons per year, followed by Goat cheese and Graviera, each at 5 tons per year. Additionally, 

the unit produces several other products in smaller quantities. To ensure accurate allocation of the total energy, 

fuel, post-processing and other process inputs to the different dairy products, the PEFCR rules were followed. The 

PEFCR guidelines recommend allocation based on the dry weight or dry matter content of the products under 

study and their by-products. Due to this allocation approach, the more concentrated products, such as Kasseri 

cheese, received a greater proportion of the impact of processing, given the greater amount of raw milk required 

to produce them (Table 1). 

Table 1. Annual production volumes and dry matter content of the dairy unit’s products. 

Product Annual Production, kg Dry Matter Content, % Allocation, % 

Feta 24500 47 29.2 
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Goat Cheese 5500 47 6.5 

Yogurt 2400 18 1.1 

Anevato 6000 47 7.1 

Graviera  4000 56 5.7 

Aged Graviera 1400 56 2.0 

Kasseri. Formas 2080 55 2.9 

Kasseri. Kefali 12925 55 18.0 

Kefalotyri 12925 56 18.3 

Mpazios 240 56 0.3 

Cheese whey for Gkiza production 25500 7 4.5 

 

The LCA followed a comparative approach, by modelling two production systems. The first system 

represented the actual operating state of the supply chain ending at the dairy unit (AOS), describing the existing 

operations of the dairy facility, while the second system illustrated a theoretical operation state (TOS), assuming 

that all energy inputs were provided by solar panels, which were installed in the dairy facility. In the TOS scenario, 

electricity from the network was avoided, as it was the energy input that was saved in comparison to the AOS 

system. Since the production process of Kasseri cheese gives three products, “Kasseri Kefali PDO”, “Kasseri 

Forma PDO” and “Cheese Whey”, the inputs were again allocated according to the dry matter content of these 

products. The inputs and products of the production process of Kasseri for both AOS and TOS systems are 

summarized in Table 2.  

Table 2. Inputs and products of the AOS and TOS systems. 

Products Unit AOS TOS 

Kasseri Kefali PDO kg 13294.29 13294.29 

Kasseri Formas PDO kg 2218.67 2218.67 

Cheese Whey kg 112537.5 112537.5 

Avoided Products    

Electricity kWh - 12158.47 

Inputs from Nature    

Water m3 1000 1000 

Land Use m2a 561.385 561.385 

Materials    

Goat & Sheep Milk kg 245886.6 245886.6 

Transport of sheep and goat milk by articulated lorry, <7.5 tonnes tkm 1967.09 1967.09 

Acidic Detergents kg 41.82 41.82 

Alkaline Detergents  kg 209.11 209.11 

Transport of detergents by articulated lorry, <7.5 tonnes tkm 20.07 20.07 

Rennet kg 16.72 16.72 

Salt kg 2500 2500 

Transport of process ingredients by articulated lorry, <7.5 tonnes tkm 1000 1000 

Conventional Energy Consumption kWh 12158.47 0 

Monocrystalline Solar Panels m2 0 48 

Natural Gas kg 5080.51 5080.51 

Packaging Film m2 380.2 380.2 

Plastic bags m2 608.32 608.32 

Paper Labels m2 116.17 116.17 

Transport of packaging materials by articulated lorry, <7.5 tonnes tkm 9.41 9.41 

Private Car Use km 180 180 

Carton Boxes kg 1915.76 1915.76 

Transport of carton boxes tkm 344.8 344.8 
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The data used to model the systems were primarily sourced directly from the dairy unit. The primary data 

collection included detailed foreground data, such as the types and quantities of products produced, along with 

their dry matter content. The specific collected data points encompassed land use, water use, and materials use. 

Data on electricity inputs, packaging materials, transport activities to and from the dairy unit, waste management 

practices, and building infrastructure were also collected. In cases where primary data were not available, 

alternative sources were employed to supplement the missing information. Specifically, data on the dry matter 

content of the whey and the quantity of whey produced during the cheese-making process were sourced from the 

PEFCR guidelines (European Dairy Association 2018). To model the background system, processes that are 

consistent with the PEF methodology (European Comission 2019) were exclusively used. 

To model the TOS scenario, it was necessary to calculate the total number of solar panels needed to power the 

dairy unit all year round. It was essential that the calculations are based on real data. Therefore, the solar panels 

used in the scenario were sources from a reputable PV panel supplier and the modeling was carried out using the 

specific characteristics of their panels (The Green Watt 2023). The scenario assumed that the panels used are 

monocrystalline and data used in the calculation included their wattage, their solar output, the peak sun hours of 

the area and the number of operation days for the dairy unit. All data mentioned were collected from the solar 

panel’s supplier documentations. The annual energy production of the panels was considered enough to supply 

the needs of the unit and the available space within the unit's facilities was considered sufficient to accommodate 

the calculated number of solar panels.  

3. Results 

3.1.  Impact Assessment 

The results of this study were presented for nine impact categories as suggested by the PEFCR guidelines 

(European Dairy Association 2018). These categories provided a comprehensive view of the environmental 

impacts associated with the production of PDO ‘Kasseri – kefali’ cheese. The results were expressed as 

percentages of potential improvement or deterioration when transitioning from the current AOS to the TOS. Those 

were calculated following the eq. (1): 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑟 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖 , % =
𝐼𝑚𝑝𝑎𝑐𝑡 𝑆𝑐𝑜𝑟𝑒 𝑇𝑂𝑆𝑖−𝐼𝑚𝑝𝑎𝑐𝑡 𝑆𝑐𝑜𝑟𝑒 𝐴𝑂𝑆𝑖

𝐼𝑚𝑝𝑎𝑐𝑡 𝑆𝑐𝑜𝑟𝑒 𝐴𝑂𝑆𝑖
∗ 100  (1) 

The transition to photovoltaic energy showed improvements in almost all the impact categories studied per kg 

of cheese at the dairy unit’s gate, as shown in Figure 2. The most significant improvement was noticed in the 

resource use, fossils and climate change impact categories, where the impacts were reduced by 17.0% and 6.2% 

respectively, when transitioning from the AOS to the TOS.  

 

Figure 2. Impact Assessment Results: Percentages of improvement or deterioration after transitioning from 

AOS to TOS. 
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3.2. Process Contribution 

The CF of the “production of 1 kg of one kilogram of PDO ‘Kasseri – kefali’ cheese” was predominantly 

(>90%) attributed to the raw sheep and goat milk input. For the “Resources Use, fossils” impact category, more 

than 68% of the total impact was associated with the cheese production process. A comprehensive figure that 

illustrates the contribution analysis for climate change and resource use is presented below (Fig. 3). Figure 3 

illustrates the contributions of six groups of processes to two environmental impact categories: climate change 

and resource use, fossils, for TOS and AOS scenarios. For the climate change impact category, the milk inputs, 

were the dominant contributor, accounting for 91% and 97% of the total impact in AOS and TOS, respectively. In 

the resource use fossils category, the processes associated with milk remained the primary contributor, with 68% 

and 82% in AOS and TOS, respectively. The energy and fuels process groups (which included the natural gas 

consumption in the dairy) also showed a significant contribution to this impact category, with 7.5% in AOS which 

dropped to 1.1% in TOS. For both impact categories analyzed, the contribution of the rest of the process groups 

was less than 1%.  

Given the study’s focus on assessing the benefits of transitioning the dairy's energy supply to renewable 

sources, a contribution analysis to the above impact categories, focusing solely on the energy-related inputs of the 

AOS and TOS systems, was also of interest (Fig. 4). Figure 4 reveals the significant improvement associated with 

the energy shift towards green energy sources to cover the industry's energy needs. The CF resulting from energy-

related inputs was reduced by 41%, a reduction entirely attributed to the shift from conventional to green energy. 

A similar observation could be made for the “resource use, fossils” impact category where the category indicator 

drops by 30% when switching from the AOS to the TOS scenario. 

 

 

Figure 3. Contribution Analysis for “Climate change” and “Resource Use”, fossils impact categories 
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Figure 4. Carbon footprint and Resource use, fossils contribution analysis, isolating the energy and fuels processes 

4. Discussion 

This study demonstrates the benefits of a dairy industry's transition to renewable energy sources, with a focus 

on solar energy. Studies on the environmental and CF of dairy products highlight the environmental benefits of 

decoupling from conventional energy sources. 

Canellada et al. (2018) investigated the environmental footprint of cheese production in southern Europe, in 

particular of the Spanish "Franxon" and "Casin" cheeses. They concluded that milk production and land use 

change were the largest contributors to the environmental footprint, with milk production accounting for more 

than 75% of climate change impacts. Energy consumption accounted for about 10% of this environmental impact. 

The results of the present study align with their findings, as milk production was also the main contributor in the 

present analysis, with more than 90% contribution, followed by energy consumption, which accounted for 7% of 

the CF. 

Murgia et al. (2013) analyzed the energy needs and CO2 emissions of dairy farms. They identified cooling and 

milk processing as the most energy-intensive processes. For the production of 1 kg of milk, CO2 emissions were 

0.085 kg CO2 eq. The integration of photovoltaic panels on dairy farms reduced the CF by 0.023 kg CO2 eq, which 

corresponds to a 27% reduction. In addition, these systems can exceed energy needs during the summer, allowing 

farms to sell surplus energy to the grid. The present study’s outcomes showed a 6.2% improvement in the CF per 

kg of Kasseri cheese associated with the integration of solar panels in the dairy unit. Nevertheless, it has to be 

considered that one of the assumptions of the present study was that the solar panels produce only the necessary 

electrical energy for running the dairy unit, explaining the lower CF improvement in comparison to Murgia et al. 

(2013), while it cannot be neglected that the functional unit in our study is different. 

Similarly, the present study reveals the benefits of the transition from conventional to green energy. The shift 

to solar energy has a notable effect on decreasing the supply chain system’s GHG emissions as well as its 

dependency on fossil fuels. By integrating renewable energy systems, dairy farms can potentially lower their CF 

and achieve improved environmental performance. The comparative analysis between the actual and the 

theoretical operating scenario highlights that the cheese production process, primarily driven by milk production, 

was the major contributor to both climate change and resource use impacts. However, with the incorporation of 

green energy, there was a notable, potential reduction in these impacts, demonstrating the advantages of renewable 

energy adoption.  

5. Conclusions 

The present study explores the environmental benefits per kg of PDO ‘Kasseri-kefali’ cheese of transitioning 

a dairy unit’s energy supply from conventional to renewable resources. Comparing the current operation state with 

a theoretical scenario powered solely by integrated solar panels showed potential sustainability improvements. 

The CF reduction from this transition is notable, particularly when focusing on energy and fuel inputs. 

Specifically, the study found a 41% improvement in the CF and a 30% reduction in fossil fuel use, changes that 

are solely associated with the energy inputs in the unit. This improvement was attributed to the utilization of solar 

energy and the dairy plant's decoupling from the conventional energy grid, underscoring the critical role that 

energy consumption plays in the dairy’s operations. 
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Our study supports the transition to green energy, demonstrating notable improvements in both the CF and 

resource use, underscoring the potential of such practices to enhance the environmental performance of cheese 

production in Greece.  
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Abstract 

As several studies have shown, agricultural residues can produce the total fuel requirement for the 

agricultural sector as non-fossil fuels.  Challenges that could be solved largely with the realized pilot plant 

within this study were the economic feasibility of very small Bio-CNG production plants from 10m3 raw 

biogas/h and the achievement of fuel quality >97% CH4. 

The study shows the results from the operation of the two pilot plants (i) the one with 10 m3/h of raw 

biogas at the Leibniz Innovation Farm for Sustainable Bioeconomy near Potsdam, Germany, and (ii) the 

other with 35 m3/h of raw biogas in Utzenaich, Austria. The pilot plant in Potsdam has operated since January 

2024 and supplies the farm’s fuel for CNG-powered tractors. The study describes the measured key 

performance indicators of the two pilot plants, such as bio-CNG quality, specific energy consumption, and 

manufacturing costs of market-ready plants. Taking into account current market prices for raw biogas and 

electricity as well as investment costs for the Bio-CNG plant, total costs for Bio-CNG production 

(@>250bar) of 1.51€/kg Bio-CNG for the 35 m3/h plant, and 2.25€/kg Bio-CNG for the 10 m3/h plant could 

be determined. The energy consumption was determined at ~1 kWh per Nm3 of biomethane (purified and 

highly compressed) in pilot operation. With the results from the monitoring of the two realized pilot plants, 

the study also determines the expected unit costs per plant as well as specific costs of €/kg Bio-CNG fuel for 

further plant sizes of 65 m3/h and 100 m3/h raw biogas. The expected cost degression is seen between the 

system sizes. The development of the small-scale micro-Bio-CNG farm filling station is proving to be 

technically and economically feasible based on pilot plant data. 

 

Keywords: biomethane, Livestock farming, de-fossilization, membrane separation, anaerobic digestion 

1. Introduction 

Biomethane production from biogas (derived from manure) can be either upgraded to electricity and heat 

in Combined Heat and Power plants (CHP) or to fuel for farm tractors. One of the main barriers to producing 

own fuel on the farm from biogas is the economic feasibility on a very small scale. A promising biogas to 

biomethane upgrading technology that could be applied in the project is based on membranes separation. The 

membrane-based biogas upgrading technology achieves biomethane production of 98% clean CH4 with 

limited slip (< 0.1%), using a variety of biogas compositions and qualities. The aim is to further optimise the 

series of processes, focusing on the pre-treatment, to reduce the energy consumption of the integrated system 

by about 5%, and enable its wide use in livestock farms. Further aim of the pilot and demo plant here is to 

create a possibility for the processing of biogas to Bio-CNG on small biogas plants in the smallest farm filling 

standard through technical further developments. For this purpose, the current status of biogas production at 

the pilot-farm LVAT (Leibniz Innovation Farm for Sustainable Bioeconomy) was surveyed, and literature 

and market research were carried out for the smallest Bio-CNG product. Since there were hardly any 

economically viable systems on such a small scale (10 Nm³ h-1 biogas) on the market, a new technological 

setup with a hollow fiber membrane in the low-pressure range (8 bar) and 2 in 1 hybrid compression was set 

up. With the new concept, the decarbonization of a company's or livestock farms own vehicle fleet should be 

able to take place in an efficient and economical way using micro-Bio-CNG production from Biogas. 
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Fuel production from biogas is predestined for energy use in agriculture and forestry in order to protect 

the climate, strengthen regional value chains, and establish bioeconomy cycles by switching from fossil fuels 

to sustainable and domestic biofuels. 

Especially for agricultural livestock farms, off-grid biogas upgrading with small upgrading plants (10 and 

35 Nm³ h-1 biogas) and on-farm biomethane use as fuel for tractor propulsion is an interesting solution. 

Typical for such farms is a seasonally strongly fluctuating fuel demand, so that a timely and continuous 

biomethane supply in the course of the year is usually not given and, in addition, different energy sources 

(heat, electricity, and fuel) are needed simultaneously on a daily basis. Therefore, a concept with coupled 

biomethane and electricity production is aimed for. 

However, there is still little operational experience and data on the technical and economic feasibility of 

such plant concepts. For the economic viability of micro-treatment plants, technically simplified plant 

concepts must be developed that achieve low specific investment costs and at the same time guarantee the 

required safety requirements. In addition to the lower specific investment costs, further revenues from 

greenhouse gas avoidance costs are to be achieved. 

The research and development project H2020 RES4LIVE aims at a coupled biomethane and electricity 

production with integrated micro upgrading plants for biogas for internal biomethane use. There is a need for 

optimization due to the overlapping of the demand for the energy sources over time. Conventional diesel 

engines are also to be retrofitted to run on gas, especially for in-plant mobile drives, to reduce costs and 

expand the range of applications for the existing demand. The aim is to record the technical parameters of 

the operation of micro biogas upgrading plants, the retrofitting of existing diesel engines for gas operation 

with optimization of the operation (load response and emissions), primarily for internal applications, and the 

determination of the economic efficiency and greenhouse gas avoidance potential. 

2. Materials and Methods  

The present study is carried out as part of the Horizon project RES4LIVE (Grant Agreement No. 

101000785), which in general will adapt and test promising RES technologies in energy-intensive livestock 

farming for greatly reducing the fossil energy that is the main source to covering the energy demand. 

Dedicated, optimal designs combined with energy efficiency and other solutions are proposed, demonstrated 

in 4 pilot farms, and evaluated technically, economically, environmentally, and socially. The overall 

objective is to provide advanced and cost-effective technologies to the livestock sector that ensure the 

sustainability of the farms’ operation, and the superior thermal comfort of the animals for increased 

productivity with minimum climate change impact. The strategic objective of RES4LIVE is to develop and 

bring into the market integrated, cost-effective, and case-sensitive RES solutions towards achieving fossil-

free livestock farming. 

2.1. Novelty of micro-Bio-CNG plant    

The Bio-CNG farm filling station developed in this project is characterized by its very simplified and compact 

design in terms of compression. By integrating the biogas to biomethane processing in the existing biogas 

CHP process, a 1-stage (single membrane) process can be used for CH4 concentration instead of a multi-

stage membrane process. As a result, there are no direct emissions at the Biomethane-, and further 

compressed to Bio-CNG plant. Through further development with the integration of a hybrid compressor, 

the processes of membrane gas permeation [>95% CH4 biogas] and CNG production by means of high 

compression can be managed with just one electric motor and compressor block. Among other things, hybrid 

compression makes a significant contribution to reducing maintenance costs, reducing investment costs, and 

reducing operating (energy) costs. The high compression up to 250 bar takes place by means of piston 

compressor stages 2 and 3, whereby the CH4 separation process after piston stage 1 is integrated directly into 

the piston compression without pressure loss. 

The membrane separation process was specially designed in the low-pressure range at 7-8 bar through 

simulation to create better integration into hybrid compression and to maintain the energy saving effect. For 

further cost savings and to prevent the formation of explosion zones in closed rooms, the Bio-CNG farm 

filling station and processing was constructed entirely in an open-frame design on a 20ft frame. For 

summer/winter operation, all system components are thermally insulated and zones at risk of frost are 

permanently protected against frost. The heat-insulated zones of the system, which are not at risk of frost, are 
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also preheated by means of heating for a shorter start-up operation. The system is operated stop-and-go and 

has a 250 bar intermediate storage to be able to optimize the production times of the system and to reduce 

the refuelling time to a minimum. 

The farm filling station for Bio-CNG with direct production of biomethane from biogas on-site represents 

a strictly non-public operation compared to conventional systems. Complex parts like electronically 

controlled odorization for example can therefore be dispensed with. 

Due to the processing of biogas with the property as a combustible gas and the potential possibility of the 

formation of explosive gas mixtures in the presence of oxygen, a large part of the plant must be equipped 

with ATEX-compliant (components for flammable gases manufactured according to the explosion protection 

directive) machines and devices. Only the control unit and the cooling water set are not designed according 

to ATEX directives and are located on the compact open frame 20ft system frame (all in one) at a 

corresponding distance from the designated Ex (ATEX) zones. 

2.2. Design concept of the pilot plants   

The system design is based on the basic principle of the most simplified possible technical operation due 

to the very strong need for downscaling for the realization of such small systems. In order to operate the farm 

filling station in the simplified 1-stage system, a maximum of 20% of the total raw gas flow of the biogas 

plant is used, so that the OFF-GAS, which contains a lot of CO2, from the biogas processing only dilutes the 

raw gas for the combined heat and power plant to the permissible extent. In contrast to larger commercial 

systems, the present concept deliberately designed a completely ventilated system in an open-frame design 

instead of the conventional closed design. 

The input streams into the plant represent water-saturated raw biogas with ~52% CH4 content and 

electrical energy. The output streams of the plant are Bio-CNG, OFF-GAS with > 80% CO2 content and H2O 

condensate from cooling and dehumidification of the raw biogas. 

Due to the open-frame design, all system components are directly exposed to the ambient temperatures. 

To protect the system parts against frost in winter and to ensure sufficient temperature for start-up operation, 

all system parts are thermally insulated and equipped with accompanying heating and accompanying 

temperature control throughout. Due to the direct electrical heating and preheating under the thermal 

insulation instead of inside the housing to be tempered, a very low heat requirement and thus low operating 

costs are expected. Due to the heat generated during compression, no heating or temperature control is 

necessary during operation. Since the system runs in stop-and-go mode and can be out of operation for days 

and hours, the system is divided into areas to be protected against frost and areas to be preheated to prevent 

unnecessary energy inputs with regard to energy efficiency. Areas to be protected against frost are kept 

permanently at >3C° when the system is at a standstill, with areas to be preheated being automatically 

temperature-controlled up to 20 minutes before the system starts. 

The biogas is purified from ~52% CH4 to >95% CH4 using a 4-inch hollow fiber membrane made by 

EVONIK. The quality of the product gas is influenced by temperature, flow rate, and pressure. The control 

parameters mentioned, above all flow and pressure, are adjusted to the desired gas quality using a CH4 quick 

measurement (CH4% = controlled variable).  

An additional outdoor temperature-compensated filling prevents the storage tank and vehicles from being 

overfilled in summer/winter operation. In contrast to commercial filling stations, where the temperature-

compensated filling is regulated directly in the vehicle, the temperature-compensated filling is already carried 

out for cost reasons by switching off the storage tank filling depending on the outside temperature. 

 

2.3. Hybrid 2 in 1 compressor design 

The re-design of the piston compressor for the processing and high compression of the raw biogas to Bio-

CNG to a hybrid compressor plays an important role in the feasibility of the farm filling station in terms of 

investment cost reduction and energy consumption. As shown in Figure 1, the 1st stage of the compressor 

block acts to compress the raw gas which is taken from the 1st cylinder for processing. The compressor stages 

2 and 3 only compress the processed biomethane to CNG. A significant change is the reduction of the gas 

volume flow of 10 Nm³ h-1 in the 1st stage to about 4 Nm³ h-1 in the 2nd and 3rd stages. 
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For this purpose, a constructive change was made to reduce the volume of the 2nd and 3rd cylinder stage 

in order to ensure compression without damage to the compressor and with the corresponding efficiency 

despite the gas volume reduction within the 3-stage compression process. 

After the gas has been removed from the 1st stage [Figure 1], the remaining cleaned gas volume flow of 

around 4 Nm³ h-1 is fed back to the structurally smaller 2nd compression stage for high compression. The 

pressure from the 1st stage was increased in hybrid compression to up to 8 bar compared to conventional 

compression to be able to create sufficient raw biogas processing. The design pressure of the membrane was 

selected with the comparatively low pressure of 8 bar for hollow fiber membranes to have a further safety 

and control margin. 

 

 
Figure 1 Hybrid 2 in 1 compressor 

 

2.4. Technical characteristics of micro-Bio-CNG 10 Nm³ h-1 raw biogas plant  

As shown in Figure 2, the micro-Bio-CNG plant operates as a fully closed cycle process, with the 

exception of the Bio-CNG CH4 fuel discharged. The raw biogas is sucked from the gas storage tank of the 

biogas plant into the farm filling station at about 35 C° and 3 mbar in a water-saturated state. In the system, 

a small ATEX side channel compressor with 250Wel. ensures that the raw biogas is sucked in from the biogas 

storage tank and is available at around 100 mbar on the input side of the 3-stage piston compressor. There is 

an automatic condensate drain and an iron pellet filter for desulfurization in the intake line in front of the side 

channel compressor. Starting at 100 mbar, the desulfurized raw biogas is brought to a pressure of around 8 

bar in the 1st compressor stage. 

The 10 Nm³ h-1 raw biogas are now within the compression process dewatered with the pressure of 8 bar 

from the 1st compression stage, oil separated, NH3 separated, and fine particles separated. Finally, 4 of the 10 

Nm³ h-1 are concentrated to a CH4 content of around 97%. The remaining 4 Nm³ h-1 are highly compressed 

to CNG with the same compressor. The off-gas flow with CO2 and CH4 is completely recycled back into the 

biogas storage. The dilution of the raw biogas with regard to the CH4 content (by separating 97% CH4 gas 

from the biogas storage) may only be carried out sufficiently up to the permissible level for the existing CHP. 
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Figure 2 Construction of the micro-Bio-CNG plant 

 

3. Results and Discussion 

The pilot operation of the 10 Nm³ h-1 raw biogas plant started with first trials in 07/2023. The results from 

the data monitoring of the 10 m3 Nm³ h-1 raw biogas plant, as well as the 35 Nm³ h-1 raw biogas plant launched 

a few months later, show promising findings in terms of stable process technology and economics. With a 

look at the figures for the use of bio-CNG as fuel in tractors known from the literature, the potential that 

micro-Bio-CNG plants of this type hide for the de-fossilization of agriculture becomes clear. Literature data 

shows that the manure from a single cow can be used to plow the equivalent of 6-8 hectares per year. 

The pilot plant showed soon after the start of trial operations that the initially risky hybrid compression 

technology shows consistently stable technical operating conditions and that the compression of different gas 

volumes in the 3 compression stages actually works. The only few technical faults were rectified just a few 

days after the pilot plant was first started up at the LVAT pilot-farm (Leibniz Innovation Farm for Sustainable 

Bioeconomy). The official approval process for the approval of a micro-bio-CNG plant of this type in the 

Brandenburg area of Germany proved to be very complicated. This barrier must be significantly reduced for 

future plants in cooperation with politics and the authorities. 

 

3.1. Key performance indicators of the 10 Nm³ h-1 raw biogas pilot plant 

As shown in table 1, from the logged data of the 10 Nm³ h-1 raw biogas system over a period of more than 

half a year (winter/summer operation), a specific energy consumption of 0.94 kWhel/Nm3 Bio-CNG (±0.15) 

was recorded. This energy consumption covers the energy requirement for the separation of CO2 from the 

biogas and thus the purification of biomethane, as well as the compression of the biomethane to 250 bar to 

Bio-CNG. Assuming an energy content of 10.5 kWhel per Nm3 of bio-CNG, this results in an energy 

consumption of 9.0% as a proportion of the fuel. The average separation pressure in the hollow fiber 

membrane and the average membrane inlet temperature in the measured data are 7.38 bar (±0.47) and 57.44 

°C (±2.49). The measured pressure in the hollow fiber membrane for gas separation is a comparatively low 

value for membrane separation.  

 

 

 

 

AgEng 2024 Proceedings

1092



Table 1 Key performance indicators from the data monitoring of the pilot plant 10 Nm³ h-1 raw biogas upgrading and 

Bio-CNG farm filling station at LVAT pilot-farm within H2020 project Res4Live 

key indicator x̄ SD n 

specific energy consumption [kWhel/Nm3 BioCNG] 0,94 0,15 14896 

separation pressure hollow fiber membrane [bar] 7,83 0,47 18771 

separation temperature hollow fiber membrane [°C] 57,44 2,49 18771 

methane concentration [%] 96,75 1,28 29771 

start-up time until BioCNG production OK [min] 26,78 5,49 9 

 

The average methane concentration achieved in the data measured in the 1-stage membrane process is 

96.75 %. It should be noted that this is far sufficient for refueling CNG vehicles, as the CH4 concentration 

for use in the gas engine is allowed to be lower compared to the requirement in this point for gas grid injection. 

The average time from starting the pilot plant with raw biogas after a longer standstill to reaching the 

necessary bio-CNG methane concentration (>95%) is 26.78 minutes. It was observed that this time was 

slightly higher in the colder season than in the warmer months. In the months of January and February, for 

example, the average time to achieve the same gas quality was over 30 minutes. Nevertheless, these values 

of around half an hour represent acceptable values for practical operation, as the system only restarts once a 

day in normal operation and completely fills the empty gas storage cylinders. 

 

3.2. Economic data of 10 and 35 Nm³ h-1 raw biogas pilot plants 

 

In order to estimate the economic efficiency of the micro-Bio-CNG plants, a total cost calculation was 

made on the basis of the measured data for the 10 and 35 Nm³ h-1 raw biogas pilot plant, assuming costs for 

the raw biogas of €0.5/kgCH4, electricity costs of €0.2/kWhel, and a depreciation period of 10 years. 

Taking into account the energy consumption measured at the pilot plants, the total costs are €2.25/kg Bio-

CNG for the 10 Nm³ h-1 raw biogas plant and €1.51/kg Bio-CNG for the 35 Nm³ h-1 raw biogas plant. The 

degression in the total costs per fuel unit is almost entirely due to the depreciation caused by the investment. 

The calculated costs therefore already represent an economic business case for very small Bio-CNG plants 

such as those examined here. The remuneration of greenhouse gas quotas, which may be obtained in the 

future for the production and utilization of biofuel, would significantly improve the economic feasibility even 

further.  

 

4. Conclusions 

A technically simplified micro-Bio-CNG technology was developed for the on-farm own processing of 

biogas into biomethane. The biomethane is to be used as a fuel to drive tractors. As a further consequence, 

systems of this type can contribute to the reduction of the consumption of fossil fuels, if they are used across 

the board. The decentralized use of such technology can quickly pay off, especially with rising energy prices 

and rising costs for transporting energy sources. The total cost calculation based on the determined values of 

both plants shows that an economic operation for such a micro-Bio-CNG plant is feasible. Another source of 

income for farmers who pursue the Bio-CNG fuel production will be the revenue from greenhouse gas quotas 

in the future. Based on the project results, the on-farm Bio-CNG production thus represents a promising 
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possibility for the de-fossilization of the entire agricultural economy. 
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Abstract 

This study was conducted over 35,300 hectares of pastoral (PDFs) and barn (BDFs) dairy farming 

systems in Canterbury. Total energy consumption on these dairy farms was estimated at 5295 MJ/ha. On 

average, fertilizer and electricity were the most used energy sources, accounting for approximately 30% 

and 35% of the total energy consumption, respectively. The energy consumption for milk production in 

pastoral (PDFs) and barn (BDFs) dairy farming systems was estimated at 50,538 MJ/ha and 55,833 

MJ/ha, respectively. 

Several direct and indirect factors were identified in this study to create a Multi-Layered Perception 

(MLP) artificial neural network (NN) model to predict energy use in milk production, achieving an R-

square value of 0.91. The final model can predict energy consumption based on farm conditions (number 

of cows), farmers’ social considerations (farmer's age), and energy inputs (electricity). 

Keywords: Modelling, Energy Consumption, Neural Networks dairy farming, New Zealand 

1. Introduction 

Energy is a crucial element in modern agriculture. Without it, farming would be impossible, as 

modern agriculture heavily depends on energy use and fossil resources. Energy consumption in 

agriculture has been rising due to the limited supply of arable land, a growing population, technological 

advancements, and the desire for higher living standards (Hatirli et al., 2006; Kizilaslan, 2008; Safa and 

Samarasinghe, 2011;  Manaloor and Sen, 2009).  

Unlike other sectors, energy use in agriculture has received very little attention from scientists in 

various countries. This lack of scientific focus is primarily due to data shortages and a lower level of 

multidisciplinary work, causing researchers to overlook this area. However, energy consumption in 

agricultural production has been increasing more rapidly than in many other sectors. It is evident that 

energy use in modern agriculture has increased. However, the growth rate of production has been even 

higher, resulting in lower energy use per unit than in the past (Singh, 2023; Sauerbeck, 2001). 

Some studies show that there is a positive relationship between energy usage and productivity. To 

minimize greenhouse gas (GHG) emissions, it is essential to reduce farm energy inputs (fossil fuels, 

fertilizers, etc.). This goal can be achieved in two ways: either by substantially increasing energy 

efficiency, where the same output is produced with less energy input, or by using more sustainable energy 

sources such as solar, wind, biomass, etc..  (Singh et al., 2004; Karkacier and Gokalp Goktolga, 2005; 

Outlaw et al., 2005; Hatirli et al., 2006; Karkacier et al., 2006; Baruah and Bora, 2008; Smil, 2008). Also, 

there is a significant relationship between energy output and weather, price, yield, and technology (Ozkan 

et al., 2004). Some energy sources in the agriculture sector are classified under other sectors. For instance, 

fuel consumption for farm operations might be categorized under the transport sector, and indirect energy 

sources like fertilizers, seeds, and agrichemicals might be estimated in the industrial sector. As a result, 

official national statistics often do not accurately reflect energy use in agriculture, and they pay very little 

attention to energy consumption within the agriculture sector. (Pellizzi, 1992). New Zealand is one of 

the countries with the highest energy input per unit (in agriculture) in the world (Safa and Samarasinghe, 

2011; Conforti and Giampietro, 1997). Furthermore, rising global fuel prices have a greater impact on 

New Zealand farming compared to other countries, especially in terms of shipping. 

Energy modeling is a compelling subject for engineers and scientists interested in energy production, 

consumption, and environmental impacts (Tester, 2005; Al-Ghandoor et al., 2009). In the field of energy, 

a wide range of models have been utilized, from geological models for researching natural resources to 

models for predicting future energy demand (Tester, 2005). Neural networks are capable of modeling 

complex nonlinear systems in a flexible and adaptive manner. As a result, they are increasingly being 

used to solve various problems in science and engineering (Jebaraj and Iniyan, 2006).  

The advantages of using NN models include their simplicity of application and the robustness of their 

results. NNs have evolved into a powerful approach capable of approximating any nonlinear input-output 

mapping function with high accuracy through iterative processes. They possess several attractive 
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properties for modeling complex production systems, such as universal function approximation 

capability, resilience to noisy or missing data, accommodation of multiple nonlinear variables with 

unknown interactions, and strong generalization ability (Hagan et al., 2002; Samarasinghe, 2007). 

n most studies, a feed-forward Multi-Layered Perceptron (MLP) paradigm, consisting of one or more 

input layers, hidden layers, and an output layer trained via backpropagation (BP), is used. Due to its well-

documented ability to model any function, MLP trained with BP is chosen to develop models for 

apparatus, processes, and product prediction (Safa and Samarasinghe, 2011). During the processing of 

inputs by the network, each neuron in the first layer (hidden layer) computes the weighted inputs using 

a transfer function to generate its output. These transfer functions can be linear or nonlinear and include 

options like Logistic, Hyperbolic-tangent, Gaussian, and Sine functions. The specific transfer function 

used determines the output. This output is then transmitted to neurons in the next layer via weighted 

connections, where they complete their outputs by processing the sum of weighted inputs through their 

respective transfer functions. In the case of the output layer, the neuron's output represents the predicted 

output (Safa and Samarasinghe, 2011). 

Various methods of error estimation have been proposed, with Mean Square Error (MSE) over all 

training patterns being the most commonly used indicator. MSE is particularly valuable for comparing 

different models as it demonstrates the network's ability to predict the correct output. Mathematically, 

MSE can be expressed as: 

2)(
2

1
i

N

i

i zt
N

MSE −= 
                                                                                                    (1)                                                                                       

where ti and zi are the actual and the predicted output for the ith training pattern, and N is the total number 

of training patterns (Samarasinghe, 2007). Root mean square error (RMSE) is another error estimation, 

which shows the error in the units of actual and predicted data. 

It's generally more effective to tackle problems with the minimum number of variables. When dealing 

with a significantly high number of variables, especially with a limited number of samples, data reduction 

becomes advantageous. Additionally, when some input variables are correlated with each other, a 

problem known as multicollinearity arises. Correlation among inputs diminishes the likelihood of finding 

a unique solution (Samarasinghe, 2007). The most commonly used method for data reduction and 

removal of multicollinearity is Principal Component Analysis (PCA). PCA is a valuable technique for 

selecting the most important uncorrelated variables. It operates by utilizing the mean, variance, and 

covariance of each input variable to construct a covariance matrix (COV) (Samarasinghe, 2007). This 

matrix is then transformed to derive independent components, which are linear combinations of the 

original inputs. The resulting components allow for the selection of either individual uncorrelated 

variables or the use of independent components as inputs to the model. 

2. Methodology 

The study was conducted on pastoral (PDFs) and barn (BDFs) dairy systems in Canterbury, New 

Zealand, a significant dairy region comprising 10% of dairy herds and 16% of dairying land in the 

country (DairyNZ, 2019). Carbon footprints, in the form of CO2 emissions associated with energy 

consumption, were measured in this study, excluding CO2 emissions from agricultural soils. 

Energy consumption in this context refers to the energy utilized in milk production that leaves the 

farm. Data collection involved three main sources: questionnaires, literature reviews, and field 

measurements. The energy inputs considered in this study encompass those involved in on-farm 

production systems prior to post-harvest processes. Natural energy sources such as radiation, wind, and 

rain were not included in the analysis. 

The analysis of energy consumption on dairy farms focused on both direct and indirect energy 

sources, which include human labor, fuel, fertilizers, pesticides, machinery, and seeds. Total energy input 

(E) was calculated as the sum of input factors (Ai) multiplied by the appropriate energy conversion 

coefficient for each factor (Ci), expressed by the formula: 

E = Σ(Ai Ci)                                                                                                                 (2) 

Various energy conversion coefficients are used to convert farm inputs and outputs into energy 

equivalents. Table 1 presents the energy equivalents of different inputs as reported in important 

references. Discrepancies among these coefficients arise from differences in technology, estimation 

methods, and other factors, some of which are significant. 
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Table 1. Energy equivalents of different inputs and outputs  

Inputs items Unit Energy Coefficients 

(MJ unit-1) 

References 

Direct Energy Inputs    

Diesel litres 45 MED (2012) 

Petrol litres 42 MED (2012) 

Electricity kWh 8 MED (2012)  

Human Labour hours 1.96 Mani, Kumar, Panwar, and 

Kant (2007) 

Indirect Energy Inputs 

Fertilizers 

a. Nitrogen (N) kg 64.1 Wheeler (2018) 

b. Phosphorous (P) kg 28.4 Wheeler (2018) 

c. Potassium (K) kg 17.8 Wheeler (2018) 

d. Sulphur (S) kg 3.24 Wheeler (2018) 

Feed Supplement 

a. Grass Silage t DM 1781 Wheeler (2018) 

b. Maize/Cereal Silage t DM 1564 Wheeler (2018) 

c. Hay t DM 1329 Wheeler (2018) 

d. Grains t DM 3905 Wheeler (2018) 

e. Concentrates t DM 1800 Wheeler (2018) 

Machinery & Equipment  

a. Tractors kg 160 Wells (2001) 

b. Utes  kg 160 Wells (2001) 

c. 2-Wheeler Motorbikes kg 160 Wells (2001) 

d.     

* For different varieties, different equivalents were used 

In this study, careful investigation and selection of energy conversion coefficients were conducted. 

Apart from direct and indirect energy inputs, various other factors, including technical, social, 

geographical, and financial aspects, could indirectly influence energy consumption. Approximately 60 

factors were examined, such as farmers' social status, age of equipment, power of machinery, paddock 

numbers and sizes, and yield, to design a model predicting energy consumption in milk production. 

Incorporating these indirect factors into energy prediction could potentially minimize energy 

consumption at minimal cost and without significantly impacting farmers' income. 

Identifying suitable variables is crucial in model creation. Extracting all relevant input variables was 

straightforward, with farmers having a clear understanding of them. Following data processing and input 

reduction, three variables were selected: Number of cows, farmer’s age, and electricity consumption 

(KWh). These variables were chosen based on their lack of correlation and were determined using 

Principle Component Analysis (PCA). For instance, significant correlations were observed between the 

number of cows and farm size, as well as between nitrogen consumption and electricity consumption, 

leading to the removal of nitrogen consumption and farm area from the input variable list. 

Neural networks (NNs) proved effective in describing the influence of energy sources, agricultural 

operations, and indirect factors on energy consumption in milk production. The study utilized a sample 

size of 55 farms, with 40 farms randomly selected for training initially, and the remaining 15 farms used 

for validation. 

After several trials using Peltarion Synapse software, a MLP neural network with two hidden layers 

was chosen. This MLP network structure involves a series of independent neural networks after the input 

layer, each performing subtasks trained separately with different examples from the sample, with their 

outputs summed in the output layer. This structure equips the network to simultaneously utilize different 
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model functions for the data. 

The Quick Prop learning method was employed due to its efficiency in error reduction and model 

optimization. Quick Prop utilizes the second derivative of error to adjust weights, regulating the update 

for weights in each iteration. 
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where Δwm is the current weight increment, dm is the average derivative of the error with respect to 

the weight for the current epoch m; and E/wm is the current error gradient for a particular input vector 

(Samarasinghe, 2007).  

Preliminary trials revealed that networks with two hidden layers produced superior results compared 

to those with only one hidden layer. Various functions were tested, and for the final model, the hyperbolic 

tangent (tanh) function was chosen for the first hidden layer, while the logistic function was employed 

for the second hidden layer. 

It's worth noting that numerous combinations of layers and neurons, as well as different functions, 

structures, and learning methods, were explored to identify the optimal model with minimal iterations. 

The number of neurons was optimized using a genetic algorithm program. 

3. Results  

3.1 Energy Consumption 

On average, energy consumption on dairy farms in Canterbury was approximately 5295 MJ/ha. To 

provide a clearer understanding, the energy consumption was analyzed separately for pastoral and barn 

dairy farming systems (Table 2). 

Table 2. Energy Consumption of Pastoral & Barn Dairy Farming Systems (MJ/ha) 

  Pastoral  Barn 

Items  Avg SD Min Max  Avg SD Min Max 

Direct Energy Inputs          

Diesel  1824 778 436 4124  5099 4776 1570 15750 

Petrol  687 379 113 1752  1178 458 900 2198 

Electricity  17917 14626 3312 78954  19447 11206 10095 34020 

Labour  86 21 46 141  114 30 55 150 

Indirect Energy Inputs          

Fertilizer  15128 4139 3579 19064  9206 5071 0 16244 

Feed Supplements  6937 4338 0 16124  12515 2035 10580 16655 

Machinery   7959 2546 1031 15680  8274 2252 3688 10559 

Total Energy Use   50538 16598 18539 108750  55833 11494 40737 69872 

Output           

Milk   60571 17480 32693 94141  64121 18447 44894 96710 

 

3.2 The Model Results  

As previously mentioned, after evaluating different learning algorithms, neuron activation functions, 

and network structures, a MLP network with two hidden layers was developed, as illustrated in Figure 

1. In the final model, the Quick Prop learning method outperformed other gradient descent methods. The 

hyperbolic tangent (tanh) function was selected for the first hidden layer, while the logistic function was 

used for the second hidden layer. The number of neurons in each layer was optimized using a genetic 

algorithm. 

As depicted in Figure 1, the MLP network with two hidden layers had the best results with minimum 
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margin of error. The genetic algorithm optimized the number of neurons of each layer to 63 in the first 

hidden layer and 17 in the second hidden layer. The results of second hidden layer was transferred to  the 

output layer to produce the final output, which is the energy consumption. 

 

 

Figure 1. Structure of MLP network and number of neurons in each layer  

After 2250 iterations, the neural network (NN) model achieved optimal results with a scaled mean 

squared error (MSE) of 3.7 E-2 (inputs and outputs were scaled between -1 and +1 for the neural network 

model). The actual root mean squared error (RMSE) of the final NN model was estimated to be 2130 

MJ/ha and 2340 MJ/ha for the training and validation data, the lowest RMSE among the various NN 

models examined in this study.  

As shown in Figures 2 and 3, the NN model's energy consumption estimates accounted for 95% and 

96% of the actual variability in energy consumption for the training and validation data, respectively. 

The correlation between observed and predicted energy consumption was very high, with an R² of 0.90 

and r of 0.93 for the training data. These figures indicate a higher correlation compared to the multiple 

linear regression model. 

 

 

Figure 2.Relationships between the observed and NN model predicted energy consumption (Training 

data)  
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Figure 1. Relationships between the actual and the NN model predicted energy consumption 

(Validation data)  

In agricultural production, numerous uncontrolled factors can influence energy consumption on 

farms, making the results of this study particularly valuable. The final model can predict energy use in 

milk production with an acceptably small error. It is important to note that some variables in the final 

model are fixed and represent farming conditions, such as farmer education, which indirectly affects 

energy consumption. Therefore, future studies should explore the detailed relationships between input 

variables and energy consumption in agricultural production. 

The NN model can estimate energy use per hectare in milk production and facilitate easy comparisons 

of energy use across farms. Farmers can utilize the model to identify factors with the greatest potential 

to reduce energy use on their farms. Additionally, decision-makers and scientists can estimate energy 

use in different regions of Canterbury and investigate the effects of various energy inputs on energy 

consumption in milk production. 

4. Conclusion 

neural network (NN) model was developed based on a MLP neural network with two hidden layers. It 

can predict energy consumption based on farm conditions (number of cows), social factors (farmers’ 

age), and energy inputs (electricity consumption). In agricultural studies, where numerous uncontrolled 

factors can influence outcomes, achieving small error margins is remarkable. 

The results of this study demonstrate the NN model's ability to predict energy consumption on dairy 

farms using heterogeneous data. Incorporating diverse variables, such as farm conditions and social 

factors, enhances the capacity of decision-makers to address the problem from various perspectives. 

Given the findings, the most significant areas for improving overall modeling and conserving energy 

are: 

• Investigating energy consumption on dairy farms can enhance our understanding of 

technological advancements and the improvement of farmers' skills, as well as how these 

factors have contributed to changes in energy efficiency. 

• Developing an NN model to estimate energy use in milk solid production, which is crucial for 

comparing different farming systems. 

• Applying the same methodology to develop models predicting fuel consumption, CO2 

emissions, and various agricultural outputs, including milk. The existing database can support 

these investigations. Modeling fuel consumption, CO2 emissions, and energy consumption 

based on social and technical parameters can drive advancements in agriculture and modeling. 
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Abstract 

With the rapid advancement of agricultural mechanization, fuel consumption in tractors has witnessed an 

increase, leading to a high production cost. Both tractor selection by operators and tractor optimization by 

manufactures requires a method to evaluate fuel consumption in practical operation scenarios. In this paper, 

we propose a novel approach which can automatically predict the fuel flow rate of tractors. Specifically, the 

approach predicts the fuel flow rate at each point in GNSS (Global Navigation Satellite System) recordings. 

We initially constructed a fuel consumption dataset containing GNSS recordings collected from 30 tractors. 

Besides GNSS information, the recordings also contain the engine information and fuel flow rate of these 

tractors operating from May 2023 and June 2023. Then, we characterize each point with two engine 

parameters (torque and engine speed) and two motion parameters (driving speed and acceleration), and these 

parameters serve as the input to a model to predict the fuel flow at that point, where the prediction model has 

been developed using a machine learning method, Light Gradient Boosting Machine (LGBM). Finally, 

experiments have been made on the dataset, where, the GNSS recordings of 27 tractors and 3 tractors serve 

as the training data and test data, respectively. Experimental results demonstrate that the proposed method 

achieved state-of-the-art performances in predicting fuel flow rate with a R2 value of 0.946, and motion 

parameters can significantly improve the robustness of fuel consumption prediction models. The outcomes 

of this study are crucial for managing fuel consumption in agricultural machinery operations and further 

advancing agricultural modernization, holding significant application prospects in the field of agricultural 

mechanization.   

Keywords: fuel consumption, prediction model, engine information, GNSS information. 

1. Introduction 

Fuel consumption evaluation plays an important role in aiding operators in tractor selection and assisting 

manufactures in power efficiency optimization. Tractors, the power sources for various implements and 

agricultural machinery, have been widely used in agriculture (Lee et al., 2016). The analysis showed that fuel 

is the most demanded component in the operation of tractors, followed by machinery depreciation and labor 

(Romanelli and Milan, 2012).  Although measurements of fuel consumption are normally conducted under 

steady-state conditions, fuel consumption is actually dependent on practical operation performed by tractors. 

Therefore, the evaluation of fuel consumption should be conducted under practical operation scenarios, where 

the practical operation scenarios refer to the ones in which various operations made by different tractors.   

The literature survey has revealed various fuel consumption modelling methods proposed for tractors 

during their field operations. Most of the methods examined the factors involving fuel consumption, 

including engine condition (Grisso et al., 2004), operation mode (Moinfar et al., 2020; Siddique, 2023), field 

configuration (Janulevičius et al., 2019), soil texture (Battiato et al., 2019), tractor specification (Md-Tahir 

et al., 2021) and implement specification (Damanauskas et al., 2019; Al-Sager et al., 2024). To evaluate the 

methods experimentally, well-designed experiments were performed on several tractors. However, in such 

experiments, only some field operations and factors are considered and examined. So, the fuel consumption 

of tractors in practical operation scenarios has not been investigated yet.   

In order to evaluate the practical fuel consumption of tractors, a fuel consumption predication method 

was proposed, which automatically predicts fuel flow rate based on engine conditions and motion 

characteristics of tractors. Firstly, a fuel consumption dataset was constructed, which contained GNSS 

(Global Navigation Satellite System) recordings collected from 30 tractors with a specific model. Such 

recordings were recorded from May 2023 to June 2023 and distributed across eight provinces in China, 

representing the practical operation scenarios of tractors. Then, each point in the GNSS recordings was 

represented by a vector consisting four parameters extracted from GNSS recordings: two engine parameters 
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(torque and engine speed), and two motion parameters (driving speed and acceleration). Next, a model was 

developed using a tradition machine learning method, Light Gradient Boosting Machine (LGBM) (Ke et al., 

2017), which is input with the four parameters of a point and output the fuel flow rate at that point. Finally, 

the method was validated in the fuel consumption dataset.   

To our best knowledge, it is the first attempt to construct a fuel consumption dataset involving a number 

of tractors operating in various regions, reflecting the practical fuel consumption of tractors. Then, a fuel 

consumption model was developed using a machine learning method and engine information augmented with 

motion characteristics.    

2. Materials and Methods  

2.1. Datasets 

The experiment in this paper was conducted on a fuel consumption dataset about WH1804, a tractor 

model produced by Jiangsu World Agricultural Machinery Co., Ltd. Firstly, 30 tractors were randomly 

selected from all tractors with WH1804 Model in the Precision Agriculture Application Project Data Service 

Platform, which receives the GNSS recordings of agricultural machinery from multiple agricultural 

machinery manufacturers in China (Wu et al., 2023). Then, for each tractor, its data recorded between May 

2023 and June 2023 were retrieved from the platform. In order provide clean input data, existing data 

preprocessing (Chen et al., 2021) was applied on the dataset, which includes smoothing noise points and 

removing duplicated points. 

An example of GNSS recordings is shown in Table 1, whose recording updated frequency is 5s. For each 

record (i.e., a point or a sample), there are seven recorded parameters: longitude (WGS84), latitude (WGS84), 

timestamp (YYYY:MM:DD-hh:mm:ss), speed (m/s), torque percentage (instantaneous torque/nominal 

torque, %), engine speed (rpm), and fuel flow rate (L/h). The first four parameters are provided by GNSS 

receivers with a collection accuracy of 5 meters (CEP), and the latter three parameters are collected by other 

sensors installed on the tractors. In the experiments, the recorded fuel flow rate parameter serves as ground-

truth values. 

To demonstrate scenarios in which our data were collected, the GNSS recording of each tractor was split 

into daily trajectories, where a daily trajectory refers to a set of points recorded in the same day. There are 

totally 361 daily trajectories in our dataset. Then, a field-road trajectory segmentation system (Chen et al., 

2021) was used to segment each trajectory into field segments and road segments. Table 2 lists the data 

statistics, showing that the dataset has more than 1 billion of points, and contains 863 field segments and 593 

segments. Moreover, the trajectories are distributed across eight provinces in China, as shown in Fig. 1. The 

statistics indicates that our dataset can reflect the practical operations of tractors. 

 

Table 1. An example of GNSS recordings  

Longitude Latitude Timestamp Speed Torque  

percentage 

Engine 

 speed 

Fuel flow 

rate 

116.374255 29.951972 20230525085016 5 38 2709 19.1 

116.374191 29.951945 20230525085021 5 41 2704 19.55 

… … … … …  … 

117.782574 37.469909 20230614054437 6 23 1788 6.25 

Table 2. Data statistics 

Total Points Field Points / Percentage Road Points / Percentage 

1,523,954 1,376,873/90% 147,081/10% 

Total Segments  Field Segments/ Percentage Road Segments/ Percentage 

1,456 863/59% 593/41% 
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Fig. 1. The regional distribution of the fuel consumption dataset. Legend: the number of trajectories 

located in the province of China. 

2.2. Methods 

Our fuel consumption predication method consists of two steps: input feature extraction and model 

development. The input feature extraction provides model input data based on the daily trajectories, and the 

model development trains and evaluates a fuel consumption predication model.  

2.2.1. Input Feature Extraction  

As previous studies on tractors (Grisso et al., 2004; Almaliki et al., 2016) have pointed out instant engine 

conditions play a crucial role in the fuel consumption, two parameters (torque and engine speed) were 

selected to represent the instant engine conditions. Besides, there are other factors affecting fuel consumption, 

such as operative setting and conditions (Bietresato et al., 2015). In this paper, we consider that instant motion 

characteristics can somewhat reflect such factors. So, another two parameters (driving speed and 

acceleration) were selected to represent the instant motion characteristics of tractors.   

To gain deeper insights into the engine conditions and motion characteristics of tractors, each trajectory 

point was transformed into a four-dimensional vector, including torque, engine speed, driving speed and 

acceleration. The former three parameters (torque, engine speed, and driving speed) are the ones recorded in 

GNSS recordings, and driving acceleration is a parameter derived from driving speed with the calculation 

used in Poteko et al. (2021).  

2.2.2. Model Development 

Learning Method: As fuel consumption predication is a complex problem, recent studies have used 

various machine learning methods to develop predication models (Rahimi-Ajdadi and Abbaspour-Gilandeh, 

2011; Almaliki et al., 2016). In this paper, LightGBM (Light Gradient Boosting Machine), an efficient 

gradient boosting framework based on decision tree algorithms, was used. It is designed to handle large-scale 

training data (e.g., billions of points in Table 2) quickly, and provide highly accurate predictive capabilities, 

making it particularly suitable for tasks requiring high performance and calculation speed.  

Model Training and Test: The 30 tractors in the dataset was divided into 90% and 10% for model 

training and test, respectively. For training (or test) tractors, all trajectories of these tractors serve as training 
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(test) data. Eventually, there are 312 and 49 trajectories in the training and test data, respectively. Moreover, 

the tractor division needs to ensure that the ratio of the point number in the training data and test data is about 

9:1.  

Then, the training data were used to train a LightGBM model, and the test data were fed to the model to 

obtain their predicted values. As the fuel consumption predication is a regression problem, similar to the 

previous work (Sayin et al., 2007), three performance metrics, R2 (determination coefficient), RMSE (root 

mean squared error), and MAE (mean absolute error), were used to evaluate model performances. 

3. Results and Discussion 

In this section, the experiments were designed to examine the following two questions:  

1) Whether it is possible to predict the fuel consumption of tractors using only the engine and parameters? 

2) Which of these parameters are more important? 

 

Table 3. Average performances of models with different input parameter combinations (EngSpd: 

Engine speed; DrivSpd: Driving speed; DrivAcc: Driving acceleration) 
 Point-based Average  Trajectory-based Average  

Parameters R2 RMSE MAE R2 RMSE MAE 

Torque 0.653 3.428 2.800 0.494 3.706 2.989 

EngSpd 0.729 3.027 2.036 0.652 3.129 2.128 

DrivSpd 0.047 5.677 4.659 -0.162 5.820 4.779 

DrivAcc 0.000 5.817 4.799 -0.140 5.797 4.810 

Torque+EngSpd 0.912 1.720 1.132 0.858 1.921 1.236 

Torque+EngSpd+DrivSpd 0.940 1.425 0.966 0.932 1.401 0.956 

Torque+EngSpd+DrivSpd+DrivAcc 0.946 1.348 0.951 0.938 1.328 0.940 

 

 

Fig. 2. The point-based average performance for each trajectory in the test data. 
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3.1.Experimental Settings 

Baselines: In order to examine the importance of input parameters (torque, engine speed, driving speed 

and acceleration), several input parameter combinations were manually selected. For each input parameter 

combination, a fuel consumption prediction model was trained and tested using the way in Sec. 2.2.2. 

Implementation Details: LightGBM was implemented with Scikit-learn (a Python-based machine 

learning library, Pedregosa et al., 2011). Moreover, as LightGBM is supervised machine learning methods, 

training data were used to learn its parameter values. 

3.2.Comparisons and Discussion 

In order to examine model accuracy and robustness, two ways to calculate the average performance on 

the test data were designed, point-based average performance and trajectory-based average performance, as 

shown in Table 3. The former is the average of performances of all points in the test data. The latter is the 

average of performances of all trajectories in the test data, calculated as follows: for each trajectory, its point-

based average performance was calculated (e.g., the performances shown in Fig. 2), and then, the final 

performance was the mean of these average performances.  

Overall performance: The accuracy of our fuel consumption predication model is examined, as shown 

in Tables 3 (Row: Torque+EngSpd+ DrivSpd+ DrivAcc; Column: Point-based Average). It was observed 

that our model can predict the fuel consumption quite well, yielding a high R2 of 0.946, a low RMSE of 1.348 

L/h, and a low MAE of 0.951 L/h. This indicates the effectiveness of our proposed method. 

Parameter Importance: The accuracy of models with different input parameter combinations is 

examined, as shown in Table 3 (Column: Point-based Average). It was found that the engine conditions 

(torque and engine speed) were crucial factors determining fuel consumption, achieving a R2 of 0.912, a 

RMSE of 1.720 L/h, and a MAE of 1.132 L/h.  This observation is consistent with previous studies on fuel 

consumption modelling (Rahimi-Ajdadi and Abbaspour-Gilandeh, 2011). Furthermore, when the motion 

characteristics were incorporated, the model performances were increased slightly (from 0.94 to 0.946 in R2 

values), indicating motion characteristics are marginally helpful for fuel consumption prediction.  

Model Robustness: The robustness of models with different input parameter combinations is examined. 

Fig. 2 shows the point-based average performances of different models on each trajectory, and Table 3 

(Column: Trajectory-based Average) lists the trajectory-based average performances of different models on 

all trajectories.  

In Fig. 2, the performance of the Torque+EngSpd model varies much on different trajectories. This 

indicates the fuel consumption predication cannot rely merely on engine conditions, particularly in practical 

operation scenarios. In contrast, the two models augmented with motion parameters 

(Torque+EngSpd+DrivSpd and Torque+EngSpd+DrivSpd+DrivAcc) perform stable on all trajectories. This 

indicates motion characteristics are much helpful to improve the robustness of fuel consumption predication 

models. 

In Table 3, the two average performances (point-based and trajectory-based) are much different for the 

same model. For example, R2 values of the Torque+EngSpd model are 0.912 and 0.858 for the two average 

performances, respectively. This indicates the robustness of such a model is limited. In contrast, the 

Torque+EngSpd+DrivSpd+DrivAcc model achieves similar performances on both point-based and 

trajectory-based average performances (0.946 vs. 0.938). This validates the contribution of the motion 

characteristics to model robustness.  

4. Conclusions 

In this paper, we proposed a novel fuel consumption predication method that estimates the fuel flow rate 

of tractors in practical operation scenarios. In order to evaluate practical fuel consumption of tractors, a fuel 

consumption dataset was constructed, which contains 361 daily trajectories collected from 30 tractors 

operating in various regions. Then, a fuel consumption predication model was developed using LightGBM  

plus four parameters: torque and engine speed (reflecting engine conditions), and driving speed and 

acceleration (reflecting motion characteristics). The experiments on the fuel consumption dataset shown that 

our method outperformed the methods on only engine conditions in terms of model accuracy and robustness. 

Our in-depth experimental analyses demonstrate the potential of motion characteristics in predicate fuel 
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consumption.   

  Our future studies will focus on two  directions: constructing a fuel consumption dataset containing more 

types of agricultural machinery, such as harvesters, sowers, and so on, and developing a powerful fuel 

consumption predication method that can handle various trajectories recorded from different agricultural 

machinery. We believe that such directions can further understand the fuel consumption of agricultural 

machinery in practical operation scenarios. 
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Abstract 

The present paper regards an invention of a radiant heating system comprising low temperature radiant 

heating assemblies (the heated screens) suitable to maintain the greenhouse plants (and not the greenhouse 

air) at a desired optimum temperature. Heat is provided to a movable screen (a curtain that when deployed 

encloses the plants) and subsequently the screen provides the necessary heat to the plants by long wave 

radiation. The temperature of the heated screen is kept a few degrees Celsius higher than the temperature 

required by the plants. Calculations have shown that temperatures of the heated screen such as slightly above 

the optimum plant temperature above the required plant temperature, are adequate to maintain the plants at 

the required temperature at very low air temperatures outside the greenhouse, while achieving high energy 

saving relative to conventional greenhouse (air) heating systems. Renewable energy can be used to heat the 

screen. 

Keywords: greenhouse, low temperature radiant heating system, plants’ heating. 

1. Introduction and State of the Art 

Greenhouse cultivation is evolving rapidly in recent years because depending on the equipment used and 

their technological level, crop production can be 10-20 times higher per unit area than the outdoor one, 

(Shamim Ahamed et al. 2019). A controlled environment provides conditions for optimal plant growth and 

production throughout the year, resulting in higher productivity and products of higher quality, (Kaushık et 

al. 2011). However, to achieve optimum plants’ growth conditions, even at mild winter climate, greenhouses 

must be equipped with a heating system. The thermal losses of the greenhouse due to its thin walls and light 

construction are estimated to be 6-12 times greater than those of an ordinary urban building of equal volume 

and heating constitutes one of the major costs for modern high technology greenhouses even for the 

Mediterranean countries, (De Pascale and Maggio 2004). To reduce energy consumption, some 

straightforward measures can be applied, such as double-glazing insulation, use of different types of covering 

materials on the roof and side walls (such as glass panes with modified optical properties, polyethylene plastic 

sheets with reduced transparency to long wave radiation, double inflated polyethylene plastic sheets), use of 

insulating materials on the North facing side walls, implementation of passive (i.e., unheated) curtains usually 

called “thermal screens”, (Papadakis et al. 2000, Gupta and Chandra 2002, Kittas et al. 2003, Sethi and 

Sharma 2008, Teitel et al. 2009, Hemming et al. 2017). 

Although these methods do result in energy saving, they do not question the traditional concept of heating 

the entire greenhouse (air, structure, and cover) and then letting the plants gain energy from it which results 

in high energy consumption. Today, most conventional greenhouse heating systems are based either on 

circulation of hot water through a piping system (expensive) or on direct use of air heaters (less expensive), 

i.e., forced air heating. The design and operational objective of conventional heating systems is to maintain 

the air temperature inside the greenhouse at values optimal for plant growth, neglecting the fact that the target 

object are the plants themselves and not the air. Heat is supplied to the greenhouse air to maintain the air at 

a temperature a little higher than the value opted for the plants so that to keep them within a physiologically 

defined temperature range for optimal growth termed as physiologically optimum temperature range.  

Temperature considerably influences plant growth and development during the various stages of growth, 

i.e., seed germination, vegetative phase, reproductive phase, and ripening phase. The optimum temperature 

of a plant species changes as the plant grows from a seedling to a mature plant. In horticultural practice it is 

well known today the ranges of optimum temperatures for most of the greenhouse grown crops, (Ramin 

Shamshiri et al. 2018, Stanghellini et al. 2019, Hochmuth 2018, https://burea-uinsurance.com/en/the-

1 Patent pending. International Publication Number WO 2023/094843 A1, International Publication Date 01 

June 2023. Title, A GREENHOUSE PLANTS’ HEATING SYSTEM. Inventor PAPADAKIS Georgios. 
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temperature-in-the-greenhouse-for-cucumbers).  

It is also important to note that plants do not have any internal temperature regulation mechanism such as 

mammals and their temperature depend on their instantaneous energy and mass balance and since (most) 

plants do not store heat, the heating system must provide the necessary heat in order to compensate for their 

long wave radiation and convection losses considering that the mass transfer (plant’s transpiration) is very 

small during the night, (Papadakis et al. 1994).  

The above-mentioned conventional heating systems dominate the greenhouse commercial practice even 

though as early as in the 70’s, more efficient options had been proposed, e.g. Itagi and Takahashi 1978. It 

has been proven that long wave radiant heating with radiant tubes (commercially known as “infrared radiant 

heaters”), can be more efficient than the widely spread forced air or hot pipes heating systems, (Kavga et al. 

2009, Kavga et al. 2015). Long wave radiant heating is based on the radiative heat transfer mechanism rather 

than the convective one as the case of the forced air system. Experimental and simulation results show that 

(high temperature) radiant heating can efficiently supply heat to cover the plants’ heat losses, while the 

greenhouse air temperature during the night remains several degrees lower than the actual plant temperature, 

(Kavga et al. 2009, Kavga et al. 2015). Such results have shown a significant potential for energy saving over 

other conventional heating systems. Though, such greenhouse radiant heating has also many disadvantages. 

The cost of the initial system is high and supplying heat to tall greenhouse crops is relatively difficult because 

radiation cannot reach the lower plant leaves since the very hot radiant tubes (temperature range 500 oC to 

2000 oC) should be kept at a safe distance from the plants, while there are also fire risks. Such systems do 

not distribute the heat uniformly to the plants since the radiant heat is produced by linear sources in which 

the temperature is not uniform along their length. Such systems typically provide for reflective insulating 

panels which, are unsatisfactory since the plants need uniform heat. 

Radiant heating systems have been used to heat greenhouses. Such systems provide an indirect source of 

heat and generally have heating elements which can be suitably positioned inside a greenhouse. Radiant 

heating systems typically employ metallic energy-emitting tubular conduits mounted overhead of an area to 

be heated. Such systems usually include a burner which fires a heated effluent into the conduit, an opaque 

reflector mounted over the conduit, and an exhaust system to expel the effluent and products of combustion 

outside the greenhouse. One such radiant heater system is disclosed in the patent US 3399833 A. 

A characteristic of these radiant heating systems is the wide variance in the amount of thermal energy 

emitted from the hot conduit over its working length. While the temperature inside the metallic conduit 

immediately adjacent the burner may reach levels more than 1150 Κ the temperature inside the conduit at the 

exhaust end, depending on length, may be as low as 350 Κ. This results in an uneven emission of thermal 

energy over the length of the conduit. Unless the spacing of the tube from the area being heated is varied, 

there are correspondingly uneven temperatures in the area being heated by the system. This is especially true 

with low overhead mounted systems in high heat loss structures, such as greenhouses. 

One attempt to more evenly distribute the thermal energy radiated by the metallic conduit is disclosed in 

patent US 4319125 A. It employs a dispersing reflector adjacent to the relatively hot initial portion of the 

metallic conduit and a parabolic or concentrating reflector adjacent to the colder end portion of the conduit 

to compensate for the varying intensity of thermal energy radiated over the length of the conduit. While the 

shaped reflector may provide some measure of improvement in the distribution of the thermal energy 

throughout the area serviced by the heater system, the opaque conduit and reflector obstruct sun radiation 

entering the greenhouse and produce a shadow which adversely affects the growth of plants thereunder. 

In another attempt, (patent KR 2010 0110659), the greenhouse is to be heated by large diameter metal 

ducts (e.g., from aluminium) located inside the greenhouse, bearing holes that supply hot air. This system 

however does not provide radiant heat to the plants, but it heats the air of the greenhouse through a heat 

exchanger and then that hot air is distributed inside the greenhouse through the holes along the metallic ducts.   

Another heating system is disclosed in patent CN 212 851 983 U, where flat heating elements are 

presented for supplying heat to the greenhouse. Hot water is circulated inside the heating elements which in 

turn is supplied to the greenhouse. However not many details are provided such as to where the heating 

elements are placed inside the greenhouse, what are their dimensions, what is the hot water temperatures or 

the temperature of the surface of the heating element. 

In patent CN 206 042 941 U, a heating system is disclosed regarding a nursery for seeds’ germination or 

keep young seedlings in the nursery at an appropriate temperature environment. The seeds’ bed or the pots 

located at the nursery bed are heated through a heating wire mesh positioned between two film layers. 
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Electrical energy is provided to the wire which is heated and subsequently the heat is provided to the substrate 

of the nursery to keep it at a desired temperature. The nursery bed is covered on its top by a cover layer made 

of a plastic material which can be rolled to cover the seedbed or unrolled so that to uncover the seedbed. This 

cover layer is not heated by any means and therefore the heat produced by the wire mesh is provided to the 

seeds’ bed or the seedlings’ pots by conduction that is, no radiant heating is involved in this heating system. 

In patent WO 92/22196 A1 a radiant heating system for greenhouse is disclosed that uses plastic tubes of 

large diameter, permanently fixed under the greenhouse roof, where hot air of 200 oF (~93.3 oC) is circulated 

through a heat exchanger.  

The main drawbacks of the prior art heating systems to heat greenhouses using either conventional or 

radiant heating systems are the high energy consumption required to heat all the volume of the greenhouse 

(including the inside air, the greenhouse frame, and the covering material), the high temperature (greater than 

90 oC and up to about 2000 oC) and uneven temperature distribution, and the significant heat loses due to the 

high temperature differences between inside and outside of the greenhouse. 

2. Description of the Invention, Results and Discussion  

The present invention as depicted in Figure 1, provides for the heating of the plants inside a greenhouse 

structure (10) in an easily assembled, substantially uniform, radiant heating system including a heat 

generating assembly (1), a heated air transport, distribution, and recirculation ducts’ network (4, 5), heated 

screen units between the greenhouse trusses (16) which is the radiant heating assemblies, generally composed 

of horizontal (2) and vertical (3) parts. It is essential that the screen units, both the horizontal and the vertical 

ones, when deployed they fully enclose the plantation of the greenhouse. Generally, the heat generating air 

distribution and recirculation assembly (1) produces a low temperature heated air effluent through an 

incorporated heat exchanger and the heated air is then distributed and recirculated via an incorporated blower, 

and the recirculation ducts’ network (4, 5) to the several heated screen units/modules, horizontal (2) and 

vertical (3) ones (Fig. 1).  

 
Figure 1. A schematic representation of a greenhouse equipped with a movable heated plastic screen 

(Detail A), heated through warm air recirculation in channels (Detail B). 
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The present invention provides a radiant heating system comprising low temperature radiant heating 

assemblies (heated screen units or screen units) of simple and inexpensive construction which deliver 

controlled and uniform low temperature heating so that to maintain the greenhouse plants (and not necessarily 

the greenhouse air) at a physiologically required temperature range for optimum growth of a specific plant 

species which is well known to the skilled to the art. 

The disclosed system provides the necessary heat primarily to the screen itself (and not to the greenhouse 

air) and subsequently the screen will provide the necessary heat to the plants by long wave radiation, while 

part of the heat supplied to the screen will be (inevitably) supplied to the greenhouse air by convection. The 

temperature of the heated screen units is kept a few degrees Celsius higher than the optimum temperature 

required by the plants for their optimum growth. It is emphasised that the intended system is to provide heat 

by long wave radiation to the plants themselves and not to heat the greenhouse air. This fact and the low 

temperature of the heated screen ensure the high energy efficiency of the present invention over the prior art. 

In some embodiments, the heated screen units are installed inside the greenhouse, horizontally under the 

roof and vertically near the inside side of the vertical walls so that to fully enclose the plants when the heating 

system is in operation and the system will operate approximately from sunset to sunrise during the cold 

periods of the year. This concept of heating is based on the proven fact that the temperature of the plants in 

the greenhouse under radiant heating is kept some degrees higher than the greenhouse air because the plants’ 

convection losses to the colder greenhouse air are compensated by the received radiant heat, (Kavga et al. 

2009, Kavga et al. 2015). 

In some embodiments the heated screen units are manufactured from impermeable to air polymer (plastic) 

materials (such as polyethylene) and as the screen units are heated by heated air, they include air flow 

channels for its heating. Low temperature heated air (in a range of few degrees above the optimum plant 

growth temperature is supplied to the air flow channels of the screen units through suitably connected plastic 

(rigid or non-rigid) air ducts that run along the greenhouse length and width and distribute uniformly the 

heated air to the screen units.  

In some embodiments the heated air is  supplied to the screen units flow channels by one or more blowers 

which recirculate the air of the flow channels through a heat exchanger where the air is heated to the desired 

temperature by a burner/furnace where the heat is produced by means of any kind of solid, liquid, gaseous 

fossil fuel combustion or renewable fuel combustion (such as biofuels) or by an electrical heat pump or the 

air is heated by an electrically heated element such as an electrical resistance. 

An industrial electronic controller will manage the operation of the burner/furnace, heat exchanger, and 

blower with the associated motorized air dampers, to produce air of appropriate temperature to be re-

circulated in the flow channels of the screen units. By controlling the air temperature in the air flow channels, 

the temperature of the screen is regulated and in turn adjust the radiant heat required by the plants to attain 

their optimum temperature. The temperature of the screen and the plants is identified, recorded, and 

controlled in real time using suitable temperature sensors located at suitable places on the screen and the 

leaves of the plants or contactless sensors that read the temperatures of the screen surface and of the leaves 

of the plants, e.g., by Infra-Red (IR) radiation thermometers. 

In the case of a heated screen with air flow channels the parts of the screen between the air flow channels 

(i.e. outside the area of the flow channels), may be perforated so that to allow the greenhouse air and moisture 

to move through, from the one side of the screen to the other, that is from the space that encloses the plants 

(which will have a higher humidity due to the plants’ transpiration) to the space between the screen unit and 

the greenhouse cover (which will have a lower humidity). 

In other embodiments an alternative type of heated screen is used which is made of a textile (fabric) 

material that is heated by electricity, via incorporated resistive wires or other electricity conductive material 

configured to produce heat upon the application of electricity. Electricity may be provided to the resistive 

wires (or conductive material) of the screen units by any source, such as the electricity grid, a renewable 

energy system (e.g., wind generator, photovoltaic system), or an electricity storage system such as batteries. 

In the case of the heated screen units made of a textile (fabric) material, an industrial electronic controller 

regulates in real time the voltage and current supplied from the electricity source to the resistive wires of the 

screen units via the wiring network so that to regulate the temperature of the resistive wires (or other type of 

electrical conductors) and subsequently regulate the temperature of the screen using temperature sensors 

located at suitable locations on the screen and the plants (or other type of contactless temperature sensors). 
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In the case where the heated screen units are made of textile with embedded resistive wires (or other 

electricity conductive material configured to produce heat upon the application of electricity), the textile 

weaving is sparse enough so that to allow the greenhouse air and moisture to move through, (for the same 

purpose and similarly to the heated screen with the embedded air flow channels). 

It was found to be essential for high energy savings, the screen unit surface facing to the cover at the roof 

and side walls of the greenhouse, is aluminized so that to provide a low emissivity and high reflectivity to 

long wave radiation and reduce radiation emission from that screen surface, while the side of the screen 

facing the plants will have high emissivity (as most of polymer plastic materials physically have) to intensify 

radiant heat emission towards the plants. Such differentiation in the emissivity values on the one and the 

other side of the heated screen will ensure that the heat released by radiation from the screen will be directed 

primarily to the plants while small amounts of radiative heat will be lost towards the cover. This is important 

to allow to heat the plants with radiant heat with the heated screen having only a few degrees above their 

optimum temperature. The prior art teaches away because the aluminized surface of the passive, unheated 

thermal screens facing the plants is of low emissivity (and high reflectivity) to long wave radiation to reflect 

the radiant heat of the plants backwards. 

Given the fact that no experimental (or simulation) data exist in the literature for the proposed radiant 

heating system, a model was developed and executed (see details in the published patent application, 

Papadakis, 2023) to obtain answers to critical questions about the radiant heating system configuration and 

operation. With the use of the model, it was possible to answer critical questions regarding the proposed 

radiant heating system, by answering as well as selecting appropriate parameters used in greenhouses: 

1. What the temperature of the screen should be so that the crop (e.g., a tomato plantation) to be 

maintained at a desired temperature of 13 oC during a cold night (e.g., at sub-freezing air temperature 

outside the greenhouse enclosure)? 

2. What the air temperature inside the greenhouse would then be?  

3. How and in what form heat should be supplied to the screen to maintain it at the required temperature 

(with no other heating system in the greenhouse)?  

4. What heat quantity would be required for heating the screen at the desired temperature level? 

For executing the mathematical model appropriate values for several parameters were selected from the 

literature (Gupta and Chandra 2002, Papadakis et al. 1992, Wanga et al. 2017), (see notation in Table 1). 

Input values to the model are listed in Table 2. The results in Table 3 show that under the assumed cold winter 

weather conditions, the heated screen can fully supply the required heat, so that the plants to be maintained 

at the desired temperature conditions while the screen itself is being kept at a temperature of merely less than 

2 oC above the desired temperature for the plants (Table 3). It is also seen in Table 3 that the cover temperature 

(θc) remains at low temperature, lower than the outside temperature as expected because the cover is cooled 

down to a temperature below that of the outside air, due its intense long wave radiation emission (heat losses) 

to the sky, especially at clear skies (the sky becomes a radiation sink). The air temperature (θa) inside the 

greenhouse is found to be lower than the plants’ temperature (see Table 3), as expected.  

An attempt is made to compare the cost of heating the screen to the required temperature either by burning 

oil or by grid electricity. Calculations are summarised in Table 4 where it is seen that to heat the screen by 

hot air produced by burning oil may be more economic than using electricity, but this is highly depended on 

the electricity unit price, the oil price and the efficiency of the equipment used in the one or the other case. 

An attempt is also made to estimate the required electrical energy for heating the screen with photovoltaics 

(PV) integrated in the glass roof of a glasshouse. Assuming a local solar photovoltaic (PV) energy production 

potential of 1200 kWh/kWp and that commercially available greenhouse “solar glass” panes 

(https://www.britesolar.com/solar-glass) of an area of about 2 m2 of nominal PV power 115 Wp (57.5 Wp/m2) 

are used for the greenhouse covering, then the greenhouse roof PV can produce 57.5 Wp/m2 x 1200 kWh/kWp 

= 69 kWh/m2 year. Assuming that the screen heating needs at extremely cold conditions will be about 60 

W/m2 for a continuous period of 5 hours per day for 6 months a year (see Table 3), then the screen heating 

needs will be 60 W/m2 x 5 h x 30 days x 6 months = 54 kWh/m2 year. Therefore, the PV production outweighs 

the heating needs of the screen, and the grower would heat the greenhouse for free and will also receive 

additional income by selling the surplus PV kWh to the grid. 
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3. Conclusions 

The invented radiant heating system is the sole heating system in the greenhouse. It is not a supplementary 

energy saving system such as the commercially available passive (unheated) so called “thermal screen” 

system.  

The invented radiant heating system requires the heated screen to be at low temperature (just a few 

degrees Celsius above the required plants’ temperature) contrary to the existing commercially available high 

temperature radiant heating systems (in the order of several tens or hundreds of degrees Celsius).  

The objective of the invented radiant heating system is to provide heat to the plants (direct heating of the 

plants) and not heat the greenhouse air. Existing conventional greenhouse heating systems (such as those 

based on circulation of hot water in steel pipes or on direct use of air heaters) heat the greenhouse air which 

in turn provides the heat to the plants by convection which is a major reason of low heating efficiency and 

high energy consumption. 

The low operating temperature of the invented system allows for using inexpensive plastic materials for 

the heated screen, such as low-density polyethylene, while other proposed radiant heating systems requiring 

higher temperatures cannot not use a cheap material such as polyethylene (because of its low melting point). 

Essential prerequisites of the invented radiant heating system to achieve high energy savings compared 

to the prior art are, (1) when deployed, it fully encloses the plantation so that the radiated heat from the screen 

is effectively receipted from the plants while the radiated heat from the plants cannot escape to the cold 

greenhouse cover, (2) the heated screen side facing the cover has a very low emissivity (e.g. lower than 0.2) 

while the heated screen side facing the plants has a very high emissivity.  

The invented heated screen requires significantly less amount of energy to keep the plants at the required 

temperature and can save energy up to 60% in comparison to conventional heating systems.  

PV can be incorporated in the greenhouse roof so that the produced energy to be used (indirectly) to heat 

the screen, that is the PV energy will be sold to the grid to offset the consumed electricity from the grid (e.g. 

net-metering). In this way the grower can heat the greenhouse for free and get additional income from selling 

the PV electricity production to the grid.  
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Abstract 

Livestock farming is a key and energy-intensive sector of agriculture, significantly contributing to 

greenhouse gas (GHG) emissions. To mitigate this, the scientific community is exploring retrofitting 

approaches for existing farms, focusing on innovative Renewable Energy Sources (RES)-based equipment. 

In swine farming, maintaining optimal environmental conditions in nursery barns is crucial for weaner health 

and growth, but it is challenging in old facilities with poor insulation. Typically, achieving proper 

microclimatic control requires energy-intensive HVAC systems reliant on fossil fuels, contributing to 

significant GHG emissions. 

This research aims to develop sustainable heating systems and energy retrofitting for livestock barns as 

alternatives to fossil-fuel-based systems. The study focuses on a pilot swine farm in northern Italy, housing 

500 sows and 2500 weaners. It involves designing and testing an integrated RES system, including a 

photovoltaic-thermal plant, geothermal heat storage unit, and a modular heat pump. The retrofitting addressed 

the challenges of a poorly performing hog barn in winter and summer by designing and installing an energy-

efficient solution with smart opening and ventilation systems. A sophisticated control system was developed 

to monitor energy usage and environmental conditions. 

The results show that a customized combination of RES can be effectively implemented in specific 

livestock farms, utilizing available renewable resources. Energy retrofitting improved the thermo-

hygrometric conditions of existing pig barns, reducing the farm's energy demand. Monitoring outdoor and 

indoor environmental parameters was crucial for collecting data, evaluating system effectiveness, and 

enabling remote control of the equipment. This study demonstrates that integrated RES systems and targeted 

retrofitting can significantly enhance the sustainability and efficiency of livestock farming. 

 

Keywords: Pig barn, Geothermal storage, Animal welfare, Energy efficiency, Smart monitoring. 

1. Introduction 

Swine farming, like many intensive livestock farming activities, demands meticulous control of 

environmental conditions to ensure the health and optimal growth of weaners. The nursery barn environment 

is crucial in mitigating stress factors that can affect the animals' well-being and productivity. Temperature 

and humidity are two key parameters that require careful management throughout the year, especially during 

periods with extreme weather. Research has consistently shown the profound impact of environmental 

conditions on swine health and performance. Rearing pigs involves various stages, each with different 

thermo-neutral zone limits, influenced by factors such as air velocity, floor type, building insulation, relative 

humidity, and air composition. Despite advancements in genetics and nutrition, the boundaries of the thermo-

neutral zone are mostly based on outdated research, requiring new studies to address the changing needs of 

recent genotypes. The scientific literature highlights the importance of maintaining optimal temperature and 

humidity levels to prevent heat stress in pigs, which can lead to reduced feed intake, impaired growth, and 

increased susceptibility to diseases (Niu, Zhong, and Hu 2024). Similarly, inadequate temperature regulation 

during cold seasons can compromise piglet health and increase mortality rates, necessitating proper heating 

in pig barns (Costantino 2023). 

Addressing these challenges requires a holistic approach, integrating innovative infrastructure design, 

advanced ventilation systems, and precision management practices. Heating, ventilation, and air conditioning 

(HVAC) systems are indispensable tools for controlling the environmental parameters in swine barns. 
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However, traditional systems often rely on fossil fuels for energy, leading to significant greenhouse gas 

(GHG) emissions. This has raised concerns about the sustainability of intensive swine production systems, 

particularly in light of the growing emphasis on reducing carbon footprints across intensive animal 

productions (Tyris et al. 2022). Efforts to address the environmental impact of HVAC systems in swine 

farming have spurred research into alternative technologies and management strategies (Shin et al. 2024). 

For instance, advancements in energy-efficient heating systems, such as radiant heating and heat recovery 

ventilation, offer promising solutions for reducing energy consumption and mitigating GHG emissions 

(Deeken et al. 2023). Additionally, integrating renewable energy sources, such as solar panels or geothermal 

heat exchangers, for microclimatic control can further reduce reliance on fossil fuels and enhance 

sustainability (Tinti et al. 2023). Optimizing the design and operation of HVAC systems through 

computational modelling and advanced control algorithms can maximize energy efficiency while 

maintaining optimal environmental conditions for pig welfare. Research in this area has demonstrated 

significant potential for reducing energy consumption and GHG emissions without compromising animal 

performance (Mun et al. 2022). The control of environmental conditions in swine nursery barns is thus crucial 

for ensuring the health and productivity of weaners. 

The intersection of sustainability and animal welfare goals in livestock farming necessitates the 

development of renewable energy systems capable of meeting the energy demands of farm buildings while 

ensuring optimal conditions for animal health and productivity. Achieving this balance requires not only the 

availability of renewable energy but also the implementation of smart monitoring and actuation systems to 

effectively manage energy production and usage in real time. The intermittent nature of renewable energy 

sources presents challenges in matching energy supply with demand, particularly in agricultural settings 

where energy requirements fluctuate based on factors such as weather conditions and animal metabolism. To 

address this issue, smart monitoring and actuation systems are essential for dynamically adjusting energy 

production and usage in response to real-time demand.  

The application of smart technologies as a sustainable strategy in swine farming has also been analysed 

in literature (Mahfuz et al. 2022), identifying three stages of development in smart livestock farming. The 

first generation focused on animal monitoring; the second on environment control, health management, and 

big data and AI; and the third on energy management and automation of farming. By harnessing renewable 

energy sources and optimizing energy management in real-time, farmers can reduce their environmental 

footprint while ensuring optimal conditions for animal health and productivity. 

This research focuses on devising sustainable heating systems and energy retrofitting for livestock barns, 

as alternatives to existing fossil-fuel-based systems, with reference to the pilot case of the nursery barn of a 

farrow-to-nursery swine farm. We designed and tested a Renewable Energy Source (RES) system 

incorporating a borehole thermal energy storage (BTES) and photovoltaic thermal (PVT) collectors, 

integrated with a Dual-Source Heat Pump (DSHP). The retrofitting issue was addressed by analyzing the 

case of a hog barn poorly performing both in winter and in summer: an energy efficient solution based on 

smart opening and ventilation systems was designed, installed and tested in the pilot farm. A smart control 

system was developed and installed to monitor RES production, energy uses and the environmental 

conditions outdoor and in the various sectors of the barn. The data collected were processed to define the 

optimal settings of the integrated plant for energy production and efficiency. 

2. Materials and Methods  

The pilot case presented in this research is a swine farm located in Modena province (northern Italy), 

rearing 500 sows and 2500 weaners. The experimental study focused on the nursery barn, and the hog barn. 

The former is made of ten rooms for weaners and a technical room, all accessible from a hallway placed 

along the western side of the building. This corridor also represents a filter zone for pre-treatment of the clean 

air conveyed inside the nursery rooms, as it has windows both on the outer wall and in the separation wall of 

the weaners’ rooms. Air pre-treatment is carried out by managing the opening of the outer windows and 

through a heating system consisting in four finned pipes placed all along the hallway, beside the outer 

windows. Each room can host up to 240 weaners, while additional pigs can be reared in temporary shelters 

outside the southern façade. Every room is equipped with five thermal lamps of 1.8 kW each and a chimney 

with extraction fan. The thermal lamps, the windows on the corridor and the fans of the nursery rooms are 

controlled on the basis of temperature, which is monitored through sensors in every room. Minimum setpoint 

temperature is 28°C for one-month old piglets, weighting around 8 kg, and decreases down to 24°C for 
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weaners of about 3 months weighting 25-30 kg. Extraction fans work at 5% of maximum power below the 

minimum temperature, and the working rate linearly increases with temperature up to 100% at 32°C. The 

minimum temperature in the hallway is set by the farmer at 15°C at the windows height, as this temperature 

is suitable to properly balance hair exchange and heating in the weaners’ rooms.  

The hog barn has area of 663 m2 to rear 400 sows and it can be heated by an LPG boiler of 115 kW, while 

ventilation is achieved through an extraction fan and windows’ opening. 

A smart monitoring and control system was developed and installed to monitor environmental variables 

and automate the integrated RES plant. Data has been collected since May 2021. The system comprises a 

gateway, weather station powered through PV, monitoring nodes for gases and environmental conditions in 

different areas, including the hallway and two rooms of the nursery barn. Further sensor nodes monitor all 

the relevant parameters of the DSHP, including the temperature of cooling and heating water at inlet and 

outlet, power consumption, heating capacity and the source used (air, BTES, or both). The RES4LIVE 

gateway, powered by a Raspberry Pi 4 model B with 4gb RAM, 128gb SSD, and 32gb microSD for 

initialization, is cost-effective and efficient.  

2.1. RES system for the nursery barn 

The RES system was designed to replace a 34 kW LPG boiler used to pre-heat the air in the hallway of 

the building, so that the inlet airflows into the nursery room, driven by extraction fans, have adequate 

temperature during the cold season. Specifically, the integrated system is composed of photovoltaic thermal 

collectors (PVT), a dual-source heat pump (DSHP), and a borehole thermal energy storage (BTES). The 

heating load provided by the geothermal heat pump can rise the temperature of the radiant pipes up to 55°C, 

i.e. the operating temperature targeted with the previous fossil-based plant. The fundamental system 

architecture incorporates a dual-source heat pump featuring not only an air-cooled evaporator but also a heat 

exchanger for transferring heat with a water/glycol blend sourced from a sequence of PVT collectors 

connected to boreholes. The PVT system is controlled through RESOL VBus, a communication protocol 

allowing various devices to connect and exchange data, since May 2023 (Murali et al. 2024). The primary 

novelty of the system resides in its capability for hybrid operation, enabling simultaneous utilization of both 

ground-sourced and air-sourced heat, resulting in increased heating capacity and COP efficiency. 

2.2. Retrofitting of the hog barn 

Two tests of thermal conductance of the perimeter walls of the building were carried out in 2021, 

specifically one in the warm season and one in the cold season through a wireless heat flux meter Thermozig. 

The analysis of the physical properties of the building pointed out that the roof was already properly insulated, 

thanks to the layer of double insulated corrugated sheet, which can provide a thermal transmittance assessed 

0,18 W/m2K. The test of the thermal transmittance of the boundary walls of the building, performed by means 

of heat flux meter during the cold season, showed that the thermal transmittance is around 0.3 W/m2K, that 

represents a satisfactory value for the energy performance of the building (Error! Reference source not 

found.). The test and the analyses of the building led to the conclusion that the most critical parts in terms of 

performance of the building envelope are the windows. In fact, the two longitudinal walls were equipped 

with a total of 34 windows of 2.8 m x 0.8 m, with steel single-layer frames and 4 mm thick glass surfaces. 

These features resulted in a thermal transmittance assessed 5.9 W/m2K. Moreover, the operational system is 

totally manual, so that it is not possible to control the opening of the windows in a way that can limit heat 

losses and, more importantly, there is no way to minimize the thermal dispersions. 

Therefore, the retrofitting solution finally designed did not include insulation layer for the walls, as they 

showed adequate transmittance without particular requirement of further reduction. The retrofitting was 

totally focused on the replacement of the existing windows with a high performing system, with much lower 

thermal transmittance, equipped with automation devices suitable to control the opening in a way that 

minimizes heat loss while assuring proper air exchange. 
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Figure 1. Test to assess the thermal conductance of the exterior wall of the hog barn. 

The new windows are composed of a perimeter frame in tubular stainless steel, frame and upper 

counterframe in stainless steel, with transparent infill in 16mm thick double chamber alveolar polycarbonate. 

This solution can assure a thermal transmittance of 2 W/m2K, i.e. around one third of the previous. situation 

Moreover, the system includes six gearmotors with limit switch for the mechanical opening, 

environmental sensors and actuators for the automatic openings based on temperature and air quality 

parameters. 

3. Results and Discussion 

3.1. Performances of the integrated RES system  

Based on the results of hydro-geological analyses, the potential for underground thermal storage was 

quantified, heat dispersion due to groundwater movement was assessed, and the BTES behaviour was 

modelled under different operational scenarios. A depth of 30-meter was deemed the most efficient solution 

for the thermal loads of the weaners’ nursery building and, on such basis, 8 BHEs of this depth were drilled 

for the BTES field as the result of system dimensioning (Tinti et al. 2023). To create a Thermal Core (TC) at 

the centre of the BTES system for optimal thermal storage, hybrid connections were employed among the 

BHEs in series/parallel configurations. Heat is thus injected from the TC to the boundaries during heat 

storage, resulting in higher temperature rise compared to different configurations. During the exploitation 

phase, heat is extracted first from the boundaries and then from the TC. The BTES field, designed to meet, 

consists of 4x2 BHEs arranged in a rectangular configuration, spaced 3 meters apart in the North-South 

direction and 2 meters apart in the East-West direction to optimize land use in the farmyard. The average 

temperature measured in a 30m borehole in March 2023, before BTES installation, was 15.9°C; the average 

temperature in 30m boreholes measured on 10 Sep 2023, i.e. at the end of the heat injection season, was 

20.5°C. Therefore, the increase in TC temperature due to solar heat injection from May to August 2023 was 

4.6°C, i.e. corresponding to the best scenario expected.  

The integrated heating system of the nursery barn was analysed on the basis of the temperature and 

humidity data recorded in the period 17-24 April 2024. In this week, outside temperature proved significantly 

low, with 9.2°C as average and 2.9°C as minimum value, thus calling for heating almost continuously the 

hallway through the DSHP. The temperature in the hallway was then kept above the setpoint of 15°C (with 
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a tolerance interval of 0.5°C) for the period considered, with the temperature in the finned pipes reaching 

over 50°C in several periods. The two monitored rooms, indicated in Figure 1, hosted weaners until 17 April 

and room 1 also from 24 April. However, other rooms in the building hosted weaners also in the period 18-

23 April, that is why the hallway was continuously kept heated during the entire period. The heating system 

developed proved effective also for the control of humidity conditions in cold season, as it is witnessed by 

the THI trends in the weaners’ rooms (Error! Reference source not found.), that is substantially kept below 

the alert threshold of 75. 

 

Figure 2. THI measured in the monitored indoor spaces of the nursery barn and outside. 

The geothermal source was always used during the working time of the heating system and the circulation 

through the BHEs produced a temperature increase up to 9.1 K in the cold side of the DSHP. The average 

temperature difference between the flows from and to BTES during the period analysed, i.e. the effect of the 

heat extraction was 3.0 K, corresponding to an average thermal power of 15.3 kW. The exploitation of the 

geothermal storage thus allowed to achieve high efficiency in the DSHP, as it is shown by the ratio of the 

heating capacity and the electric power used, reported in Figure 4. The resulting coefficient of performance 

(COP) is represented as well in the same diagram with hourly intervals, and the average COP in the studied 

period was 4.34. The COP of the DSHP when operating only in geo-source mode increased to 4.67. 

3.2. Performances of building retrofitting 

The retrofitting action carried out on the hog barn resulted in a significant improvement of the thermal 

performances of the building. In particular, the effect was measured in the warm season, by comparting 

temperature and humidity data recorded inside the barn before and after the retrofitting, under the same 

utilization conditions. Figure 3 shows the reduction of the indoor temperature with reference to outdoor 

climatic conditions and in particular the difference between indoor and outdoor temperature was in general 

significantly lower after the intervention. 

Then we considered relative humidity as well, so we computed the benefit in terms of THI. Specifically 

in August 2022, before retrofitting, the average difference between indoor THI and outdoor THI (computed 

at 30 min interval rate) was +1.94. Subsequently the retrofitting, such difference was -2.38. Therefore, the 

capacity of reduction of indoor THI was on average 4.32. 
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Figure 3. THI measured in the monitored indoor spaces of the nursery barn and outside. 

4. Conclusions 

The experimental study carried out demonstrated that a carefully planned mix of RES components can be 

seamlessly integrated into an automated heating system to meet the farm needs. By harnessing solar energy 

and utilizing thermal energy storage, coupled with the efficiency of a DSHP, the system effectively managed 

indoor temperatures without reliance on fossil sources. Future developments aim to extend this approach to 

other farm building typologies, such as farrowing barns, and to integrate solar and geothermal energy 

resources also to regulate temperature and humidity in warmer climatic conditions. 

Monitoring outdoor and indoor environmental parameters was crucial for collecting data, evaluating 

system effectiveness, and enabling remote control of the equipment. Data collection prove fundamental for 

the correct definition of technical solutions in the design of retrofitting interventions, to increase the energy 

efficiency of existing livestock barns. This study thus demonstrates that integrated RES systems and targeted 

retrofitting can significantly enhance the sustainability livestock farming. 

Ongoing research and innovation in this field will continue to refine and optimize these integrated 

systems, utilizing advancements in renewable energy technology to improve farm operations, enhance 

environmental stewardship, and promote animal welfare. The successful deployment of such solutions 

establishes a promising example for the wider adoption of renewable energy systems in agriculture, moving 

towards a more sustainable and resilient future for livestock production. 
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Abstract 

Wood vinegar is a promising product for pest insect control in agriculture, deriving from pyrogasification 

process of woody material. Yanmar R&D Europe developed a prototype gasifier using farm agricultural 

prunings to produce energy, heat, biochar and wood vinegar. Olive Fruit Fly Bactrocera oleae which impact 

the quantity and quality olive production, is considered one of the most serious olive pests in Italy and in the 

world. The present study assessed the repellent efficacy of wood vinegar from agricultural prunings against 

olive fly attack under open field conditions at 0.5 and 1% v/v concentrations over two growing seasons. The 

tests were conducted in two olive farms, located one on the inland and the other on the coast side of Tuscany. 

The data were analyzed and compared with Control (no treated) and commercial wood vinegar application. 

The results showed that Yanmar R&D wood vinegar and commercial provided olive fly repellence at both 

dosages, significantly higher than Control. Wood vinegar from agricultural prunings can help farmers protect 

crops from insect pest and find a functional use of agricultural prunings in the field. In a “circular economy” 

perspective, this would allow obtaining useful products at low cost. 

 

Keywords: wood vinegar; olive fly; repellence activity  

1. Introduction 

The gasification of wood waste is considered nowadays an interesting source of energy and heat production. 

Indeed, the conversion of biomass into high-value products used instead of fossil fuels is necessary in the 

fight against climate change, to provide renewable products that meet the world increasing energy demand 

(Narnaware et al., 2022). The gasification process involves a gaseous phase known as syngas (energy and 

heat), a liquid phase comprising bio-oils (wood vinegar), and a solid fraction (biochar).  

Until some time ago, wood vinegar and biochar were considered waste, but in recent years, studies have 

shown their validity for use in agroecosystems (Ouattara et al., 2023; Tibor et al, 2022; European 

Commission, 2020).  

Biochar is a vegetable charcoal, used in agriculture as a soil improver, and among its characteristics stand 

out its ability to remediate soils, increase soil water retention, and raise soil pH (Liao et al., 2019). 

Wood vinegar, instead, is a product derived from the condensation process of combustion gases and it is a 

compound rich in numerous organic molecules, such as polyphenols, acetic acid, and tannins, which are 

usually found into wood. Wood vinegar is available in the market as plant stimulant. However, it is currently 

being studied in laboratory and field trials to assess its efficacy as insect repellent, antimicrobial, herbicidal 

agent, and more (Chalermsan et al., 2009; Becagli et al., 2021; Iacomino et al., 2024). In fact, wood vinegar 

produced through various processes (temperature, pressure, etc.) and derived from different raw materials 

(forest wood, straw, etc.) exhibit various biochemical compositions, consequently yielding diversified results 

in terms of active properties. 

In particular, as regard anti-insect activity, Dewi et al., (2020) tested the application of wood vinegar in a 

laboratory experiment against whitefly attacks on mulberry plants, observing a repellent effect at doses of 

2.5%. Salim et al. (2021) reported that wood vinegar exhibited anti-mold properties in both sesenduk 

(Endospermum spp.) and jelutong (Dyera costulata) hardwood species as a result of treating the wood with 

wood vinegar derived from the pyrolysis of quercus wood. Alias et al., (2019) conducted a test against fruit 

flies, indicating that pure bamboo vinegar (100% v/v) exhibits insecticidal properties equivalent to a 

commercial insecticide. Othman et al., (2023) tested wood vinegar made from 100% mangrove trees against 

Rice Weevil under storing conditions showing lethal conditions at 77.62 ppm concentration.  

Olive Fruit Fly Bractocera oleae (olive fly) represents the key pest of olives cultivated in the Mediterranean 

environment. The insect attack has been reported to create a damage up to15% of the olive crop, although, 
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pesticide treatments are applied every year to control the fly population, causing environmental pollution. 

The damage caused by the olive fly results in: a) decrease in yield and quality of fruit and lowering quality 

of olive oil. b) use of high-cost chemicals and application machinery that increase production cost. c) use of 

toxic chemicals with consequence for the environmental protection (Basilios et al., 2002). The use of organic 

solutions for containing this dipteran could have a significant impact from an economic, environmental, and 

social sustainability perspective. 

Yanmar R&D Europe (based in Florence), the research centre of Yanmar company, has developed a 

prototype gasifier capable of utilizing agricultural woody pruning waste to produce energy, heat, biochar and 

wood vinegar. The project's idea is to create circular economy within the farm, where all gasification products 

can be reused in the same farm management. In the Mediterranean area, key crops for rural economy are 

mainly vineyards and olive trees. The use of pruning waste from these plants is even more interesting given 

the new Common Agricultural Policy directive banning agricultural pruning burning (EU, 2022). In fact, the 

unmanaged pruning could otherwise be abandoned in the fields, causing inconvenience to farmers and also, 

can serve as a source of disease inoculum, spreading more easily in the field. 

The project's idea is therefore to find a “circular solution” where the use of olive pruning can be a source of 

wood vinegar production, which is then reused by the farmer as a remedy against olive fly infestation. This 

could represent a resilient system where residues are no longer waste but a solution. The purpose of this first 

trial was to test wood vinegar from agricultural prunings against the olive fly attack in Tuscany and determine 

the effect, appropriate methods and doses of application. 

2. Materials and Methods  

2.1. Wood vinegar  

Wood vinegar (WV) used in this study was prepared starting from agricultural woody prunings pelletized. 

WV was the results of condensed vapours resulting from an experimental gasification process by Yanmar 

R&D Europe. The gasifier uses wood waste from agricultural production to produce energy, heat, biochar 

and wood vinegar. Condensable volatile compounds from reactor are reformed in the catalytic filter, after 

that are condensed and collected in tanks and kept for a certain period at room temperature inside containers. 

Then, the wood distillate is ready to be used providing the necessary chemical analysis compliancy. 

2.2. Field test 

WV was tested on field trials as repellent against olive fly during two olive growing seasons: 2022 and 2023. 

In 2022 it was applied in two farms: one near Grosseto (on the coast) cultivating Maurino cultivar (A1) and 

the other in the hinterland near Florence, cultivating Frantoio cultivars (A2) (Figure 1). In the first year, the 

product was applied in both farms and two doses of Yanmar derived Wood Vinegar (WVY) (0.5 %v/v and 

1% v/v) were tested over approximately 60 plants each farm. Over the two years, a portion of the plot was 

left untreated and used as Control. The second year, only one dose of WVY was tested (0.5 % v/v) in A2 

farm, and a treatment with commercial WV (WVC) derived from chestnut tannin extract was performed. The 

product was applied, from olive kernel hardening (July) to harvesting (October), via spray mode using an 

atomizer barrel on the entire canopy, with an around 14-day interval from the hardening phase of the kernel 

to harvest (Table 1). WVY was derived by pelletized agricultural woody prunings derived by an experimental 

gasifier under R&D located in Florence.  
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Figure 1. Location of experimental farms in Tuscany region. 

 

 

Wood vinegar: application 

time 

2022 

18/07/2022 

02/08/2022 

22/08/2022 

05/09/2022 

14/09/2022 

22/09/2022 

03/10/2022 

2023 

19/07/2023 

06/08/2023 

21/08/2023 

01/09/2023 

 

Table 1. Application time of wood vinegar during the growing season 2022 and 2023 in olive orchards. 

 

2.3 Monitoring schedule 

In the plots, chromotropic attracting traps for olive fly were placed on sample olive trees and periodically the 

number of flies trapped were monitored: one trap for each treated plot and one for each control plot were 

placed and substituted every month with new traps. Additionally, 50 olives were periodically sampled in the 

plots, collected randomly in the field, placed in bags, and monitored using a magnifying lens to observe the 

infestation % (presence of eggs/pupae or larvae) (Table 2). 

 

 

Inland Coast Inland 

2022 2022 2023 

18-Jul 29-Jul 11-Aug 

02-Aug 05-Aug 25-Aug 

22-Aug 12-Aug 31-Aug 
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05-Sep 26-Aug 06-Sep 

14-Sep 02-Sep 13-Sep 

22-Sep 09-Sep 21-Sep 

03-Oct 16-Sep 28-Sep 

10-Oct 23-Sep 05-Oct 

 

Table 2. Monitoring time of traps and collection of olives to detect attack. 

 

2.4 Statistical analysis 

For the statistical analyses, R software (R 4.0.3) was used in the RStudio environment. Statistical analysis of 

mean olive flies captured, and olive infested was then calculated by using a one-way analysis of variance, 

one-way ANOVA with Duncan test procedure as post hoc test. The data were considered significant at p= 

0.005.  

3. Results and Discussion 

The efficiency of WV application both from Yanmar R&D and commercial, during the olive growth season, 

were evaluated in 2022 and 2023, based on the availability of farmers. The test was performed to test the 

repellent effect against olive flies and the % attack of olives in open field conditions.  

The average number of olive flies trapped have been reported in Figure 2. In both years Control showed the 

highest number of olive flies captured in comparison to WVY and WVC. In 2022, the application of WVY 

in central and cost Tuscany areas showed similar results both for 0.5% v/v and 1% v/v concentration. Due to 

this result, in 2023 the experiment was replicated using only 0.5% v/v WVY and making a comparison with 

WVC at same dosage (rate suggested by the product label). Also, in this case the results were similar, showing 

not statistical difference in number of trapped olive flies. However, the results have been influenced by the 

low presence of olive fly population during the experimental years, especially during 2022, in those specific 

geographic areas.  

 

 
 

Figure 2. Average number of trapped olive flies during the season 2022 and 2023 for each treatment. WVY 

(wood vinegar Yanmar); WVC (wood vinegar commercial); Control (no treatment). 

 

The fruit infestation was lower in 2022 (Figure 3), showing similar results for WVY and WVC. The 
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highest number of larvae/pupae were detected for Control, statistically different from the other treatments. 

No statistical difference was found as regard sterile puncture for the three treatments. In 2023 (Figure 4) the 

results were similar for WVY and WVC, showing no statistical difference for both number larvae/pupae and 

sterile puncture. On the contrary, Control was statistically different in comparison to WVY and WVC, but 

only as regard the % of larvae/pupae infestation.  

Considering the need of integrated solutions for olive fly control, WV could be an interesting product with a 

repellence and oviposition deterrence effect. However, higher WV dosage (1% v/v) did not show higher 

repellent effect that lower rate (0.5% v/v). For that reason, it is auspicial a lower application rate of the 

product for an economic advantage. As regard sterile puncture presence, we can say that having the same 

number of sterile punctures does not pose a significant issue in controlling the dipteran. It would be 

interesting to test the presence of organic components in WVY, causing not only repellent effects but also 

larvicidal or ovicidal effects. In this contest, Akkus et al., 2022 reported that the type of wood used in the 

wood vinegar, the type of chemicals presents, and the concentration applied usually influence the larval 

mortality of insects. Liscia et al., 2013 reported that olive fly is influenced by number of volatile compounds 

influencing the olfactory sensitivity of dictera.  

The use of an organic, locally sourced product, produced within a circular economy framework in the same 

company, could have a significant impact on agricultural businesses for controlling pathogenic insects. The 

excessive use of insecticides has negative impacts from both an economic and environmental perspective, 

increasing dependence on synthetic chemical products. 

The use of wood vinegar in this case has shown repellent and fly attack characteristics similar to the tested 

commercial product. For this reason, the farmer who decides to invest in the gasifier could have a product 

similar to the commercial one, which on the market costs around 20 euros per litre.  

 

 
 

Figure 3. Average number of olives attacked by olive fly (presence of larvae/pupae and sterile puncture) 

during the season 2022 for each treatment. WVY (wood vinegar Yanmar); WVC (wood vinegar 

commercial); Control (no treatment). 
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Figure 4. Average number of olives attacked by olive fly (presence of larvae/pupae and sterile puncture) 

during the season 2023 for each treatment. WVY (wood vinegar Yanmar); WVC (wood vinegar 

commercial); Control (no treatment). 

 

4. Conclusions 

In conclusion, the aim of the test was to study the effect of wood vinegar from agricultural prunings for olive 

fly control. Further research could pay attention on the specific compounds effect of wood vinegar, finding 

the active principle and optimal application rate functional for specific agricultural applications. Our study 

underscores the notable biological activity of wood vinegar against olive flies applied at 0.5 and 1 % v.v. The 

results of repellence activity were similar as regard both dosages, but significantly lower that Control. The 

effect of wood vinegar from different crop prunings as repellent for other pest insects should be tested. The 

results of this study introduce a way to bring circular economy solutions in a farm producing prunings: from 

wastes to helpful products for the farms. The possibility to use natural-based insecticides such as wood 

vinegar as a potential agent in olive fly attack control could bring environmental, economic and social 

sustainability to the agricultural sector.  
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Abstract 

Effective energy management in dairy cowsheds is crucial for the sustainability and profitability of farms. 

The principles and effects of the CowEnergy concept will be presented here. It aims to make optimum use of 

energy resources in the dairy barn while minimizing the environmental impact. The structure and the 

experience gained in practical projects will be presented. 

CowEnergy is divided into several areas. A central pillar of CowEnergy is the use of renewable energy 

sources on the farm. By installing photovoltaic systems on the barn roofs, recycling liquid manure and feed 

residues into biogas and integrating wind turbines on the farm premises, a large proportion of the energy 

required can be generated on site. This not only reduces dependence on external energy suppliers, but also 

helps to reduce greenhouse gas emissions. 

In addition to generating electricity from renewable sources, the CowEnergy concept is supported by 

intelligent energy management in the barn. Energy consumption is optimized through the use of energy-

efficient lighting and ventilation systems as well as modern milking and feeding technologies. The use of 

electric drives for farm vehicles such as wheel loaders or self-propelled feed mixers makes it possible to 

dispense with combustion fuels here too. Automated processes and sensor technologies help to analyze and 

adjust energy requirements in order to avoid overcapacity and use resources efficiently. 

A storage system for the energy is also necessary to balance out the fluctuations in the generation of 

renewable energy systems. This can take various forms. In dairy farming, for example, ice water cooling for 

the milk is an option. For biogas, it can be an oversized gas storage tank. Electrical energy from PV systems 

can be stored in vehicle batteries or external batteries. In the future, hydrogen may also be available. 

Another important aspect of CowEnergy is the regional energy supply. This involves the exchange of 

energy peaks and troughs in the region. This offers, for example, the possibility of centralized energy storage 

or the exchange of available energy between different users. This not only strengthens the regional economy, 

but also promotes independence from fossil fuels and helps to protect the environment. One current problem 

in Germany is the legal situation in energy trading. 

By integrating regional and renewable energy sources and optimizing energy consumption, it not only 

increases the profitability of farms, but also makes an important contribution to environmental protection. 

Keywords: energy management, dairy cows, renewable energy, regional grid. 

1. Introduction 

The social debate about the future direction of our energy supply can be observed worldwide. Many 

aspects such as sustainability, CO2 neutrality, regionality and general compatibility with the UN's 17 

Sustainable Development Goals (SDGs) play a role here. The aim of this study is to show the possibilities 

for dairy farms to generate, store and use energy. Energy encompasses a wide variety of energy sectors, such 

as electrical energy, thermal energy, chemical energy and mechanical energy. 

The immediate aim of farmers is to reduce their energy costs or to build up another economic mainstay 

through energy trading. Another goal is to integrate into regional and social energy management. This ranges 

from the stabilization of regional energy grids, to community electricity management, to emergency power 

supply and control centers in the event of a disaster.  

The focus here is on the situation in Germany. However, the general concept is transferable to many other 

countries. 

2. Materials and Methods  

An energy management system (EMS) was set up on a dairy farm to analyse the potentials. This system 
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is able to regulate the energy production on the farm and the energy consumption in the barn and in the 

external grid. On the farm, the EMS records energy generation via photovoltaics, biogas, wind and 

geothermal energy; at the same time, it records energy consumption in the barn via milking robots, cleaning 

robots, the battery of the feed mixer, cow brush and slurry pump, and the various storage options such as 

biogas storage, battery storage and ice water storage serve as a balancing system. 

 

3. Results and Discussion 

The analysis of dairy farms reveals a significant potential for sustainable energy production, indicating a 

promising future for the integration of renewable energy systems in agricultural operations. One of the 

primary methods for harnessing this potential is through the utilization of biogas. By processing manure and 

other organic materials in biogas plants, dairy farms can generate approximately 8.3 kWh of electrical energy 

per cow per day. This method not only provides a reliable source of electricity but also produces considerable 

amounts of thermal energy as a byproduct, which can be utilized for heating purposes within the farm, 

enhancing overall energy efficiency. 

In addition to biogas, photovoltaic (PV) systems present another viable option for dairy farms. The 

installation of PV panels on available roof space can significantly contribute to the farm's energy needs. 

Depending on the roof’s location and orientation, it is possible to achieve about 0.2 kWp of nominal capacity 

per square meter. This form of solar energy harnessing is particularly advantageous due to the relatively large 

roof areas typically available on dairy farms, allowing for substantial energy generation. 

Wind energy also holds considerable promise for dairy farms situated in suitable locations. Modern wind 

turbines are highly efficient and can generate an impressive average of 15 million kWh of electricity per year. 

The integration of wind turbines can be particularly effective in areas with consistent wind patterns, providing 

a steady and robust source of renewable energy. 

Moreover, dairy farms can explore the use of combined heat and power (CHP) plants that utilize biomass, 

such as wood chips. These CHP systems are capable of producing both electricity and heat from a single fuel 

source, thereby maximizing energy efficiency and reducing reliance on external energy supplies. 

Additionally, geothermal energy, particularly when harnessed from beneath the barn area, can provide a 

consistent and sustainable source of heating. 

Small-scale energy production methods also offer valuable opportunities for dairy farms. For instance, 

the utilization of waste heat from barn air or milk can be an efficient way to reclaim energy that would 

otherwise be lost. This approach not only improves the overall energy balance of the farm but also contributes 

to environmental sustainability by reducing waste. 

When the energy production capabilities of a dairy farm are compared with its energy consumption—

typically around 640 kWh per cow per year—it becomes apparent that the farm has the potential to generate 

significantly more energy than it consumes. This energy surplus remains viable even as dairy farms advance 

towards greater automation, incorporating technologies such as milking robots, feeding robots, cleaning 

robots, and other electrically operated machinery. These innovations, while increasing the farm's energy 

demand, do not offset the substantial energy production achieved through renewable sources. 

One of the primary challenges encountered by dairy farms revolves around the asynchronous nature of 

energy production and consumption. This misalignment underscores the necessity for robust energy storage 

capabilities. Among the array of potential solutions, options such as storing biogas for subsequent utilization, 

converting biogas into methane for prolonged storage, deploying battery systems, or leveraging hydrogen 

storage technologies emerge as prominent contenders. Tailoring solutions to the specific requirements of 

dairy operations, energy storage in the form of ice for milk cooling emerges as particularly pertinent. 

Further expanding the scope to encompass agricultural settings, additional avenues for energy storage 

present themselves. These may include heat retention in manure through the integration of heat exchangers, 

the implementation of flywheel storage mechanisms, or the utilization of sand batteries. Such diversified 

approaches to energy storage not only address the immediate challenges posed by energy intermittency but 

also contribute to fostering resilience and sustainability within dairy and broader agricultural operations. 

The Energy Management System (EMS) plays a pivotal role in orchestrating and regulating both energy 

generation and consumption. Beyond its intrinsic function of internal energy management within individual 

systems, the EMS serves as a crucial intermediary interfacing with regional energy grids. This dual 
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functionality enables it to synchronize internal energy demand and supply dynamics with those prevailing 

externally. 

Notably, the EMS facilitates targeted external communication, a necessity particularly evident in the 

context of Germany's energy landscape. Here, renewable energy harnessed from biomass, solar, and wind 

sources is often integrated into the energy grid with minimal regulatory oversight. Consequently, the onus 

falls upon energy supply entities to manage grid energy levels. Presently, this entails resorting to measures 

such as disconnecting energy-generating facilities from the grid, primarily during periods of peak production, 

to mitigate the risk of grid overloading. 

By leveraging the capabilities of the EMS, surplus energy can be strategically injected into the regional 

grid at opportune junctures. Armed with insights into internal energy consumption patterns, the EMS can 

dynamically adjust the energy consumption profiles of its constituents to cater to heightened regional 

demand, thereby augmenting energy availability in a timely manner. Conversely, in scenarios characterized 

by grid overload, the EMS serves as a conduit for temporary storage of excess energy within its storage 

infrastructure, thereby fostering grid stability. 

Furthermore, the EMS is engineered with autonomous startup functionality, a feature of significant 

relevance, especially in agricultural contexts. Given the perennial presence of farmers within agricultural 

settings, the EMS can be initiated and monitored autonomously by a farmer, contributing decisively to grid 

restoration efforts in the aftermath of power outages. This aspect assumes heightened significance when 

envisioning the widespread deployment of EMS across agricultural landscapes. Such a deployment model 

would engender a proliferation of decentralized EMS units across the region, collectively bolstering the 

resilience and restorative capacities of regional energy grids. 

However, notwithstanding the potential benefits, operationalizing these capabilities vis-à-vis established 

energy supply entities poses formidable challenges. The successful integration of EMS technologies 

necessitates a paradigm shift characterized by enhanced collaboration, networking, and adaptability on the 

part of major energy corporations. Addressing these complexities is indispensable to unlocking the full 

spectrum of benefits offered by EMS technologies in the realm of energy management and grid resilience. 

 
Figure 1. Energy Management System (EMS) 

 

However, an energy management system (EMS) also presents numerous opportunities for the region. As 

elucidated earlier, the heightened regionalization of electricity grids engenders improved security and 
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heightened stability. Moreover, residential dwellings and small-scale enterprises can seamlessly integrate 

into this burgeoning system. 

Presently, a discernible trend is emerging whereby homeowners are embracing the installation of 

autonomous energy storage systems to harness their self-generated power. Through the establishment of a 

shared energy network, the potential for energy storage within dairy farms comes to the fore. The stored 

electricity could subsequently be reclaimed and autonomously utilized during evening hours. Notably, the 

substantial cost advantage of employing the dairy farm's expansive energy storage facility over individual, 

diminutive storage units is evident. Additionally, the communal battery storage facility on dairy farms boasts 

a heightened level of resilience against overheating and fire hazards. This stems from its customary placement 

within a segregated structure on the farm premises, rendering it more accessible for cooling measures by 

firefighting personnel. In contrast, residential abodes often house their energy storage units in basements, 

thus elevating the risk of consequential damage in case of overheating incidents. 

Moreover, enterprises endowed with in-house energy generation capacities can seamlessly integrate into 

the production and demand framework. This facilitates the judicious management of peak loads among 

diverse stakeholders. Given the distinct load profiles characteristic of businesses vis-à-vis dairy farms, the 

resultant variance simplifies the task of system equilibrium. 

Beyond these conventional applications, the EMS presents an array of possibilities in the event of 

calamitous occurrences such as floods. Leveraging the inherent autonomy conferred by the EMS, dairy farms, 

endowed with expansive infrastructure including large-scale tractors, paved areas, and ample fuel reserves, 

emerge as pivotal emergency response sites. Often, the establishment of a rescue site necessitates only 

minimal additional investments in radio technology, thus streamlining the process of fortifying emergency 

preparedness within the region. 

However, the realization of these options afforded by the energy management system (EMS) currently 

faces significant challenges. Regulatory frameworks governing energy marketing and grid infrastructure in 

Germany pose formidable barriers to progress. One such impediment lies in the requirement for grid usage 

fees when electricity traverses between two points via the "public" grid, even if these points are mere meters 

apart. This imposition of dual grid usage fees often renders collaborative energy storage initiatives 

economically unviable. A potential solution could entail the implementation of a flat-rate grid usage fee 

within a 50km radius, allowing for unlimited transfers of the same electricity within the grid and thereby 

fostering innovation in shared energy storage endeavors. 

Moreover, existing practices empower grid operators to directly curtail the operation of larger energy 

installations, such as photovoltaic or biogas facilities, during periods of grid congestion. Consequently, the 

opportunity for self-consumption dissipates. A more optimal approach would involve implementing 

shutdown mechanisms at the point of grid injection, thereby preserving the feasibility of self-consumption. 

In essence, effecting a seamless energy transition necessitates enhanced networking and flexibility on the 

part of major energy corporations. By fostering greater collaboration and innovation, these entities can 

spearhead initiatives to navigate regulatory constraints and propel the realization of societal aspirations for 

sustainable energy transitions. Central to this endeavor is the imperative of directly engaging and empowering 

the populace, ensuring that they derive tangible benefits from such transformative initiatives. 

4. Conclusions 

This observation underscores the substantial capacity of dairy farms for energy generation, thereby 

positioning them as pivotal contributors to the enduring stability of energy networks, notably within rural 

locales. Moreover, this potential empowers dairy farms to catalyse the inception of innovative energy 

paradigms.  
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Abstract  

Climate change can raise average temperatures and humidity and induce more frequent and stronger 

extreme weather events. This intensifies the need for studies on indoor climate and energy use in livestock 

buildings as it will affect animal welfare and farmers’ economy in terms of production, energy demand and 

needed investments. The aim of this review was to identify knowledge gaps and the need for further research 

about energy use and indoor climate of livestock buildings for pigs, including passive and active adaptation 

measures. In total 29 articles were reviewed, published during 2000-2023, from Europe and North America. 

One key finding was that the studies conducted had different aims and approaches regarding the scope 

and presentation of results. The energy use data were presented using various definitions and units with total 

energy use for a specific category and number of pigs and a given period being the most common. However, 

when housing area and pig data were provided, key figures on energy use could have been calculated to 

enable benchmarking. Indoor climate conditions were also reported in different ways, ranging from detailed 

information on temperature and humidity to no information on indoor climate conditions at all. 

Our review revealed that the variety of scopes, periods and types of results make it difficult to compare 

or generalise research findings with different production systems. Studies are needed on energy performance 

related to building and housing systems, outdoor climate conditions, and fulfilment of indoor climate 

requirements for good animal welfare, expressed in well-defined key figures. Furthermore, more research is 

needed to understand the effect of climate change and the potential of adaptation measures, to improve 

energy-efficiency, cost-effectiveness, indoor climate, and animal welfare in buildings for pigs.  

Keywords: climate change, heat stress, adaptation measures, building envelope, animal welfare  

1. Introduction 

Pig farming faces two significant challenges due to climate change. The first revolves around the 

imperative challenge to reduce greenhouse gas (GHG) emissions stemming from production processes, 

including feed choice, manure management and housing considerations (Hörtenhuber et al. 2020). The 

second challenge pertains to the anticipated thermal comfort problems due to warmer and more humid 

climates (Renaudeau & Dourmad 2022). Most pigs raised for pork production reside in confined buildings, 

meaning limited space and no outdoor access (Lassaletta et al. 2019). This implies that housing and indoor 

climate are key factors of animal welfare. Additionally, it is imperative to develop energy-efficient and 

innovative cooling strategies that maintain an acceptable indoor climate, while mitigating GHG emissions.  

Indoor climate requirements in pig buildings vary depending on the pigs’ size and age, as well as on 

national legislation. In a cold environment, the pigs need a higher energy intake and huddle to keep their core 

temperature constant. In a warmer environment, the lying behaviour changes as they lie more individually, 

increasing respiration rate and water intake, while feed intake diminishes (Huynh et al. 2005). Pigs possess 

only very few sweat glands and, therefore cannot sweat to regulate their body temperature and their natural 

behaviour is to wallow in mud to increase the evaporative heat loss from their skin (Bracke 2011). In confined 

buildings, the pigs have no possibility of wallowing in mud; thus, they are forced to wallow in their own 

faeces and urine. Additionally, when heat stressed, the pigs want to lie in the coldest place in the pen, often 

the slatted dunging area, and they use the lying area for excretion, which will be fouled (Aarnink et al. 2006). 

This is primarily a welfare issue, as pigs are naturally clean animals, but this behavior is a result of their need 

to avoid hyperthermia (Bracke 2011). Additionally, this leads to production problems since it is unhygienic 

and may lead to diseases and antimicrobial resistance (Schmithausen et al. 2018). The failure to maintain 

suitable indoor climate severely affects the pigs’ welfare, including their health. They will also have a reduced 
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growth (Larsen et al. 2018; Gourdine et al. 2021), which negatively affects production outcomes (Renaudeau 

& Dourmad 2022). 

Heating and ventilation are common measures to maintain the indoor climate within acceptable limits. 

Ventilation serves the purpose of reducing the content of moisture and airborne pollutants as well as heat 

from in indoor air by replacing it with fresh outdoor air (Abel & Elmroth 2007). During warm periods, 

increased ventilation through larger openings or higher airflow rates are common measures to reduce indoor 

temperatures. Two additional frequently used cooling strategies are evaporative cooling and increased air 

velocity in the animal zone to create a cooling air movement (Pexas et al. 2021). Evaporative cooling 

methods, such as cooling pads and fogging, utilize water to reduce the air temperature through evaporation. 

However, these methods increase the relative humidity in the air (Pertagnol et al. 2013), while increased air 

velocity on the pig poses risks for undesirable draughts (Jeppsson et al. 2021).  

Energy use data for pig buildings is limited (Costantino et al. 2016). The building’s energy balance 

depends on outdoor climate, transmission losses through the building envelope, solar radiation, heat storage 

in building materials, and internal heat loads, such as dissipation from equipment and occupants (Abel & 

Elmroth 2007). The heat dissipation from the pigs varies according to their size, activity and surrounding 

temperatures (Gourdine et al. 2021). 

With the anticipated warmer outdoor climates, it is reasonable to expect difficulties in ventilating excess 

heat. Additional adaptation measures are thus required to reduce indoor temperatures. These measures must 

be energy-efficient and cost-effective to maintain production and economic profitability, while also 

mitigating GHG emissions caused by pig farming. This review aims to evaluate applied methods and identify 

possible gaps in information to obtain a first understanding of energy use and indoor climate in livestock 

buildings for pigs considering present and future climates.  

2. Method 

2.1. Data collection 

This literature review examines energy use and indoor climate in livestock buildings for pigs, 

encompassing both passive and active adaptation measures. A keyword search was conducted in Scopus on 

January 13, 2023 (Table 1). The search included all journal and conference published in the period between 

January 1, 2000 and January 13, 2023. Additionally, a supplementary search was conducted in Scopus on 

January 4, 2024, for articles published between January 14 and December 31, 2023. The search encompassed 

the following regions: 

• North America (the US and Canada)  

• The EU (Austria, Belgium, Bulgaria, Czech Republic, Croatia, Cypress, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Luxembourg, Malta, Netherlands, 

Poland, Portugal, Rumania, Slovakia, Slovenia, Serbia, Spain, Sweden) 

• Iceland, Liechtenstein, Monaco, Norway, Switzerland, United Kingdom 

• Unspecified countries (in Scopus) 

Table 1: Keyword search in Scopus, each subject was combined with AND. 

Subject Keywords 

Energy efficiency energ* OR resource* OR {environmental impact} OR efficien* 

Indoor climate 

thermal OR {internal climate} OR {indoor climate} OR air OR microclimate OR 

{micro climate} OR overheat* OR temperature OR humid* OR heat OR cold OR 

airflow OR {stay zone} OR {animal zone} OR {production zone} 

Pig 
pig OR pigs OR swine* OR hog OR sow OR sows OR hogs OR piglet* OR gilt* OR 

pork 

Building 
building* OR hous* OR pigsty OR pigsties OR {pig stable} OR farm* OR barn OR 

premis* 

Adaptation measures 
passive OR active OR cool* OR adapt* OR measur* OR ventil* OR heat* OR design 

OR concept* OR model* 
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Articles identified through the keyword search were manually screened for inclusion or exclusion based 

on the content following the process outlined in Figure 1.  

 
 

 Figure 1: Principles for inclusion and exclusion in the review on energy use and indoor climate in pig buildings.  

The reviewed articles were screened regarding information on outdoor and indoor climate conditions, 

building envelope properties, equipment and adaptations, pig data, as well as energy use. The relevant 

information was extracted according to the guidelines in Table 2 and we evaluated how this information was 

incorporated into the article. The extracted data was then saved in a standardised form.  

Table 2. Extracted data from reviewed papers. 

Subject Extracted data 

Reviewed article Author(s), publication year, title, country 

Equipment and adaptations 
Maximum and minimum ventilation, heating type, operation time, 

cooling or heating adaptations 

Energy use, outcome per period Outcome and period 

Outdoor climate conditions Outcome and period 

Indoor climate conditions Outcome and period 

Building Envelope Materials or U-values for external walls, roof or ceiling, and floor 

Pig, density and heat load Housing area, number of pigs, weight, heat dissipation from pigs 

2.2. Reviewed research 

Studies on energy use have been published during the entire search period and the number of publications 

increased notably in 2013 with one to three studies published annually until the end of 2023. We have 

categorised the results on energy use into three subsections - measured, modelled and reported data. Articles 

presenting modelled data that also incorporated measurements as a validation tool for the model are not 

included in the measured data subsection. Reported data concern studies based on data from farmers or 

previous studies. Notably, two articles, one from the US (Hanna et al. 2016) and one from Belgium (Everaert 

et al. 2023) are evaluated twice as they include data on both measured and reported energy use. In total, 17 

studies are based on measured data, 11 on modelled data, and three on reported data. The review encompasses 

studies from ten countries with first authors from the US and Italy being the primary contributors to these 
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articles (Table 3). 

Table 3. Reviewed articles on energy use of livestock buildings for pigs in 2000 through 2023 in part of Europe and in 

North America. The table indicates whether energy use data is presented as measured, modelled or reported data. One 

study each in the United States and Belgium is included twice as they assess both measured and reported data. 

Reviewed Article, measured data Country Reviewed Article, modelled data Country 

(Deeken et al. 2023)  BE (Costantino et al. 2022) IT 

(Everaert et al. 2023) BE (Faes et al. 2021) BE 

(Fernandez et al. 2020) ES (Panagakis & Axaopoulos 2019) GR 

(Lane et al. 2020)  US (Xie et al. 2019) US 

(Licharz et al. 2020)  DE (Jackson et al. 2018) UK 

(Bilardo et al. 2019) IT (Fabrizio et al. 2014)  IT 

(Alberti et al. 2018)  IT (Jacobson et al. 2011) US 

(Sharpe et al. 2018) US (Valino et al. 2010) UK 

(Shah et al. 2017)  US (Panagakis & Axaopoulos 2004) GR 

(Hanna et al. 2016) US (Lambert et al. 2001) CA 

(Ilsters et al. 2015)  LV (Turnpenny et al. 2001) UK 

(Krommweh et al. 2014)  DE   

(Love et al. 2014)  US   

(Johnston et al. 2013) US Reviewed Article, reported data Country 

(Pertagnol et al. 2013) DE (Deeken et al. 2023)  BE 

(Godbout et al. 2004) CA (Costantino et al. 2016) IT 

(Riva et al. 2000)  IT (Hanna et al. 2016) US 

3. Results and Discussion 

In this section, we have summarised the types of implemented adaptation measures found in the reviewed 

articles, followed by a compilation of employed units and terms for energy use. In the subsection on 

measured, modelled, and reported data, we highlight the importance of understanding building and 

production types, as well as indoor and outdoor climate conditions, for accurately interpreting energy use. 

Additionally, we discuss how modeling and simulations contribute to knowledge in this area. 

3.1. Adaptation measures 

Different adaptation measures such as heat pumps (HP) and heat exchangers (HE) sourced from the 

ground or the air were used for either the heating, cooling season, or both (Deeken et al. 2023; Licharz et al. 

2020; Alberti et al. 2018; Jackson et al. 2018; Shah et al. 2017; Ilsters et al. 2015; Pertagnol et al. 2013; 

Jacobsen et al. 2011; Riva et al. 2000). For the warm season, increased ventilation was the most common 

measure for cooling, sometimes combined with evaporative cooling. In colder climates, mobile or 

permanently installed, heat sources were usually implemented, and preheating of inlet are through a solar 

wall or channel has been studied (Godbout et al. 2004; Love et al. 2014).  

Some studies showed that adaptation measures were not as effective as anticipated. For instance, Riva et 

al. (2000) found that energy use was reduced with a heat pump (HP) during the heating season compared to 

a boiler heating system. However, during the cooling season, the HP solution required more energy but 

resulted in fewer variations in ambient temperature. Another example is a study by Krommweh et al. (2014) 

involving a ground-based HE that inadvertently reheated precooled air during summer. The HE precooled 

the supply air in a ground pipe and distributed it to the uninsulated attic through vertical shafts. However, the 

air was reheated due to high surrounding temperatures during transportation from the ground to the attic. 

Subsequently, the air was supplied to the pigs from the attic via ceiling openings. Despite this, the system 

preheated and precooled the supply air, showing potential for reducing energy demand. However, the system 

was not deemed suitable for GFP, as it supplied too much heat. Additionally, one study found that pressure 

drops in the ventilation system could increase energy use due to warm prolonged fan operation (Pertagnol et 

al., 2013). These results highlight the importance of designing adaptation measures tailored to specific 

buildings and sites for optimising energy efficiency.  
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3.2. Energy use and indoor climate 

3.2.1. Energy use definitions 

Four ways of expressing energy use were identified in this review: energy consumption (EC), energy 

balance (EB), energy demand (ED), and energy saving potential (ESP). Energy consumption was the 

predominant method used to express energy use for measured data, followed by energy balance and energy 

demand. Energy demand was most commonly employed for modelled data, followed by energy consumption. 

Finally, for reported data, energy consumption was the sole method utilised to express energy use.  

Applying standardised definitions of energy concepts simplifies the communication of energy use results. 

Typically, ‘energy consumption’ refers to measured energy obtained through installed energy meters or the 

amount of fuel used, aligning with the defined actual measured energy use according to the European ISO 

standard for energy performance (EN ISO 52000-1:2017). Within this standard, ‘energy demand’ is utilised 

to calculate a building´s energy performance under typical condition adjusted for typical outdoor climate 

conditions and building use. Energy demand may also factor in peak load calculations for building design in 

summer and winter scenarios. In studies employing an ‘energy balance’ approach, both energy losses and 

gains are accounted for, providing a comprehensive overview of a building’s energy flows over a given 

moment or specific period. When evaluating the ‘energy saving potential’, a clearly defined reference value 

is crucial for comparative analysis within the study, as the potential energy savings of an adaptation measure 

vary depending on climate and building design.  

The standard (EN ISO 52000-1:2017) is primarily designed for assessing the energy performance of 

buildings for human occupancy. While certain aspects of the standard, such as definitions, boundaries, and 

primary energy calculations, may be applicable to the agricultural sector, adjustments tailored to the specific 

use of agricultural buildings are necessary. 

3.2.2. Units for energy use 

To benchmark energy use across different sites, production stages, and climate zones, it is crucial to 

standardise the presentation of energy data. Energy use is reported in ten different units (Table 4). However, 

some studies reported more than one unit (Deeken et al. 2023; Bilardo et al. 2019; Costantino et al. 2016). 

The most common units were total kWh or MJ per studied period, followed by total kWh per production 

cycle. The diversity of units and covered periods makes it challenging to generalise research findings or draw 

any conclusions for this body of research. Presenting energy data as key figures, such as kWh per fattening 

pig, per pig space, or per kilogram of meat, would offer the opportunity for comparison (Deeken et al. 2023; 

Everaert et al. 2023; Fernandez et al. 2020; Sharpe et al. 2018; Costantino et al. 2016; Hanna et al. 2016; 

Jacobson et al. 2011; Turnpenny et al. 2001). Additionally, it is crucial to include information on outdoor 

and indoor climate conditions, as well as production data such as building type, pig sizes, and density, to 

facilitate benchmarking. 

Table 4: Reported units and expression used for energy use or power need in reviewed papers.  

 Reported units  EC ED EB ESP 

Total kWh or MJ for evaluated period 7 2 3 3 

kWh pig day -1 1     

Total kWh per cycle or month 4   1 

kWh pig space 3    

kWh pig  2  1  

kWh m-2 cycle -1 1    

KWh m-2 year -1 1    

kWh or MJ kg meat 2 1   

kWh weight unit 1    

W m-2  1 1  

% savings      1 

EC: Energy consumption, ED: Energy demand, EB: Energy balance, ESP: Energy saving potential 
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3.3. Measured energy use data 

Energy use and indoor climate conditions result from current outdoor air conditions, building properties, 

the capacity of potential heating, ventilation and cooling equipment as well as internal heat loads (Abel & 

Elmroth 2007). In this subsection, we summarise and discuss the findings, focusing on how outdoor and 

indoor climate conditions, building properties, and pig production data are reported in articles based on 

measured energy use data.  

Most of the studies include at least one year of energy measurements, followed by studies focusing on 

limited periods during the cold season. Annual reviews provide a more comprehensive view of energy use 

for heating and cooling, accounting for seasonal differences in a region. However, energy use during a 

specific period is influenced by outdoor climate conditions. Outdoor conditions were reported to varying 

extents in the studies, including average temperature or humidity per month or cycle (Fernandez et al. 2020; 

Ilster et al. 2015; Godbout et al. 2004; Riva et al. 2000). One study supplemented this information with 

minimum and maximum temperatures within the evaluated period (Deeken et al. 2023). Other studies include 

frequent temperature measurements, taken either per minute or averaged per hour, throughout part or all of 

the studied period (Licharz et al. 2020; Alberti et al. 2018; Krommweh et al. 2014; Love et al. 2014; Bilardo 

et al. 2019). However, six studies did not report any outdoor climate data at all (Everaert et al. 2023; Sharpe 

et al. 2018; Shah et al. 2017; Hanna et al. 2016; Johnston et al. 2013; Pertagnol et al. 2013). Given that the 

energy needs are dependent on outdoor climate conditions, data covering the entire studied period are 

valuable for interpreting energy use result in any study. 

To achieve an acceptable level of animal welfare, indoor temperatures should be kept within the thermal 

neutral zone (Gourdine et al. 2021). The building and its equipment establish the framework for the energy 

use and indoor climate while management practices determine how heating and ventilation actually operate, 

thereby affecting energy use (Hanna et al. 2016).  Climate control and variation in set point temperatures are 

possible tools for improving indoor climate while reducing energy demand (Johnston et al. 2013).  

Information on indoor climate conditions was reported to varying extents in six cases, sometimes covering 

the entire period and other times only a limited part of the studied period. The findings were presented 

consistently with outdoor climate conditions in some studies (Fernandez et al. 2020; Licharz et al. 2020; 

Alberti et al. 2018; Krommweh et al. 2014; Riva et al. 2000). One study focused on temperatures related to 

heat stress and temperature- humidity index (THI) (Bilardo et al. 2019). In a few studies, the preheating or 

precooling capacity of the supply air temperature was evaluated (Deeken et al. 2023; Shah et al. 2017; Love 

et al. 2014; Pertagnol et al. 2013; Godbout et el. 2004), and one study examined the possibility of gaining 

heat to the indoor premises through HE from manure (Ilsters et al. 2015). Finally, five studies did not present 

any information on prevailing indoor climate conditions during the studied period (Everaert et al. 2023; Lane 

et al. 2020; Sharpe et al. 2018; Hanna et al. 2016). Just as outdoor climate conditions are important, 

information about indoor climate conditions is crucial for evaluating and enabling comparisons of results on 

energy use. 

Information on the building envelope, including materials or transmission losses, is reported in two out 

of the 17 reviewed articles. Measured data are obtained from existing pig buildings, potentially resulting in 

a lack of information on aspects such as insulation level. Nevertheless, studies have concluded that insulated 

building envelopes and mechanical ventilation are essential for maintaining an acceptable indoor climate in 

confined buildings, especially considering the anticipated warmer climate (Hörtenhuber et al. 2020). 

Most of the studies provided data on housing area, pig weight, and quantity, offering opportunities to 

present results in key figures, such as energy performance per pig space, per fattening pig, per kilogram of 

meat, or per square meter. 

3.4. Modelled energy use data 

In this section, we review studies with modeled data and discuss the use of models. In some cases, the 

studies aimed to develop or evaluate the accuracy of a model rather than presenting results on energy use or 

indoor climate. Like studies with measured energy use data, the extent of relevant reported data varies among 

the studies, and this variability is not further discussed. 

Models were developed as part of the study in eight of the articles, while three studies utilised commercial 

software programs specifically developed for energy and heat balance simulations, namely Staldvent 

(Jacobsen et al. 2011) and EnergyPlus (Jackson et al 2018; Fabrizio et al. 2014). All studies considered energy 
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(heat) balance, reporting energy demand or consumption for a specific period. When calculating the heat 

balance for a building to predict expected indoor temperatures (Jackson et al. 2017; Vitt et al. 2017; Anthony 

et al., 2014), it should also possible to incorporate energy balance calculations.  

Transmission losses through the building envelope were typically considered but not always reported. 

Axaopoulos et al. (2017), have emphasized the significance of optimal insulation levels in various climates. 

In a few studies, the insulation level is discussed, and one study demonstrated the effect of insulation level 

and thermal mass on energy use and indoor climate (Jackson et al. 2018). However, the influence of possible 

floor insulation was rarely included and not discussed in the studies. With underfloor heating, heat losses are 

expected if there is no underlying insulation, but heat loss might have a positive effect in the warm season 

due to heat conduction from the pigs when the floor is cooler than the pigs. Further research on the effects of 

ground insulation and the efficiency of underfloor heating or cooling is motivated. 

The studies demonstrate that through modelling, it is not only possible to evaluate energy performance or 

indoor climate, but also to assess the effects of building materials, supply air temperature, building geometry, 

solar radiation, future climate scenarios, and more. Costantino et al. (2022) highlighted the need for applying 

energy engineering principles to modelling within the agricultural sector. However, Fabrizio et al. (2014) 

emphasized that the heat load from animals and manure varies with indoor temperature and humidity, 

complicating the accuracy of simulation results.  

3.5. Reported energy use data 

Three articles presented reported data, all focusing on energy consumption (Deeken et al. 2023; 

Costantino et al. 2016; Hanna et al. 2016). None of these articles included information on pig density or heat 

dissipation, nor did they provide details on indoor and outdoor climate conditions corresponding to the 

reported energy consumption. Sufficient reported data allows the application of statistical methods to assess 

energy use. However, information on climate zones and pig production type - such as sows, weaned pigs, or 

fattening pigs - is essential for result comparison, given the varying heating and cooling demands. 

4. Conclusions 

This review was conducted using a keyword search in Scopus focusing on energy use and indoor climate 

of livestock buildings for pigs, including passive and active adaptation measures. Based on the review of 29 

articles, the following knowledge gaps and need for further research have been identified:  

• Variations in scope and prerequisites make comparing studies and generalising results on energy use 

difficult. Relevant key figures are essential for facilitating comparison of energy performance, and the 

energy standard EN ISO52000-1:2017 may be used as a common platform. However, further research 

is needed to explore how energy use can be adjusted for outdoor climate and production factors such as 

indoor climate, sustained production, and animal welfare, to enhance feasibility of comparing the energy 

performance of livestock buildings. 

• Studies about the effect on energy use and indoor climate of building properties such as thermal mass, 

heat transmission, and building orientation are scarce. Further research on passive energy saving 

strategies is desirable.   
• Computer modelling is a promising method for incorporating and evaluating the performance of 

livestock buildings in terms of energy use and indoor climate over extended periods. 

Overall, this review suggests that research in this field is still in its infancy or scarce and a more methodical 

and standardised way of presenting research findings is desirable to provide guidance on how to design 

energy-efficient and thermally comfortable buildings for pigs in current and future climates. 
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Abstract 

Dragon fruit or pitahaya is a tropical product which demand has recently increased Europe. The 

Mediterranean are of Valencia (Spain) is obtaining promising results for pitahaya production. The dragon 

fruit quality is crucial to assure and increase consumers acceptance of this new and high price product. Size, 

colour and sugar content are important parameters to define fruit quality. Nowadays, the assessment of fruit 

quality is addressed at the packing houses using image analysis sorting machines. In the present study the 

objective was to assess product quality using a prototype image analysis device. In the experiment 177 dragon 

fruits (144 from the variety Nevada y 33 from the variety Purple) were measured non-destructively with the 

image analysis system. Whole fruit external RGB colour coordinates, maximum and minimum diameters, 

external estimated perimeter and estimated area were measured, two repetitions were developed per fruit. 

After the non-destructive image analysis, weight (g), destructive mechanical firmness (N/mm) with and 

without skin, soluble solid content (° Brix) and titratable acidity were measured. Besides, internal flesh colour 

parameters were also measured after cutting the fruit in two halves. Promising results were found, a multiple 

regression analysis could explain sugar content and weight based on the image analysis parameters (R2 of 

95.33 % and 89.25 % for weight in Nevada y Purple; 52.40 % and 87.95 % for soluble solid content in 

Nevada y Purple, respectively). These preliminary results, suggest the possibility of assessing dragon fruit 

quality using image analysis during grading. 

. 

Keywords: pitahaya, sorting machine, fruit attributes. 

1. Introduction 

Dragon fruit, also known as pitaya or pitahaya, is a tropical fruit with exotic appearance, vibrant colours, 

and nutritional benefits (Ortiz et al., 2020). As the demand for dragon fruit continues to rise in global markets, 

ensuring and maintaining the quality of this tropical fruit becomes paramount. Considering this product is 

becoming more popular in Europe and other regions, dragon fruit quality measurement plays a crucial role 

in meeting the expectations of new consumers. In dragon fruit the most important quality attributes are colour, 

sugar content and firmness (Ho et al., 2021).  

Advancements in non-destructive testing methods, such as spectroscopy and imaging technologies, offer 

promising perspectives for evaluating dragon fruit quality and assuring a high-quality product for the 

consumers (Patil et al., 2021). 

Spectroscopic tools, including near-infrared (NIR) and hyperspectral imaging, enable researchers to 

analyse the internal composition of pitaya, measuring attributes such as sugar content, acidity, and moisture 

levels (da Silva et al., 2023). These non-destructive techniques offer a rapid and efficient means of quality 

assessment, facilitating real-time monitoring at different stages of the post-harvest process.  

The objective of the present study was to assess sugar content and weight of Purple and Nevada dragon 

fruits using external colour and image analysis parameters. 

2. Materials and Methods  

In the experiment, 177 dragon fruits (144 from the variety Nevada y 33 from the variety Purple) were 

measured non-destructively with the image analysis grading prototype, Figure 1.  

Dragon fruit quality assessment using a grading machine prototype based on 

image analysis 
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Figure 1. Image analysis grading prototype. 

 

A digital colorimeter (CR410. Chroma meter, Konica Minolta sensing) was used to obtain L, a and b 

colour coordinates From the grading prototype es), whole fruit external RGB colour coordinates, maximum 

and minimum diameters, external estimated perimeter, and estimated area were measured, Figure 2. Two 

repetitions were developed per fruit. After the non-destructive image measurements were finished, weight, 

whole and pulp fruit firmness, soluble solid content and titratable acidity were tested. Besides, internal flesh 

colour parameters were also measured after cutting the fruit in two halves. Weight was measured using a 

digital balance (Mettler Toledo AL104 electronic balance, Im Langacher 44, 8606 Greifensee, Switzerland). 

Firmness was measured using a universal stress strain machine (Ibertest, model IBTH 2730, www.ibertest.es 

(accessed May 2024), with a constant speed of 1.67 ms−1. The firmness of each fruit was measured at three 

points of the equatorial area by using an 0.008 m probe, with (whole fruit firmness) and without peel (fruit 

flesh firmness). Three repetitions were carried out per test and fruit. The dragon fruits were juiced 

individually using a blender, and the filtered liquid was used to measure chemical parameters. Soluble solid 

content was determined with a digital refractometer (Atago model PAL-3; Atago Co., Tokyo, Japan). The 

statistical analysis was performed with a commercially available software package (Statgraphics Centurion 

18 Software, version 18.1.13 (Statgraphics Technologies, Inc., The Plains, VA, USA)). 

 

 
Figure 2. Example of the parameters extracted from the image analysis grading prototype, RGB colour 

coordinates, maximum and minimum diameters, external estimated perimeter, and estimated area, es). 
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3. Results and Discussion 

A multiple forward step by step regression analysis was developed to assess soluble solid content (° Brix) 

according to the external colour variables, Figures 3 and 4. The external colour parameters could explain 

soluble solid content based on the image analysis parameters (R2 of 52.40 % and 87.95 % in Nevada y Purple 

respectively).  

 

Figure 2. Observed and predicted soluble solid content (° Brix) from the multiple regression analysis based 

on the external colour parameters, variety Nevada. 

 

 

Figure 4. Observed and predicted soluble solid content (° Brix) from the multiple regression analysis based 

on the external colour parameters, variety Purple.  

 

𝑆𝑆 (°𝐵𝑟𝑖𝑥) = 6.8730 + 0.0007𝐴 (𝑚𝑚2) + 0.0016𝑃 (𝑚𝑚) + 0.0743𝐷(𝑚𝑚) + 0.0710𝑑 (𝑚𝑚) + 0.4043𝐵
+ 0.2660𝐺 

 

Where:  

S= Soluble solid content (°Brix) 

A= Image analysis area (mm2) 

P= Image analysis perimeter (mm) 

D= Image analysis maximum diameter (mm) 
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d= Image analysis minimum diameter (mm) 

B= B colour from RGB image analysis colour coordinates 

G= G colour from RGB image analysis colour coordinates 

 

A multiple forward step by step regression analysis was developed to assess and weight (g) according to the 

external colour variables, Figures 5 and 6. The external colour parameters could explain weight based on the 

image analysis parameters (R2 of 95.33 % and 89.25 % in Nevada y Purple respectively). 

 

 

Figure 5. Observed and predicted weight (g) from the multiple regression analysis based on the external 

colour parameters, variety Nevada.  

 

𝑊 (𝑔) = 214.7410 + 0.0480𝐴(𝑚𝑚2) + 0.1044𝑃 (𝑚𝑚) + 0.3313𝐷(𝑚𝑚) + 0.4043𝐵 + 0.2660𝐺 + 0.6771𝐵 

 

Where:  

W= Weight (g) 

A= Image analysis area (mm2) 

P= Image analysis perimeter (mm) 

D= Image analysis maximum diameter (mm) 

B= B colour from RGB image analysis colour coordinates 

G= G colour from RGB image analysis colour coordinates 

R= R colour from RGB image analysis colour coordinates 
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Figure 6. Observed and predicted weight (g) from the multiple regression analysis based on the external 

colour parameters, variety Purple.  

 

 

𝑊 (𝑔) = 312.9870 + 0.0925𝐴(𝑚𝑚2) + 3.3458𝐷(𝑚𝑚) + 4.1652𝑑 (𝑚𝑚) + 6.0328𝐵 + 4.0477𝐺 

 

Where:  

W= Weight (g) 

A= Image analysis area (mm2) 

D= Image analysis maximum diameter (mm) 

d= Image analysis minimum diameter (mm) 

B= B colour from RGB image analysis colour coordinates 

G= G colour from RGB image analysis colour coordinates 
 

These results showed the relation between the image analysis variables, related to shape and size and 

eternal colour, and the quality parameters weight and sugar content. Besides, a good relation was found 

between the external parameters and the crucial internal attribute, sugar content for Purple variety (with R2 

of 89.25 %). Further analysis should be developed in order to explore the possibility of predicting sugar 

content in dragon fruit based on image analysis external parameters or classifying the fruit according to sugar 

content in different quality categories based on external variables.  

4. Conclusions 

 

These preliminary results, suggest the possibility of assessing dragon fruit quality using image analysis 

during grading. Sugar content and weight could be assessed using image analysis parameters (RGB colour 

parameters and size parameters). 
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Abstract 

The purpose of this study was to evaluate the effects of a combination of drying techniques on the quality 

of sweet potatoes (SP). To ensure consistency, the study implemented a Randomized Complete Block 

(RCBD) experiment design. This design comprised three blocks of experiments labelled as cultivar, drying 

methods, and pre-drying treatment factors. The drying techniques that were investigated were convective 

hot-air drying (CH), infrared drying (IR), and microwave drying (MW), both individually and in combination 

under preset conditions. The SP cultivars were orange-fleshed (Bophelo) and two cream-fleshed varieties 

(Blesbok and Ndou), with blanching as the pre-drying treatment technique. Results showed that the drying 

time was significantly (p ≤ 0.05) affected by the drying method, whereas SP variety and blanching did not 

have a significant (p > 0.05) impact on this parameter. Furthermore, the CH+MW+IR method dried the SP 

more rapidly than the CH, CH+IR, and CH+MW methods. Additionally, it was evident that the product 

quality was significantly impacted by a reduction in the drying time of up to 15 minutes. The Blesbok and 

Ndou SP varieties did not contain a detectable amount of β-carotene, while the highest of β-carotene 

concentration was found in fresh Bophelo (225 μg. g-1).  The CH+MW+IR method retained 67% of the β-

carotene in Bophelo and preserved a fresh-like color in the samples. In summary, this investigation 

determined that the utilization of combined drying methods, blanching pre-drying treatment and SP variety 

was effective in preserving the color and β-carotene content of SP. The total color change (ΔE) was lower 

for the combined CH+MW+IR drying method, with the order of ΔE being CH+MW+IR< CH+IR < 

CH+MW< CH.  

Keywords: sweet potatoes, combined drying, β-carotene, color 

1. Introduction 

With a global production of 86 million tons, sweet potato (Ipomoea batatas L.) is a significant commodity, 

with Africa accounting for 15.7% of the production (FAO, 2024). Therefore, it is designated as a food security 

crop in the Sub-Saharan Africa region (SSA) (Motsa et al., 2015; Sapakhova et al., 2023). Consequently, the 

developing countries of SSA, including South Africa, have developed an interest in expanding the forms in 

which it is supplied through value addition, because SP is a natural source of vital micro-nutrients, including 

vitamin A. Laurie et al. (2022) stated that the primary benefit of SP is the reduction of vitamin A deficiency, 

through the use of vitamin A biofortified varieties. In order to satisfy the 2039 Agenda of the Sustainable 

Development Goals (SDG’s) of the United Nations (Laurie et al., 2023). The potential of SP varieties, such 

as orange fleshed sweet potato (OFSP), which are natural sources of vitamin A, and contribute to the 

resolution of the persistent vitamin A deficiency (VAD), have not been investigated at large in countries like 

South Africa (Laurie et al., 2018; Sebben et al., 2017). The vulnerable populations, such as pregnant women 

and children under the age of five, continue to depend on the costly vitamin A injection to address VAD 

(Govender et al., 2021).  

Research conducted in Africa has demonstrated that OFSP contains provitamin A (β-carotene) that can 

satisfy the daily nutritional needs of the most vulnerable groups (Gurmu et al., 2014; Laurie et al., 2018; 

Sebben et al., 2017). Historically, the use of SP to supplement traditional crops and in food fortification is 

conducted on a limited scale. However, agro-processing has significant potential to expand the range and 

forms in which SP is available to consumers, including shelf-stable flours. To accomplish this, it is necessary 

to investigate the primary process of flour production, which is drying. Previous research has demonstrated 

that the conventional drying techniques consume relatively high amount of energy and require relatively 

lengthy periods to dry produce to a safe storage moisture content. As a result, it is imperative to determine 
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the most appropriate drying methods for SP, especially for the heat and light-sensitive OFSP varieties. This 

is in light of the fact that numerous research studies have demonstrated that the quality of SP is adversely 

affected by the conventional drying methods, such as convective hot-air drying. Therefore, in recent years 

research has been directed towards the development of innovative solutions that can lead to reduced drying 

time and energy consumption, and enhanced product quality. For instance,  Haruna et al. (2018) discovered 

that that the prevalent convective hot-air dry technique can result in β-carotene losses of up to 73.9%. 

Additional research has demonstrated that the retention of β-carotene is contingent upon the drying conditions 

of convective hot-air drying, including the drying temperature. The degree of oxidation of β-carotene is 

higher at relatively high drying temperatures of 80 °C, which has been observed to result in β-carotene losses 

of up to 54.1%. Microwave drying has been discovered to yield relatively high losses of β-carotene (64%), 

despite its relatively reduced energy consumption (Motevali et al., 2011). Although freeze drying preserved 

the entire content β-carotene content, it is relatively expensive and requires a prolonged drying time (Yang 

et al., 2010). The other disadvantages of using conventional techniques, such as convective hot-air and 

infrared drying, include an elevated total colour change (ΔE), which suggests enzymatic browning (Onwude 

et al., 2018; Thi Lan Khanh et al., 2018). 

The individual use of microwave, infrared and convective hot-air drying has been discovered to have 

shortcomings in research studies.  Including the minimal retention of physico-chemical properties of color 

and β-carotene. As well as novel drying techniques, such as combined infrared and convective hot-air 

(Onwude et al., 2019) and microwave and convective hot- air drying (An et al., 2024). The use of pre-drying 

treatments has been one of the solutions to preserve these properties, by increasing the drying rates (Sun et 

al., 2022). There are no studies that evaluated the effect of pre-drying techniques and combined drying 

methods, despite extensive work being done to improve the cultivar psychochemical properties of South 

African-based SP varieties. Therefore, this investigation assessed the impact of combined drying methods  

on pre-treated orange fleshed and cream-fleshed sweet potato varieties.  

2. Materials and Methods  

2.1. Plant material  

Fresh sweet potato cultivars Bophelo, Ndou, and Blesbok with an average initial moisture content of 

79.51±2% (w.b.) were obtained from the Agricultural Research Council-Industrial and Medicinal Plants, 

Pretoria, SA. The samples were hand washed and dipped in 1% sodium hypochlorite for 10 minutes and 

sliced into 0.3 mm slices using a vegetable slicing machine (Hengxing Kitchen Equipment Co.Ltd, China). 

The samples were subsequently divided into batches and were blanched at 60-80 °C for 10 minutes, and a 

clean cloth was used to remove the surface water before drying. The dried samples were stored in a freezer 

at -20 °C until the analysis of color and β-carotene. 

2.2. Experimental drying methods 

Drying experiments were conducted in a hybrid dryer that facilitated the drying of SP using convective 

hot air (CH), microwave (MW) and infrared (IR) drying technologies, both individually and in combination 

as illustrated in Figure 1. Throughout the drying process, the following four stages were implemented: (i) 

convective hot air drying (CH), (ii) CH combined with MW (CH+MW), (iii) CH combined with IR (CH+IR), 

and (iv) CH combined with MW and IR (CH+MW+IR). During the CH, the relative humidity (RH) and 

drying air temperature was measured by a sensor that was embedded inside the dryer. The values were 20±2% 

and 72±2 ℃, respectively. MW drying was conducted at a set power of 100 W, and the drying temperature 

and RH were measured at 78±2 ℃ and 12±2%, respectively. IR drying was set at a power of 240 W, and the 

drying air temperature and RH were measured at 84±2 ℃ and 8±2%, respectively. The airflow was parallel 

to the samples and was measured at the air outlet using an anemometer (average air velocity =0.32 ± 0.02 m. 

s-1). During the drying process, the instantaneous moisture content was determined using the equation 

described by (Mugodo & Workneh, 2021). The initial moisture content was determined by drying the SP 

samples for 48 h at 105 ℃, following the standard drying method [method 950.46 B(a)] (AOAC, 2002). The 

moisture content during drying was determined by weighing the samples at 15-minute intervals during the 

drying process until a safe storage moisture content of 10±2% was achieved. The dried samples were milled 

into flour using a handheld food grinder before quality analysis experiments.     
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Figure 1. A schematic diagram of the hybrid dryer that illustrated (a) direction of air flow from inlet to 

outlet, (b) the position of infrared bulbs, (c) dryer door, and (d) the control panel and indicator lighting.  

2.3. Measuring the color changes 

Surface color measurements of dried and fresh SP samples were performed using a handheld chromameter 

(Konica Minolta, Japan), as shown in Figure 1. Black and white standardization tiles were used to calibrate 

the instrument, which was set to view the average standard.  The glass cup of the chromameter was covered 

prior to taking the readings and three readings were taken on each side of the samples to obtain an average 

L* value (lightness), a* value (redness) and b* value (yellowness). L* measures the lightness ranging from 

black (zero) to white (100), a* measures the red (+) and green colors and b* measures the yellow (+), and 

blue (−) colors. The total color change (ΔE) was calculated using Equation 1 (Mugodo & Workneh, 2021). 

∆𝐸 = √(𝐿𝑑𝑟𝑖𝑒𝑑
∗ − 𝐿𝑓𝑟𝑒𝑠ℎ

∗ )
2

+ (𝑎𝑑𝑟𝑖𝑒𝑑
∗ − 𝑎𝑓𝑟𝑒𝑠ℎ

∗ )
2

+ (𝑏𝑑𝑟𝑖𝑒𝑑
∗ − 𝑏𝑓𝑟𝑒𝑠ℎ

∗ )2                                                             (1)  

2.4 Measuring the β-carotene content and retention 

 

Magnetic stirring was used to extract 2 g of SP flour in a small beaker, using 10 ml tetrahydrofuran (THF) for 30 

minutes. The mixture was centrifuged at 3000 rpm for 10 minutes and the supernatant was set aside. The extraction was 

repeated until the residue of the flour was colorless and each time a fresh 10 ml THF aliquot was used. A rotary evaporator 

was used to evaporate the THF to dryness and the crude carotenes were re-dissolved in 10 ml toluene. A 0.45 µm PTFE 

membrane was used to filter the carotene extract in toluene into amber vials for chromatography. A Prominence UFLC 

(Shimadzu, Tokyo, Japan) was used to conduct chromatographic analysis of the -carotene content. This was equipped 

with a DGU-20A3 Prominence degasser, SIL-20A Prominence auto-sampler, SPD-M20A Prominence diode array 

detector, and CTO-10AS VP Shimadzu column oven. The UV/Vis spectra of carotenoids were recorded between 200 

and 600 nm, with detection of -carotene at 450 nm. To separate the carotenoids a C18 Waters Nova-Pak carotenoid 

column (300 x 3.9 mm, 4 μm particle size) was used at 30 ºC on a by isocratic elution, this was done with acetonitrile 

(58%). A mobile phase of HPLC grade methanol (35%) and THF (7%) was then added at a flow rate of 1.0 ml.min-1 for 

30 minutes. A standard -carotene curve was used to determine the β-carotene content. The β-carotene content and 

retention were determined using Equations 2 and 3, where C is the β-carotene content (µg.g-1), that was obtained from 

the calibration curve, V is the final volume (ml) and W is the sample weight (g) (Ruttarattanamongkol et al., 2016). βi is 

the β-carotene content of fresh SP and βt is the β-carotene content of dried SP (Suvarnakuta et al., 2005). 

 

 𝛽 − 𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝐶𝑉

𝑊
                                                                                                                                            (2) 

 

𝛽 − 𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑒 𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝛽𝑡

𝛽𝑖
 × 100                                                                                                                               (3) 

a

a 

b

a 

d
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c
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3. Results and Discussion 

3.1 Drying time 

 

SP was dried from an average initial moisture content of 79±1.95% w.b. to an average moisture content 

of 10±1.89% w.b. The findings indicated that the drying time was not influenced by the type of SP variety 

or blanching. Additionally, the drying durations of SP were compared in this study using a variety of drying 

techniques, including (i) CH, (ii) CH+IR+MW, (iii) CH+IR, and (iv) CH+MW. The results indicated that the 

drying time varied substantially (p ≤ 0.05) among the drying combinations. The SP dried 60 minutes slower 

in CH than with the CH+IR+MW combination. Additionally, CH+IR+MW was more rapid than the CH+IR 

and CH+MW drying. SP samples were dried 30 and 15 minutes quicker by CH+IR+MW than CH+IR and 

CH+MW, respectively. The extended drying time observed in CH, may be attributed to the lower drying 

rates.  Abbaspour-Gilandeh et al. (2021) and Marzuki et al. (2021) observed comparable results when drying 

green pepper, hawthorn fruit and purple-fleshed SP, respectively. This investigation determined that the  

microwave drying process enhances moisture transport by increasing moisture diffusivity (Łechtańska et al., 

2015).  Furthermore, it is a more rapid process that entails volumetric heating of the product, which primarily 

heats mainly water and facilitates mass and heat transfer processes (Marzuki et al., 2021; Schweinberger et 

al., 2020). This is due to the direct supply of energy to the surface of the sample, it results in rapid heating. 

In comparison to convective hot-air drying, which was research has demonstrated that in this study, infrared 

drying can reduce the drying time by 46% (Nowak & Lewicki, 2004). Previous studies has demonstrated that 

CH+IR and CH+MW can reduce drying time by up to 88% and 146%, respectively (Abbaspour-Gilandeh et 

al., 2021). The molecular vibration of the inner surface layer of the SP is enhanced by volumetric heating 

that is generated by the combined effect of CH, IR and MW within the product. This accelerates the rate of 

moisture migration across the SP sample surface. According to Onwude et al. (2018) the removal of moisture 

from the surface is contingent upon the utilization of convective air assistance in conduction with other drying 

methods. Therefore, the drying time is significantly reduced by the CH+IR+MW combination. 

 

Table 1. The typical drying time of blanched and unblanched (control) SP that was dried using combined 

techniques 

Drying method 

 

Pre-drying treatment 

 

Drying time (h) 

CH Blanched 2 

CH+MW Blanched 1 

CH+IR Blanched 1.3 

CH+MW+IR Blanched 1.5 

CH Control 2 

CH+MW Control 1 

CH+IR Control 1.3 

CH+MW+IR Control 1.5 

3.2 Colour changes 

In comparison to the other varieties, Bophelo exhibited the highest total color change (ΔE), of up to 30.3, 

as indicated in Table 2. The ΔE values of unblanched (control) SP were high, with a range of 12.9 to 33.9. 

For the blanched samples the order of increase in ΔE was as follows: CH+IR+MW< CH+MW < CH+IR < 

CH. This indicates that SP samples that were dried in CH experienced the highest total color change. The 

Maillard reaction, carotenoid degradation, non-enzymatic browning are the primary causes of color change 

during drying. These processes are influenced by extended drying periods, such as those observed in CH. In 

addition, this study was unable to reach the same conclusion, despite the fact that previous research suggested 

that pre-treated samples experience less color changes (Lagnika et al., 2019). In contrast to the prevailing 

belief, numerous studies have demonstrated that blanching is linked to a reduction in drying rates, which 

leads to extended drying periods. (Chinenye et al., 2022; Xiao et al., 2009). 
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Table 2. The total change in colour of SP dried by combined drying techniques 

Drying method 

 

ΔE 

 

 Bophelo Blesbok Ndou 

Blanched    

CH 30.29 17.75 8.82 

CH+MW 8.60 20.40 6.88 

CH+IR 20.71 17.98 12.90 

CH+MW+IR 12.476 4.32 9.74 

Control    

CH 19.17 29.18 20.39 

CH+MW 20.73 29.50 33.88 

CH+IR 16.21 17.78 22.42 

CH+MW+IR 12.90 23.86 29.44 

3.3 Changes in β-carotene 

β-carotene was not detected in the Ndou and Blesbok varieties. The β-carotene concentration of fresh (raw) 

Bophelo was the highest at 225 μg.g-1. Table 3 illustrates the variations in β-carotene that occurred during 

the drying process. In comparison to the fresh samples, all the drying techniques employed resulted in a 

substantial decrease in β-carotene levels, with the control samples exhibiting the most significant losses. 
The β-carotene content was reduced by approximately 50% when samples were dried in CH+MW, CH+IR, and CH. β-

carotene is a reactive compound due to its unsaturated structure (Zhao et al., 2016). Consequently,  it is susceptible to 

degradation, which can be induced by oxygen exposure, which results in β-carotene degradation. In addition, the 

degradation of β-carotene has been detected to be induced by enzymatic activity and light (photo-

oxidation). This is further stimulated by extended drying periods and elevated drying temperatures (Falade 

& Solademi, 2010). The β-carotene content is significantly reduced as a result of the significant increase in 

oxidation that occurs as dehydration temperatures exceeding 55 ℃ (Pénicaud et al., 2011).Furthermore, it 

was observed that the highest β-carotene retention was observed when CH+MW+IR was used, compared to 

the use of drying techniques alone (YAN et al., 2013). This could have been caused by the reduced drying 

time. Blanched samples in CH+MW+IR retained β-carotene better (67%)  during the drying process, 

compared to the control. After drying SP with a vacuum belt drying Xu et al. (2013) observed a comparable 

trend, with a 69.9%  retention of β-carotene retention. In addition, the absence of pre-drying treatment leads 

to a decrease in the chemical concentration of the samples following the drying process (Workneh et al., 

2014). In contrast to the results of the study, blanching is a preferred pre-drying treatment over chemicals 

such as citric acid and metabisulfite, and it has been demonstrated to enhance the β-carotene content of SP 

(Nicanuru et al., 2015).  
 

      Table 3. Concentration and % retention of β-carotene in the Bophelo variety 

Drying method 
β-carotene content 

(µg.g-1) 
% Retention of β-carotene 

Fresh SP 225  

CH-blanched 145 64.4 

CH+MW-blanched 100 44.4 

CH+IR- blanched 145 64.4 

CH+IR+MW-blanched 112 49.8 

CH-control 151 67.1 

CH+MW-control 100 44.4 

CH+IR-control 150 66.7 

CH+MW+IR-control 110 48.9 
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4 Conclusions 

Research on convective hot-air drying and its combination with infrared and microwave drying has shown that the 

drying time of CH is reduced, the natural colour is preserved, and approximately 67% of β-carotene is retained in blanched 

orange sweet potato samples when CH+MW+IR is used. The Bophelo cultivar exhibits the highest levels of β-carotene 

and the highest sensitivity to colour loss as a consequence of hot-air (CH) and light (IR). Consequently, the preservation 

of product quality is considerably enhanced by a reduction in the drying time, by as much as 15 minutes. In order to 

ascertain the technical efficacy of combined drying methods, additional research is required to examine their energy 

consumption. Additionally, it is imperative to conduct additional research on alternative pre-drying treatments, including 

ultrasound-assisted methods, to retain β-carotene, given the ineffectiveness of blanching in reducing the drying time. 

This will be advantageous, as the subsequent processing of the material into flour and value-added products may lead to 

an additional reduction in β-carotene. The blanching factors of SP can also be further investigated to determine the 

optimal conditions, which may further enhance the drying process. This includes the blanching time and temperature. 

Furthermore, the study did not definitely demonstrate a correlation between β-carotene and colour as a quality parameter 

when blanching was considered. Therefore, it is advised that additional research be conducted to identify the quality 

parameters that are significant and the variations that occur, as this may result in improved β-carotene retention in SP 

varieties. 
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Abstract 

This study explored the potential of a portable near-infrared (NIR) spectrophotometer (1200 – 2200 nm; 

2-nm bandwidth) to discriminate meat and carcasses from cattle fed two different diets: a control of 90% 

barley and 10% straw (C, n = 12) and, a ration including 37.5% of vegetable by-products (VBPR, n = 11). 

At 24 h postmortem spectra were collected on the exterior surface of the left carcass, first, between the 5th 

and 6th ribs, and afterwards, on the 12th and 13th ribs. After fabrication and 7 d of aging, spectral data was 

acquired from the intact steaks while keeping muscle integrity. When spectra were collected from the 

carcasses, partial least squares-discriminant analysis (PLS-DA) correctly classified (%CC) >66.67% in both 

Train and cross-validation (CV) whereas radial basis function-support vector machine (RBF-SVM) 

discriminated 100 – 83.33% in Train and CV, respectively, using the full spectrum. Reducing the initial 

matrix (λ=501) by interval-PLS (iPLS) led into a >75% of well-sorted carcasses by finishing diet while RBF-

SVM increased the %CC up to >83.33%. Using both discriminant approaches, carcasses were authenticated 

with a subtle improvement over intact meat (>90% vs. >75% in Train and >80% vs. >65% in CV for C and 

VBPR, respectively). Variable importance in projection (VIP) scores showed how variables >1592 nm had 

higher weight in the discrimination process. The results achieved showed the potential of NIR technology as 

a sustainable, fast and chemical-free tool to assist the integration of the meat industry into the digital age of 

connectivity and digitization. 

Keywords: beef, feeding diet, chemometrics, machine learning 

1. Introduction 

European strategies such as Farm to Fork promote the acceleration towards a sustainable food production 

model, including new input sources able to enhance the circularity of the economic system. Focusing on the 

agri-food sector, there are scenarios in which circular economy procedures can be integrated. For instance, 

Santos et al. (2022) estimated that 22% of the total food losses and wastes along the supply chain are 

associated to vegetable by-products (VBPR). During postharvest and storage, 54% of the vegetable waste is 

produced, while 46% occurs downstream from processing, distribution, and consumption (Espinosa‐Alonso 

et al., 2020). Among the potential uses of these low-economical-value by-products is ruminant feed, since 

rumen microbes have the unique capacity to digest fiber (Mirzaei-Aghsaghali and Maheri-Sis, 2008). Thus, 

the production of nutrient-dense food (meat, milk and, eggs) for human consumption by circular economy 

techniques contributes to the reduction of food/feed competition (Salami et al., 2019). 

The need for traceability and transparency from primary production to final consumption, leads to fight 

against food fraud/crime; and therefore, facilitate consumers to recognize the added value products at the 

time of purchase. To date, techniques as gas chromatography (GC), high performance liquid chromatography 

(HPLC), or DNA-based methods have been widely applied for food authentication (Alikord et al., 2018). 

Consequently, the shift to novel feeds requires a rapid tool capable of authenticating the finishing diets 

supplied to cattle in a non-destructive, chemical-free and sustainable way. Near infrared spectroscopy (NIRS) 

stands out in the agri-food sector as a tool able to speed up decision-making and reduce the costs associated 

to quality control processes. Therefore, the aim of the study was to discriminate cattle finishing diets, either 

vegetable by-products-based (VBPR) or concentrate-based diets (C), from both the carcasses at the abattoir 

(on-line) and intact meat in the laboratory (at-line). 
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2. Materials and Methods  

2.1. Experimental design: animals and diets 

In this study, twenty-three entire young Pirenaica bulls were reared under the Protected Geographical 

Indication (PGI) “Ternera de Navarra” in compliance with the European Directive 2010/63/EU (EEC, 2010). 

Twelve animals were used as control, and they were supplied a 90% barley and 10% straw diet (C, 

conventional diet), whereas eleven were provided a diet composed by 53.08% concentrated feed, 37.4% of 

vegetable by-products, 5.45% beet pulp and 4.07% straw, as previously described in Goenaga et al. (2023). 

After 139.73 ± 18.54 d on feed, and in conformity with the PGI guidelines (from 6 to 13 mo of age), the 

animals were transported 19 km to an EU-commercial abattoir. They were stunned with a captive bolt and 

slaughtered and dressed under the specifications set forth in Directive 93/119/1993/EEC (EEC, 1993). From 

each carcass, a steak (25 mm-thick ± 0.2 mm) was collected from the longissimus lumborum (LL, striploin) 

and aged for 7 d at 5 ºC and 80% of relative humidity. 

2.2. Spectral data capture and processing 

Spectral data were collected from both (a) carcasses in the abattoir 24 h postmortem and (b) intact meat 

after 7 d of aging. In both scenarios, the near-infrared (NIR) data were collected using a portable Luminar 

5030 NIR spectrophotometer in the 1200 – 2200 nm range with a bandwidth of 2-nm. In the coolers, a total 

of 20 reflectance spectra were recorded on the surface of the left carcass, 10 spectra being between the 5th 

and 6th ribs, and the remaining 10 entries on the 12th and 13th ribs. At the laboratory, ten replicates per steak 

were obtained from the intact meat. Subsequently, spectra were visually observed for outliers and the average 

was calculated. 

The spectral matrixes were then imported into the PLS_Toolbox 9.3 software under MATLAB R2023b 

for analysis. Prior to chemometric modelling, several pre-processing techniques were applied to diminish the 

effect of environmental conditions during acquisition that could alter data quality. Multiplicative Scatter 

Correction (MSC), 1st derivative (1stder), Standard Normal Variate (SNV), Smoothing (SM) and, Mean 

Center (MC) were tested either individually or in combination with other pre-treatments to enhance their 

effectiveness (Zeaiter and Rutledge, 2009). Partial Least Squares-Discriminant Analysis (PLS-DA) and 

Radial Basis Function-Support Vector Machines (RBF-SVM) machine learning algorithms were used for 

carcass and meat discrimination by diet. The basis of the chemometric algorithms have been widely detailed, 

for instance, by Ballabio and Consonni (2013) and Yue et al. (2003). Indeed, to reduce data dimensionality, 

variable selection was performed by interval-PLS (iPLS), where a number of intervals with size between 10 

and 20 were automatically selected in 2-nm increments. 

3. Results and Discussion 

Figure 1 shows the raw mean reflectance profile of the (a) carcasses and (b) striploin according to the diet 

provided to the young bulls. As it can be observed, the spectral signature was similar between carcasses and 

intact meat, however, at some precise points the magnitude of the reflectance varied. Focusing on the carcass 

profile (Fig. 1a), four prominent valleys were observed in 1422; 1505; 1718; 1944 nm and four peaks in 

1482; 1684; 1812; 2090 nm. However, the animals from the two diets were almost indistinguishable until 

1684 nm, from where carcasses coming from VBPR animals reflected more light than C animals. In fact, 

intact meat (Fig. 1b) sheared the <1684 nm spectral region with the carcasses, despite from this point the 

fingerprint was not as smooth. In this scenario, three highlighted valleys can be observed at 1422; 1502; 1927 

nm whereas three peaks can be identified at 1479; 1671 and 1744 nm. Oppositely to cattle carcasses, intact 

meat from C animals reflected a larger amount of light compared to meat from VBPR animals. 
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Figure 1. Raw mean reflectance profile in the 1,200 – 2,200 nm spectral range for: (a) carcass, (b) intact meat. 

Table 1 gathers the best results to authenticate the nature of the diet supplied to cattle by both PLS-DA 

and RBF-SVM. When the spectra were collected directly on animal carcasses, PLS-DA correctly classified 

90.91% and 66.67% of C and VBPR samples, respectively, in both Train and CV using the full NIR region. 

When RBF-SVM was performed for the full spectrum, the correctly classified percentage of carcasses from 

C-fed cattle was slightly increased up to 100% and 91.67% in Train and CV, respectively, although the %CC 

for VBPR-fed animals was 100% in Train and modestly inferior in CV (83.33%). Lower discriminative rates 

were achieved when analysing the spectra from intact meat. For instance, by PLS-DA the correctly classified 

percentage in Train was 70 – 72.73% while in cross-validation was reduced to 60.00 – 60.64% for meat 

coming from barley and vegetable by-products-fed cattle. 

Table 1.Partial least squares-discriminant and radial basis function-support vector machine results for 

carcass and intact meat by feeding diet. 

     %CCTrain  %CCCV  

 Model Pre-processing Spectra included LV Barley 
Vegetable 

by-products 
Overall Barley 

Vegetable 

by-products 
Overall 

C
a

rc
a

ss
 

PLS-DA          
 MSC Full (λ = 501) 3 90.91 66.67 78.79 90.91 66.67 78.79 
 1stder+SNV+MC iPLS14 (λ = 28) 4 81.82 75.00 78.41 81.82 75.00 78.41 

RBF-SVM          

 Raw data Full (λ = 501)  100 100 100.00 91.67 83.33 87.50 
 1stder+SNV+MC iPLS14 (λ = 28)  90.91 91.67 91.29 90.91 83.33 87.12 

In
ta

ct
 m

ea
t 

PLS-DA          

 SM+MC Full (λ = 501) 4 70.00 72.73 71.37 60.00 60.64 60.32 

 MSC iPLS18 (λ = 72) 6 90.00 75.00 82.50 90.00 66.67 78.34 

RBF-SVM          

 1stder+SNV+MC Full (λ = 501)  91.67 100 95.84 66.67 72.72 69.70 

 1stder+SNV+MC iPLS16 (λ = 48)  75.00 90.91 82.96 66.67 90.91 78.79 

CC, Correctly classified; CV, Cross-validation; LV, Latent variable; PLS-DA, Partial Least Squares-Discriminant 

Analysis; RBF-SVM, Radial Basis Function-Support Vector Machines; MSC, Mean scatter correction; 1stder, First 

derivative; SNV, Standard normal variate; MC, Mean center; SM, Smoothing; λ, Wavelength; iPLS-*: interval partial 

least squares (*: interval size). Values in bold correspond to the best results obtained in terms of highest %CC in both 

Train and CV. 

 

However, the speed of food processing lines requires accurate and fast control to streamline decision 

making. Therefore, the wavelengths that have the strongest weight in the model have been specified and 

modelled to compare the performance. When downsizing the initial spectral matrix (λ = 501) by the iPLS 

reduction method, the number of bands involved in the modelling procedure was substantially decreased. For 

instance, by iPLS14 only 28 wavelengths were considered whereas iPLS16 and iPLS18 took into 

 

 

a b 
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consideration 48 and 72 wavelengths, respectively. In this sense, cattle carcasses were discriminated by PLS-

DA with an overall accuracy of 78.79% in Train and cross-validation with the full spectrum whereas when 

using the reduced matrix, the average percentage in Train and CV was maintained in 78.41%. Nevertheless, 

the iPLS reduction method performed better when applying RBF-SVM compared to PLS-DA, as the %CC 

reached 91.29 and 87.12% of well-sorted animals in Train and CV by a model involving 1stder+SNV+MC 

as pre-processing. In this sense, intact meat was better classified with the reduced matrix compared to the 

full spectrum when considering average rates between Train and CV. By PLS-DA, 71.37 and 60.32% of the 

carcasses were correctly discriminated involving 501 wavelengths whereas when reducing the matrix to 72 

variables, 82.5 and 78.34% of the animals were well-sorted. On the opposite hand, by RBF-SVM, 95.84 and 

69.70% of the cattle carcasses were faultless classified, in average, with 501 bands whereas with 48 variables 

an 82.96% and 78.79% in Train and CV was achieved, respectively. The best results were obtained by the 

models built under reduced matrix conditions; therefore, the hypothesis that variable selection identified the 

subset of variables that conduct to the minimum possible errors for discriminating samples was satisfied 

(Xiaobo et al., 2010). 

Figure 2 represents the variable importance in projection (VIP) for carcass (Fig. 2a) and intact meat (Fig. 

2b) through PLS-DA for the models built with the full NIR spectrum. Thus, the variables with greater weight 

in the discriminant procedure (VIP ≥ 1) could be identified. There were some spectral regions that surpassed 

the threshold of 1 for both types of samples. Concisely, bands over 1644, 1708, 1900 and 2100 nm have been 

noted as key for classifying carcasses and meat from cattle fed different diets. In those regions, mainly C-H 

combinations and 1st overtone together with O-H and N-H bonds vibration could be captured (Osborne, 

2000). However, as previously studied by León-Ecay et al. (2024) no differences were found in the reference 

measurement results (i.e., intramuscular fat, protein, instrumental texture by Warner Bratzler Share Force, 

soluble collagen and meat color traits: L*, a*, b*, Chroma and Hue) when analysing the meat of the animals 

fed C and VBPR-based diets. In this sense, the lipid profile (i.e., hydrocarbon bonds) influenced the 

classification approach as meat from VBPR-fed cattle had higher content of PUFA individual fatty acids 

compared to C-fed meat samples. Moreover, the influence of water absorption in fresh meat is of such 

importance, even though O-H absorption was different among both types of carcasses and intact meat (1,790 

nm). However, other studies of similar nature, as the one carried out by Barragán et al. (2021), discriminated 

intact meat from barley, blend and corn-fed cattle with a well classified samples rate of 57, 46 and 48% in 

cross validation for each feeding system, respectively. Focusing on carcass discrimination, Zamora-Rojas et 

al. (2012) achieved similar sorting performances (overall accuracy of 87.07% and 83.63% in Train and Test, 

respectively) when classifying Iberian pig carcasses raised under three feeding regimes (“Acorn”, “Recebo” 

and “Feed”).with a micro-electro-mechanical system spectrometer (1,600–2,400 nm). 

 

Figure 2. Variable importance in projection for the PLS-DA models built with the full spectrum: (a) MSC, 3 LV for 

carcass discrimination, (b) SM+MC, 4 LV for intact meat. 

4. Conclusions 

Suppling animals with novel feeds during their fattening period require a distinctive mark. To ensure the 

authentication of this local and sustainable beef product, the potential of portable NIRS, both in a commercial 
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abattoir environment and at laboratory scale, was demonstrated to discriminate cattle carcasses and intact 

meat according to the finishing diet (C vs. VBPR-based). Variable selection together with the RBF-SVM 

algorithm showed potential to correctly sort both cattle carcasses and intact meat. The attained results showed 

the promising application of NIR spectroscopy as a sustainable, fast and chemical-free tool to assist the 

integration of the meat industry into the digital age of connectivity and digitization. 
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Abstract 

One of the best-known Italian products is 'Cipolla Rossa di Tropea Calabria PGI', which refers to the 

Allium cepa L. onion, limited to the local ecotypes of Tondo Piatta (early), Mezza Campana (medium) and 

Allungata (late). A mark identifying red onion bulbs in spring onion, fresh onion and onion for preserving 

that meet the conditions and requirements of this specification, following Regulation (EC) No 510/2006. 

Depending on the stage and type of product being processed, the mechanical plant plays a key role in the 

processing chain. In post-harvest operation, plants based on large quantities of water are widely used for 

processing spring onions, allowing them to be washed, rooted, and peeled simultaneously. They generally 

consist of cutting, peeling, and cleaning equipment. Two pairs of shearing blades usually carry out both root 

and leaf-cutting. Peeling is carried out by 2 pairs of rotating rollers, usually of the brush type, and during the 

peeling phase, washing is also carried out through a series of special sprayers. However, a problem with this 

type of system is that the water stagnating in the cut onions tends to spoil them, reducing their shelf life. A 

processing line that uses compressed air to clean the onions was developed to solve this problem. A 

processing line that uses compressed air to clean the onions was developed to solve this problem. This 

research reports on the functional structure of the realised plant. 

Keywords: design, mechanical engineering, simulation, shelf life, water saving  

1. Introduction 

Certified with the Protected Geographical Indication (PGI) label since 2008, Tropea red onions have a 

supply chain of 20,000 tons of certified production, 20% of which is intended for processing, for a 

consumption volume of 60 million euros. Production extends over 2,000 hectares of land along the coast 

between Nicotera and Fiumefreddo Bruzio, in Cosenza, Catanzaro, and Vibo Valentia provinces, where these 

onions have been cultivated for 4,000 years (E.C. 284/2008). Among the produce types, spring onions are 

the first to be harvested before the bulb is fully formed (Bernardi et al., 2013). Sowing takes place from 

August onwards, whereas transplanting takes place from October to March depending on the ecotype. After 

harvest, the fresh product is mechanically sorted to prepare it for packaging. The spring onion bulbs then 

undergo removal of the dirty outer layer of soil and trimming of the tails with cuts ranging from 30 to 60 cm. 

Subsequently, the bulbs are grouped into bundles of 1.5–6 kg each and placed in boxes or crates, before being 

sent to the market. Therefore, the packaging of the product is crucial. Although weighing is now automated 

using specific machinery, various operations such as washing, peeling, and cutting are performed manually 

(requiring considerable manpower) or by using machines which are non-specific equipment and do not 

guarantee the appropriate processing of the product, resulting in large quantities of waste. Bernardi et al. 

(2024) discussed the operation of a spring-onion-processing plant (Figure 1) among the various commercial 

solutions adopted. Once collected, the spring onions are placed on a conveyor belt and lightly pre-washed 

before being sent to a washing tunnel. Here, the tails are cut off by using two pairs of opposing blades, and 

then, the tunics are partially removed by employing the alternating movement of two pairs of rollers. The 

first pair is equipped with brushes, whereas the second pair is made of rubber. Both have perpendicular and 

alternating movements with respect to the direction in which the product moves. Poonam et al. (2022) 

developed a peeler consisting of an aluminium drum mounted on a rotating disc. The onions were first cut 

and then washed for 10 min; subsequently, they were air-dried for 1–2 min to remove excess water and then 

placed in the peeler. This type of system still requires a large number of workers to obtain the final product. 

Moreover, the use of water in large amounts increases the risk of rotting because when water penetrates the 

tail of the spring onions, it alters the product and reduces its shelf life. To address this problem, a novel 

processing line that uses compressed air to clean the onions was developed. It was equipped with a single-

blade cutting system with an adjustable position and a nebulisation system that prolongs the maintenance of 

freshness until consumption, while reducing the risk from exposure to large quantities of water. 
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Figure 1. Commercial onion-processing plant 

2. Materials and Methods  

2.1. Structure of the system 

A system was designed to address the aforementioned problems, and its schematic view is shown in 

Figure 2. It includes a conveyor-belt-based handling system, capable of continuously transporting the spring 

onions towards a compressed-air cleaning system to remove tunics and soil. This is followed by a cutting and 

washing system that uses the nebulisation technique. 

 

 

 
Figure 2. 3D drawing of the processing plant 

 

The processing cycle (Figure 3) begins with the unloading of the boxes arriving from the collection site 

to the transport line, comprising smooth rubber conveyor belts (A), by means of a special tipper. Therefore, 

the spring onions arrive well-aligned at the cleaning stations, which operate with compressed air. The 

pneumatic system (B) consists of a compressed air production unit with a minimum output of 7000 Nl min -1 

and a steel compressor outlet pipe with a minimum diameter of DN32. The inlet pipe of the compressed air 

management valve is made of steel with a minimum diameter of DN15. The 3/2 NC monostable pneumatic 

pedal valves have a progressive flow with a maximum flow of 1200 Nl min-1 at 6 bar; the air flow can be 

managed through these valves depending on the requirements. These values were obtained by considering 
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two main factors, namely, pressure drop and air losses, based on the following equation: 

𝐷 = √
4 ∙ 𝑝𝑎 ∙ 𝐿

𝜋 ∙ 𝑝𝑢 ∙ 𝑣𝑒𝑓𝑓
 [𝑚] 

 

(1) 

 

where: 

D= initial diameter 

pa= suction pressure 

pu= compressor output pressure 

veff= effective air velocity 

 

 

The effective air velocity is expressed as follows: 

 

𝑣(𝑒𝑓𝑓) =
𝑝𝑎

𝑝𝑢
∙

𝑇𝑐

𝑇𝑎
∙

𝑄

𝜋 ∙ 𝐷2

4

  [𝑚 𝑠−1] 

where: 

Q= air flow rate 

Tc= temperature of compressed air 

Ta= room temperature 

 

(2) 

 

Subsequently, the distributed pressure drops at the individual straight sections were calculated using the 

following equation: 

∆𝑃 = 𝜆 ∙ 𝜌 ∙
𝑣2𝐿

2𝐷
 [𝑃𝑎] 

 

(3) 

 

where: 

ΔP= drop in pressure [Pa] 

λ= coefficient of friction of air movement 

ρ= compressed air density [kg m-3] 

v= flow velocity 

D= internal pipe diameter [m] 

L= pipe length [m] 

 

Simplified experimental equations are often used in research. In this study, the following equation was 

applied: 

∆𝑃 = 1.6 ∙ 108 ∙
𝑄1.85𝐿

𝑑5𝑝
[𝑃𝑎] 

 

(4) 

where: 

ΔP= drop in pressure [Pa] 

Q= air flow rate [m3 s-1] 

d= internal pipe diameter [mm] 

L= pipe length [m] 

p= compressed air pressure [bar] 

 

The cleaning block with pneumatic nozzles (Figure 4) comprises four semi-rigid tubes (Exair model 9268) 

that can be positioned by the operator; the spring onion to be processed is placed between the tubes. At the 

ends of the tubes, nozzles with a minimum blowing force of 360 g are located at a distance of 300 mm (Exair 

model 1011SS). Owing to their particular shape, the nozzles create a cone that drags in the air present in the 

atmosphere and amplifies the flow that reaches the spring onions. The number and arrangement of the nozzles 

ensure that the airflow cones act over the entire surface of the spring onions. Finally, varying the position of 

AgEng 2024 Proceedings

1166



the nozzles widens or narrows the area in which the spring onions can be cleaned.  

At this stage, the spring onions are picked manually by the operators and positioned corresponding to the 

pneumatic nozzles activated by the foot pedal. Here, the cleaning residue is dragged by the air flow through 

a secondary duct into a special container positioned on the side (C) to prevent it from spreading. The operators 

then place the clean spring onions, that is, free of husks and soil, on a second conveyor belt (D), which takes 

them to the next stage of cutting and washing (E). 

 
 

 

Figure 3: Processing flow. A) Conveyor belt; B) pneumatic pedal drive; C) container for collecting 

processing waste; D) second conveyor belt; E) cutting, washing, and drying block 

 

 
Figure 4. Pneumatic cleaning station. A) Semi-rigid hoses; B) nozzles 

 

 

 

For the subsequent cutting and washing phases, the spring onions are moved along the second conveyor 

belt towards a processing block (E) that is not accessible to operators for safety reasons. The block consists 

of a 40 × 40 mm tubular structure and plexiglass panels. Inside this block, to maintain the freshness of the 

product but prevent water from entering the tails, the spring onions are humidified using nozzles having a 
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flow rate of 1 L min-1 at 2 bar (Lechler series 490.403) and placed at the top with respect to the forward 

movement. Then, to meet production specifications, the spring onion tails are cut by using a single-tooth 

blade with an adjustable position (Figure 5).  

 

    
Figure 5. Cutting blade 

 

 

Made from stainless steel, the cutting blade has a diameter of 300 mm and a rotation speed of 200–250 

rpm and is coupled to a conveyor belt with adjustable feed speed. The precise number of revolutions 

combined with a suitable feed speed can help to exploit the onion's inertia for a clean decisive cut. Another 

technical solution is adopted to make the cutting system adjustable and versatile depending on the 

dimensional characteristics of the product. This solution involves manual adjustment of the height of the 

cutting blade with a groove system to manage the effect of the contact of the rotating blade on the tail (Figure 

6).  

 

 
Figure 6. Blade height adjustment device 

 

The final part of the processing line consists of an additional conveyor belt that allows operators to 

manually refine the product and send it to the subsequent weighing and packaging stages. These operations 

are then performed independent of the prototype system by using other machines already present in the 

facility. 
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3. Conclusions 

As the market demand for PGI-labelled Tropea red onions is high, the lack of specialised machinery for 

processing these onions in the post-harvest phase should be addressed. A prototype machine, which is 

currently under construction, is proposed herein as a practical solution for increasing the productivity of the 

spring onion supply chain. The proposed machine prevents the rapid rotting of onions because it can eliminate 

the use of large amounts of water, which can become stagnant in the tails of the onions. Thus, the use of 

compressed air can extend the shelf life of the product by a few days, thereby opening up new and interesting 

economic prospects for operators in the sector. 
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Abstract 

The incorporation of blends of maltogenic-amylase and tamarind paste in dough could serve a possible potential for 

improving bread quality. This study aimed to evaluate the effect of varying proportions of maltogenic-amylase and 

tamarind paste on the nutritional quality of bread. The proximate composition, minerals (calcium, magnesium, 

potassium and phosphorus), vitamin C and total phenolic content were determined using standard procedures. 

Maltogenic amylase and tamarind paste at varying proportions were interacted using a central composite design of 

response surface methodology while Pareto plot was used to identify the most significant factor.  The moisture content 

of the bread ranged from 26.83 to 34.58%, fat (2.29 – 3.49%), fibre (0.42-0.64%), ash (2.47-3.53%), protein (12.02-

18.56%) and carbohydrate (45.24 – 50.13%). The calcium content ranged from 135.63 to 164.25 mg/100g, magnesium 

(112.38 – 128.42 mg/100g), potassium (210.22 – 228.55 mg/100g), phosphorus (60.15 – 75.25 mg/100g). The total 

phenolic content of the bread ranged from 120.64 – 145.18 mg GAE/g and Vitamin C from 11.56 to 16.55 mg/100g. 

The linear effect of maltogenic-amylase exerted a more significant influence on the nutritional composition of the 

bread compared to tamarind paste. The findings from this study underscore the potential for optimizing bread quality 

through the strategic incorporation of maltogenic-amylase and tamarind paste.  

Keywords: Bread, Maltogenic amylase, Tamarind, Nutritional composition  

 

1. Introduction 

Bread is a staple food in human diet with its consumption dating back to the ancient Egypt (Carocho et al., 2020). Bread 

is consumed throughout the world in various form and shape with average consumption of 70 kg per year capita (Gębski 

et al., 2019; Carocho et al., 2020). It is a fermented confectionary product made mostly from raw materials including 

wheat flour, water, yeast, and salt and processes such as mixing, kneading, proofing, shaping, and baking. Bread can 

be produced from varieties of cereals namely maize, rice, barley, sorghum, millet, oats, rye and others, however the 

most widely accepted cereal for bread is wheat. Due to several complex reaction that occur during the storage of bread 

which is referred to staling and the short shelf life of bread, researchers has investigated several ways of improving 

bread quality and extending the shelf life of bread. Chemicals used in the production of bread are known to pose several 

health risk, such as potassium bromate may cause some forms of cancer (Kornbrust et al., 2012) and azodicarbonamide 

can causes allergic reactions (Arts and Kimberly, 2017). The incorporation of enzyme such as maltogenic-amylase and 

tamarind paste as an alternative to the chemical compound employed in the production of bread may improve the 

quality and extend the shelf life. 

The use of enzymes in commercial applications has increased in recent years as consumers demand bakery products 

with more natural sounding ingredients. Maltogenic amylase is an enzyme mainly produced by alpha amylase and 

belonging to the member of the glycoside hydrolase family 13. It is a primary enzyme responsible for starch degradation 

and widely used to extending the shelf life of baked product, improves its elasticity, and preserves its flavor without 

affecting dough processing (Liu et al., 2023).  According to Korompokis et al. (2021), maltogenic-amylase liberates 

maltose from the non-reducing ends of starch polymers and thereby results in a significant shortening of the outer 

amylopectin side chains which, consequently, are less prone to retrograde during storage of baked product. 

Tamarind (Tamarindus indica) is an arboreal fruit which belongs to the family leguminosae. It is a podded fruit which 

contains pulp, seed, fiber and shell. According to Joshi et al. (2023), tamarind tree is a multifunctional tree whose all 

parts are valuable either medicinally or nutritionally. A tamarind fruit contains 55% pulp, 34% seeds, 11% shell and 

fiber (Muzaffar and Kumar, 2017). The tamarind pulp is highly regarded as a good source of B-vitamins, high in 
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phenolic content and mineral which include potassium, calcium, phosphorus, magnesium and sodium while the seed is 

rich in protein, amino acid and some major sugar such 20% pentose, 17-35% mannose and 11-80% glucose (Banu, 

2018; Nagar et al., 2022). Several research have been done on the improvement of bread quality and extending the 

shelf life as reported by (Zhang et al., 2019; Bender and Schönlechner, 2020; Parenti et al., 2020; Fratelli et al., 2021; 

Goel et al., 2021). However, literature is sparse on effect of maltogenic-amylase and tamarind paste mixture on the 

nutritional composition of bread. Therefore, this study aims to evaluate the effect of varying proportions of maltogenic-

amylase and tamarind paste mixture on the nutritional quality of bread. 

2. Materials and Methods 

2.1 Materials 

Wheat flour and maltogenic amylase used for this study was obtained from Flour mill of Nigeria and a chemical 

laboratory, respectively in Lagos, Nigeria. While the sugar and salt were obtained from Dangote Company, Lagos, 

Nigeria. Other ingredient for bread baking such as oil, instant dry yeast and margarine were obtained from a 

confectionaries store in Ilorin, Nigeria. Tamarind fruit was purchased from a local market in Ilorin, Nigeria. 

2.2 Methods 

2.2.1 Tamarind paste production 
The tamarind paste was prepared by soaking tamarind pulp in water for 45 minutes to soften the pod. And then gently 

mashing the softened pulp with mortar and pestle to release paste from the fibers and seeds. The paste was then strained 

through a sieve to remove fibers and seeds.  The straining was done in batches. The strained paste was cooked for 75 

minutes over medium heat to evaporate the water and thicken it to the desired consistency. The paste was then leave to 

cool after which it was packaged and stored in a refrigerating condition. Figure 1 shows the flowchart involved in the 

production of tamarind paste. 

2.2.2 Response surface experimental design 
Central composite design of Response Surface Methodology was used to study the effect of maltogenic-amylase and 

tamarind paste mixture on the nutritional composition of bread using Design Expert version 13, UK. Table 1 shows the 

experimental outline for the interaction of maltogenic-amylase and tamarind paste mixture on the nutritional 

composition of bread. 

Table 1: Experimental outline for the effect of maltogenic-amylase and tamarind paste mixture on the nutritional 

composition of bread 

Samples Tamarind Paste (g) Maltogenic-amylase (g) 

A 0 0 

B 100 0 

C 0 15 

D 100 15 

E 0 7.5 

F 100 7.5 

G  50 0 

H 50 15 

I 50 7.5 

2.2.3 Production of Bread 
The dough for the tamarind and enzyme mixture bread were prepared by weighing the dry ingredients; 1500g of wheat 

flour, 250g of sugar, 20g of yeast, 25g of salt and alpha-amylase (as indicated in the experimental design) and weighing 

of the wet ingredients; 50g of margarine, 25g of oil, 784g of water and tamarind paste (as indicated in the experimental 

design). The dry ingredients was mixed with the wet ingredients until a dough was formed. The dough was kneaded by 
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locally fabricated kneading machine to develop the gluten. The dough was shaped into portions and placed in greased 

pans. The pans were covered with aluminium foil before they were placed in the proofer. The dough was proofed for 1 

hour at a temperature of 35°c before it was baked in a rotary oven for one and half hour at a temperature of 130°c. The 

bread were checked at intervals for doneness after which they were brought out of the oven and allowed to cool and 

packaged in a transparent nylon. Bread dough for the control sample batch was produced using a similar approach but 

with exception of tamarind paste and enzyme. Bread dough was prepared for nine different batches; Sample A is the 

control sample without tamarind or enzyme; Sample B contains 100g of tamarind and no enzyme; Sample C contains 

no tamarind and 15g of enzyme; Sample D contains 100g of tamarind and 15g of enzyme; Sample E contains no 

tamarind and 7.5g of enzyme; Sample F contains 100g of tamarind and 7.5g of enzyme; Sample G contains 50g of 

tamarind and no enzyme; Sample H contains 50g of tamarind and 15 of enzyme, Sample I contains 50g of tamarind 

and 7.5g of enzyme. 

2.2.4 Proximate composition analysis 
Proximate composition analysis (Moisture content, crude fat, fiber, ash, protein and carbohydrate) was performed on 

the bread samples using the standard method of Association of Analytical Chemists (AOAC, 2010).  

2.2.5 Mineral composition 
For the mineral analysis of the bread four minerals were analyzed namely calcium, magnesium, phosphorus, and 

potassium. Atomic Absorption Spectroscopy (AAS) was used to determine the concentration of the specific minerals 

in the bread by measuring the absorption of light at characteristic wavelengths. 

2.2.6 Determination of Vitamin C   
Chemically, vitamin C was measured using a 2,6-dichlorophenolindophenol solution titration technique. 5 g of the 

material was pulverized for each test in a mortar and pestle along with some acid-washed sand and 10% TCA solution. 

After filtering the extract, the leftover material was thoroughly cleaned with a TCA solution until it was colorless. 100 

mL of the total volume was created. Three conical flasks each held 10 mL of the solution, which was titrated with 

indophenol solution until a pink color emerged. The results were then used to calculate vitamin C (Shitanda et al., 

2006). 

2.2.7 Determination of Total Phenol Content (TPC) 
Phenolic compounds’ content was determined in triplicate by the Folin-Ciocalteu spectrophotometric method, 

described by Singleton & Rossi (1965), with some modifications. A 0.5 mL aliquot from each extract was added to 2.5 

mL Folin-Ciocalteu’s reagent solution (0.2 M) (Alphatec, USA). The solution was left to rest for 5 min before being 

added with 2 mL of 7.5% p/v sodium carbonate (Impex, Brazil). The resulting color absorbance was measured at 760 

nm in a UV-Vis spectrophotometer after 15 min reaction time at 40 ºC. To obtain the phenolic compounds’ 

concentration data, a calibration curve was constructed using different concentrations of gallic acid (10 to 70 mg·L-1). 

Total phenolic compounds’ content was expressed in mg of gallic acid equivalents per L of sample (EAG·L-1 of 

sample). 

2.2.8 Statistical Analysis 

All the experiments were conducted in three replications in a completely randomized design. The data was analysed by 

analysis of variance using Statistical Package for the social sciences (SPSS version 22). Mean were significantly 

different and is separated by the least significant difference. Significance is accepted at p<0.05. 

3 Results and Discussion 

3.1 Effect of maltogenic-amylase and tamarind paste mixture on proximate composition of bread 

Moisture content is important composition of food that helps in establishing proper storage conditions. The percentage 

moisture content ranged from 26.83% - 35.21% (Figure 1). All values are significantly different at p<0.05. Sample C 

(0g of tamarind paste and 15g of enzyme) had the lowest moisture content (26.3%) while sample G (50g of tamarind 

paste and 0g of enzyme) had the highest moisture content (35.21%). The decrease in moisture content of sample C may 

be attributed to the incorporation of maltogenic-amylase which breaks down complex carbohydrates into simpler sugars 

which absorb more water during dough formation. This result aligns with the findings of Ahmad et al. (2014), who also 

reported a decrease in moisture content of baked product with the incorporation of enzyme as a means of improving 

the texture and extending the shelf life of the products.  

Figure 1 shows that the percentage fat content ranges between 2.29% and 3.49%. All values are significantly different 

at p<0.05. The minimum fat content was observed in sample E (0g tamarind paste and 7.5g enzyme) while the 

maximum fat content was observed in sample H (50g tamarind paste and 15g enzyme). The increase in fat content of 

sample H may be attributed to the reaction between tamarind and enzyme. This could be as a result of the enzymatic 
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action on fats, which can lead to fat modification or breakdown. This result corroborates with the findings of Uthai and 

Chetyakamin, (2020), who reported that the fat content of products can be improved through enrichment with tamarind. 

The fibre content ranged from 0.42% - 0.64% as depicted in Figure 1. All values are significantly different at p<0.05. 

Sample B (100g of tamarind paste and 0g of enzyme) had the lowest fibre content while sample H (50g of tamarind 

paste and 15g of enzyme) had the highest fibre content of all bread samples. The increase in fiber content may be 

attributed to the presence of dietary fiber naturally occurring in tamarind paste, as well as the enzymatic action of 

maltogenic amylase potentially breaking down starches into resistant starches, which act as dietary fiber in the final 

product. Similar result was reported by Dahiya et al. (2020), who stated that the fibre content of baked products can be 

improve by incorporation of enzyme as a means of enriching the bread. 

Ash content refers to the inorganic residue that remains after burning of the organic matter in a food sample. Figure 1 

shows that the effect of the additives on the ash content of the bread ranged from 2.47% - 3.53%. All values are 

significantly different at p<0.05. Sample B (100g of tamarind paste and 0g of enzyme) had the lowest ash content while 

sample H (50g of tamarind paste and 15g of enzyme) had the highest ash content. The decrease in the ash content of 

sample B compare to sample H may be attributed to the combine effect of the tamarind paste and maltogenic amylase, 

however it has been reported that tamarind contains a high proportion of minerals which can be converted to ash content 

during baking. Therefore, this result contradicts the findings of Peluola-Adeyemi et al. (2021), who reported that 

increase in ash content of sample with high minerals will increase the ash content of the food sample. 

Protein cotains amino acids which are beneficial for the daily body functioning. Figure 1 indicated that the percentage 

protein content ranges between 12.02% and 18.56%. All values are significantly different at p<0.05.  Sample B (100g 

of tamarind paste and 0g of enzyme) had the lowest protein content while sample H (50g of tamarind paste and 15g of 

enzyme) had the highest protein content of all bread samples. The observed decrease in protein content of sample B 

could potentially be due to the higher tamarind paste content, tamarind contain proteases which break down proteins. 

An increase in tamarind content could lead to increased protease activity leading to decrease in the overall protein of 

sample B. This result contradicts the findings of Tangariya and Srivastava, (2022), who reported that the protein content 

of a baked product can be increased with the incorporation of tamarind. 

Carbohydrate provides major source of energy in the human diet. The percentage carbohydrate content ranged from 

45.24% - 50.13% in Figure 1. All values are significantly different at p<0.05. The sample with the highest carbohydrate 

content was sample A which is the control (0g of tamarind paste and 0g of enzyme) while the bread sample with the 

lowest carbohydrate content was sample G (50g of tamarind paste and 0g of enzyme). The decrease in the carbohydrate 

content of sample G may be attribute to the reaction of tamarind leading to the production of sugar and fibre, however 

since bread is a carbohydrate-rich itself due to it flour content leading to high carbohydrate content for sample C. 

Similar result was reported by Uthai and Chetyakamin, (2020), who observed a similar trend, suggesting that minor 

components in the flour might be more noticeably affected by tamarind addition compared to major components like 

carbohydrates. Since wheat flour boasts a significantly higher carbohydrate content than tamarind, the overall impact 

of tamarind on the final bread's carbohydrate content might be minimal. As illustrated in Figure 2a, 2b, 2c, 2d, 2e and 

2f it shows that the several interactions are significant at p<0.05, however linear interaction of enzyme has the highest 

significant for percentage moisture, fibre, ash, protein while quadratic interaction of enzyme has the highest significant 

for percentage fat and carbohydrates. 

 

A B C D E F G H I

0

10

20

30

40

50

Pr
ox

im
at

e 
co

m
po

sit
io

n 
(%

)

Samples

 Moisture Content

 Fat

 Fibre

 Ash

 Protein

 Carbohydrate

d

b

bc
d

cd

d

d d

d

b

b

b

b b

b

b
a

a

a

a

a

a

a

c

c

c

c

c

c

c

cd

cd

c

e

e

e

a

ee

bc

bc

f

f

ff

f

ef

e

g

g

f

g de

de

AgEng 2024 Proceedings

1173



Figure 1: effect of maltogenic-amylase and tamarind paste mixture on proximate composition of bread. 

Mean values and superscripts with dissimilar letters along the same column are significantly different at p <0.05 

Sample A is the control (without tamarind paste or enzyme), Sample B containing 100g of tamarind paste and 0g of 

enzyme, Sample C containing 0g of tamarind paste and 15g of enzyme, Sample D containing 100g of tamarind paste 

and 15g of enzyme, Sample E containing 0g of tamarind paste and 7.5g of enzyme, Sample F containing 100g of 

tamarind paste and 7.5g of enzyme, Sample G containing 50g of tamarind paste and 0g of enzyme, Sample H containing 

50g of tamarind paste and 15g of enzyme, Sample I containing 50g of tamarind paste and 7.5g of enzyme.  

 

 

Figure 2: Pareto chart for the effect of maltogenic-amylase and tamarind paste mixture on the proximate composition 

of bread (a) Moisture (b) Fat (c) Fibre (d) Ash (e) Crude protein (f) Carbohydrate. 

3.7. Effect of maltogenic-amylase and tamarind paste mixture on minerals content of bread  
The calcium content of the bread ranges between 135.63 to 164.25 mg/100g as shown in Figure 3. All values are 

significantly different at p < 0.05. The highest calcium content was attained at sample H, 50g tamarind paste and 15g 

enzyme while the least calcium content was attained at sample B, 100g tamarind paste and 0g of enzyme. The increase 

in calcium content could be attributed to the incorporation of calcium-rich compounds from the maltogenic amylase 

and the lower dilution effect of tamarind paste, allowing for a higher concentration of calcium per gram of dough. The 

magnesium content of the bread ranges between 112.38 to 128.42 mg/100g as shown in Figure 3. The highest 

magnesium content was attained at sample H, 50g tamarind paste and 15g enzyme while the least magnesium content 

was attained at sample B, 100g tamarind paste and 0g of enzyme. All values are significantly different at p<0.05. The 

increase in magnesium content may be attributed to the effect of maltogenic amylase, which could enhance the 

bioavailability of magnesium, leading to a higher concentration of magnesium per unit weight of the bread. The 

potassium content of the bread ranges between 210.22 to 228.55 mg/100g as shown in Figure 3. All values are 

significantly different at p< 0.05. The highest potassium content was attained at sample H, 50g tamarind paste and 15g 

enzyme while the least potassium content was attained at sample B, 100g tamarind paste and 0g of enzyme. The 

decrease in potassium content of sample B may be attributed to a dilution effect which result in lower concentration of 

potassium while the increase in sample H could be attributed to the presence of maltogenic amylase, which might 

enhance potassium bioavailability through enzymatic processesThe phosphorus content of the bread ranges between 

60.15 and 75.25 mg/100g as shown in Figure 3. All values are significantly different at p< 0.05. The highest phosphorus 

content was attained at sample H, 50g tamarind paste and 15g enzyme while the least phosphorus content was attained 

at sample B, 100g tamarind paste and 0g of enzyme. The increase in phosphorus contain may be attributed to the 

combine effect of tamarind and enzyme, tamarind contains phosphorus in minute quantity and enzymes helps to break 

down phytic acid which may lead to slight increase in bioavailability of phosphorus therefore increasing the overall 

phosphorus content of the bread. Figure 4 shows that linear interaction of enzyme has the most significant influence on 

percentage minerals of bread. This result corroborates with the findings of Dahiya et al. (2020), that maltogenic amylase 

can serve as a means of improving the available minerals in bread making. Also, the study contradicts the findings of 

Uthai and Chetyakamin, (2020), who reported that the incorporation of tamarind will significantly increase the minerals 

content of the food. 
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Figure 3: effect of maltogenic-amylase and tamarind paste mixture on minerals content of bread 

Mean values and superscripts with dissimilar letters along the same column are significantly different at p<0.05. 

 

Figure 4: Pareto chart for the effect of maltogenic-amylase and tamarind paste mixture on the mineral content of bread 

(a) calcium (b) magnesium (c) potassium (d) phosphorus 

3.8. Effect of maltogenic-amylase and tamarind paste mixture on vitamin C content of bread  

The vitamin C content of the bread ranged between 11.56±0.03 and 16.55±0.04 mg/100g Table 2. All values are 

significant different at p<0.05. The high vitamin C content of the bread was obtained in sample H produced from 50 g 

of tamarind and 15 g of alpha amylase while the least was obtained in sample A which is the control sample with no 

tamarind or alpha amylase. It was observed that enrichment of the bread will increase it vitamin C content. As depicted 

in Figure 3a, the linear interaction of enzyme, quadratic interaction of tamarind and interaction of tamarind and enzyme 

has significant effect on the vitamin C content of the bread. The linear interaction of enzyme was observed to have the 

highest significant effect on the vitamin C content of the sample. The increase in the vitamin C content may be as a 

result of the synergistic effect of the tamarind and enzyme, which may enhance the preservation and bioavailability of 

vitamin C through reduced oxidative degradation and improved enzymatic activity during processing. Also, natural 

antioxidant properties of tamarind may contribute to vitamin C content in an enriched sample. This result corroborate 

with the findings of Kowalczewski et al. (2021) that enzymes can break down complex molecules into simpler forms, 

potentially increasing the availability of nutrients like vitamin C. Also, Binou et al. (2021) reported that the enrichment 

of product with tamarind contribute to the increment in the vitamin C content. 

3.9. Effect of maltogenic-amylase and tamarind paste mixture on moisture content of bread  
The measurement of total phenol content in food product is crucial as it serve as an indicator of their potential health 

benefit, with foods boasting high total phenol content generally regarded as more nutritious and beneficial for consumer 

well-being. The total phenol content of the bread under the effect of maltogenic-amylase and tamarind paste mixture 

ranged from 120.64±0.02 to 145.18±0.11 (Table 2).  

A B C D E F G H I

0

50

100

150

200

250

M
in

er
al

s (
m

g/
10

0g
)

Samples

 Calcium

 Magnesium

 Phosphorus

 Potassium

e

e

e

e

e

f

f

f

f

a

a

a

a

ab

b

bc

b

c

c

c

d

b

d

d d

d

b

c

g

g

g

i

i

h

h

h

AgEng 2024 Proceedings

1175



Table 2: Effect of maltogenic-amylase and tamarind paste mixture on vitamin C and total phenol content of bread. 

Samples Vitamin C (mg/100g) TPC (mg GAE/g) 

A 11.56±0.03i 141.12±0.10 c 

B 12.04±0.02 h 120.64±0.02 h 

C 15.23±0.02 b 142.33±0.44 b 

D 13.53±0.04 d 140.21±0.22d 

E 12.49±0.03 f 138.31±0.21 e 

F 12.60±0.02 e 135.45±0.28 f 

G 12.12±0.01 g 130.27±0.26 g 

H 16.55±0.04 a 145.18±0.11 a 

I 14.25±0.02 c 142.56±0.03 b 

Means with the same superscript along the column and row do not differ significantly according to DMRT at p ≤ 0.05  

The highest total phenol content was found at sample H produced from 50 g of tamarind and 15 g of alpha amylase 

while the lowest was found at sample B produced from 100 g of tamarind only. The linear effect of enzyme had the 

most impactful effect on the total phenol content (Figure 3b) and this could be attributed to the synergistic effect of 

enzyme activity which facilitate the release of phenolic compounds from tamarind, leading to higher phenol extraction. 

Also, the linear interaction of enzyme, linear interaction of tamarind, quadratic interaction of tamarind, quadratic 

interaction of enzyme and interaction of tamarind and enzyme. All values are significant at p<0.05 on the total phenol 

content of the bread. This result align with the findings of Drakula et al. (2021) that the antioxidant capacity of the 

product melanoidins increased due to the enrichment with tamarind and enzyme, which can be partially attributed to 

the bound phenolics. 

 

Figure 3: Pareto chart for the effect of maltogenic-amylase and tamarind paste mixture on the Vitamin C and TPC of 

bread. 

4. Conclusions 
This research investigated the effect of maltogenic-amylase and tamarind paste mixture on the nutritional composition 

of bread. The findings reveal variations in proximate composition (moisture, fat, fiber, ash, protein, and carbohydrate) 

ranging from 26.83% to 35.21%, 2.29% to 3.49%, 0.42% to 0.64%, 2.47% to 3.53%, 12.02% to 18.56%, and 45.24% 

to 50.13%, respectively. The study identified an optimal combination of 50g tamarind paste and 7.5g enzyme for most 

favorable effects on the bread's nutritional content. While the best outcome for total phenol content ranged from 120 to 

146 mg GAE/g, and vitamin C content ranged from 11.56 to 16.55 mg/100g. Moreover, the mineral composition varied 

across samples, with sample H (50g tamarind paste and 15g enzyme) demonstrating the highest mineral content, 

including calcium (135.63 to 164.25 mg/100g), magnesium (112.38 to 128.42 mg/100g), phosphorus (60.15 to 75.25 

mg/100g), potassium (210.22 to 228.55 mg/100g, while maintaining acceptable levels of other nutrients. Conclusively, 

this research demonstrates that incorporating a maltogenic-amylase and tamarind paste mixture can influence the 

nutritional profile of bread. For a well-rounded nutritional profile with increased fiber, minerals, vitamin C, and 

phenols, a combination of 50g tamarind paste and 15g enzyme appears to be most favorable. 
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Abstract 

A major push in technology development has brought a host of innovations for precision farming (PF). Sensors, 

information technologies, and site-specific applications are designed to make farming easier and deliver environmental 

and economic benefits. Acceptance of these new technologies is a key factor in their implementation. However, despite 

their rapid proliferation, farmers' reluctance to accept them is leading to low adoption rates. This is particularly true in 

traditional sectors such as viticulture.  

Therefore, this study aims to understand the status of digital technology acceptance in viticulture. To investigate the 

current attitudes and visions of potential future farmers and/or future advisors, an online questionnaire was developed and 

distributed to students involved in viticulture studies. Germany, France, Italy, USA, New Zealand and Greece participated. 

A total of 95 complete responses were collected, of which 16 were excluded from further analysis due to a perceived lack 

of conscientiousness.  

Four variables were used to measure their correlation with acceptance of PF technologies: climate change perceptions, 

technology commitment, adaptability, and trust in technology. All variables showed a significant correlation with the 

acceptance of PF technologies, with climate change perception, technology commitment, and adaptability demonstrating 

moderate correlations, while trust exhibited a weak correlation. According to the multiple regression analysis, four 

predictors explained 34.7% of the variance. Future steps may consider increasing sample size and involving other 

stakeholder groups such as farmers and/or researchers to confirm these results. 

Keywords: precision viticulture, adaptability, technology acceptance, trust, technology commitment  

 

1. Introduction 

Precision farming (PF) has become more and more the center of interest in viticulture in recent years. Precision 

viticulture (PV) can play a crucial role in making on-farm management decisions and adapting the standard cultivation 

techniques based on the vineyard variability that exists within the field (Ammoniaci et al., 2021). Despite a wide range 

of available technologies and increasing research in the area of digital farming, the number of publications on PV is only 

5% of the number of publications on PF (Ferro and Catania, 2023). This highlights the need to intensify efforts in order 

to strengthen knowledge dissemination as well as technology acceptance among different groups of stakeholders.  

Tardaguila et al. (2021) provided a review of existing technologies in viticulture that might be used by wine growers 

in order to improve the efficiency of agricultural production systems and produce quality wines in economically viable 

and environmentally friendly ways. Usage of available technologies in winemaking requires fast and reliable data analysis 

and interpretation that creates a challenge of proper management at a winery level. To overcome the challenges that exist 

and reach a successful implementation of digital solutions, a collaborative approach between the value chain stakeholders 

is vital. Next to the challenges of the interoperability between systems and costs of investments, another significant 

challenge is connected to the lack of innovative mindset among industry stakeholders and resistance to change (Bastard 

and Chaillet, 2023).  

Technology acceptance is pivotal for usage behavior as it profoundly impacts the readiness of individuals or 

organizations to embrace and incorporate new technological solutions into their workflows or daily practices. Various 

theories have been proposed to provide diverse insights into the adoption process, encompassing factors such as perceived 

usefulness, perceived ease of use, social influences, and individual characteristics. Among the most prominent theories 

are the Technology Acceptance Model (Davis, 1989), the Unified Theory of Acceptance and Use of Technology 

(Venkatesh et al., 2003), and the Diffusion of Innovations theory (Rogers Everett, 2003). Several studies explored the 
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influence of behavioral factors on adoption processes. Toma et al. (2018) investigated factors that influenced technology 

adoption in Scottish crop farming. The findings confirmed that among others, the perceived usefulness of information 

sources had an impact on technological adoption. In their study, Aubert et al. (2012) also focused on individual 

perceptions as drivers of PF technology adoption in Canada. As a result, they concluded that for a farmer to adopt a PF 

technology, a perception of usefulness and ease of use should be present. Venkatesh et al. (2003) described performance 

expectancy as a degree to which the user believed in the usefulness of using technology to reach gains in job performance. 

Based on the results, this variable appeared to be a determinant of the intention to use a technology. In the realm of PF, 

Mohr and Kühl (2021) proposed a modified model based on the Technology Acceptance Model and the theory of planned 

behavior (Ajzen, 1991) to explore the behavioral factors shaping the acceptance of artificial intelligence in agriculture. 

Building upon their study, our work endeavors to enhance the understanding of the factors influencing human perception 

of Cutting-Edge Technologies in Viticulture. Within the present exploratory study, we focus on aspects of technology 

commitment, adaptability, trust, and climate change perception to understand their impact on individuals' acceptance of 

PF technologies. 

Technology commitment refers to the degree of dedication or attachment an individual has toward using technology. 

From the field of autonomous driving, we know that individuals who are highly committed to technology are more likely 

to embrace new tools and innovations, contributing positively to technology acceptance (Rainieri et al. 2023, Wicki et al. 

2019). Adaptability measures an individual's ability to adjust to new situations and environments. In the context of PF 

technologies, adaptability reflects how easily individuals can adapt their practices to incorporate new digital tools and 

techniques (VandenBos 2015, van Dam and Meulders 2021). High levels of adaptability suggest a greater openness to 

change, which can facilitate the acceptance and integration of new technologies into existing practices. Trust in 

technologies refers to the belief or confidence that individuals have in the reliability, effectiveness, and safety of 

technologies (Gefen et al., 2003). Trust plays a crucial role in technology acceptance as individuals are more likely to 

adopt and use technologies that they perceive as trustworthy (Gößwein and Liebherr, under review). Climate change 

perception encompasses individuals' beliefs about the reality of climate change, the causes of climate change, and the 

consequences of climate change (Poortinga et al. 2019, van Valkengoed et al. 2021). In the context of PF technologies, 

we propose that climate change perception can influence technology acceptance by shaping individuals' perceptions of 

the relevance and importance of these technologies in addressing climate-related challenges. 

This work goes beyond the already known classical Technology Acceptance Model putting the focus on the 

exploration of additional variables and their correlation with the acceptance of PF technologies. In addition to that, the 

novelty of this paper is also supported by the fact that the students enrolled in viticulture studies participated.  

 

2. Methods  

An online survey using the tool LimeSurvey was sent out to six institutions, where viticulture can be studied. The 

institutions were based in Greece, France, Italy, the United States of America (USA), New Zealand and Germany. The 

survey was available in both German and English languages and required approximately 15 minutes to complete. It 

included sections for demographic data, a brief explanation of PF, participants' indication of prior PF usage, and the 

questionnaires. Data collection was open for four months, from January 2024 until the end of April 2024. A total of 95 

complete responses were collected, of which 16 were excluded from further analysis because of an alleged lack of 

conscientiousness as these participants gave a wrong answer to an attention check item. We used Jamovi software version 

2.0.0.0 to analyze the data. 

 

2.1. Measures  

Technology Commitment 

A short scale for technology commitment by Neyer et al. (2012) was implemented. The variable was found to correlate 

with technology usage behavior and technical experiences and is supposed to deliver a personality-psychological 

perspective on the matter of technology acceptance (Neyer et al., 2012). The scale was used in its validated form consisting 

of twelve items rated on a five-point Likert scale, e.g., “I am very curious about new technical developments”. The 

validity of the scale within our sample was good (α = .723). 

 

Adaptability 

To assess adaptability, we used a validated scale (van Dam and Meulders, 2021) consisting of ten items rated on a 

five-point Likert scale. With this measurement, an overarching factor is captured referring to the individual tendency to 

handle new situations resiliently and with an open mind. It showed good validity in our sample (α = .802). 

 

Trust in Precision Farming 

We measured technology trust via the trust in automation subscale (Körber, 2019), which consists of two items rated 

on a five-point Likert scale. In the instruction of the scale PF as a reference system was specified and explained: 

“Precision Farming involves the use of new and emerging technologies, including sensors, to collect information and 
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data on various parameters of the vines and the terroir that affect vines' growth.”. Thereby, even participants with little 

or no practical experience in handling PF were able to rate their alleged trust in the technology. In our sample, the scale 

showed good validity (α = .737). 

 

Climate Change Perception 

A single-item scale was implemented to investigate participant’s perceptions of climate change (van Valkengoed et 

al., 2021). It consists of five items, which each refer to one of the subdimensions of the long scale: reality, causes, valence 

of consequences, spatial-, and temporal distance of consequences. The items are rated on a seven-point Likert scale and 

the scale showed good validity within our sample (α = .752). 

 

Acceptance of Precision Farming Technologies 

We measured the acceptance of PF technologies using two items derived from prior research (Mohr and Kühl, 2021): 

“I think that my interest in precision farming will increase until 2030” and “I think that I will never use precision 

farming.”. Responses were collected on a six-point Likert scale and ratings of the second item were reversed. Utilizing 

these items offered the advantage of capturing students' future acceptance of PF, without being hindered by their current 

limited experience with these technologies. Cronbach’s alpha of the implemented scale was acceptable in our sample (α 

= .676). 

 

3. Results  
 

3.1.  Participants 

The final sample consisted of 79 individuals (28 women, 51 men), aged between 20 and 60 years (M = 26.38, SD = 

7.57). The participants were mainly based in Italy (30 responses), Germany (19 responses), and Greece (17 responses). 

The majority of participants were students, with 27.8% pursuing a bachelor's degree and 43.0% pursuing a master's 

degree. Additionally, 35.4% of our sample reported current usage of PF technology, accounting for 28 participants. 

 

3.2.  Descriptive statistics and intercorrelations 

Table 1 provides a summary of participant characteristics for the key variables examined in this study.  

 

Table 1. Descriptive Statistics. 

 M SD min max 

Climate Change Perception 5.94 0.942 3.40 7.00 

Technology Commitment 3.51 0.516 2.25 4.75 

Adaptability 3.45 0.611 1.90 5.00 

Trust in Technology 3.56 0.794 1.00 5.00 

Acceptance PF Systems 5.33 0.891 1.50 6.00 

Note: M = Mean; SD = Standard deviation 

 

Table 2. Correlation Matrix. 

 Climate Change 

Perception 

Technology 

Commitment 

Adaptability Trust in 

Technology 

Acceptance PF 

Systems 

Climate Change 

Perception 

-     

Technology 

Commitment 

r = .254* 

p = .024 

-    

Adaptability r = .297** 

p = .008 

r = .290**  

p = .010 

-   

Trust in Technology r = .138 

p = .224 

r = .116   

p = .311 

r = .384*** 

p < .001   

-  

Acceptance PF 

Systems 

r = .428***  

p < .001  

r = .429*** 

p < .001 

r = .369*** 

p < .001 

r = .283* 

p = .012 

- 

Note: * p < .05, ** p < .01, *** p < .001, presented are values of Pearson’s r and their significances.  

 

Within Table 2 the intercorrelations between the variables are described. Correlations were analyzed using Pearson’s 

r, where values of r ≥ .10 indicate a weak, r ≥ .30 indicate a moderate, and r ≥ .50 indicate a strong correlation (Cohen, 
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1988). All variables show a significant correlation with the acceptance of PF technologies. Moderate correlations are 

found with climate change perception, technology commitment, and adaptability. A weak correlation was identified 

between acceptance of PF systems and trust in PF.  

 

3.3. Multiple Regression Analysis: Predictors of PF Acceptance 

To further explore the acceptance of PF technologies, multiple regression analysis was used to test if the personality 

variables technology commitment and adaptability, trust in the systems, or climate change perception are significant 

predictors of this variable. Results of the regression indicated that these four predictors explained 34.7% of the variance 

(R2=.347, F(4,74)=9.82, p < .001). It was found that technology commitment significantly predicted acceptance of PF 

technology (β=.298, p=.004), as did climate change perception (β=.290, p=.005). Adaptability (β=.136, p=.213) and 

technology trust (β=.156, p=.130) did not turn out to be significant predictors.  

 

4. Discussion 

In the present study, our primary objective was to explore the factors influencing the acceptance of PF systems in 

viticulture, focusing on climate change perception, technology commitment, adaptability, and trust in technology. We 

found significant relationships between the acceptance of PF systems and all variables considered. However, the 

regression analysis revealed that only climate change perception and technology commitment were significant predictors 

of PF system acceptance. 

Our findings highlight the significant role of climate change perception in predicting the adoption of PF technology 

in viticulture, indicating that winegrowers who recognize and are concerned about climate change are more likely to adopt 

PF technologies. This aligns well with previous research across related fields, which has consistently demonstrated the 

importance of climate change awareness in driving technology adoption (Lorencová et al. 2019, Li et al. 2022). So far, 

only a few considered climate change awareness as an antecedent within technology acceptance models (Nguyen and 

Drakou, 2021). Although Mohr and Kühl (2021) introduced a relatively comprehensive modification of the Technology 

Acceptance Model in order to explain the acceptance of AI systems in agriculture, they did not consider any aspect of 

climate change perception. Further evidence from previous studies indicates that climate change perception is shaped by 

multiple factors, such as age, gender, and sociodemographics (Lorencová et al. 2019, Li et al. 2022). Interestingly, studies 

identified that direct experiences with climate change may not be particularly effective in shaping awareness. This 

ineffectiveness may be due to individuals' attribution styles and adaptability, which influence how they perceive and 

respond to climate-related events (Xia et al., 2022). Findings so far underscore the critical need for proactive education 

initiatives aimed at increasing awareness of climate change. Our study focused on young students, a demographic group 

that is crucial in shaping future attitudes and actions toward environmental issues. Similarly, Filho et al. (2021) 

concentrated on university students and stressed the rising significance of climate change knowledge among future 

professionals. They highlighted the growing demand for professionals equipped with training in environmental 

sustainability across various academic fields, emphasizing the necessity for curricular innovation. 

Consistent with prior research across various fields, such as autonomous driving and robotics (Bernotat and Eyssel 

2017, Lidynia et al. 2022), we found that general technology commitment emerged as a significant predictor for the 

acceptance of PF technology. To ensure users remain committed to technology, maintaining its effectiveness is crucial. 

Research by Wang and Datta (2009) demonstrated that people were more likely to feel loyal to the technology if it 

performed well and met their expectations over time. Consequently, higher satisfaction with the use of technology induces 

effect-based commitment in the longer term. This could serve as an important motivator for technology producers and 

advisors to support the effectiveness of their products and maintain users' technology commitment at a higher level. At 

the same time, a high level of post-adoption technology commitment poses additional challenges for competitors to 

persuade users to switch to alternatives. 

In contrast to previous studies on technology acceptance, we did not find adaptability and technology trust to be 

significant predictors of PF acceptance. This could be explained by the fact that the students were not yet fully involved 

in farming or had insufficient experience of working with the PF technologies. However, the situation may be reversed 

in the future. For instance, Nicholas-Davies et al. (2021) found that adaptation was dominated by intergenerational 

change. This included transferable skills being brought onto the farm as additional drivers. The finding of trust being not 

a significant predictor was rather unexpected as trust is usually considered to be an important factor. For example, Pavlou 

(2003), using two samples consisting of students and online consumers, showed that trust was the most influential 

predictor of the intention to use Internet technology for e-commerce operations. Similarly, Jakku et al. (2019), after 

conducting several interviews with grain farmers, concluded that trust was one of the central factors meditating 

perceptions about smart farming technologies and big data in agriculture. To sum up, the present results, along with 

previous findings, highlight the need for further exploration of the influence of trust on the acceptance of PF. Including a 

larger sample of students, as well as other stakeholders such as farmers and/or researchers, could lead to a higher 

percentage of respondents who have more practical experience with PF technologies. As a result, it could increase the 

power of a trust predictor and serve as a basis to show the need to adjust study curricula in favour of building an initial 

trusting attitude towards PF technologies. Properly organised and timely education of the younger generations can be a 

good start for forming a more positive perception of PF technologies and their faster implementation in agricultural 
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enterprises in the future. For example, Cabiddu et al. (2022) investigated how users experienced interaction with AI-based 

algorithms over time. The study showed a transition from initial trust to trust over time. After becoming familiar with the 

algorithm-based work, users tended to trust the technology more and perceive the system-like qualities of the algorithms. 

In the beginning, the technology was perceived by the users as a human counterpart. Thus, trust depended on the integrity 

of the algorithm, which included fairness, transparency, autonomy, and accountability. Therefore, improved educational 

processes can help build initial trust among students, reduce the probability of seeing technologies as a danger, and 

accelerate the perception of technologies by farmers.   

 

5. Conclusion 

This paper provides an initial basis for understanding students' intentions to adopt PV technologies. This was done by 

analysing the correlations between climate change perceptions, technology commitment, adaptability, and trust in 

technology with technology acceptance. Future steps for this research may include: i) widening the sample by including 

more students as well as increasing the number of participating educational institutions; ii) including other stakeholder 

groups such as researchers/teachers and/or farmers; iii) analysing the correlation between the availability of practical 

experience in the use of PF technologies and the intention to use these technologies; iv) investigating the differences in 

responses between participating countries and/or different stakeholder groups. 
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Abstract 

Today's agricultural machinery, e.g., tractors, planters, harvesters, and sprayers, are far from what our 

parents used. Thanks to advances in sensors, telemetry, precision technologies, and cloud-based data 

management, data collection has become simpler, allowing us to transform this data into valuable information 

and insights. This necessitates a shift in the education and training approach for stakeholders within the 

agricultural sector. The VTSkill project was born to be highly useful and broad-reaching in the viticulture 

sector of Mediterranean Europe. This initiative brings together four higher education institutions (HEI), three 

vocational education and training (VET) institutions, and seven labour market actors. The consortium aims 

to foster the adoption of environmentally, socially, and economically responsible practices within the 

viticulture industry. Sustainable Precision Viticulture (SPV) merges the principles of precision agriculture 

with those of organic farming, facilitating the intelligent utilization of technology in harmony with preserving 

an agricultural ecosystem. This project aims to develop an innovative, transnational curriculum tailored to 

viticulture studies. It is designed to equip HEI students, consultants, managers, technicians, and farmers with 

a comprehensive set of skills in digitalization, sustainability, and resilience, specifically tailored to the 

nuances of SPV. This process will begin by identifying the key digital, ecological, and 

resilience/entrepreneurial competencies lacking in the viticulture industry. The research will employ natural 

language processing (NLP) and data mining techniques and will be validated through interactive research 

with farmers. Following this, partners will design a new SPV curriculum tailored to the needs of HEIs and 

VET centres. The training courses will use a micro-credentials approach, be tested in partner organizations, 

and involve HEI learners, VET learners, farmers/workers, and consultants. Finally, partners will design and 

test the VTskills e-demofarm, a new model of demo-farm that features three primary components: formative 

(delivering challenge-based learning educational experiences), informative (referring to events and EU-

funding opportunities that might benefit farmers), and demonstrative (virtualizing good practices already 

carried out by farmers). By implementing effective and efficient communication strategies, the project 

enhances visibility and engages with over 20,000 European stakeholders, fostering new skills and creating 

synergies for sustainable precision viticulture. 

Keywords: precision viticulture, education, competencies, e-demofarm, resilience 

1. Introduction 

Focusing on Europe, particularly within the Mediterranean ring, Italy, France, Spain, and Greece 

collectively account for about half of Europe's annual wine production, which in 2023 was estimated at 150 

million hectoliters (OIV, 2023). These statistics are impressive, yet it's crucial to acknowledge a consistent 

decline in vineyard area and production volume each year, largely attributed to significantly low harvest 

volumes in these major EU countries. As has been observed over the past 40 years, climate change is 

profoundly altering the foundations of traditional viticulture practices and technologies (Santos et al., 2020). 

The wine industry is deeply ingrained in European culture, making substantial contributions to socio-

economic, environmental, and societal realms: vineyards not only beautify the landscape but also employ 

millions of Europeans, supporting the backbone of rural communities and maintaining a lifestyle 

quintessential to European culture (CEEV, 2023). This sector primarily consists of numerous small and 

medium-sized enterprises (SMEs). It is significantly more atomized than other food and beverage industries, 

leading to its highly fragmented nature (Naigeon et al., 2023). In this setting, ample entrepreneurial 

opportunities are yet to be harnessed throughout the agricultural process and by auxiliary agents, leveraging 
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advanced technologies to create scalable projects with significant social and economic impacts. Additionally, 

viticulture demands specialized knowledge and skills and encompasses a variety of agricultural practices, 

including soil management, pest and disease control, pruning, and harvesting. Consequently, viticulture is a 

critical area for research and innovation within the agricultural sector. Technological advancements and 

research in viticulture can significantly enhance wine production's quality, sustainability, efficiency, and 

profitability (Gutiérrez et al., 2021). 

Adding to the points discussed, we must consider that a more discerning consumer base and the global 

supply chain increasingly demand more sustainable wines. In this context, initiatives and projects like the 

one outlined in this study are starting to make much more sense. VTskills aims to promote adopting 

environmentally, socially, and economically sustainable practices in viticulture to align with the objectives 

of the Green Deal, the Common Agricultural Policy (CAP), the Farm to Fork strategy, and Biodiversity 

strategies. 

To drive innovation in the wine sector, it is crucial to prioritize digitization, embrace the principles of the 

circular economy, and develop and implement innovative business models. These elements, which VTskills 

identifies as digital, green and resilience skills, are paramount for viticulture farmers and workers, as they 

enable the effective and sustainable management of activities within the industry. By integrating digital 

technologies, adopting sustainable practices, and creating new business approaches, the wine sector can 

enhance its competitive edge while ensuring long-term environmental and economic sustainability. Green 

skills drive digital expertise towards sustainable management, ensuring the efficient use of resources and 

adopting environmentally friendly practices. At the same time, resilience skills encourage entrepreneurial 

and intrapreneurial initiative, cultivating innovative attitudes and corporate social responsibility. This latter 

set of skills makes profitable green achievements through the practical application of digital skills. 

The transition to digital technologies is a significant constraint, requiring adjustments in the economic 

structure of farms and the competencies and technology introduction capacity (Kane, 2019). Technological 

advancement allows for collecting and analysing vast amounts of data, providing deeper insights and more 

informed decision-making in environmental sustainability. Despite these benefits, the limited acceptance of 

smart farming presents significant challenges, largely due to a lack of awareness about their advantages 

compared to traditional methods (Vecchio et al., 2020) and difficulties in managing extensive and complex 

technology and data. Precision Agriculture (PA) offers a solution by integrating information and production 

to boost efficiency, productivity, and long-term profitability while minimizing environmental impacts.  

The project targets various actors involved with the viticulture sector, such as students and winegrowers, 

with a particular emphasis on small and medium enterprises (SMEs) and consulting entities that can support 

companies in the industry. Offering appropriate training to enhance skills and promote lifelong learning 

seems necessary. The VTskills project aims to develop transnational sector-wide curricula that connect higher 

education (HE), vocational education and training (VET) systems, and enterprises. VTskills seeks to facilitate 

effective transnational cooperation, align education with labour market demands, and create new 

opportunities in line with the European Skills Agenda. 

The project promotes the concept of Sustainable Precision Viticulture (SPV), which integrates organic 

farming with PA for sustainable agricultural practices and aims to create a new green professional profile, an 

“SVP specialist” who will possess green, digital, and resilience/entrepreneurial skills. Thanks to a three-year 

collaboration with project partners, we expect to create synergies among all the actors involved in the 

viticulture ecosystem and give them access to re- and up-skilling opportunities providing the SPV key 

competencies. 

2. Materials and Methods  

The project started in January 2024 and is scheduled to finish in December 2026 for 36 months. 

2.1. Partnership  

The VTskills consortium brings together 14 partners from different geographical locations (Spain, Italy, 

Greece, France and Belgium) and organizational backgrounds, such as universities, VET providers, sectoral 

associations, innovation and technology companies, public administrations and European vineyards 

companies as shown in Figure 1. 
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Figure 1. Logos of the 14 European partners collaborating within the VTskills project,  

including 4 Higher Education Institutions (HEIs), 3 vocational education and training (VET) providers,  

and 7 labour market actors. 

The partnership's composition underscores the project's transnational dimension, the collaboration among 

various professional groups, and the potential for VTskills results to be applied in other agricultural sectors. 

2.2. Project Plan 

VTskills (https://www.vtskills.eu/) is divided into 6 work packages (WPs), each further into several tasks. 

While WP1 and WP6 are active throughout the project's duration, the other WPs have specific durations, as 

they depend on one another. The work plan scheme is illustrated in Figure 2. 

 

 

Figure 2. VTskills Work Plan, including the number and name of the Work Packages,  

along with their respective leadership. 

 

WP1 aims to ensure efficient and effective project management and control of all activities. It also focuses 

on maintaining high-quality project results in line with EU publication standards and evaluating (both 

internally and externally) the validity of project planning and implementation. 
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WP6 aims to promote the project, its goals, and the partnership to ensure sustainability and engagement. 

This entails involving stakeholders from the beginning of the project, seeking their input to improve results, 

and disseminating the results to potential multiplier agents. A key focus is national and EU integration across 

sectors and countries. 

The initial phase of the VTskills project (WP2) involves identifying SPV's main competencies, which are 

categorized into three groups: digital, green, and resilience skills, and developing new professional profiles 

associated with these competencies. This process will begin with a data-mining analysis of various sources, 

followed by an evaluation through surveys and the collection of best practices. 

Secondly, the consortium in WP3 will develop the material for the e-learning modules. The skills and job 

profiles resulting from WP2 will form the cornerstone for building the VTskills training course to fill the 

identified knowledge and skills gaps. The training path will be open to all actors in EU countries' viticulture 

and enology, including students, agronomists, enologists, consultants, VET, researchers, organic farms, and 

farms adopted by PA or PV. However, the project's long-term objective is to create knowledge and training 

content that can be applied to other fields, thereby boosting innovation in the broader agricultural sector. 

In WP4, to create conditions for access to re-skilling and up-skilling opportunities will be created. The 

consortium will conduct pilot tests of the VTskills e-learning courses in higher education institutions (HEI) 

and vocational education and training (VET) centres, leading to micro-credentials in the viticulture sector 

grounded in a challenge-based learning approach. Based on the data collected, the project will evaluate and 

improve the training materials and prepare a handbook on replicating the VTskills courses. 

In the final stage, VTskills will establish a virtual hub called "VTskills e-demo farm" under WP5 to 

provide viticulture stakeholders access to innovative training and information. The goal is to strengthen 

regional ecosystems and disseminate SPV knowledge. The VTskills e-demo farm will offer demonstrative, 

formative, and informative services, including interactive tools and simulations. These resources allow users 

to experiment with various vineyard management techniques and observe crop quality and yield changes. 

This approach encourages collaboration and knowledge sharing among different actors, facilitating the 

exchange of ideas for more sustainable and efficient practices. 

3. Results and Discussion 

Although VTskills has only been running for five months, despite its planned three-year duration, 

significant progress is already underway. While few tangible results have been achieved yet, activities have 

begun for WP 1, 2, and 6. 

Through the tasks established in WP1 to ensure the overall monitoring and management of project 

activities, partnerships have created comprehensive project and risk management tools. For WP6, the 

Dissemination Plan has been shared with all partners to ensure a cohesive project visibility and outreach 

approach. Several activities have been initiated to promote the project, including creating a dedicated website 

and establishing a presence on social media platforms. 

Work Package 2 (WP2) has achieved more concrete results, which commenced at the beginning of the 

VTskills project and is scheduled for completion by the ninth month of the first year. Supported by identifying 

technology and drivers of change, the consortium has successfully produced two valuable documents: “Set 

of Skills for SPV Farmers/Workers” and “SVP Job Profiles.” The “Set of Skills for SPV Farmers/Workers” 

outlines the necessary competencies in green, digital, and resilience/entrepreneurial skills required for 

Sustainable Precision Viticulture. Meanwhile, the “SVP Job Profiles” document details this sector's specific 

roles and responsibilities, providing a comprehensive overview of the job market dynamics. At the project's 

current stage, these documents are set to undergo a thorough multi-stakeholder analysis to ensure the 

robustness and validity of these results. 

This step is crucial for establishing a solid foundation for the subsequent phases of the VTskills project, 

where the consortium will develop training content as e-learning modules for HEIs and VET providers. The 

goal is to create a well-informed, skilled workforce capable of advancing sustainable precision viticulture 

practices. The training material based on SPV and the VTskills’ e-learning course for HEIs and VETs will 

be the outcomes produced in WP3 and WP4. These WPs will span most of the project's duration from the 

tenth to the thirty-fifth month. A significant emphasis will be placed on determining which of the two e-

learning courses (one for HEIs and one for VETs) best meets the needs of professionals within the viticulture 

industry. 
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Additionally, the partnership will draft a comprehensive Handbook. This document will detail all the 

recommended steps for replicating the e-learning courses, providing a valuable resource for other institutions 

and organizations interested in implementing similar training programs. The last outcome will be the creation 

and implementation of the e-demo farm, the tool through which the VTskills project will present its output 

and promote initiatives that boost the innovation of the viticulture sector. 

The expected and desired impacts will be achieved at socioeconomic, environmental, employment and 

scientific levels:  

1. Encouraging entrepreneurial and innovative HEIs and VETs by enhancing their training 

offerings with new teaching and learning tools and methodologies (VTskills approach); 

2. Addressing the skills gap caused by the current digital transformation, steering towards 

sustainable practices in viticulture; 

3. Reducing the carbon footprint of agricultural activities through precise training that raises 

awareness and improves the ability of the project’s target groups to respond to climate change 

and implement more efficient resource use; 

4. Establishing a regional ecosystem of diverse demonstrators to build professional and academic 

networks focused on SPV. 

4. Conclusions 

   The VTskills project is structured to ensure efficient management and high-quality results. WP1, 

dedicated to project management, emphasizes maintaining standards in line with EU publication 

requirements and involves internal and external evaluations of the project's planning and implementation 

processes. This comprehensive approach ensures that all activities are effectively controlled and meet the 

desired quality benchmarks. 

   The project focuses on identifying and developing key competencies in the viticulture sector, mainly 

digital, green, and resilience skills. WP2 initiates this process through data mining and evaluation, while WP3 

and WP4 build on these findings by creating e-learning modules and conducting pilot tests in educational 

institutions. The training materials and courses are designed to fill identified knowledge gaps and offer 

reskilling and upskilling opportunities, ultimately aiming to boost innovation in the broader agricultural 

sector. 

   WP6 aims to promote the project's goals and ensure sustainability by involving stakeholders from the 

outset and disseminating results to potential multiplier agents. Creating the VTskills e-demo farm under WP5 

further supports this goal by providing a virtual hub for training and information dissemination. This hub 

facilitates collaboration, knowledge sharing, and the adoption of sustainable practices among viticulture 

stakeholders, thereby strengthening regional ecosystems and enhancing the project's overall impact. 
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Abstract 

The demographic evolution of Spain in recent years reveals an undesirable depopulated rural environment 

with internal imbalances and severe population decline. While various factors contribute to depopulation, 

such as aging, low birth rates, masculinization, and infrastructure deficiencies, a fundamental cause is the 

low profitability of agricultural operations, given that it is the main source of income for the population in 

these areas. This low profitability is linked to the Spanish agricultural structure, where 76% of the nearly 17 

million hectares of cultivation are dedicated to rainfed agriculture, and only 24% to irrigation, in a country 

with a severe hydric deficit. Demographic analysis over the past decade indicates that provinces with a lower 

proportion of irrigated crops experience greater population loss, while those with higher proportions maintain 

or increase their population. Therefore, the work hypothesis states that the transformation into irrigation can 

be the key to establishing and increasing the population in depopulated rural areas, highlighting the 

importance of guaranteeing the sustainability of irrigation to improve its contribution to population fixation. 

Study objectives include establishing a scientific model for rural development in depopulated areas, analysing 

elements of population fixation and growth, and exploring interdependence in irrigation sustainability and 

resilience. The systematic methodology involves comprehensive data collection on depopulated areas, 

focusing on the "España Vaciada," and irrigation interventions using GIS tools. Subsequently, demographic 

data collection will address economic, social, and environmental factors influencing population evolution in 

rural areas. The next phase involves selecting demographic study areas, identifying those representatives of 

the issue, and highlighting model areas with successful population fixation through irrigation. The 

development of a survey, crucial in these areas, will be carried out simultaneously with the creation of an 

initial systems dynamics model, which will evolve into a definitive model after survey processing and 

statistical analysis of the results. The conclusions summarize findings to provide a solid foundation for 

decision-making and implementing measures to promote irrigation sustainability and population fixation in 

rural areas. 

Keywords: sustainable irrigation, depopulated areas, rural demography, GIS, systems dynamics model 

1. Introduction 

The study conducted within the framework of the Observatory of Irrigation Sustainability (Spanish 

Agency) aims to scientifically establish the relationship between the benefits of implementing irrigation 

systems in depopulated areas and the stabilization and increase of the population (Silvestre & Clar, 2010). It 

also examines how population growth contributes to the sustainability of irrigation practices. The study is 

based on a hypothesis formulated from ethical principles, which guide the objectives and scientific 

methodology employed to test the hypothesis. The ethical foundations include the responsible and rational 

use of nature, the equal dignity and rights of all humans, and the balance between individual freedom and the 

common good, reflecting principles from international declarations and academic works (Steffen, W. et al., 

2015). 

This research aligns with international and European legislation and goals, such as the Sustainable 

Development Goals (SDGs), particularly Goal 6, which emphasizes efficient water use and community 

involvement in water management. It recognizes that despite the dominance of rain-fed agriculture, irrigation 

is essential for meeting future food demands, as highlighted in reports by the UN and various legislative 

frameworks. In Spain, significant policies like the National Irrigation Plan and emergency measures for water 

conservation underscore the importance of irrigation for agricultural productivity and rural population 

stabilization (Garcia-Asensio & Ayuga, 2017).  
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Spain's demographic evolution in recent years shows an undesirable concentration and territorial 

polarization, with two extremes: congested large cities and depopulated rural areas with significant internal 

imbalances and severe population decline (Figure 1).  

 

 

Figure 1. Population Density Distribution in 2021. 

 

According to the National Institute of Statistics (INE) 2021 data (INE, 2021), 64% of the national territory 

has a population density of less than 25 inhabitants per km², housing only 6% of the total Spanish population. 

In contrast, 80% of the population is concentrated in urban areas, which cover just 20% of the territory. 

Moreover, municipalities with a density below 12.5 inhabitants per km², considered sparsely populated by 

the EU, occupy approximately 49% of the territory, where only 2.7% of the population lives. Areas with 

extreme depopulation risk, with a density of 8 inhabitants per km² or less, comprise 38% of the national 

territory and just 1.7% of the population. 

The term "España Vaciada" (Emptied Spain) describes rural municipalities, primarily in regions like 

Castilla-La Mancha, Castilla y León, Aragón, Extremadura, Galicia, and Asturias, where a pronounced 

decline is evident. This situation worsens in disadvantaged areas, such as mountainous regions (40% of 

Spanish territory) and areas with challenging climatic conditions or low primary productivity potential (39% 

of the territory). Despite this, some rural municipalities with low or very low population densities are 

experiencing demographic revival through economic diversification, signalling a "rural renaissance". This 

depopulation is driven by high aging, low birth rates, masculinization, a technological gap with urban areas, 

reduced public services, and infrastructure deficits, particularly in agriculture, where 76% of nearly 17 

million hectares of cultivated land is rainfed, and only 24% is irrigated. The demographic and irrigation data 

analysis between 2011 and 2021 indicates that provinces with significant population loss often have a lower 

proportion of irrigated land (Figure 2). 

Derived from the outlined ethical principles and background, the initial hypotheses of this study are as 

follows: 

• The transformation into irrigated land is a valuable tool for stabilizing and increasing the population in 

depopulated rural areas. 

• Ensuring the sustainability of irrigation enhances its effectiveness in stabilizing the population. 

The objectives derived from these hypotheses are: 

• To establish a scientific model that incorporates irrigation activities for rural development in 

depopulated areas. 

• To analyze the elements that contribute to population stabilization and growth. 

• To explore the interdependence between the sustainability and resilience of irrigation systems. 

AgEng 2024 Proceedings

1191



 
Figure 2. Map of Population Density in the Municipalities of Spain and Distribution of Irrigation Systems Horizon 

2008 

2. Materials and Methods  

The methodology is divided into four key stages. Firstly, a comprehensive compilation of information on 

depopulated areas in Spain was carried out, as well as interventions in irrigation systems. This compilation 

was conducted using Geographic Information Systems (GIS). 

Subsequently, information was gathered on demographic evolution based on various economic, social, 

and environmental factors, as well as scientific studies applying system dynamics to this evolution in rural 

areas and to the establishment and sustainability of irrigation systems. This literature review provides a solid 

theoretical framework for the study. 

Based on this information, the selection of demographic study areas and model areas representing best 

practices was carried out. A survey was developed and distributed throughout Spain, with a special focus on 

the selected areas. 

Simultaneously, a systems dynamic model of the relationship system between population and agriculture 

was developed, considering both direct and indirect employment generated by the activity (Pluchinotta et al, 

2018). This model encompasses various productive modalities, including irrigation, allowing for the 

assessment of the effects on rural population of different change scenarios that may arise. 

This method enables the derivation of conclusions and recommendations, providing a solid basis for the 

formulation of policies and strategies in the field of rural development and risk management. 

2.1. Study areas 

The strategic selection of study areas aims to shed light on the impact of irrigation on population and 

local socioeconomic development. Criteria such as demographic data analysis, consideration of agricultural 

diversity, and inclusion of successful cases guide the selection process. By focusing on agricultural regions 

as the unit of analysis, the study ensures a comprehensive understanding of irrigation's effects, accounting 

for factors like agricultural homogeneity, geographical context, and regional decision-making dynamics. The 

chosen regions, including Esla-Campos, Monegros, Bajo Aragón, Campos de Liria, Campo de Cartagena, 

Don Benito, and La Loma, represent diverse geographical and socio-economic contexts, providing valuable 

insights applicable to broader agricultural policy formulation. 

The selected regions (Figure 3) offer a diverse yet representative sample to explore the intricate 

relationship between irrigation and population dynamics. Each region, characterized by unique demographic 

challenges and agricultural practices, presents an opportunity to identify patterns and learn from successful 
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cases. By analyzing factors such as labor intensity, profit margins, and local decision-making processes, the 

study aims to provide actionable insights for policymakers and stakeholders seeking to promote sustainable 

development in rural areas. Through a comprehensive examination of these regions, the study seeks to 

contribute to a nuanced understanding of the role of irrigation in shaping local economies and communities. 

 

 
Figure 3. Study areas 

2.2. Survey design  

The methodology for designing the survey relied on the expert judgment-based decision-making method, 

utilizing group dynamics extensively (Colectivo IOÉ, 2015). A rigorous process was followed to identify 

experts, considering criteria such as their experience in the field, reputation in the community, availability 

and motivation to participate, as well as impartiality and personal qualities (Escobar-Pérez & Martínez, 

2008). A natural focus group consisting of 10 individuals meeting these criteria was formed and used to 

gather relevant information on social cognitions related to the study (Skjong & Wentworth, 2001). Survey 

results were analyzed using descriptive statistics, employing tests like the Kolmogorov-Smirnov test to assess 

goodness of fit, the χ2 test to check the independence of categorical variables, and the Mann-Whitney W test 

to contrast central values (Ayuga-Téllez et al., 2013). Additionally, group comparison methods such as the 

Scheffe method or the Duncan method were applied to identify potential significant differences between them 

(Milliken & Johnson, 2009; Skjong & Wentworth, 2001). These statistical techniques ensured a rigorous 

evaluation of the results and provided a solid foundation for data interpretation. 

2.3. Conceptual Formulation of the dynamic model 

A dynamic model of the relationship system between population and agriculture has been designed, 

considering both direct and indirect employment generated by the activity. The model encompasses various 

productive modalities, including irrigation, allowing for the evaluation of the effects on the rural population 

of different scenarios of change. This design relies on identifying and analyzing all potential sources of 

statistical information that can feed into the system and establish statistical relationships between the different 

processes that comprise the model. The existence of different sources of information, each with its own 

characteristics and biases, allows for their incorporation into the model through sensitivity analyses, enabling 

the management of uncertainty levels associated with it. 

The model estimates direct and indirect employment through an analysis organized into five different 

modules (Figure 4):   

• Surface Module: Analyses the number, area, and characteristics of farms. It allows incorporating 
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existing trends in land use changes, farm structure, and crop changes into the model. 

• Direct Employment Module: Calculates employment generated on the farm, distinguishing between 

cultivation systems, dimensions, and logically differentiating between rainfed and irrigated land. 

• Indirect Employment Module: Designed based on farm expenses related to crop cultivation, 

machinery rental and maintenance, and energy consumption. 

• Product Transformation Module: Estimates employment generated by locally performed industrial 

transformation processes. 

• Family Module: Analyses the population effects of the working population on other population 

groups (non-active population) based on family statistics. It considers minors, the elderly, family 

members engaged in family tasks (including caregiving). 

The general approach of the model, described below, is summarized in the Figure 5, where each module 

is represented by a color code: Green: Surface module, Blue: Direct employment module, Red: Indirect 

employment module, Yellow: Employment in the food industry module, Gray:  Family module. 

 

 
Figure 4. According to the type of agricultural exploitation of the respondents' municipality 
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In addition to its conceptual design, the model is being incorporated into specific system dynamics 

software. For this purpose, the STELLA®, program has been chosen, which allows for the inclusion of all the 

relationships described in the preceding pages. Moreover, it enables sensitivity analysis, which makes it 

possible to identify which elements of the model produce the greatest changes and where it is most important 

to complement tools for statistical analysis of official data with other sources of information, such as specific 

surveys or fieldwork, which could illustrate future lines of work. It also allows for the analysis of the effect 

of the statistical variability expected to be found in the identified relationships. 

3. Results and Discussion 

For the survey design two meetings were held, one to discuss a questionnaire proposal presented by the 

group moderator, with a consensual outcome agreed upon by all members. The second meeting was held to 

discuss some minor modifications to the questionnaire, issues that arose after its application to a pilot group 

of 50 participants, mainly irrigation cooperative managers. The result is a questionnaire consisting of 45 

questions, with 12 aimed at characterizing the population, 28 focusing on their attitudes toward rural life 

conditions, and 5 regarding the improvement in life brought about by irrigated crops.  

The survey is structured into two main parts: one directed at population in irrigated areas and another at 

population in rainfed areas, with some common questions at the beginning. The first section gathers basic 

demographic data, such as age, gender, education level, and employment status. It also explores satisfaction 

with rural life and the necessary conditions to remain in these areas. 

Subsequently, depending on whether the participant lives in an irrigated or rainfed area, they are directed 

to specific questions. For irrigated areas, perceptions about the importance of these crops for the local 

economy, population retention, and improvement of services and employment are explored. For rainfed 

areas, questions are asked about the potential implementation of irrigated crops and their effects. 

In both sections, the impact of various factors on rural-to-urban migration is assessed. The sequential and 

thematic structure of the survey allows for the collection of detailed and relevant information to understand 

the needs and preferences of rural communities. 

The survey was implemented using the Google tool and the link was emailed to the mayors of 2,000 town 

councils in sparsely populated areas, requesting its dissemination to more residents of the town. 

The survey respondents' characteristics are representative of the population, with gender and age well 

represented. With over 1000 responses obtained, the statistical reliability of the results is ensured. The data 

obtained mostly correspond to municipalities with low population. The sample is fairly balanced in most 

aspects, except for the composition of education levels, where the number of responses from individuals with 

no education or primary education is lower than the rest. 

Regarding the dynamic model of the relationship system between population and agriculture, the 

application of the model was made on the selected areas and validated with the official real data. First results 

have shown that the accuracy improve significantly when applied to larger areas. Initially, provinces were 

used for the analysis, but this caused distortions in the results, leading to the selection of regions with similar 

climatic characteristics, based primarily on average precipitation. Despite these adjustments, representativity 

problems persist, especially in less common production systems. Additionally, technical-economic 

orientations (OTE) do not adequately differentiate between rainfed and irrigated systems, which affects the 

combination of agricultural and livestock activities. 

To address these challenges, it was decided to analyze farms with pure characteristics of the production 

system. The dominant crop types were studied on farms with more than 80% in that type, and the minority 

types on farms with more than 50%. When there is sufficient representativity, the method reflects cost savings 

due to economies of scale well. However, smaller farms distort the model due to low representativity and 

high dispersion of labor data. 

The model improved by grouping the smaller classes into those dominated by larger farms, thus correcting 

the deviations. However, this correction is not applicable to all types of production systems, especially in 

crops like citrus or intensive horticultural crops, where the distortion in small farms is lower. 

The differences between rainfed and irrigated farms vary between 6% and 10% in crops with equivalence 

between the two and are greater in those without equivalents. At the regional level, the results reflect official 

employment data well, although there is dispersion at the municipal level since the model is based on typical 

farms and might not fully adjust to reality. The farm cost data are also adequately reflected, although the 
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transformation data show greater discrepancies. 

4. Conclusions 

From the survey results, it is concluded that the improvement in services, including internet access, is 

considered essential for retaining rural population and preventing migration, even more so than increasing 

job opportunities. Satisfaction with life in rural areas is high, and the perception of the importance of 

irrigation and improving rural living conditions is also high and shared by individuals living in municipalities 

with and without irrigation. The majority opinion is that the implementation of irrigated crops improves 

economic and social conditions and job opportunities; it promotes the increase and/or improvement of 

services (healthcare, education, commercial), and would help in retaining the population. 

The system dynamics model demonstrates good representational capacity and significant improvement 

by adjusting the analysis zones and grouping farms, although it still faces challenges in representativity and 

accuracy at the local level and in certain production systems. It is necessary to deepen the discrimination of 

industry types and their relationship with industrial land, on the one hand, and the productive differences 

between rainfed and irrigated systems, on the other. When data is entered into the model, changes in farm 

structure (towards concentration) and land use have a greater impact than the differences between rainfed 

and irrigated systems. However, there are fewer losses in irrigated areas, which are more stable from a labor 

perspective. The project will continue by improving this SD model and making simulations for the future in 

different scenarios. 
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Abstract 

The objective of this study was to evaluate an electronic recording atmometer (ETgage Model E; equipped 

with a canvas #54 cover) to estimate reference evapotranspiration (ETr), against the Penman-Monteith 

evapotranspiration (FAO-56 Method). The result indicates a high determination coefficient (r2=0.89) 

between daily ETr estimated by the atmometer and ETr estimated with the Penman-Monteith Equation. Thus, 

this study suggests that atmometers can be used within the field of interest to estimate daily reference 

evapotranspiration at a lower cost than electronic weather stations once they are locally adapted. 

 

Keywords: irrigation scheduling; weather station; Penman-Monteith. 

1. Introduction 

The Penman-Monteith method is widely considered the most accurate and comprehensive approach for 

estimating reference evapotranspiration (ETr; reference surface crop, a well-watered hypothetical grass 

surface having fixed crop height, albedo and surface resistance). It takes into account various climatic factors 

as well as the characteristics of the vegetation and soil. While it offers high accuracy, it also requires extensive 

meteorological data and specialized calculations, which may be challenging for users with limited access to 

resources or technical expertise. Electronic weather stations, equipped with climatic sensors (i.e., air 

temperature, relative humidity, anemometer, and pyranometer) are used to derive the FAO-56 Penman-

Monteith ETr as an expression of the daily evaporative demand of the atmosphere. However, ETr values 

scattered throughout the region  make it impossible to develop customized irrigation plans for every farm 

(Garcia-Prats et al., 2023). 

Atmometers (ETgage) can be used to provide ETr, as a simpler and more affordable alternative to weather 

stations (Nikolaou et al., 2019; Taghvaeian et al., 2014). They consist of a porous ceramic cup or plate (i.e., 

Bellani plate) that allows water to slowly evaporate into the surrounding atmosphere. The atmometer is 

typically filled with distilled water, and as the water evaporates, it creates a negative pressure inside the 

device which can be read manually or interfaced with a data logger so that ETr values can be recorded. This 

negative pressure is related to the rate of evaporation and can be correlated to the evapotranspiration rate of 

the surrounding environment. The atmometers modified version uses a green canvas that tightly covers the 

evaporating cup and simulates the spectral reflectance and leaf water vapor conductance of well-watered 

reference crops such as grass or alfalfa (Taghvaeian et al., 2014).  

Most atmometer designs cost significantly less than a full meteorological station capable of measuring 

the parameters needed to compute reference evapotranspiration; thus they provide a low-cost alternative to 

estimating crop water demand and irrigation requirements that is readily accessible to irrigation decision-

makers (Brinson et al., 2023). However, atmometers provide an approximation of evapotranspiration; 

therefore, calibration and site-specific adjustments are often necessary to obtain accurate measurements. 

Coefficients of determination (r2) between daily evapotranspiration values measured with atmometers and 

with weather stations were estimated between 0.74 to 0.80 in different studies (Gleason et al., 2013; 

Straatmann et al., 2018). 

Hence in the present study, an experiment was conducted in a semi-arid region testing the use of an 

electronic atmometer and compare the resulting ETr (ETgage) to ETr values calculated with a weather station 
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(ETstation; Penman-Monteith) equipped with the appropriate climatic sensors. 

2. Materials and Methods  

This study was conducted in an aromatic crops research field located near the city of Nicosia, Cyprus (lat. 

35° 08' 8.70 N, long. 33° 24' 9.60" Ε, altitude 165 m, m.s.l.). The climate is characterized by a hot semi-arid 

climate (hot, sometimes extremely hot, summers and warm to cool winters), classified as BSh by the Köppen-

Geiger system. 

The electronic weather station (MeteoSense 4.0) was purchased from Netsens company, Calenzano, 

Florence, Italy. It was mounted on a pole at 2 m height from the ground (Figure 1). The station consisted of 

a rain collector (tipping bucket, resolution 0.2 mm), a wind sensor (1-67 m s-1, accuracy 5%; direction 0-

360◦, accuracy 7◦), a solar radiation sensor (0-1800 W m-2, accuracy 5%), a thermo-hydrometer for air 

temperature (-25 to +85 °C; accuracy 0.5°C) and air humidity (0-100 % RH; accuracy 3%). A solar panel is 

used as a source of power supply integrated with a storage battery. Climatic data were in real-time forwarded 

to the Netsens LiveData platform (data cloud platform; IoT system) with the use of a SIM card. Climatic data 

were recorded at 30- seconds intervals, and transmitted as average/cumulated data every 5 minutes, while on 

the cloud platform data can be downloaded on an hourly basis. The reference evapotranspiration is computed 

in real-time (every 1 hour) based on the Penman-Monteith equation and averaged per day (Zotarelli et al., 

2014). 

 

 

 

where ETr is the estimated reference evapotranspiration value (mm d-1), RN is the net radiation at the crop 

surface (MJ m-2 d-1), G is the soil heat flux density (MJ m-2 d-1), T is the mean daily air temperature at 2 m 

height (°C), u2 is the wind speed at 2 m height (m s-1), es is the saturation vapor pressure (kPa), ea is the actual 

vapor pressure (kPa), es-ea is the saturation vapor pressure deficit (kPa), Δ is the slope of the saturation vapor 

pressure curve (kPa ̊C-1), γ is the psychrometric constant (kPa ̊C-1).   Equation 1 can be applied using hourly 

data if the constant value “900” is divided by 24 for the hours in a day and the Rn and G terms are expressed 

as MJ m-2 h-1. 

 

An electronic recording atmometer (ETgage Model E), equipped with a disposable paper and #54 

diffusion canvas cover, was installed near the weather station (Figure 1) following specifications in the 

ETgage-Model, 20151. E User Manual. The water reservoir and the cup of the ETgage are filled with distilled 

water to saturate the pores and allow for water to naturally wick away. All of the weather variables 

(temperature, relative humidity, net radiation, and wind speed) act upon water evaporating through the 

ceramic/cloth cover interface, producing an electronic signal (pulse) after 0.01" ETr has been lost. The 

weather stations’ solar power is used as an external power source for the atmometer. The output signal was 

counted and logged in the Meteosense 4 software system, uploaded to the cloud. 

 

 

 

 

 

 

 

 

 

 

 

 
1 https://www.etgage.com/Complete%20Model%20E%20Manual.pdf 
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Figure.1: Automatic weather station and electronic atmometer connected to the station data logger unit. 

 

The climatic monitoring equipment was set up on 10 October 2023. This paper is referring to preliminary 

data from October to December. 

 

3. Results and Discussion 

This paper aims to evaluate the feasibility of using an electronic atmometer to effectively estimate 

reference evapotranspiration. This allowed us to test the assumption that automated atmometers could be 

used as a simple and cost-effective way to estimate water loss from a given area without relying on the 

complex instrumentation of automatic climatic stations. 

The following figure displays the ETgage data plotting with solar radiation values for two representative 

days. Each time 0.01" of water lost (ETr) an electronic signal-pulse is counter (purple line). It can be observed 

that ETgage values follow the diurnal variation of solar radiation with a hysteresis during the early daylight 

hours. The time lag between solar radiation and air temperature is the most important factor generating this 

hysteresis (Zheng et al., 2014). At night, also ETgage values were detected. During October the first signal 

of ETgage displays between 8:30 to 9:00 am, i.e., 1.5-2 hours after the sunset, while in December the first 

signal is around 10:00 am, 3 hours after the sunset (data not shown). 
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Figure 2: Automatic recording of ETgage (purple color line; reference evapotranspiration); solar 

radiation (green line). 

 

Figure 3 shows the diurnal variation of ETgage against the ETstation values for a three-day representative 

period during October (ETr; mm). It can be seen that differences between the ETgage and the ETstation, were 

greater after midday. In addition, nigh-time ETr was also detected by the ETgage which was found to be as 

high as 0.10 mm in some cases; even though no nigh-time ETr calculated with the weather station. Other 

researcher also reported on nigh-time transpiration of up to 55% of the daily reference evapotranspiration ( 

Djaman et al. 2018; Groh et al. 2019). In our case the mean calculated values of ETr were 1.64 (±0.64) mm 

ETgage and 0.30 (±0.64) mm ETstation for 74 numbers of observations, and the maximum values observed 

were 3.00 and 0.61 mm correspondingly. The mean solar radiation values during the experimental period 

were 92 W m-2 and the mean air temperature was 17.4 °C.   

 
 

Figure 3: ETgage (purple color line; potential evapotranspiration, mm); ETstation (red bars; potential 

evapotranspiration, mm); solar radiation values (green line). 

 

To determine the relationship between ETstation and ETgage linear regression analysis was performed, 

with ETstation as a dependent variable and ETgage as an independent. The linear relationship between 

variables studied (i.e., ETstation=4.37 ETgage+0.34) showed a very high coefficient r2=0.89 with a beta 

value of 0.94 (Figure 4). 
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Figure 4. Relationship between potential evapotranspiration estimated with the Penman-Monteith 

Equations (ETstation, mm) and the automatic atmometer (ETgage, mm). 

 

4. Conclusions 

Atmometers are commonly used in agricultural and environmental research to estimate 

evapotranspiration rates, which is important for water management and for irrigation scheduling especially 

in semi-arid regions. They provide a simple and cost-effective way to estimate water loss from a given area 

without relying on complex instrumentation. We have demonstrated the use of an electronic evaporimeter as 

an alternative to calculated on real time the potential evapotranspiration.   
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